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ABSTRACT

A particular non-linear function of six independent variables is 

minimized, using the Los Alamos electronic computer. The values 

of the variables at the minimum correspond to the phase shift 

angles in the scattering of pions by hydrogen.
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The Los Alamos Maniac has been used in solving a numerical prob­

lem that is of importance in the interpretation of the scattering of 

pions by hydrogen. Mathematically, this problem consists of searching 

for the minimum of a rather complicated function of six angles. The 

procedure followed in solving this problem and the experience on the 

performance of the computer will be described. In the last section 

some general remarks on the use of similar methods in solving compli­

cated systems of ordinary equations with many unknowns will be described.

The Physical Problem.

During the last year a series of experiments have been performed 

with the synchrocyclotron at the University of Chicago on the scatter­

ing of pions with energies of the order of 100 Mev by protons. The ex­
perimental results have been in part published.^

At each energy three different types of processes are investigated 

experimentally. They are the elastic scattering of positive and nega­

tive pions and the exchange scattering of the negative pions in which 

a negative pion incident on a proton loses its negative charge to the 

proton in the scattering process. The pion becomes thereby neutral and 

the proton is changed into a neutron. For each of these processes a 

complete angular distribution should be investigated. In the actual 

experiments data have been taken at three angles only, namely U50, 90°, 
and 135° in the laboratory frame of reference. At each energy therefore 

(l) Anderson, Fermi, Nagle and Yodh, Phys. Rev., 86, 793 (1952).
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1 2 ^nine cross sections are measured. Three of them, a , a t a , are the

elastic scattering cross sections of the negative pions for the three

above angles converted to the center of mass reference. Similarly,
1 2 ^the three cross sections, o+} a+, cr, for the elastic scattering of posi­

tive pions sire measured. The exchange scattering cross sections cannot 

be measured directly because of the extremely short lifetime of the

neutral pion. One can. observe, however, the gamma rays that result from
1 2 ^its disintegration. Three gamma ray cross sections, a^, ay, aare 

measured in this case. In what follows, the nine cross sections will 

be referred to as c^, Og, ... , a^»

Attempts have been made to express all these cross sections in terms 

of phase shift angles. On the assumptions discussed in Reference (l) all 

the cross sections at a given energy can be expressed in terms of six 

angles which will be here indicated by ot^, a^, ... , The first two

angles are the phase shifts of the s-waves of isotopic spin 3/2 and l/2, 

respectively, the angles a ^ are the phase shifts of the p-waves

of angular momentum 3/2 and isotopic spins 3/2 and l/2,and the angles 
and c»g are the phase shifts of the p-waves of angular momentum l/2 

and isotopic spins 3/2 and l/2.

The Mathematical Problem.

The nine experimental cross sections <y^, Og, ... , a^, are ex­

pressed in terms of the six angles to by formulas of the type
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ai =

(i) = ^(<*1^ C•2, * * * '

The actual form of the functions f^ to f^ will be given later. Because

of the experimental error in the measured quantities the equations 

(l) will not be exactly verified and one tries to determine the best 

set of angles a by a least squares procedure. One searches for the 

set of angles that minimizes the following expression.

(2) minimum

i
in which e n is the experimental error of the quantity an.

Because of the rather complicated structure of the functions f, a 

conventional numerical solution of the minimum problem (2) is very 

laborious and requires one or two weeks of fairly steady computation 

for solving one single problem. An approximate solution obtained by 

this method is quoted in Reference (l). Machine computation presents 

great advantages in handling this problem. One problem can be solved 

by the Maniac in approximately five minutes.

In order to define completely our problem, the form of the functions 

f must be given. These functions are best expressed using complex nota­

tions. For each of the six angles „ one defines a corresponding 

quantity.

t
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(3) en = exp(2 i an) - 1 

From these quantities the following nine coefficients are computed.

el+2e2
■i a./*P

= ^lfe_-^(e3-e^2e5-2e6); a.^ =

W bB ’ 3{\-e2)> * |(e3-e4-e5+e6); V; - '/m+el,-2V96)

2e-+e.+UeeT+2e/'3U56
9

b = e.; a
fi = o(eo‘e).)i a- = —2—3VC3-V % =

These nine coefficients represent physically the amplitudes of the 

scattered waves of different spin, angular momentum and electric 

charge for the three processes. These quantities are used for the 

computation of nine more quantities as follows:

2 , 2 .. .2 ,2
P

(5) A

. - ?|bp| V^ 1 b.= i«tbp<p)i c.= -

2 2 2N ♦grffll . B - a* V r - -9hsa 'o' 2^°N aN^ o ~ a8
2 , , 2

l+ . 2J54212L,

The symbol"^ means "real part of". An asterisk means the complex 

conjugate. The cross sections are expressed in terms of these nine 

quantities by the following formulas
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Q H II

O
A + B cos Xj + C cos

a2 ’
p

A + B cos Xq + C cos X^

°3 ■
p

A + B cos X3 + C cos£ X

II-=i-

A+ + B+ cos + C+ cos^ X^

a5 m

(6)
°6 "

A + B cos X + C cos^ X
•T X & X &

A, + B, cos + C cos^ X
+ + 3 + 3

°7 = 2A + C + pB cos X, + qC cos^Xt
o 3® o i * o J-

Q 03 II

2A + C + pB cos X_ + qC cos^X_
o 3° ° 2^0 2

a9 = 2A + C + pB cos X + nc cos^X'*
o 3 o *o 3 o 3

In these formulas the cross sections on the left hand side are expressed
2in units of X where X is the de Broglie wave length in the center

of mass system. They are, therefore, pure numbers. The quantities p

and q are known constants for each energy and are given by the following

formulas,
(7) t* ii -I

S?

3r
o|
i-
*

>e
h<

(8) q » 2 + 4.2zum 
v2 i3 r-’’
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in which v and tj are the total energy and the momentum of the pion in
pthe center of mass system expressed in units and vc, respectively,

( f* = pion mass; c = velocity of light). The quantities X-^t Xgj and 

*3 are the angles at which the cross sections are measured (U5°, 90°^ 
135°), converted to the center of mass system. XX^ are the

angles converted to the center of mass system for the case that the par­

ticle observed is a gamma ray. Both sets of angles are computed easily 

for each energy with the transformation formulas of relativity.

The Coding of the Problem.

In order to solve numerically the minimum problem (2) the Maniac 

must be instructed first to compute the quantity M for six given phase 

shift angles. These angles will then be changed by small steps according 

to a pattern to be described, searching for lower and lower values of M 

until a minimum is found. The coding consists therefore of a first part 

that contains the instructions for the computation of the function M and 

a second part with the instructions for the search of the minimum.

The first part is rather lengthy but logically quite straightfor­

ward. The machine computes in succession the real and imaginary parts of 

the quantities (4) and then combines them to compute the quantities (5) 

and the cross sections (6). Then it forms the sum of squares that appear 

in (2). For this computation the sines and cosines of the six angles are 

needed. For the initial values of the six angles the sines and cosines 

are given as part of the input of the problem. In the successive
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computation as the angles are changed, a simple routine is used that 

gives the new values of the trigonometric functions hy using the old 

values and the addition theorem. The coding of this part of the problem 

requires approximately 150 memory positions. In spite of the complica­

tion of the function M, the machine computes its value in approximately 

k/10 of a second, whereas a hand computation of the same function takes 

about 20 minutes.
The search for the minimum involves a sequence of successive compu­

tations of M for different values of the angles. Each time that new 

angles yield a value of M smaller than any of the preceding ones, this 

value is stored as a temporary minimum. The procedure stops when a 

set of angles, a^, <* g, ... , cig, is found such that the values of M 

for this set are smaller than the 12 values of M obtained when one of 

the six angles is either increased or decreased by a specified small 

step. The smaller is the step, the higher is the accuracy of the mini­

mum values found.
For a coarse search of the minimum, steps of l/2° were chosen.

After computing the value for M for the initial angles, the computer is 
instructed to seek a new value of M obtained by increasing by l/2°.

If this value is smaller than the original, the computer keeps on cal­
culating values of M, adding each time l/2° to until the value of 

is reached such that adding l/2° to it increases M instead of de­

creasing it. If the first addition of l/2° to produces an increase 

in M, the computer is instructed to subtract from a half degree at a

9



time until M stops decreasing. After this operation is completed, the 

computer repeats the same operation on a^, and then on ay etc., up 

to otg. This cycle is repeated until two successive cycles do not pro­

duce a further decrease of the value of M. After this coarse search 

for the minimum is completed the computer is instructed to go through 

a similar operation using this time a step of l/l6°. After this second 

search is completed optimum angles and the values of the cross sections 

at the minimum are printed.

If the function M had one single minimum, one would expect that no 

matter what is the set of angles from which one starts, the procedure 

should always end very close to the same minimum position. Errors up 

to about l/2° are possible because of the finite step of l/l6° used.
For the practical problem errors of this magnitude are quite irrelevant. 

If the function M has several minima, one might expect that,depending 

on the set of angles from which one starts, the computer may end 15) at 

a different relative minimum.

In the present problem It was known that the function M had at 

least four minima, two of them corresponding to entirely different sets 

of angles, and two more obtained from them by changing the signs of all 

angles. In order to investigate whether there are any additional mini­

ma, it would be necessary to have a rather complete mapping of the 

function, a very staggering task for a function of six independent 

variables. This point was investigated partially as follows: A 

search of the minimum with the same experimental data was repeated
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some 30 times, starting each time with a different set of initial 
angles chosen at random. The minima obtained were recorded and classi­

fied. Three essentially different minima were found; for each of them 

sometimes one sign of the variables and sometimes the opposite is 

found. Two of the minima are in the vicinity of the positions that 

were already known, and the third is at quite different values of the 

angles. This last minimum, however, is irrelevant from the practical 

point of view, because it is only a relative minimum with a rather 

high value of M and would give therefore a very poor least square 

solution of the problem. While this procedure does not guarantee 

that no further minima exist, we feel that it is not very probable 

that any should have escaped this type of search.

Results.

Tables I and II summarize the results obtained for 113 and 135 Mev 
pions. In each table. Column 1 indicates the quantity represented in 

the corresponding line. Column 2 gives the measured cross sections 

with experimental error expressed in mb/sterad. The third and fourth 

columns, labeled "First Minimum" and "Second Minimum", give the results 

of the two solutions of the problem corresponding to the two lowest 

minima of M. In computing the fifth column the same code was used 

but the input was changed because the three errors of o , a , oJ 
were increased by about a factor 1000. It is clear from (2) that if 

this is done the first three of the nine terms of M become negligibly
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small. The minimum value of M will then be vei-y close to 0 because, 

at least in general, it will be possible to find a set of six angles 

that represent exactly the remaining six cross sections. In the actual 

case the solution is not quite exact because of the finite step adopted 

in search for the minimum of M. One will notice that the cross sections 

for which the error has not been changed (lines !»■ - 9 of the tables) 
are quite close to the measured values. The first three cross sections, 

for which the errors have been made practically infinite, are repre­

sented, instead, rather poorly.

A similar procedure was repeated by increasing once the errors of 

the three cross sections <j+ (column 6) and once the errors of the cross 

sections ay (column 7). In all of these three cases three of the 

cross sections were computed from the measured values of the remaining 

six, without any use of their experimental values being made in the 

computation. Inspection of the table shows that although the computed 

cross sections do not come very close to the measured values, they 

still have values somewhat similar to them.

Solutions of Minimum Problems by Electronic Computers.

The problem that has been here discussed is an example of a mini­

mum problem for a function of many variables. In principle, problems 

of this type could be handled in two ways. One involves standard 

mathematical procedure of equating to 0 all the partial derivatives 
of the function and obtaining thereby a system of n equations with n
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unknowns (n number of variables). The second procedure is the one 

chosen in the present example: to search for the minimum value by com­

puting the function at very many points until the minimum is attained.

There are, of course, no general criteria for preferring one 

method to the other and the choice may be different for different 

problems. The present procedure was chosen in our example because 

to solve the six equations with six unknowns obtained by equating to 0 
the partial derivatives would have been probably a more complicated 

task than to compute directly the values of the function.

The following experience was gathered: If one searches for a 

minimum without any previous knowledge of its location, one will start 

from an arbitrary set of initial angles. It usually takes a relatively 

long time before the first cycle of variation of the six variables has 

taken place. In the average, this may be approximately two minutes, 

corresponding to computing the function U00 times. The next cycle of 

variation of the six variables is usually much shorter, and may last on 

the average perhaps 30 seconds. In most cases the coarse minimum,cor­

responding to a step of l/2°, is reached in about a dozen cycles, 
totaling three or four minutes.

The fine search of the minimum with steps of l/l6° takes on the 
average between one and two minutes. Only exceptionally it has hap­

pened that the coarse minimum was actually rather far from the true 

minimum position and in this case the further approach to the minimum 

with the fine step is more lengthy.
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A Method for Solving Systems of Equations with Many Variables.
The same general procedure followed in the present problem for 

obtaining a minimum may be applied to the problem of solving a compli­

cated system of n equations with n unknowns. Let the equations be of 

the form

f1(x1x2...xn) = a1

(9) f2(x1x2..,xn) = a2

fn(XiX2...xn) = an 

Consider the expression:

(10) M
n

= £ fi(x1...xn) -

M vanishes for a solution of (9) and is greater than 0 otherwise. A 

solution corresponds therefore to a minimum of M which can be found by 

a searching procedure of the same type used for our problem. Of course, 

only minima where M = 0 will correspond to actual solutions of the 

system nine and there might be other relative minima that would have to 

be discarded.

An example of this procedure for solving a system of six equations 

with six unknowns is given in the previous calculations in columns 5,

6, and 7 of the two tables. In fact the procedure followed would cor­

respond exactly to the one described in this section if three of the 

errors had been made infinite instead of being only very large. The
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reason vhy the errors were made large hut not infinite was merely a 

practical one, because by so doing one does not have to re-code the 

problem at all,' but merely to change some of the input data.

Naturally, if one wanted to obtain more accurate solutions of the 

equation, one would have to use a smaller step. Probably it would save 

computing time to search for the solution to start with a coarse step 

and to reduce the step successively as closer and closer solutions are 

found.

It is questionable whether a procedure of this type would be 

practical in solving a system of linear equations. Probably In this 

case a method of successive elimination would be faster than the search 

for a minimum. On the other hand, it is likely that the search for a 

minimum may be a very practical approach for the case of complicated 

equations where the elimination procedure would not be easily feasible.

We wish to acknowledge the assistance of Mr. John B. Jackson 

during the course of computer operation.
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Table I

113 Mev

Measured
First

Mininrum
Second
Minimum increased £+ increased increased

<rj 0.^5 + 0.23 0.707 0.702 1.362 0.603 0.672
<r.*- 0.U8 ± 0.22 0.382 0.372 0.605 0.k36 o.kl9
o-_* 0.73 ± 0.19 0.698 0.705 0.931 0.7k0 0.711

<r»' 3.61 + 0.6^ 3.913 3.9U6 3.618 k.231 3.672
5.29 i 0.62 5.03k 5.0kl 5.258 k.383 5.207

13.U6 + 0.96 13.397 13.k29 13.U79 21.281 13.382

<K.' 1;.3U i 0.65 3.967 3.9kl k.337 k.32k 3.5^
®r4 5.17 ± 0.6U 5.kl9 5.kio 5.316 5.H3 6.1H6JTjv 10.U5 1 0.99 10.3k0 10.333 10.29k 10.k53 11.661

13.k° 13.39 1S.S0 16.8° 15.0°
- 6.8 - 6.9 - 2.1 - 1.9 -13.2
-27.1 -10.3 -26. k -27.6 -26.5

* * - 1.1 -35.8 - .8 -18.0 - 0.8
11.8 13.7 12.1 5.0 11.7

( lll.O lO.k 20.3 15.6 12.0

/A
!

1.58k 1.786
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Table n

135 Mev

Measured
First

Minimum
Second
Minimum £ increased increased £*. increased

1
ffi 0.87 i 0.37 1.07U 1.070 2.336 1.157 0.893
<rj- 0.65 ± 0.35 0.1*00 0.370 0.732 0.1*81 0.618
Tm9 0.87 ± 0.20 0.926 0.926 1.231* 0.901* 0.873

< 5.66 + 2.18 6.399 6.688 5.818 9.1*23 5.723
cil 6.75 ± 2.1U 6.1*90 6.507 6.652 8.666 6.723
<r+3 21.61* + 3.55 22.100 22.31*1* 21.610 26.831* 21.1*97

6.50 + 1.00 5.581 5.606 6.1*86 5.881 U.137
6.70 1 0.90 6.676 6.1*62 6.687 6.826 5.310

12.80 ± 0.90 12.683 12.762 12.806 12.766 10.1*61

**1 21.2° 20.3° 2l*.2° 1*0.9° 25.2°
** - 2.7 - 2.1* 5.1* - 1.7 - 2.1*
^3 -37.9 -21.2 -35.6 -3U.U -35.2

-11.5 —1*8.7 -11.8 -20.9 -11.6
o£f 16.8 15.1 1*6.0 18.8 1*.9
*< 3.8 9.0 5.9 6.6 il*.U

n 1.90 2.16


