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ABSTRACT

A particuler non-linear function of six independent variables is
minimized, using the Los Alemos electronic computer. The values
of the variables at the minimum correspond to the phase shift

angles in the scattering of pions by hydrogen.



The Los Alamos Maniac has been used in solving a numerical prob-
lem that is of importance in the interpretation of the scattering of
Plons by hydrogen. Mathemetically, this problem consists of searching
Tor the minimum of a rather complicsted function of six angles. The
procedure followed 1n solving this problem and the experience on the
performance of the computer will be described. In the last section
some general remarks on the use of similar methods in solving compli-

cated systems of ordinary equations with many unknowns will be described.

The Physical Problem,

During the last year a series of experiments have been performed
with the synchrocyclotron at the University of Chicago on the scatter-
Ing of pions with energies of the order of 100 Mev by protons. The ex-
perimental results have been in part published.(l)

At each energy three different types of processes are Investigated
experimentally. They are the elastic scattering of positive and nega-
tive plons and the exchange scattering of the negative pions in which
& negative plon incident on a proton loses 1ts negative charge to the
proton in the scattering process. The pion becomes thereby neutral and
the proton 1s changed into a neutron. For each of these processes a
complete angular distribution should be investigated. In the actual
experiments data have been teken at three angles only, namely h5°, 90°,

and 135o in the laboratory frame of reference, At each energy therefore

{I) Anderson, Fermi, Nagle and Yoah, Phys. Rev., 86, 793 (1952).



nine cross sections are measured. Three of them, o}, cf, of, are the
elastic scattering cross sections of the negative pions for the three

above angles converted to the center of mass reference., Similarly,

o3

9y for the elastic scattering of posi-

the three cross sections,ai, 02
tive pions are measured. The exchange scattering cross sections cannot
be measured directly because of the extremely short lifetime of the
neutral pion. One can observe, however, the gamma rays that result from
its disintegration. Three gemma ray cross sections, ct, 03, c%, are
measured in this case. In what follows, the nine cross sections will

be referred to as 0y5 Ops ese 09.

Attempts have been made to express all these cross sections in terms
of phase shift angles. On the assumptions discussed in Reference (1) all
the cross sections at a given energy can be expressed in terms of six
angles which will be here indicated by @1y By ees 5 Ogo The first two
angles are the phase shifts of the s-waves of isotopic spin 3/2 and 1/2,
respectiveiy, the angles o

and . are the phase shifts of the p-waves

3 >
of angular momentum 3/2 and isotopic spins 3/2 and 1/2,and the angles
¢), and ag are the phase shifts of the p-waves of angular momentum 1/2

and isotopic spins 3/2 and 1/2.

The Mathematical Problem,

The nine experimental cross sections Tys Ops see s 09, are ex-

pressed in terms of the six angles oy to g by formulas of the type



op = Tylapepseee,ag)

02 = fa(alsaa,..., %)

(l) 09 = f9(“1)“2)"0)a'6)

The actual form of the functions fl to £, will be given later. Because

9

of the experimental error in the measured quantities o, the equations

i
(1) will not be exactly verified and one tries to determine the best
set of angles « by &a least squares procedure. One searches for the

set of angles that minimizes the following expression,

9 fo - £ (ag,eeesa)\
(2) ) M(al’da’ 001106) = Z (Gn né:l as) = minimum
1

in which € 1s the experimental error of the quantity O

Because of the rather complicated structure of the functions f, a
conventional numerical solution of the minimum problem (2) is very
laborious and requires one or two weeks of falrly steady computstion
for solving one single problem, An approximate solution obtained by
this method is quoted in Reference (1). Machine computation presents
great advantages in handling this problem. One problem can be solved
by the Maniac in approximately five minutes.

In order to define completely our problem, the form of the functions
f must be glven, These functions are best expressed using complex nota-
tions. For each of the six angles a, One defines a corresponding

quantity,



(3) e, = exp(2ia)-1

From these quantities the following nine coefficients are computed.
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These nine coefficients represent physically the amplitudes of the
scattered waves of different spin, angular momentum and electric
charge for the three processes. These quantities are used for the
computation of nine more quantities as follows:
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The syMbolT?f means "real part of". An asterisk means the complex
conjugete. The cross sections are expressed in terms of these nine

quantities by the following formulas



o, = A +B_cosX,+C_ cos2Xl

l - -
6, = A +B cosX, +C cos® X
2 - - 2 - 2
o, = A +B cosX,+C cos- X
3 - - 3 - 3
o, = A +3B cos X, +C cos® X
y + + 1 + 1
o. = A +B cosX_ +C cos® X
5 + + 2 + 2
(6)
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In these formulas the cross sections on the left hand side are expressed
in units of 7\2 vhere X 1s the de Broglie wave length in the center
of mass system. They are, therefore, pure numbers. The quantities p

and q are known constants for each energy and are given by the following

formulas,

_ 22 Lt
(7) P = 0 - naﬁﬂy_‘g

- $ 37 po2in
(8) qQ = 2+ 112 = 173 y-n



in which 7y and 5 are the total energy and the momentum of the pion in
the center of mass system expressed in units ucz and uc, respectively,

( u = pion mass; ¢ = velocity of 1light), The quantities Xy> X, and

Xé are the angles at which the cross sections are measured (hso, 900,
135°) s converted to the center of mass system., Xi, é, Xé are the

angles converted to the center of mass system for the case that the par-
ticle observed is s gamma ray. Both sets of angles are computed easily

for each energy with the transformation formulas of relativity.

The Coding of the Problem.

In order to solve numerically the minimum problem (2) the Meniac
must be Instructed first to compute the quantity M for six given phase
shift angles. These angles will then be changed by small steps according
to a pattern to be described, searching for lower and lower values of M
until a minimum is found. The coding consists therefore of a first part
that contains the instructions for the computation of the function M and
a second part with the instructions for the search of the minimum,

The first part is rather lengthy but logically quite straightfor-
ward. The machine computes in succession the real and imaginary parts of
the quantities (4) and then combines them to compute the quantities (5)
and the cross sections (6). Then it forms the sum of squares that appear
in (2). For this computation the sines and cosines of the six angles are
needed. For the initial values of the six angles the sines and cosines

are given es part of the input of the problem. In the successive



computation as the angles are changed, a simple routine 1s used that
gives the new values of the trigonometric functions by using the old
values and the addition theorem. The coding of this part of the problem
requires approximately 150 memory positions. In spite of the complica-
tion of the function M, the machine computes its value in approximately
4/10 of a second, whereas a hand computation of the same function tekes
about 20 minutes.

The search for the minimum involves a seguence of successive compu-
tations of M for different values of the angles. Each time that new
angles yield a value of M smaller than any of the preceding ones, this
value is stored as a temporary minimum. The procedure stops vwhen a
set of angles, @15 By ses ) Oy is found such that the values of M
for this set are smaller thsn the 12 values of M obtained when one of
the six angles is either increased or decreased by a specified small
step., The smaller i1s the step, the higher is the accuracy of the mini-
mum values found.

For a coarse search of the minimum, steps of 1/2o were chosen,
After computing the value for M for the initisl angles, the computer is

instructed to seek a new value of M obtained by increasing a, by 1/20.

1
If this value 1s smaller than the original, the computer keeps on cala

1 until the value of

is reached such that adding 1/2o to it increases M instead of de-

culating values of M, adding each time 1/2° to o

!
creasing it, If the first addition of 1/2o to o, produces an increase

in M, the computer is instructed to subtract from o) 8 half degree at a

9



time until M stops decreasing., After this operation is completed, the

computer repeats the same operation on a and then on a3, ete., up

2}
to g This cycle is repeated until two successive cycles do not pro-
duce a further decrease of the value of M, After this coarse search
for the minimum is completed the computer is instructed to go through
a similar operation using this time a step of 1/160. After this second
search is completed optimum angles and the values of the cross sections
at the minimum are printed.

If the function M had one single minimum, one would expect that no
matter what is the set of angles from which one starts, the procedure
should always end very close to the same minimum position. Errors up
to about l/2° are possible because of the finite step of l/l6° used.
For the practical problem errors of this magnitude are quite irrelevant.
If the function M has several minima, one might expect that,depending
on the set of angles from which one starts, the computer masy end up at
a different relative minimum.

In the present problem it was known that the function M had at
least four minima, two of them corresponding to entirely different sets
of angles, and two more obtained from them by changing the signs of all
angles., In order to investigate whether there are any additional mini-
ma, it would be necessary to have a rather complete mapping of the
function, a very staggering task for a function of six independent
variables. This point was investigated partially as follows: A

search of the minimum with the same experimental data was repeated

10



some 30 times, starting each time with a different set of initial
angles chosen at random. The minima obtained were recorded and classi-
fied. Three essentially different minima were found; for each of them
sometimes one sign of the variables and sometimes the opposite is
found., Two of the minima are in the vicinity of the positions that
were already known, and the third is at quite different values of the
engles, This last minimum, however, is irrelevant from the practical
point of view, because it is only a relative minimum with a rather
high value of M and would give therefore a very poor least square
solution of the problem. While this procedure does not guarantee

that no further minima exist, we feel that it is not very probable

that any should have escaped this type of search,

Results.

Tables I and II summarize the results obtained for 113 and 135 Mev
pions. In each table, Column 1 indicates the quantity represented in
the corresponding line, Column 2 gives the measured cross sections
with experimentel error expressed in mb/sterad. The third and fourth
columns, labeled "First Minimum" and "Second Minimum", give the results
of the two solutions of the problem corresponding to the two lowest
minime of M, In computing the fifth column the same code was used
but the Input was changed because the three errors of af, of, a?

were increased by about a factor 1000. It is clear from (2) that if

this is done the first three of the nine terms of M become negligibly

11



small., The minimum value of M will then be very close to 0O because,

at least in general, it will be possible to find a set of six angles
that represent exactly the remaining six cross sections. In the actual
case the solution is not quite exact because of the finite step adopted
in search for the minimum of M. One will notice that the cross sections
for which the error has not been changed (lines 4 - 9 of the tables)

are quite close to fhe measured values, The first three cross sections,
for which the errors have been made practicallfvinfinite, are repre-
sented, instead, rather poorly.

A similar procedure was repeasted by increasing once the errors of
the three cross sections o (column €) and once the errors of the ~ross
sections o, (column 7). 1In all of these three cases three of the
cross sections were cémputed from the measured values of the remaining
six, without any use of thelr experimental values being made in the
computation, Inspection of the table shows that although the computed
ecross sections do not come very close to the measured values, they

still have values somewhat similar to then.

Solutions of Minimum Problems by Electronic Cowputers.

The probleﬁ that has been here discussed is an exsmple of a mini-
mum problem for a function of many variables, In principle, problems
of this type could be handled In two ways. One involves standard
mathematical précedure of equating to O all the partisl derivatives

of the function and obtaining thereby a system of n equations with n

12



unknowns (n number of varlables)., The second procedure is the one
chosen in the present example: to search for the minimum value by com-
puting the function at very many points until the minimum is attained.

There are, of course, no general criteria for preferring one
method to the other and the cholce may be different for different
problems., The present procédure was chosen In our example because
to solve the six equationg with six unknowns obtained by equating to O
the partiel derivatives would have been probably a more complicated
task than to compute directly the values of the function.

The following experlence was gathered: If one searches for a
minimum without any previous knowledge of its location, one will start
from an arbitrary set of initial angles. It usually takes a relatively
long time before the first cycle of variation of the six variables has
taken place. In the average, this may be approximately two minutes,

" corresponding to computing the function LOO times. The next cycle of
variation of the six variables is usually much shorter, and may last on
the average perhaps 30 seconds. In most cases the coarse minimum,cor-
responding to a step of 1/20, is reached in about a dozen cycles,
totaling three or four minutes.

The fine search of the minimum with steps of 1/16° tekes on the
average between one and two minutes. Only exceptionally it has hap-
pened that the coarse minimum wes actually rather far from the true
minimum position and in this case the further spproach to the minimum

with the fine step 1s more lengthy.

13



A Method for Solving Systems of Equations with Many Variables.

The same general procedure followed in the present problem for
obtalning a minimum mey be applied to the problem of solving a compli-

cated system of n equations with n unknowns. Let the equations be of

the form
£ (xxpeenx)) = 3y
(9) f2(x1x2...xn) = a,
fn(xlxa"'xn) = 8
Consider the expression:
n 2
(10) M = Z; fi(xl"'xn) - a,

M vanishes for a solution of (9) and is greater than O otherwise. A
solution corresponds therefore to o minimum of M which can be found by
a searching procedure of the same type used for our problem. Of course, .
only minima where M = O will correspond to actual solutiohs of the
system nine and there might be other relative minima that would have to
be discarded.

An gxample of this procedure for solving a system of six equations
with six unknowns is given in the previous calculations in columns 5,
6, and 7 of the two tables. In fact the procedure followed would cor-
respond'exactly to the one described in this sectlon if three of the

errors had been made infinite instead of beilng only very large. The

1k



reason vhy the errors were made large but not infinite was merely a
practical one, because by so doing one does not have to re-code the
problem at all, but merely to change some of the input data.

Naturally, if one wanted to obtain more accurate solutions of the
equation, one would have to use & smaller step. Probably it would save
computing time to seaxrch for the solution to start with a coarse step
and to reduce the step successively as closer and closer solutions are
found.

It is questionable whether a procedure of this type would be
practical in solving a system of linear equations. Probebly in this
case a method of successive elimination would be faster then the search
for a minimum, On the other hand, it is likely that the search for a
minimum may be a very practical approach fbr the case of complicated
equations where the elimination procedure would not be easily feasitle.

We wish to acknowledge the asslstance of Mr. John B. Jackson

during the course of computer operation.
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Table I
113 lev
First Second
Measured Minimum ¥inimum €. increased | £, increased | €p increased
o’ 0.55 * 0,23 0.707 04702 1.362 0.603 0.672
o * 0.L48 % 0.22 0.382 0.372 0.605 0.436 c.h19
o2 0.73 * 0,19 0.698 0.705 0.931 0.740 0.711
a,' 3.61 ¥ 0.65 3.913 3.946 3.618 h.231 3.672
o, 13.146 £ 0,96 13.397 13.429 13.L79 21.281 13,382
o' Lo3k * 0.65 3.967 3.9h1 L.337 L.32L 3,54k
L 5.17 £ 0,64 5.419 5.410 5.316 5.113 6.146
ol 10,45 % 0499 10,340 10.333 10,294 10.L53 11,661
<, 13.14° 13.39 15.5° 16,80 15.0°
d‘ A 608 - 6.9 bd 201 b 1.9 -13'2
< =27.1 -10.3 =26.1 =27.6 -26.5
<y - 1.1 -35.8 - .8 -18.0 - 0.8
<5 11.8 13.7 12.1 5.0 11,7
“ 1)400 lO.l‘—l 20.3 15’.6 1200
/V\ 1.584 1.786
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Table II
. 135 Mev
First Second

Measured Minimum Minimum | €. increased | &, increased | €, increased
o' 0,87 * 0,37 1.07h 1.070 12,336 1.157 0.893
o? 0.65 * 0435 0,400 0.370 0,732 0.481 0.618
o' 5,66 * 2,18 64399 6.688 5,818 9.423 5,723
0.2 6.75 + 2.1, 64490 6,507 6.652 8.666 6.723
el 21,64 * 3.55 22,100 22.3kL 21,610 26,834 21.497
% 6.50 % 1,00 5.561 5.606 6.1486 5.881 4137
oy 6.70 * 0,90 6.676 6,462 6,687 6.826 5.310
.4 12,80 % 0,90 12,683 12,762 12,806 12,766 10.461
<, 21,20 20.3° 2}y, 20 40.9° 25,29
‘c& - 207 - 20’4 50,4 - 107 bd 2.}-1
oc, =379 -21.2 ~35.6 -3l.k -35.2
Ocq -1105 ")-1807 —1108 —20.9 -11.6
°L$ 16‘8 1501 héoo 18.8 ho9
¢‘ 308 900 5.9 606 11&.’4
M 1,90 2,16




