JAN 8 1997

SANDIA REPORT

SAND96-3003
Printed December 1996

Unlimited Release

T

-- A New Physics for

Navigation

Data Zooming
Information

O

v B
AL
L~ 0 .

E:\s‘myq 0¥

Seen

MENT 1S UNLIMITED %

AN

wreaay

2
(VOEN
’

“THI8 BOCY

Al ' g A oo
o . . i X (NS
o % S REA SR RLVE S e
i, AN IO 2 Ton St RS el A
- 5 ZT % [P
L. - ¢ o R el -

PN S e

:,Dismfslﬁ‘i@‘

W

¥ - M e
R AR e e fa iy}

imited.

<

G. S. Davidson

]

Albuquerqus, New Mexico 87185 and Livermore, California 94550

J. F. Mareda

Sandia National Laboratories

for the United States Department of Energy
under Contract DE-AC04-94AL85000
Approved for public release; distriﬁﬁﬁon Is unl

Prepared by

SF2800Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND96-3003
Unlimited Release
Printed December 1996

DATA ZOOMING -- A NEW PHYSICS FOR
INFORMATION NAVIGATION

J. F. Mareda
Computer Architectures Department

G. S. Davidson
Computer Architectures Department

Sandia National Laboratories
Albuquerque, NM 87185-0318

Abstract

This research project, with Ben Bederson and Jim Holland at UNM, used Pad++, a user
interface originally developed by Jim Holland. The objective was to explore the utility of
that user interface to large databases of information such as those found on the World
Wide Web. A web browser based on Pad++ was developed in the first year of this
project. The first year results, including the human factors were documented in a video and
were presented at a SNL-wide seminar. The second year of this research project focused
on applying the results of the first year research. The work in the second year involve
using Pad++ as a basis for tools to manage large complicated web sites. Pad++ is ideally
suited to this complex activity. A prototype was developed, which presents Web
relationships in 3D hyperspace, following research from the Geometry Center at the
University of Minnesota. Various human factors studies were completed, which indicate
Pad++ web browsers allow users to comprehend 23% faster than when using Netscape.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. ‘

Data Zooming -- A New Physics for Information Navigation
Abstract

This research project, with Ben Bederson and Jim Holland at UNM, used Pad++, a user
interface originally developed by Jim Holland. The objective was to explore the utility of
that user interface to large databases of information such as those found on the World
Wide Web. A web browser based on Pad++ was developed in the first year of this
project. The first year results, including the human factors studies were documented in a
video and were presented at a SNL-wide seminar. The second year of this research project
focused on applying the results of the first year research. The work in the second year
involve using Pad++ as a basis for tools to manage large complicated web sites. Pad++ is
ideally suited to this complex activity. A prototype was developed, which presents Web
relationships in 3D hyperspace, following research from the Geometry Center at the
University of Minnesota. Various human factors studies were completed, which indicate
Pad++ web browsers allow users to comprehend 23% faster than when using Netscape.

Introduction

This document reports a two year LDRD study on a new user interface, Pad++. This work
was undertaken jointly with Ben Bederson and James Holland at UNM, using the Pad++
tool originally developed by Holland. The research extended previous concepts to create a
unique Web browser, which was carefully analyzed by the Sandia human factors group.
The unique Pad++ browser was found to be superior to Netscape for various experimental
tasks.

This report discusses the progress in the first year, then presents the progress in the final
year of the project. The human factors studies and results are briefly summarized before
concluding. However, Appendix I contains the details of the human factors study, results,
and conclusions. Appendix II contains a list of the project members and their
responsibilities. Appendix IIT documents the procedure for installing Pad++.

Project Accomplishments in FY’95

The project began by researching the literature to determine the

current "state of the art” concerning navigational issues in a complex

user interface. Several papers on the subject have been written by those

involved in the Pad++ project from UNM, Bellcore, and NYU. Web Navigation
was chosen as the application to investigate for the first year work. John
Mareda, the PI, along with Heather Allen, a Sandia Human Factors expert
investigated techniques to improve Web Navigation through data zooming.

John installed several different versions of the Pad++ software on the

SGI scientific visualization server machine at Sandia and on two Suns, one a
SPARC 2 running OS 4.1.3 and the other a SPARC 20 running Solaris.

Glenn Machine assisted John in getting Pad++ put up as an application on
TIE-In. Pad++ worked best when it runs on a local, fairly powerful machine. However,
with a fast X-Server, Pad++ ran acceptably through TIE-In. John added a link to the EVE

1

home page as a pull down menu in Pad-++ for evaluating data organization in HTML
browsing. John and Heather met with Ben Bederson at UNM to discuss various
approaches for organizing the HTML pages. Ben described the code that performs the
HTML layout and John and Heather evaluated different layout approaches.

John worked with Heather to access Pad-++ through TIE-In on the Mac in her

office running an X-Windows emulator. Because a fast X-windows display was
critical to interactive response, using the Mac/X emulator is not viable. Heather

used a UNIX workstation running X-windows for her portion of the work in
evaluating HTML document arrangement. .

A contract was placed with UNM for Pad++ support in areas of interest
to Sandia. The first years contract was for $40K and was placed in May of
1995. A UNM graduate student rewrote the Pad++ based HTML

browser in C++ making it more general, robust, and functional.

A three minute videocassette demonstrating several of the concepts of Pad++ was
created using Sandia data. The video demonstrated semantic zooming in

a directory tree and shows a preliminary HTML viewer written at UNM.

TIE-In HTML pages were used in this demonstration. In this demonstration the
user clicks on a link, and the subsequent page is brought up smaller and to the
right of the original page. Through panning and zooming operations, one can
navigate through the HTML data space. The history of the navigation session
can be seen as the user zooms back out. The concepts of portals and filters

are also demonstrated. A portal is a window which gives a view of some
portion of the Pad++ data space. A filter is a special type of portal which

can change the representation of the data which is viewed through the

filter. For example, a chart of numbers could be viewed as a bar chart or a
scatter diagram, using filters. In another example, changing the user input

device from text entry, to a slider, to a dial gauge is demonstrated using

filters.

John hosted a Sandia wide presentation/demonstration on Pad++ in the TTC,

which was given by Jim Hollan and Ben Bederson of UNM. In addition to

introducing this new interface technology to interested Sandians, a primary

goal of the seminar was to solicit Sandia applications that could greatly

benefit from the Pad++ technology for further research during the second year of this
LDRD effort. Management of the SNL Website was identified as the best, opportunity for
furthering this research in a direction that could beneficially impact SNL.

Accomplishments - in FY’96

Sandia has an exceptionally well designed and very complex Internal Website
(Intranet). As Websites, like SNL’s, grow in complexity and size, better tools are
needed to design, develop and manage them. Because Pad++ is very

well suited to navigating large data spaces made up of diverse data, it

seemed natural to investigate using Pad++ as a tools for Website design

and maintenance.

Dru Popper-Lopez, a Sandia staff member on the EVE team (Sandia’s Internal
Web), was added to the project to provide suggestions on what would be useful
in a Website design and maintenance tool. He provided feedback on the

utility of the tool as the prototype was developed.

We began the process by outlining what was involved in designing a Website.
Some of the tasks involved in this process are to identify needs, define the target
audience, write down the objectives of the site, outline the content, and create

a rough map of the site. Although Website design and maintenance was chosen
as the application to prototype, the same concepts apply to other

storyboarding processes such as proposal writing, project planning, book
writing, video production and interactive multimedia applications.

We identified desirable features for a Website Design tool based

on multiscale user interface technology. The tool should have an intuitive
combination of frame and GUI-based authoring. All design tasks should be
interrelated, not separate elements. Templates should be provided that
would make the tool easier to use. For example, when designing a new site
from scratch, the user might be asked to fill in a three level block diagram.
HTML, sound, video and image creation and editing tools should

be available. The software should automatically start the appropriate
application for editing a file, based on the MIME type. The tool should be
useful for multiple levels of site design from creating a new site to
retrofitting an old site, to generating a subset site from an existing site.

For existing sites, the tool should automatically create a layout of the

site, which could be easily viewed using Pad++. For site maintenance, portal
filters could be used to highlight specific file types. For example, an MPEG
filter might turn all of the MPEG links yellow. Rearranging a site

should be a simple matter of cutting and pasting with the re-linking being
handled automatically by the software.

An analysis capability should be developed to determine if the site is

meeting the original design goals. A weighting scheme should be developed to
determine if the target audience is visiting the intended pages at the site.

Pages and actions might be assigned values and the users visit could be

scored. For example, if a user sends an email message, that visit could score

a higher value. If a user sends in a check, that would score even higher. Based on the
results, the site could be redesigned to meet the stated goals.

Other capabilities already supported in the Pad++ substrate that were used in this prototype
are the directory browser and the HTML browser (including the camera view). Applying
other research, such as the concepts in HyperG, also provided a more intuitive method for
defining the structure of the site.

Varying amounts of text related to a link, can be displayed by using the zoom factor. From
far away, the links in a document may appear as lines, as you get closer, additional
information is provided, including keywords, titles and abstract information.

David Proft, was hired to lay out the structure of an existing site in Pad++. Ben noted that

most sites are not laid out in a tree hierarchy and that having a filter show only

certain types of links (forwards, backwards, internal only, external only, or all) would be of

value, it was, also, suggested that keeping track of the path a user takes through the site

would be useful. This path information would provide additional information measuring
.how easily a user is able to navigate through the site.

David Proft experimented with these concepts in Pad++, developed a prototype

and documented the results in a progress report from UNM, which describes

the zooming Website manager. Dru Popper-Lopez provided feedback and suggestions for
changes that made the software more useful for Website design and maintenance.

Ed Marek researched other methods for representing the structure of a Website
based on 3D techniques. Tamara Munzner and Paul Burchard researched
visualizing the Web in 3D hyperspace. This idea grew out of research at the
Geometry Center at the University of Minnesota. Images relating to their
research (a conic tree and a 3D hyperbolic space) are shown below, Figure 1.

Figure 1, A visualization of a7Websitc in 3D hyperspace

Ed also successfully investigated techniques for laying out a site in 3D using VRML.
In the image below, a section of Sandia's external Web is represented by 3D
objects in a 3D scene, see Figure 2.

An extensive series of human factors studies were undertaken using the Pad++ tool, testing
the hypothesis that Pad++ improves a user’s ability to retrieve, comprehend, and integrate
data from the WWW. The results indicated that subjects can perform browsing tasks 23%
faster, on average, using Pad-++ than when using Netscape. Additionally, many subjects
found Pad-++ intuitive and fun to use. The experimental details and results are presented in
Appendix I, which reproduces pertinent sections of the human factors study report in “A
Zooming Web Browser”.

Figure 2, A visualization of a Website in 3D space using VRML

Conclusion

Three dimensional user interfaces are very useful tools for complicated data sets such as
Websites. Beyond three dimensional viewers (for example, VRML) the infinite resolution
Pad++ viewer makes it even easier to create and maintain large websites. The use of filters
and portals were especially useful. In conclusion, Pad++, and this research in general,
point to a new class of human/computer interfaces. With the advent of inexpensive high
performance personal computers, these more computationally demanding interfaces, or
ones derived from them, will become standard tools.

Appendix I

This appendix discusses the human factors studies. This work was reported by Benjamin
B. Bederson, James D. Hollan Jason Stewart, David Rogers, David Vick from UNM and
Laura Ring, Eric Grose, Chris Forsythe from Sandia National Laboratories. References
from “A Zooming Web Browser” are included on the last page of Appendix I

USABILITY TESTING

We hypothesize that the Pad++ Web browser will
improve users’ abilities to retrieve, comprehend,
and integrate data from the WWW. We think that
the ability to see multiple pages simultaneously,
and to leam the structure of the Web will facilitate
tasks of this nature. We chose to study the Pad++
Web browser in a focused technical domain to
make it easier to evaluate, by allowing
measurement of times to answer simple
questions. In addition, this domain is .
representative of the use of a Web browser within
a product development environment.

The Stimuli

The usability testing was designed to test how well
the Pad++ Web browser could perform as a
viewer for this type of database. More
specifically, we created a visual database of Web
pages. We then compared how long it took to
access information from these pages using the two
browsers, Pad++ and Netscape.

We designed a hypothetical database containing
the evolution of a manufacturing process over a
series of six versions. The entire stimuli set
consists of 31 Web pages (Figure 4). The stimuli
contains an Overall page which contains
information on the database and links to the
Design and Manufacturing Process pages and
links to the Budget and Schedule pages for each of
the six versions. Six Budget and Schedule pages
(Figure 5) give an overall estimate of time and the
budget for each version. Six Design and
Manufacturing Process pages contain the process
flowcharts for each version (Figure 6). The
process flowcharts are WWW image maps which
link to notes about the process. The final 18 pages
contain these notes.

Task 1 required the subjects to navigate to
specified pages in the data base and enter a page
number found on the top of each page. For
example, the subjects were asked to enter the page
number of Version 5°s Budget and Schedule page.
This tested speed of navigation within the
browser.

Figu
stimuli

. Task 2 and Task 4 tested the users ability to
retrieve and comprehend information about the
whole database. In Task 2 the subjects were asked
to count the number of versions with certain
features or where certain events occurred. For
example, the subjects were asked to indicate the
number of versions that had a new step added.
Task 4 required the user to identify versions with
certain features or where certain events occurred.
For example, the subjects were asked which
version had a problem with fabrication.

Task 3 tested the users ability to retrieve and
integrate information found within different pages
of the database. The subjects were asked to
compare different versions. For example, the
subjects were asked to indicate which version, out
of versions one, two and three had the highest
material cost. This required the subject to look at
the budget and schedule page for the three
versions and compare each of their material costs.
The Experimental Conditions

Four experimental conditions were examined:
Pad++ Prebuilt, Pad++ Interactive, Netscape
Regular and Netscape Graphic. In the Pad++
Prebuilt condition, the entire network of pages
was loaded into Pad++ prior to beginning the task.
In the Pad++ Interactive condition, only the
Overall page was loaded and the network of pages
was built as the user answered the questions. In
the Netscape Graphic Condition a WWW image
map of the entire database was created by doing a
screen capture in Pad++. This condition was
added to see if Pad++’s navigational tools caused
improvement in performance independent of that
caused by the visual representation of the
database. The image map used contains a
snapshot of the pages depicted in Figure 4.
Training

If a subject reported using Netscape less than 2
hours a week, they were asked to complete a brief
training task. The task consisted of browsing
through a set series of pages from the University
of New Mexico’s Web Site. This took
approximately 10 minutes. During this task the
subjects were instructed on the use of the
“forward” and “back’” buttons, and how to click
on hypertext and image maps in order to follow
links.

All but one subject had never used Pad++,
although a few had seen brief demonstrations of
the software. Three training tasks were used to
familiarize the subjects with panning and zooming
in Pad++ and using the Pad++ browser. Training
tasks 1 and 2 were used to familiarize the subjects
with a three-button mouse. In training task 1 the
subjects were asked to zoom in and out. In
training task 2 the subjects were asked to zoom,
pan and select objects. The subjects performed
both tasks until they were able to perform 10
operations without error. The third training task
asked the subject to open a series of pages within

the University of New Mexico’s Web Site and
then navigate to different open pages. During the
training, the subjects were informed of different
strategies to use when navigating in the Pad
environment.

Subjects

The experiment was carried out at the University
of New Mexico. There were 32 participants, but
only 30 participants yielded usable data. The two
participants whose data was not used had over
50% of the questions incorrect. All of the subjects
had completed at least two years of college and all
use a computer at least two hours a week. The
majority of subjects, 73%, used a computer more
than an hour a day. 93 percent reorganized of the
subjects had browsed the World Wide Web
before, and 80% of subjects browsed the World
Wide Web at least an hour a week. 90 percent of
the subjects were students and the other 10% were
professionals.

Procedures

bt “Panfs ¢ ﬂmW'WJ'&mW‘"""?¥‘”7‘:*C ‘1'7"':'—"":"* PLLS
flo E€t Amenge Object: Foat Jools Debug .ov " = -t s XV 2t g.—o

Pl b ot il .

Poge Mazbet 332

Version 3: Design and Manufacturing Process

Check v yobom Vasr iv oow metres

Soos 1 mopasem Lmpe me 3
|W b = dwmrdensanes =
—— H oy
, . ==
Prgucras o ¥
e Es e M e ‘ '."f N ‘/
: ,

Tidedls ’
Jese

'
i < . :v
Dogu 4 - . Y
| p —
P, e a0

sy
ot

v

{
[N -
. SR |
l--§ P =
P

e
: 2
Y . .
saqtem | i
fuandll | ‘.
m iioq e e
& - - ‘
tmd 2t 1o

Figure 6: A Design and Manufacturing
Process page

SeP

Prior to beginning the experimental tasks, the
subjects were trained if needed and then asked to
read through an instruction page. The instruction
page explained the task and database, and had
links to example pages. The subject was
instructed to click on all links and look at all the
examples. The subjects then carried out trials for
the four experimental tasks. In one window, the
browser was open with the appropriate initial
pages, and in another window, the questions were
displayed. A program written in Tcl displayed the
questions, and recorded the time spent on each
question and the subjects’ response. After each
question, the entire screen went blank so they
could not see the browser and database pages.
The subjects were instructed to click on a bar to
proceed. This action started the timer and
displayed the question and the browser window.
Subjects clicked on another bar to enter their
response and stop the timer. After the
experimental task, a questionnaire was displayed
which asked questions about the browser, for
information on computer usage and for some
demographic information.

Results

In order to determine the quality of the questions,
we looked at the percentage of subjects who
answered each question correctly. If over 20
percent of the subjects missed the question, it was
considered too difficult and thrown out of further
analysis. Three questions out of 24 were thrown
out for this reason. Two of these questions were
in Task 2 and one of these questions was in Task
3.

The dependent variable was the average time it

took the subjects to answer each question. Only
the times for questions answered correctly were
used in calculating the average time. An average
time to correct response was calculated first for
each of the four tasks. The average times
collapsing across tasks were also calculated. The
number of correct responses ranged from 16 out
of 21 to 21 out of 21 with the majority of subjects
having one or fewer incorrect responses.

A one-way analysis of variance was performed on
each task’s average time to correct response. We
are aware that in using an alpha of 0.10 for each
test, we may be inadvertently increasing our Type
I error rate, but it is necessary to do so in order to
have enough statistical power given the limited
number of subjects.

Figure 7 shows a graphical representation of the
average time to correct response for each task and
collapsed across tasks. The overall F test was
only significant for Tasks 1 and 2, using an alpha
level of 0.10, F; ,,=2.74, p = 0.064 and

F, ,5=2.66, p=0.070 respectively. These results
were significant because subjects in the Pad++
Interactive Condition took longer to carry out the
tasks than did the subjects in the Netscape
Graphic condition.

These results were largely attributable to technical
problems with Pad++ that made it run
considerably slower than Netscape. Based on the
qualitative data collected by observation and from
the subjects responses to the questionnaire, we
made various improvements to the Pad++
browser described in the next section.

The speed at which Pad++ was running caused
some discontent, but many comments suggested

Figure 7: Average Time to Correct Response by Task and Browser
Condition after the First Experiment

120
o mPad
100 i Interactiv
80 i mPad
60) - S— n Prebuilt
: - : Y11 B B Netscape|
4017 SEL : s e Regular
20+ i % : . - oNetscape
- 041 s It A |, B Graphic
Task 1 Task 2 Task 3 Task 4 All Tasks

10

that subjects felt the interface to be intuitive and
fun to use. Some of the quotes that indicate the
positive aspects of Pad++ follow:

ZOOM is fun!

The fact that one can get the “whole picture”
in varying degrees of closeness is fantastic.

I love the zoom in and out. I also liked Show
All very much.

The layout of the pages made the task very
easy once one figured out that the pages were
laid out in the order listed on the parent page.
With the color scheme used, the zooming
browser allowed answering of some questions
merely by panning and examining the pages
from a low resolution view.

Easy to find what I need to know. 1Idid not
have to search very much.

1 liked the tree structure, but disliked the
occasional delays in updating the display.
Once I knew where the pages were in the tree
structure, I could quickly find what I wanted.

Another interesting observation made by the
experimenter during testing was that subjects
varied in their use of panning and zooming
available in Pad++. Due to their familiarity with
browsing in Netscape, they seemed reluctant to try
some of the other features available to them in
Pad++. They stuck to what they knew, despite that
in training, the experimenter encouraged the
subjects to use all available navigational tools.
Furthermore, it appeared that there was a positive
relationship between subjects use of these
navigation features and task performance. In

future studies it would be interesting to quantify
this difference between subjects and to see if it is
positively correlated with task performance.

The Improvements Made to the Pad Browser

1) We made Pad++ run roughly twice as fast by
using an 8-bit instead of a 16-bit X-server.
When a page was brought into focus it initially
was aligned with the left side of the screen.
Some subjects pointed out that this left them
feeling disoriented due to a loss of context.
We changed this feature so that the page
would be centered when it was in focus.

The fonts were improved from being
mediocre to using high-quality system fonts.
During testing, subjects pointed out that they
wanted to be able to defocus a page as well as
focus it. A feature was added so the user need
only click again on the page to bring it out of
focus and make it small again.

We made pages thinner so more context could
be seen. This was possible because of the
improved font quality.

We fixed a cursor bug which only occurred
when we tested the software using novice
users. This bug caused the cursor to freeze on
a zooming cursor if the user pressed two
mouse buttons at once.

Some subjects indicated that they missed the
Netscape feature of the cursor changing when
it was over a link. This feature was added in
Pad++, so the hand cursor changed into an
arrow.

Experiment 2

Following the first experiment, we realized that we
needed to make some changes in order to evaluate
Pad++ more fairly. First of all, we made the

2)

3)
4)

5)

6)

7

Figure 8: Average Time to Correct Response for Improved Pad++
versus the Netscape Conditions by Task

80

70 / BFixed Pad
60 = Prebuilt
>0 f% /_ B Netscape
40 ?— EZ =%_ E% _§% l‘lgetgulaFr)
30 =/ :/ __/ :/ :/ oNetscape
20 :é E% Eé E% Eé Graphig
1(0) ;% 1 =é 1 '—'% 1 :é 1 =%

Task 1 Task 2

Task 3

(-

Task 4

1

above mentioned improvements. Secondly, since
almost all of the subjects in the Netscape
conditions were regular Netscape users, we felt
that to evaluate Pad++ in a comparable manner,
we should use subjects that were familiar with
Pad++.

We ran the Pad++ Prebuilt condition again with
seven Pad++ users using the same procedures as
discussed previously. All seven of these subjects
worked as part of the Pad++ development team.
All were familiar with navigation in the Pad++
environment, and did not need to be trained.
Results

A one-way analysis of variance was performed to
compare the new subjects performance to those
subjects in the Netscape conditions. The average
time to correct responses for each task and
averaged across all the tasks are displayed in
Figure 8. '

The overall F-test approached significance for
Task 1 and for the average across all tasks,
F,10=2.33, p=0.124 and F, ,,=2.43, p=0.115
respectively. Furthermore, tests of the a-priori
hypothesis that Pad++ would do better on average
than the Netscape conditions yielded a p-value of
0.0599, F, ,,=4.00 for Task 1 and a p-value of
0.088, F, ,,=3.23 for the average time to correct
response across all tasks.

These results demonstrate that subjects can
perform this browsing task 23% faster on average
using the Pad++ browser than using Netscape.
Many subjects also found the Pad++ browser
intuitive and fun to use. In a manufacturing
setting, use of the Pad-++ browser could increase
workers productivity by speeding up the time it
takes them to access historical information about a
product’s process development over time.
Furthermore, since using the Pad++ browser
allows the user to access such information in a fun
and intuitive manner, it may lead to an increased
use of historical information with consequent
improvements in product and process quality.
CONCLUSION

The World-Wide Web has become an important
and widely used resource. Because of this, it is
crucially important to address its usability. We
have shown one promising technique based on
zooming to better support Web navigation. This
technique was used to implement a prototype
zooming Web browser that was found to be faster

12

at accomplishing specific tasks than a traditional
browser.
Pad++ and the zooming Web browser will be
made generally available in the near future. To
find current information, send mail to pad-
info@cs.unm. edu, or look at
<http://www.cs.unm.edu/pad++>.
ACKNOWLEDGEMENTS
We acknowledge generous support from
DARPA's Human-Computer Interaction Initiative
(Contract #N66001-94-C-6039). This work also
supported by the United States Department of
Energy under Contract DE-AC04-96AL85000.
We appreciate the work of our collaborators at the
New York University Media Research Lab,
especially that of Jon Meyer, in helping us develop
Pad++.
REFERENCES
1. Benjamin B. Bederson and James D. Hollan. "Pad++:
A Zooming Graphical Interface for Exploring Alternate

Interface Physics", Proceedings of UIST'94 ACM
Press, 17-26.

2. Benjamin B. Bederson, James D. Hollan, Ken Perlin,
Jon Meyer, David Bacon, and George Furnas. "Pad++:
A Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics", Journal of Visual
Languages and Computing (7), 1996, 3-31.

3. Stuart K. Card, George G. Robertson, and William
York, “The WebBook and the Web Forager. An
Information Workspace for the World-Wide Web”,
Proceedings of CHI'96, ACM Press, 111-117.

4. Bay-Wei Chang and David Ungar. "Animation: From
Cartoons to the User Interface”, Proceedings of
UIST 93, ACM Press, 45-55.

5. Peter Doemel, "WebMap - A Graphical Hypertext
Navigation Tool", 2 International Conference on the
World-Wide Web, Chicago, IL, 1994, 785-789.

6. William C. Donelson. "Spatial Management o
Information", Proceedings of SIGGRAPH’78, ACM
Press, 203-209.

7. George W. Fumas. "Generalized Fisheye Views",
Proceedings of CHI'86, ACM Press, 16-23.

8. George W. Fumas and Jeff Zacks. "Multitrees:
Enriching and Reusing Hierarchical Structure”,
Proceedings of SIGCHI'94, ACM Press, 330-336.

9. Wendy A. Kellogg and John T. Richards. "The
Human Factors of Information on the Internet', in
Advances in Human Computer Interaction, Ed. J.
Nielsen, Ablex Press, (5), 1-36.

John Lamping, Ramana Rao, and Peter Pirolli. "A
Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies",
Proceedings of CHI'95, ACM press, 401-408.

10.

11.

12,

13.

14.

15.

16.

17.

18.

Jock D. Mackinlay, George G. Robertson, and Stu K.
Card. "The Perspective Wall: Detail and Context
Smoothly Integrated", Proceedings of CHI'91, ACM
press, 173-179.

Sougata Mukherjea, James D. Foley, and Scott
Hudson. "Visualizing Complex Hypermedia Networks
through Multiple Hierarchical Views", Proceedings of
CHI'95, ACM press, 331-337,

John K. OQusterhout. T¢l and the Tk Toolkit, Addison-
Wesley, 1994,

Ken Perlin and David Fox. "Pad: An Alternative
Approach to the Computer Interface”, Proceedings of
SIGGRAPH'93, ACM Press, 57-64.

Monojit Sarkar and Marc H. Brown. "Graphical
Fisheye Views", Communications of the ACM, 37
(12), December, 1994.

Maureen C. Stone, Ken Fishkin, and Eric A. Bier.
"The Movable Filter as a User Interface Tool",
Proceedings of SIGCHI'94, ACM Press.

David Ungar and Randy B. Smith. "Self: The Power
of Simplicity", Proceedings of OOPSLA 87, 227-241.

Kent Wittenburg, Duco Das, Will Hill, and Lamy
Stead. "Group Asynchronous Browsing on the World
Wide Web", Proceedings of the 4th International
World Wide Web Conference, Boston, MA,
International WWW Conference.

13

Appendix II

Data Zooming Project Members

Project members at Sandia

John Mareda - PI

Responsibilities - Project leader. Determine goals of the project and direct

the project members towards achieving those goals. Conduct project meetings,
report status and progress.

Level of effort - 0.4 FTE

Deliverable - Project (SAND) report in HTML format by April 30, 1996

Contact information - jfmared @sandia.gov, 845-8550

Ed Marek - PM

Responsibilities - Program Manager. Manage the project funds. In addition,
make technical contributions in the area of application design. Also,
compare and contrast Pad++ software with other leading edge visualization
technologies, such as VRML.

Level of effort - 0.1 FTE

Deliverable - Input to project report by April 15th

Contact information - elmarek @sandia.gov, 845-8550

Dru Popper-Lopez

Responsibilities - Dru is a member of Sandia's EVE team (Sandia's internal
Web site). She is responsible for providing input to the design of the Web

site design and maintenance application. She will continue to work with UNM
providing feedback as they implement the prototype application in Pad++.

Level of effort - 0.1 FTE

14

Deliverables - Input to project report by April 15th. Continued interaction
with Ben Bederson through September 30th. Input to Ben Bederson for final
report by September 15th.

Contact information - dpopper@sandia.gov, 822-2239

Heather Allen

Responsibilities - Heather is an expert in human factors issues for user
interfaces at Sandia. She is responsible for evaluating the design and
providing feedback on the prototype Website design and maintenance
application from a human factors perspective. She will continue to work with

UNM providing feedback as they implement the prototype application in Pad++.

Level of effort - 0.1 FTE

Deliverables - Input to project report by April 15th. Continued interaction
with Ben Bederson through September 30th. Input to Ben Bederson for final
report by September 15th.

Contact information - hwallen @sandia.gov, 844-6657

Project members at UNM

Ben Bederson

Responsibilities - Ben is an assistant professor at UNM and is in charge of

the Pad++ project. He oversees the application development at UNM, including
coordinating the work of the UNM student involved in this project. He is

also responsible for continuing research into this new user interface

technology.

Level of effort - Approximately 25% through September, 1996
Deliverables - Input to project report by April 15th. Continued lead of UNM
programming effort through September 30th. Final project report in HTML
format by September 30, 1996

Contact information - bederson@cs.unm.edu, 277-3914

15

David Proft

Responsibilities - David is a graduate student at UNM. He is responsible for
implementing the storyboarding application in the Pad++ substrate

Level of effort - Approximately 50% during the spring and 100% during the
summer semester

Deliverables - Input to project report by April 15th. Continued interaction
with Ben Bederson through September 30th. Input to Ben Bederson for final
report by September 15th.

Contact information - proft@cs.unm.edu, 277-1481

16

Appendix III

Installing Pad++

The following steps document the installation procedure for installing Pad++
on a virgin Sun SPARCstation 20 (right out of the box). These instructions
assume you are relatively familiar with working in and installing software

in a UNIX environment. The versions of Pad++ and the required software such
as TK/TCL change often. Refer to the Pad++ installation instructions to
determine which versions of the software are required.

C Compiler

1. Order and install C compiler from Sun. It came on a SunSoft WorkShop CD.
The installation instructions are on the CD-ROM jacket. You'll need to get a
license from Sun. Just for good measure, I also installed C++, but I do not
believe that is necessary to install Pad++.

GNU Software

To retrieve the various GNU files type "ftp gatekeeper.dec.com”, log in as
anonymous and use your user id as your password. Type “cd pub/GNU', to go
into the GNU directory and type “binary' to cause ftp to perform binary file
transfers.

2. Install the Gnu gzip utilities. A lot of gnu software will need to be
installed and the files are stored in gzip compressed form, so the gzip
decompression utilities are the first thing you will need to install. Get the
first file with the command “get gzip-1.2.4.tar". Extract the files with

“tar xvf gzip-1.2.4.tar". Go into the gzip-1.2.4 directory and type

* Jconfigure', “make’, and as Superuser “make install'. This will create a
/usr/local/bin directory and put the gzip compression files in that
directory.

This site also has pre-compiled binaries for these utilities. They are

located in ftp://gatekeeper.dec.com/pub/GNU/sparc-sun-solaris2. Since I did
not discover this until after I had already built the gzip utilities, I just

used the ones I had built.

3. Next I retrieved patch-2.1.tar.gz, typed “gunzip patch-2.1.tar.gz' to

untar the file, went into the patch-2.1 directory and typed ~/configure',
‘make’, and as Superuser “make install'.

4. Repeat step 3 for bison-1.24.

5. Repeat step 3 for make-3.74.

17

6. I followed the above procedure for gce-2.7.0, but it failed. Here you'll

need to follow the instructions in the INSTALL file. When I did it

originally, I got an error “fatal: file cccp: cannot msync file; errno=28'.

I tried doing the make using both the bootstrap approach and doing it

separately and got the same error both times. Using a shotgun trouble

shooting approach, I changed to root with SU, copied the tar file

(gce-2.7.0.tar) to /usr/local and untared the file as Superuser. I then made

sure ucb was not in my path. I then did the build separately, using the

command “make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"
LANGUAGES=c".

Some of these hints were in the Installing GNU CC on the Sun section of the
INSTALL file. After that I followed the steps in the rest of the INSTALL

file. I typed “make stagel’, “make CC="stagel/xgcc -Bstagel/' CFLAGS="-g -O"
LANGUAGES=c' (no fatal errors, yea). Having met with such tremendous

success, I decided to follow the procedure to test the compiler. I typed

“make stage2' followed by “make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"
LANGUAGES=c". I then typed “make compare' No differences. Great. I then

typed “make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES=C"'
to install the GNU C compiler.

I repeated the above process to build and install c++. It wasn't until I

tried to install pad++ that I discovered I needed g++. I had bought Suns c++
compiler so I guess it was wishful thinking on my part that pad++ would use
that compiler. I suspect if I would have said LANGUAGES=c, c++ when I did
the original build all would have been fine.

TK/TCL

7. Type “fip ftp.cs.berkeley.edu' and log in as anonymous and use your user
name as your password. Type “binary', “cd ucb/tcl', and “get tcl7.3.tar.Z.
Exit ftp, type “gunzip tcl7.3.tar.Z' and “tar xvf tcl7.3.tar'. Go into the

tcl7.3 directory and type *./configure', “make’, and as superuser “make
install’.

8. Type “ftp ftp.cs.berkeley.edu' and log in as anonymous and use your user
name as your password. Type “binary’, “cd ucb/tcl’, and “get tk3.6.tar.Z'

and “get tk3.6p1.patch'. Exit ftp, type “gunzip tk3.6.tar.Z' and “tar xvf
tk3.6.tar'. Move the file tk3.6p1.patch into the tk3.6 directory. Go into

the tk3.6 directory and type “patch < tk3.6p1.patch’. This will install the
patch. Then type *./configure’, “make', and as superuser “make install'.

18

Pad++

9. That's right, now I remember, I wanted to install Pad++. To perform this
step you will have had to gotten permission to retrieve the pad-0.2.2.tar.gz
file. Once you have this file, follow the same procedure as the preceding
steps for installing software. Type “gunzip pad-0.2.2.tar.gz' followed by

tar xvf pad-0.2.2.tar. Follow the instructions in the Pad++ installation
directory. If all is well, you should be able to type "./configure", "make",
and as Superuser "make install" to install pad on the target machine.

19

DISTRIBUTION:

5 University of New Mexico
Attn: Benjamin B. Bederson
Attn: James D. Hollan
Atm: Jason Stewart
Attn: David Rogers
Attn: David Vick
Computer Science Department
Farris Engineering Center Room 313A
Albuquerque, NM 87131

MS-0188
MS-0318
MS-0318
MS-0318
MS-0829
MS-0829
MS-0829
MS-1110
MS-9018
MS-0899
MS-0619

D) LN =t et et el sk ek ek ek ek

C. E. Meyers, 4523

G. S. Davidson, 9215

J. F. Mareda, 9215

V. Holmes, 9215

L. T. Ring, 12323

E. M. Grose, 12323

J. C. Forsythe, 12323

C. Pavlakos, 9215

Central Technical Files, 8523-2
Technical Library, 4414
Review & Approval Desk, 12630
For DOE/OSTI

20

