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THE THEORETICAL PHYSICS OF THE ARGONAUT REACTOR

by
Charles N. Kelber

I. INTRODUCTION

The Argonaut is a versatile, low-power reactor designed and con-
structed at Argonne for use as a training facility and for the conduct of
experiments in reactor physics.

The Argonaut assembly is comprised of a graphite cube with a cen-
tral annulus formed by two concentric aluminum tanks. The inner tank
contains a removable, graphite reflector. The outer tank, or core annulus,
contains fuel assemblies, graphite, and water.

The fuel plates are made of 20% enriched U;Og in an aluminum ma-
trix and are clad with aluminum. A fuel assembly is composed of a cluster
of 17 plates. Moderation is provided by graphite wedges between clusters
and by water between fuel plates in each cluster.

The fuel loading is extremely flexible in principle. The annulus
contains 24 graphite wedges outlining a like number of spaces of 3x6in.
cross section. Theoretically, each of these spaces could be filled with
fuel assemblies or graphite blocks of equal cross section.

This report is a summary of the methods used (with some degree
of success) to compute the critical properties of four typical core loadings
shown in Fig. 1. Each loading requires a different type of solution of the
critical problem.

The one-and-two=-sided loadings can be approximated as slab ar-
rangements. The 3-inch annular loading can be treated as a homogeneous
annulus. The "two by six" loading can be regarded as an array of six
equally spaced homogeneous cylinders imbedded in graphite. In treating
each case the uranium content will be assumed to be pure U?*®. (The addi-
tion of U8 in the amount four parts U?® to one part U?* will increase the
critical loading by about 10%.)

In each instance, the composition will be established and group
constants computed; then the critical problem will be solved for each case.
Finally, a comparison with the results of Argonaut multiplication experi-
ments will be made.



(a)

(c)
3~inch ANNULAR LOADING

6132
1T
613"
c
D
\ T 1T—E
\ :
A GRAPHITE
B THIMBLES
C  6-inch ANNULUS
D FUEL BOXES
E CONTROL POSITIONS
F GRAPHITE FILLERS
FIG. |
ARGONAUT LATTICE CONFIGURATIONS

(b)

(d)
TWO BY SIX LOADING



II. COMPOSITION AND GROUP CONSTANTS

The internal and external reflectors are graphite, as are the fillers
in the annulus. The fuel plates are aluminum and U?*®. The moderator is
water. One triangular, graphite filler piece is associated with each fuel
box. The volume fractions of the various materials in the fuel region are
listed in Table I.

Table I

COMPOSITION OF FUEL REGION

(Total volume of one fuel box: 8.34333 liters)

Material Volume Fraction
Al 0.21952 (1 - X)
H,0 0.52706 (1 - X)
C 0.25342
235 X (0.74658)

Two=group methods are employed throughout. The thermal group
constants are taken from BNL-325" and are corrected for a Maxwellian
distribution with a temperature of 25C. A non—(l/v) factor for the U?*
cross section has been included. The thermal cross sections are listed in
Table II.

Table II

THERMAL-GROUP CROSS SECTIONS

Za

Material Atom/cc (capture cross P tr(cm“l)
section, cm™1)

H,0 0.033326 0.01949 2.106
Al 0.060297 0.01229 0.0823
C 0.08024 0.00036 0.36913
Uss 0.04790 28.60836

n =2.08

a =0.183

Ip, J. Hughes, J. A. Harvey, BNL«325 "Neutron Cross Sections,"
Brookhaven National Laboratory (July 1, 1955).
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The fast-group cross sections are not so easily computed. An ap~-
proximate method of some utility is to regard the age 7 and fast diffusion
coefficients D¢ as universal functions of the water density and the excess
scattering per water molecule. A reasonable estimate of the average
scattering cross section for Al in the high~energy range is 4.28 b, and 3 b
is a good estimate for C. Values of the age and Dy in Al-H,0 mixtures?
provide calibration points.

In the following tabulation 7p is the age reduced by the square of
the water density. D¢p is the diffusion coefficient reduced by the water
density, and S is the excess scattering per water molecule in barns.

s R Ptr
(barns) (cm?) (cm)
3.87 22.9 0.804
5.81 20.96 0.709
7.75 19.95 0.637

From the volume fractions given in Table I and the concentrations
given in the second column of Table II, it is found that the excess scattering
per water molecule is 6.70b. Linear interpolation yields: 7 =20.50 cm?;
DfR = 0.676 cm. From the water density of 0.52706 g/c:rn3 one quickly finds
T = 73.80 cm?, Df=1.28 cm.

The age and fast diffusion coefficient can also be calculated by the
methods of Deutsch.” Using these methods a value of Dy = 1.25 cm is ob~
tained, in good agreement with the previous result; the age, however, is
determined as 60 cm?, in contrast to the 73.8 cm? found by the approximate
method. A numerical integration scaled to the correct age in water yields:
T = 65 cm?; D¢ = 1.27 cm. The last set of values represents a compromise,
but subsequent calculations will show that the age is slightly excessive.
This favors the set: T = 60 cm?; D¢ = 1.25 cm.

In the graphite reflector the fast diffusion coefficient is taken to be
1.1 cm and the age as 364 cm? Vertical reflector savings from the l1=foot
water reflector top and bottom are taken as 15 cm. This yields an equiva-
lent bare height of 75 cm. The macroscopic cross sections can now be
computed and the relationship sought between loading and material buckling.

Thus the following values are found.

%nThe Reactor Handbook," Vol. 1 (Physics), p. 486

3rR. w. Deutsch, "Computing 3~Group Constants for Neutron
Diffusion," Nucleonics, 15(1), pp. 47=51 (1957).



The moderator cross section:

Zam =0.01297 (1 - X) + 0.00009 .
The U?5 cross section:
ZaU = 28.60836X

The total cross section:

2, =0.01306 +28.59539X

(2.08) ( 2, ) 2.08094
k=nf=—"5" T, 04567 (1)
(x)(10%)

1

Dth(core) :m =0.27286 cm

The two-~group critical condition is
(1 + 7B%) (1 + L®B?) = koo, (2)

which yields for the buckling

1 (1 1 1 1 1\°? Ko = 1
B? = -3 <? +-I:Z) +E ﬂ?+19 + 4 121 (33-)

and for the thermal diffusion area

D
2 _ s ,
L= $01306 ¥ 28.59539% - (3b)

Inverting the formulae,

- 2
L2 = 7)2 (1 + 7B?) (4a)

n Dam + B% (1 + TB?)

s
2 2
(1 +7B?%) (zam + DSB )

ZaU B n- (1 +7TB3 (4b)

The stage is now set for a series of critical calculations. In the
succeeding sections three different techniques are developed, correspond~
ing to the various geometries.
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III. CRITICAL PROPERTIES OF AN ANNULUS

While straightforward solution of the two=-group equations for the
reflected annulus through matrix reduction is possible, such a technique is
fraught with numerical problems arising from a need for excessive accu-
racy. Adifference equation method, suitable for manual computation, was
therefore developed. This technique by itself is not new, but the equations
and boundary conditions used here differ from those previously employed
and thus are displayed in full.

Consider first the core region a < g_b, where r is the radius.
If the vertical buckling is neglected, for the moment, then the neutron dif-
fusion equations with a source, Q, are

14 -0 - - .p 3
r dr (rJ) + Z¢ - Q y J - D dr ? (5)

where J is the current, D the diffusion coefficient, and ¢ the flux. Now let

—y

ri=r0+iﬁ_;—a) 3 rg = a
and r (6)
Ar=(b_a)
I ’ J

where I is the number of equal intervals into which (a,b) is divided. Next
assume that the flux may be represented by

- r-rj ’
#(r) = ¢i + Ar (¢i+1 - ¢i) T, _<__r S‘ri+l
and that >(7)
J(r)=J; + rA-rri (¢i+1 -9, i=0,1,..,I-1.

(8)



The functions A, &3, Bj, qi are functions of r; and the material con-

1

stants:
- Ar _Ar . = Ti
i71-0(2+C)) C, “rm
1
O(,1=S(2+C1)-CZ szr
i+l
* 1 +C *
___z 1 = 2
/3i a 5 > =3 +DB
D
- 2
q = Yy ey Lo=3%
y = 231G o = (ar)?
i~ 6 " 1212
_ 1 +2C, _Ar
7 T 5 %L

Here B; is the buckling along the axis.
*

The use of 2 instead of 2, introduces the effect of the "equivalent
bare height" of the reactor when it is assumed that the flux is the product
® =¢ (r) cos[B,(Z)]

The boundary conditions can be expressed in the form J=m¢ + d.

To see this, examine the case of the annulus with internal and external
reflectors. In the interval 0 < r < a, the fluxes have the analytical form:

¢f = AIO(#fr)

3., = SAL(Lr) + Blo(k,, ) (9)

where the subscripts f and th refer to fast and thermal neutron groups,
and e and 4}, are material constants. Then in the interval 0 <r<a,

J¢ = -Df grad ¢

Il(#fr) )

hence at r = a:

Jf = mf¢f ’ (10)
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where
m, = -u.D 11(/J'fa)
f f7f IOZ,U.faS
Similarly, at r = a:
Dth
Jth = rnthcbth +S ('D—f mf - mth ¢f (11)
where
Il(ﬂtha)
m =

-u. D _—
th th™ th Io(,u.tha)

The conditions at r = b are obtained in the same fashion. For an
infinite reflector:

= ! 2
Jf mf ¢f s (1 )
where
Kl(f"'fb)
1 -
mg = KDy Ko(kb)
Also
D
ot _th 13
Tth = M4n th+s<Df my - my ) P ’ (13)
where
K1 _b)
m'. =p.D. ——2—
th th™ th Ky, b)

For a finite reflector of outer radius c, replace the function K; by

Ko{ uc)

Kolur) - Tluc) Io(ur)
and K, by
Kaur) + 59EEL 1yur)

A complete description of the numerical procedure for solving
Eqs. (8), together with Eqs. (10) and (12), is given in ANL-5687.4 The
example given here is that of a 3-in. thick annulus with an inner radius
of 1 ft.

4B.1. Spinrad, C. N. Kelber, "A Two-Group Iteration Method for
Annular Cylinders" ANL-5687 (February, 1957).
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The group constants are listed in Section I. Tentatively, T = 65 cm?
and Df = 1.27 cm. The core volume is 95.426 liters. The volume fraction
of the core for 1 kg of U%® at 18.7 gm/cc is then

1 1
- - -4
X/kg _<18.7> <95.426> = 5.603 x 10™*/kg

ARGONAUT ANNULAR CORE CONSTANTS

X =5.603 x 10~* M (M in kg)
X =2.2412x 1073 at M =4 kg
- 2.08094
= 1 _ &L.Vovs2 _
zau = 0.06412 cm Ky = 750377 1.72868
3 =0.01303 cm™! D, =0.27286 cm
am th
% =0.07715 cm™!? T = 65 cm?
5 _=0.01953 cm™} D_=1.27cm
af f
Inner Reflector
2 _ _1_ 2 -2 - -1 -
Mg =— % B 0.00448 cm Mg = 0.06693 cm Df = 1.1 cm
1
#, =1z *Bg =0.00215 cm™ My = 0.04637 cm™! D, =0.903 cm
s - Dy L2\ _ (+1.1 (2500) 1\ _ [+ 2500 \ _ | Loca)
R D, T-12] 0.903 T-L%] 7 \0.903 -2135 '
I5(2.0079) = 2.29219 pe(30) = 2.0079
1,(2.0079) =1.60240 Mep(30) = 1.3911
I,(1.3911) = 1.54554 Ke(37.5) = 2.50988
I,(1.3911) =0.87793 M (37.5) = 1.73888
K(2.50988) = 0.061622 mg = -0.05942; m{ = 0.08996
K,(2.50988) = 0.072988 myp = -0.02378; myy, = 0.05846
L]
Ko(1.73888) = 0.15757 dyp, = +0.03565 ¢ d,, = -0.02194 ¢,
K,(1.73888) = 0.19848 I5(1.73888) = 1.91136
I,(2.50988) = 3.31482 I,(1.73888) =1.24217
1,(2.50988) = 2.53937
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Outer Reflector

c=b+30cm=67.5cm pgc =4.51778 Mypc = 3.12998
Ko(usc) _ 0.0062753 Koluype)  0.02993
Io(ugc) 17.7570278 Io(yp,C) = 5.42596

= 0.0003523 = 0.00551
¢, = A(Ko - 0.0003523 I
J.=D,V¢. = -AD.u (-K, - 0.00035231,)

H

AD (K, +0.00035231,)

D K;(ugb) +0.0003523 I,(ucb)
£t R lugb) - 0.0003523 L(ib)

1]

K, +0.0003523 I,
K, - 0.0003523 I,

1
mg = HeDy

m., similarly

' 0.7388
£~ MPs 0.06046 - 008996
. 0.20532

th - "HFnPin 014702

m

m = 0.05846

d's = -0.02194

The example is for a loading of 4 kg. The result is that the load-~
ing is subcritical by 1.9%. Previous calculations have shown that:

dlnk=4+dlnM ,

where M is the mass; therefore the predicted critical mass is about
4.32 kg. The critical mass determined experimentally by Lennox and
Kelber? is 4.3 kg. This agreement is, in part, fortuitous, since the ex-
periment cited used fuel enriched to 20% U5, Also, some cracks in the
reflector contributed to reactivity losses amounting to about 300 gm.
Hence it appears more reasonable to use the fast constants: T = 60 cm?;
D¢ = 1.25 cm. For convenience, work sheets pertinent to this problem
are included on the following pages.

5D. H. Lennox, C. N. Kelber, "Summary Report on the Hazards of

the Argonaut Reactor" ANL-5647 (December, 1956), p. 11.
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Sheet No. 1
ANNULAR CYLINDRICAL CORE
Problem: Argonaut (4 kg) Group: Slow
Geometry:

ro = 30 cm r = 37.5 No. of Intervals (I): 3 Ar: 2.5 cm

Group Parameters:

%, =0.07715 cm™! B2 :0.00175 cm™2 D :0.27286 cm
z: =0.07763 cm™} L2 : 3.51487 cm?

Set~-Up Parameters

7 :4.58110 6 :0.14817 S:0.11854
Formula i=0 1 2 3
r, =Tt i (Ar) (cm) 30 32.5 35 37.5
Cy=1y/T, 0.92307 0.92857 0.93333
C, = 1/1~i+l (cm™?) 0.03076 0.02857 0.02667
Cy;=1-06(2+C) 0.56689 0.56607 0.56537
A;=Ar/C;  (cm) 4.41002 4.41641 4.42188
a, = S(2+Cy) -C, (cm™t) 0.31574 0.31858 0.32105
B, = z: (1 +Cy)/2 (cm™) 0.07465 0.07486 0.07505
Y. = (2 +Cy)/6 0.48719 0.48810 0.48890

e. = (1 +2Cy)/6 0.47435 0.47619 0.47777
1

13
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Sheet No. 2

ANNULAR CYLINDRICAL CORE
Problem: Argonaut Group: Fast
Geometry:

ro:30cm 1 :37.5cm  No. of Intervals (I):3 Ar:25cm

Group Parameters:

2,:0.01953 cm™! B2 : 0.00175 cm™ D:1.27cm
=¥ ;0.02175 cm™ L? : 58.39080 cm?

Set-Up Parameters:

M:0.98425 6:0.00891 S :0.00713
Formula i=0 1 2 i
r. =T + 1 (Ar) (cm) 30 32.5 35 37.5
C, = ri/ri+1 0.92307 0.92857 0.93333
C, = l/ri_H (em™}) 0.03076 0.02857 0.02667
Cy=1-6(2+C) 0.97395 0.97391 0.97386
A = r/C; (cm) 2.56686 2.56697 2.56710
a, = 5(2 +C) - C, (cm™?) -0.00992 -0.00769 -0.00576
B, = z: (1 +C,)/2 0.02092 0.02098 0.02103
v. = (2 +C)/6 0.48719 0.48810 0.48890

e, = (1 +2C))/6 0.47435 0.47619 0.47777
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Sheet No. 3
ANNULAR CYLINDRICAL CORE

Iteration Constants

Problem:

Homogeneous Conditions:

Fast: J(I,_Iz -0.05942 Thermal: J,I,_I = -0.02378

Formulae:

T = 93t (a3 - Bio))

Spp =0 o0+ T)

H H
. >\' -1 -1 .
1 (em) ay(em™) B (em) 0 i

Fast Group; 7 = 0.98425
0 2.56686 -0.00992 0.02092 1.00000 -0.05942
1 2.56697 -0.00769 0.02098 1.16833 -0.11160
2 2.56710 -0.00576 0.02103 1.44777 -0.17231
3 1.86137 -0.24791
Thermal Group; 7 =4.58110

0 4.41002 0.31574 0.07465 1.00000 -0.02378
1 4.41641 0.31858 0.07486 2.87752 -0.38606
2 4.42188 0.32105 0.07505 13.26118 -1.88057
3 62.88260 -8.9512



Sheet No. 4

Problem: Argonaut

/6

ANNULAR CYLINDRICAL CORE

Iteration Sheet

) c c c c
b 7; € 9 Q4 9 ¢; I 5 I $;
Iteration No. 1
Fast Fast Group; 7= 0.98425
0 0.48719 0.47435 0.07715 0.06172 0.06666 2.00000 -0.11884 1.44875 -0.08608 1.44871
1 0.48810 0.47619 0.04172 0.04629 0.05198 2.16825 -0.05210 1.52424 +0.00941 1.52416
2 0.48890 0.47777 0.04629 0.06172 0.05229 2.25340 -0.03441 1.45534 +0.06057 1.45528
3 0.06172 2.30825 -0.02132 1.28221 +0.11533 1.28213
Thermal Thermal Group; n= 4.58110
0 0.48719 0.47435 0.02829 0.02977 0.02792 0.65000 0.03619 0.62500 0.03679 0.62158
1 0.48810 0.47619 0.02977 0.02842 0.02805 0.00386 -0.00430 0.42975 0.00583 0.41991
2 0.48890 0.47777 0.02842 0.02504 0.02582 0.76640 ~-0.05301 0.42205 -0.00415 0.37670
3 0.02504 2.23891 -0.26840 0.60571 -0.03594 0.39065
Iteration No. 2
Fast ¥ast Group; 7= 0.98425
0 0.07715 0.05212 0.06199 1.32428 -0.07869
1 0.05212 0.04676 0.04764 1.39058 +0.01133
2 0.04676 0.04849 0.4605 1.32184 +0.05851
3 0.04849 1.16141 0.10449
Thermal Thermal Group; M= 4.58110
0 0.02586 0.02716 0.02550 0.56698 0.03373 0.56690
1 0.02716 0.02582 0.02554 0.38259 0.00652 0.38236
2 0.02582 0.02268 0.02342 0.34351 0.00201 0.34245
3 0.02268 0.35973 -0.00555 0.35470

91
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Sheet No. 5
ANNULAR CYLINDRICAL CORE

Auxiliary Instructions and Constants

This sheet contains instructions for filling out the Iteration Sheets
and provides space, if desired, for performing auxiliary computations.

1. 7 and €; were computed on Sheet No. 1; they need not be
computed for each iteration.

2. Qﬁ = Z;h ¢§h, where ¢>§h is the most recently computed set;
similarly,
th f ,f
Q. =3 ¢,
i a i

. = €
e Ty vy
c c . .
4. ¢, and J; must satisfy the relations:
Js = m ¢g +b.

The constants m and b are characteristic of the problem and group
and are listed in the accompanying box.

Group m b

Fast -0.05942
Thermal -0.02378 0.03565¢f

c .
5. Given ¢0 and J;:, the iteration formulae are:

C C C C
Jigp =9t @30 - Bid i+ q)

c _ .c_ c c
% Y T)(Ji + Ji+1)

The constants ¥;, a;, and B; can be obtained by folding Sheet No. 3
and clipping to Sheet No. 1 or Sheet No. 2.
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6. After ¢>C and JIC have been computed, a constant "a" must be
computed. The formula is:

c _ 1 C '

JI m ¢I b
—H H

m ¢I JI

a =

To aid this computation, the following box contains the fixed

constants.
Group ¢H JH m' b'
1 1
Fast 1.86137 -0.24791 0.08996
Thermal 62.88260 -8.9512 0.05846 -0.0‘2194@5f

< 0.01 ¢5, the iteration is to be repeated, using

H
Unless | a 9,
as new starting values:

¢§ + a ¢§_I
and
Jg + aJ(},-I ,

with the "a" being that first computed. Space for this iteration is provided
on Sheet No. 4. The following box is used for computation of "a."

COMPUTATION OF ‘a”

Iteration 1 Iteration 1*
c c c c c c
Group ¢I J1 a P1 5 a ¢1 Jy a

Fast 2.30825 } ~-0.02132 | -0.55125 1.28221 | 0.11533) -0.0004 | 1.16141 | 0.6449 0.0002
Thermal | 2.23881 | -0.26840 [ -0.00557 0.60571 | -0.03594] -9.00345| 0.35973 | -0.00055( -0.00008

7. Following the second determination of "a" (or the first, if

Hl<o.01 g ), ¢. on Sheet No. 4 is computed from:

a®,

¢ = ¢ + a¢>.H ,
1 1 1
where (l)f and "a" are the most recently computed values.
8. An estimate of k is obtained by completing the columns and

boxes listed on Work Sheet No. 6. The superscripts "f" and "th" refer to
fast and thermal groups, respectively.
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B .

k =% = 1.76378
v
Since f = 0.83110 ,
M, = 2.1222
py, = -0.01989
M, = 2.12708
Py, T -0.02213

u

v

k= h

1.76782

Sheet No. 6 ANNULAR CYLINDRICAL CORE
COMPUTATION OF k
Iteration No. 1 Iteration No. 2
f
f Q: th f th f th th f f f th
th - f - h sth
R T L = B R I R LU R I TR (U2 4> I S LR U K A
a
0 143.46 1 0.62158 43.46 27.01387 39.7284 0.07715 0.56690 | 3.06505 22.52203
1 (49.54 0.8 0.41991 45.19385 0.05212 0.38236
2 150.93 0.6 0.37670 46.2644 0.04676 0.34245
3 148.08 0.8 0.39065 38. 464 18.78245 | 43.55288 0.04849 0.35470 | 2.11188 15.44821
Sum A 152.114 85.78399 Sum A 9.69575 71.09379
First term x (1/2-Aw/6ro) :
Last term x (1/2 + Ar/6rI)
Sum B 40.60979 |22.56533 Sum B 2.55027 18. 70294
Sum A minus Sum B 111.5042163.21866 Sum A minus Sum B 7.14548 52.39085

u

v

61
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IV. CRITICAL PROPERTIES OF "Two by Six" LOADING

As shown in Fig. 1, the "two by six" loading consists of six groups
of two fuel boxes each, separated by an equal amount of graphite. This
configuration can be approximated by an array of six cylinders with centers
equally spaced on the mean circumference of the annulus. A treatment of
the problem of N cylinders has been made by Avery.6 The work reported
here is a condensation of the general treatment.

In this approach the fuel boxes are conceived as being a ring of
cylindrical elements immersed in a block of graphite. Each fuel element
has a flux within it, describable by an expansion about its center. In the
reflector the flux is described as the sum (with undetermined coefficient)
of fluxes about each fuel box. These are related to the expression of the
flux about the origin, and the exterior boundary conditions and symmetry
conditions are satisfied. Then the fluxes are determined at the fuel box
face, and the problem solved.

The coordinate systems and appropriate addition theorems are
given in Figs. 2 and 3.

Rigid Source Approximation

In this approximation the shape of the flux in each fuel box is
assumed to be similar to that in a fuel box which is isolated in an infinite
moderator bath. This is assumed for the asymptotic flux independently
of the ordinary (J,) flux. Since the ratio of asymptotic to ordinary flux
will depend on the neighboring fuel boxes, the shape of the total flux can-
not be fixed. Nevertheless, the situation is reminiscent of the potential
of rigid, fixed bodies, and hence the term rigid source approximation is
used.

6R. Avery, "A Two-Group Diffusion Theory for a Ring of Cylindrical
Rods." (To be published)
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EXTRAPOLATED REFLECTOR RADIUS
RADIUS OF RING OF SOURCES

RADIUS OF FUEL ELEMENT
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Under these assumptions,

®(0) = E3lp) + Flalmp)

and

th
¢ (P) = S EJo(£p) + S, Flo(mp)

are the fast and slow fluxes in the interior of any fuel box, where p is the
radius vector from the center of the fuel box in question. Under the as-
sumption of rigid sources, higher order terms containing angular depend-~
ence are dropped.

The reflector flux arises from the sources and hence can be de-
scribed as a superposition of fluxes which are similar to that in a reflec-
tor about an isolated cylinder. Since the reflector is a moderating
material there must be included, in addition, terms which are descriptive
of the flux in the reflector as a whole. The only restriction on angular
dependence of the reflector flux is that it be invariant under a rotation
through 27T/N about the axis of the ring of fuel elements. (N is the number
of fuel boxes.) Hence, one can write:

0]
N
Z AnInN(ufr) cos nN6 + izl I%(/J'fpi) ;

n=0

th
o) = Z nan.thr)coanG + C % Kop.thpl)

ref et

The terms in An, Bn are characteristic of the reflector flux away
from the sources. The source terms contain terms in K, only because
higher angular dependence corresponds to non-rigid sources. We have
used the boundary condition that the flux be finite at r = 0 to eliminate
terms of the form A, Kp(ur). If r>ry:

o.0]
Ko(pp,) = Z € K (ur) I (ur) cosnb,

n=0

where € =1,€ =2, and n2 1. (For r<ry, interchange the arguments
L Kp.) Hence, at r = R(>ry):

N
Z {A (,u R)cos nN6 + 2 enKn(ufR) In(ufro) cos nei}

1=

th

with similar forms for ¢
ref.

23
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g

Now

§ cos nB, = cos nb i cos na, + sin n® sin na,
1

i=1 i=1 i=1

By symmetry, the sum over sinn i vanishes; also

Z cos na, =0
i

i=1
if n is not a multiple of N, and

Z cos mxi =N
i=1

if n is a multiple of N, including n = 0.

Therefore,

o0
f
¢ref = nzo AnInN(pfr) cos nNO + cos nN6 N €, Kn(p.fr) In(ufro)

At r =R, ¢ref=0’
thus
-Ne K (R} I (4ro)
Ap = I (R)
Similarly,

-CNenKnN(#thR) InN(utl"lro)
K R)

InN(
Hence, as R—= w3 A , B —= 0.
n’ n

One can now match the fluxes and currents at the rod surfaces.
Since the problem is symmetric with respect to the rods, choose rod No.1.
Write the equation for reflector flux about the origin of rod 1:



_
~t
s

°
[

N 00
) + Z Ko(#fpﬂ Z = nN HeT) cos nNg
2 n=0

N
Ko(kep) + Z Ko(uep, )
2

=] 2

S € EaneR) (ko) Lo(u.p)
0 »

= InN(“fR) f

where the formula:
o0

In(#r) cos nb = k_z In+k(p,ro) Ik(pp) cos ko
= -0

has been employed and only the angularly independent (rigid source) term
has been kept. Then define

z n nN R)
2
Kolueoyy) - Z ) LK)

I
,L',[V]Z

Let fy(uth) be similarly defined, and let f(uf) . lim f'u(“f)’ etc.

V"

Now, assume that Ry, the source radius, is small compared to the
distance between sources so that the flux averaged over the surface of
rod No. 1 may be represented by evaluating the fluxes as continued to
the center of each rod. This assumption enables one to substitute

for
2T
Kolitg [ 5y + p|) (a0 /2m)

0

in evaluatingf (/.tf), etc.
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With this restriction, the critical equations evolved are:

Ko((Ra) + £( 1) Lo(4RO) = EJo(4Ro) + Flo(mRo)

S {KoligRo) + 11 To(u ROV} +C {Kols, Ro) + 1e,p) (s, Ro)} = 8 EJpIR,) + S, Flo(mRy)
“Dypiy [KaluRo) - ) L(HRo) | = - ED; £3,(Ro) + FD; ml;(mRO)

-S

= Dinr M¢ [K,(#fRO) - () Il(ufRo)] - CDy pken [Kl(uthRo) = £(p, ) I,(uthRO)] = - ES; D, £T:(Rg) + F §,D,, mI,{mRy)

C

This system of four equations in four unknowns must be solved
for the critical bucklings. (The coefficient of Qbe is arbitrarily chosen
to be 1.)

Write the critical determinant:

D= Ko(FfRo) + f(}lf) Io(#fRo) 0 1 1
Sp [ KolkgRal + 1) To(k Rl Ko (4pRo) + £,y ) To (s Ro) S +5;
-Dep ke [KilkRal - £ ) LilkgRal] 0 -D¢. £(31/30) € R,) D, m(li/T) (mR,)

~SgPingrke [KalkRal = £ LlsRal| =Dy oy [ Kby Rod = £ty ) Lk, Ro) | 1 -SiD,, £(5/Jo) (bra) | S, D, m {Li/T) (mRo)

-l

- v

YR Yo

Hence, an equivalent set of equations is QYC = 0, where QYR g 0 defines Q.

J1 0 g o
Q”[01QZQ3]

where
Ql =
DfR‘uf lKl(P«thRo) - f('uth) Il(,ufRo)]
o - Ko(ﬂthRo) + f(’uth) Io(ﬂthRo)
3 - -
D rbn [Kl(uthRo) £(u,, ) Il(uthRo)]
Q, = —Sg— (D, Q -D Qs)
27D fR ™! thR 3

thR




f(uf) may be approximated by £, (uf) since
n
X X?
In(ZX)— a {1 +n—+1 }
and
o
K . (X) = X Kn(X) +Kn_1(X).

Often it is found that fy(1) is adequate, since this corresponds to excluding
Bessel functions of order N>>0.

A numerical example of the "two by six" loading is given next.
R =75cm
rg = 37.5 cm

Ry = /88.52555 = 9.40880 cm (this preserves the volume of the

fuel box)
N=6
Pz = 2rg sin (M/6) =375 cm
P3; = 2rg sin (27T/6) = 64.95 cm
P4 = 21y sin (M/2) =75 cm
Psy = Py = 64.95 cm
P =Py =375 cm

The graphite constants are:

He = 0.06693 cm™! Df =1.1 cm

- _l =
K, = 0.04637 cm Dth 0.903 cm

S = -1.42641
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Then the following Bessel functions are used:

X Ko(X) I(X) K;(X) L;(X)
HRo = 0.62973 0.74005 1.10162 1.219312 0.33073
K Ro = 0.43629 1.03935 1.04816 1.96525 0.22338
ez = 2.50988 0.06162 3.31482
HePa1 = 4.34710 0.00758
HePa1 = 5.01975 3.61024 x 1073
Koy Pa1 = 1.73888 0.15738 1.91137
Hyp, Po1 = 3.01173 0.03427
Ky Par = 3.47775 0.020100
KR = 5.01975 3.61204 x 103 27.72000
IJthR = 3.47775 0.020100 7.24150

6 Ko R)
_ z £ 2

i=2 f
_ (0.00361204) 2
= 0.14201 - 6 5= (3.31482)
=0.13343
_ (0.0201) 2

fo(p.th) = 0.40340 - 6 SSaTE (1.91137)

"

.34256

Ko(UfRo) + fo(ﬂf) Io(l-‘fRo) = 0.88704
Kl(ﬁ%Ro) - fo(lif) Il(HfRo) =1.17518
Kol Ro) + ol ) T, Ro) = 1.29359

KL(IJ-thRo) - fo(lith) Ix(ﬂthRo) =1.88873



Then
Q; = 10.25235
Q, = 4.52886
Q; = 16.35669

Q= 1 0 10.25235
- 10 1 4.52866

16.35669]

Equations (3a) and(3b) yield B? and L? for a given value of X.

X _ 1 1
kg~ \18.7/ \100.1199

6) = 5.3411 x 10™*/kg.

There is a slight difference in volume between the full 3~inch annular core
and the "two by six" or "six by two" loadings. An estimated critical mass

of 4.7 kg yields:

X = 2.51032 x 1073,
where

koo = 1.76062;

Za = 0.08484 cm™!;

— = 0.31092 cm™%;

+ 32758 cm™%;

==

o)
[
i

2 = 0.07182 cm™! ;
au
L?2=3.21617 cm?;

1 _ 1. -2
— = 60—0.0]66 cm”™*;

1

Iz = 0.00518 cm™ ;

= 0.
1 [- 0.32758 + (0.12306)‘5] = 0.01161 cm™2

(B; = 0.00175 cm™2)

The remainder of the calculation is carried out on the accompany-
ing form sheets.
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Dimensions

Radius = Ry = 9.4088 cm

CORE - CYLINDER

Extrapolated bare height = H, = 75 cm
(m/H,)?* = B = 0.00175 cm™?
Constants
by
Lz=2L1 2. b D=_t.=Nc/fcz No_ =«?D
. K2 L2 3 a a
Fast | 60 cm? =T 0.01666 cm™? 1.25 cm 0 02083 cm~! Noaf 0.24546
Slow | 3.21617 cm?| 0.31092 cm™? 0.27286 cm 0.08484 cm™! | N%p
Functions of K
Test £2 = 0.01161 cm=2 m = 0.58390 cm™!
2 22 =m?=0. -2 2 p2 _
KE+ ;c:h + 4% =m?=0.33919 cm 1+ Ly 1.03734
m? + B2 =m? = 0 34094 cm™? 1+ L:h = -0.09089
3 Lz 72 | =81 = 0.23662
< > <1 - LZ =8, = -2.70062
Functions
mR, Io(mR,g) I,(mRy) I,/ Is(mRy) ml; “Io(mR,)
5.49380 0 17459 0.15777 0.90368 0.52766
Matrix and Critical Relation
1
H
0.23662 -2.7006
0062 1-12.81544 y 7.76225
1
Dg¢ D,. m=! (mR,)
core = th L |QY|
J1
9 0.23662 - 6.71681 y|-6.06358
I
$1D,, Sthth (mR,)
J,
-0. 06456—(JZR°) -0.38883
J1
Where y = £2L (UR,)
Jo
(129 97316 =L (4R,) = 7.91028
Jy
IRy - (¢Ro) = 0.57262

0

LRy =0 99815; £

= 0.10608 cm™};

£2 2 0.01125 cm=~%;

=42+ B%=0.01300 cm™2




Dimensions

Radius = Ry = 9.4088 cm

N
S

CORE - CYLINDER

Extrapolated bare height = H, = 75 cm

(m/H,)% = B® = 0.00175 cm™?

X =3.43x1073

Constants
LZ_.L 2_l D_h_NU/;CZ N ‘ICZ
T KT T3 Ta QDB
Fast | 60 cm? =T | 0.01666 cm™? 1.25 cm 0.02083 cm™! No, .
Slow | 2.45356 cm?| 0.40757 cm™? 0.27286 cm 0.11121 cm™! No, .+ 0.18730
Functions of K
Test £2 = 0.01300 cm-~? 1+ L 72 =1.03190
2 2 2. =2 . -2 - 12 mi= -
Kf+Kth+Z = m? = 0.43723 cm 1-1% m 0.07277
m? + B2 = m? = 0.43898 cm™? m = 0.66256 cm™!
<] +L‘ 73] =51 =0.18150
< - LZ =85, = -2.57386
Functions
mR, Io(mRy) I;(mRg) L,/I(mR,) ml, /To(mR,)
6.23389 0.16334 0.14960 0.91586 0.60681
Matrix and Critical Relation
1 1
5 S,
0.18150 -2.57386
1-12.81544 y 8.77651
D Dm 2 (mRy)
_ m m. 0 _
core £ ok |QY| -
-1.254 0 (£R,) 0.75851
Jo 0.18150-6.47081y | -6.10923
1
S Dth sthh (mRo)
-0. 0495213 (z Rg) ~0.42615

(135.08360) ¢ I
Jo

LR, —Jf(ﬂRo) = 0.53646

LRy = 0.97026; £ =0.1

(8Rg) = 7.70217

0312 cm™Y;

£2 = 0.01063 cm™2; J2=}j2+ B =

0.01238 cm™?
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32

1 0 _ Q) 0
_ 10.25235
Q= Q
0 1 _92_ =3
4.52866 16.35669

The critical buckling is B% = 0.01257 cm~%, whence X = 3.095 x 10-3
and the critical mass is M, = 5.795 kg. This is slightly high, but is within
10% of the observed critical mass.

Another calculation of the same general type as the preceding has
been made for a slightly different case with infinite reflector of better
graphite, and fuel "rods"” corresponding to two fuel boxes with no graphite
included. The fast constants are somewhat better known in this case, but
the idealization is not as good as before. The predicted critical mass is
4.7 kg; when corrected for a finite reflector and voids this is raised to
about 5.1 kg. The perturbations calculated for this case are particularly
revealing; the magnitude of these perturbations is not expected to change
a great deal from case to case.

Let:
Ry = 8.66 cm; ro = 40 cm; N =6

Infinite Reflector:

Py = 2rg sin (T/6) =40 cm
P3y = 21y sin (27/6) = 69.28 cm
P41 = 21, 8in (7T/2) = 80 cm
Psy = P3) = 69.28 cm
Per =P 2 = 40 cm

In Graphite

pe= J(1/7) + B?
By =[1/L3) +BZz

D.=1.1 cm; D. =0.9 cm; S = -1.44383

0.06701 cm ™!

0.04626 cm™!

f th R
HeRq = 0.58031 Heon = 4.64245
M, Ro = 0.40061 B P = 3.20989

WP = 1.8504 B = 3.70080



X = NfRo
chRo
#fp 21
'“thpu
HePo
“thpsl

HePay

6

a!
3

Ko(X) I(X) K(X)

0.80376 1.08598 1.36287
0.11319 1.04053 2.18035
0.05034

0.13703

0.00546

0.02744

0.00249

0.015617

£(u) => Koo, ) = 0.11409

i=2

6
f(uth) = §i=2 Ko(,uthpﬂ) = 0.34456

Ky(kRo) - £u) To(uRo) = 1.32835

Ko(uthRo) +f(“th) Io(#thRo) =1.47172

Kl(#thRo) - f(“th) Il(uthR") = 2.10994

Q, = 9.88264
Q, = 5.52201
Q; = 16.75336

Core Constituents and Parameters

Material

H,0

Al
y23s

-1
Volume Fraction Za. (em )
0.71428 (1 - X) 0.01949
0.28571 (1 - X) 0.01229

X 28.2381

L

(X)

0.30254
0.20435

z

tr (cm-=-1)

2.106
0.0823

33



34

T =47.5 cm? D, =1.193 cm D, =0.21817cm
235
zmod | 4 01743 (1-%) Zti = 28.2381 (X)
235
Ztotal - Z.‘mod + ZU
a a a
235
k-1 (2.08)(50  /stotaly
ZZ = 5 - a a
=
+ L 47.5 + (0.21817/21;“31)

Conversely:

30.51458X - 0.01743

1.04610 + 1340.48183X

0.01743 + 1.04610 22

X

X .. =0.00295
crit

therefore

Critical mass

= 30.51458 - 1340.48183 12

18.7 (6mRZ H)X
(1586.096)(X)

= 4.68 kg




””:) &3‘”
CORE - CYLINDER

Dimensions

Radius = Ry = 8.66 cm

Extrapolated Bare Height = Hy = 75 cm

(T/H,)? = B? = 0.00175 cm™

X; = 0.00300
Constants

1 1 A No,
2 - 2 _ _ ot _ a - 2
L% =7 c* =13 D=—F="73 NO, = k2D
Fast | 47.5 cm? =7 | 0.02105 cm™ | 1.193 cm 0.02511 cm™?!
Slow | 2.13702 cm?® | 0.96794 cm™ | 0.21817 cm | 0.10209 cm-! | No

Functions of K

Test £% = 0.01429 cm™2

2, 2
et R

m? + B? = m?

( e )< ; )
2 —=2]=
Y A

+ 22 - m? = 0.050328 cm™2

0.50503 cm™?
2 2
No_ 4 /\1+ Lthl'

8, = 0.23866

Sz = -3.25675

2 2
1+Lthl

i

_ 12 =2
1 Lthm

m = 0.71065 cm™!

af
= 0.24595
h

1.03054

-0.07552

Sl Dth

-0.4968 £ JL (4Ry)
Jo

5;Dy, m % (mRy)

-0.46469

Functions
mR, L(mR,) I (mRo) I;/Io(mRy ) ml; /T (mRo)
6.15432 0.16345 0.15042 0.92028 0.65400
Matrix and Critical Relation
1 1
5 S,
0.23866 -3.25675
D, Dfrn% (mR,) 1-11.78999y 8.71063
Yeore = QY =
-1.193 % (¢Ry) 0.78022 0.23866 - 7.42006y | -6.73341

(144.ozozs)z§_: (Ry) = (8.81229)4 _‘%(zno) = 0.06118

/aaoj_; (LRy) = 0.52982

IRy = 0.965;

£= 0.11143 cm™!;

£% = 0.01242 cm™?;

Z2% = 2% B? = 0.01416 cm™?

35
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We can now determine the fluxes and their adjoints. Since this is a
standard problem in algebra, we will not enter into the details here. For
the critical system just studied we can now summarize the critical

parameters:
B? = 0.01419 cm™2 (BZ = 0.00175 cm~?)
D, =1.193 cm D, =0.21817 cm
S; = 0.24195 S, = 3.26653
L% =2.16696 cm? T =47.5 cm?
T _ T _
S; = 0.59738 S, = -0.04426

Then, in the rods we can write:

¢f = EJo(ﬂr) + FIo(mr)

¢ Sl EJQ(EI’) + SZ FIo(mr)

th

.r
¢th

i

EY Jo(4r) + Fliy(mr)
of = st E' 5o(br) + St F'Iy(mr)
In the reflector immediately outside the rods we have:
¢ 4(r) = Ko(pr) + £lup) To(pr)
¢th(r) = qubf +C [Ko(,uthr) + f(,U.th) Io(l.tthr) ]
of = Kolu,v) +£(u,) Tl v)
o7 = sk ol + CT [Kolux) + () Lo(ur) ]
Then:

E = 1.23321; F
Ef= 2.43286; Ft

-0.00048; C
~-0.00595;

]

1.16099
0.22576

O
-+
1
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Perturbation calculations can now be made by means of the formula:

Av o ogqt . t a _t
-5 =l av [' AD VP - Vo - ADyy Vi " Vi = 8% % %
th%h %0 0% % % 0% Pun
f o+
v
UMM

where superscripts a and f refer to absorption and fission, the subscripts
f and th to fast and thermal. The integral is over the entire reactor vol-
ume and the curvature in the Z direction is introduced by assuming that
the fluxes are proportional to cos (ZB,).

The perturbation due to the introduction of a void is found by sup-
posing that the material density is changed to the first order of infinites-
imals; the resulting perturbation is proportional to the change in density
and the proportionality constant is then assumed to be the perturbation
due to the introduction of a void.

In the case of vertical displacements the equivalent bare reactor
was introduced, the critical core height was found (and verified to be
60 cm), and the fluxes and adjoints determined. The reactivity change
due to the uniform addition of fuel was found and the scale factor of
1.28355 was determined as being required to re-normalize this calcula-
tion to the same calculation based on the rods imbedded in the reflector.
It was assumed this scale factor would apply to vertical displacements
and the desired result was obtained in the usual way.

We now tabulate the various reactivity effects.

Change
(1) Uniform addition of fuel to core regions 0.41906 x 107* Ath(cmz)

(2) Addition of fuel to internal thermal

column 1.105 x 10'4A2ih(cm2)
(3) Void at the center of the internal

thermal column -0.702 x 10'7/cc
(4) Void in the middle of the annular

graphite -2.862 x 10'7/cc
(5) Void in the graphite at the edge of the

fuel box ~20.24991 x 10'7/cc

(6) Water replaces graphite at the center
of internal thermal column -1.62 x 10'6/cc
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Change
(1) Water replaces graphite at middle of
annular graphite ~1.373 x 107%/cc
(8) Water replaces graphite at edge of
fuel box -0.232 x 10-¢/cc
(9) Displacement vertically of one fuel box
12 in. into top (or bottom) reflector -0.00882
(10) Uniform addition of void to the water in
the fuel rods and reflectors -0.57(1 - p )
H,O
(11) Uniform temperature change -1.065 x 10'4/°C

Items (10) and (11) were found by direct computation.

The lifetime was found by the method of uniform addition of
poison; e.g., write the time-dependent neutron balance equations:

a 1 aQbf
Ab - 3 5 L .
DAk, - 2o btk 2 Py v, 3¢t ;
d¢
a a 1 th
D 8 =2t P T2 %7 vy ot

Now assume
at
where

o o (Bk g/ K o]
= S ,

and, since vf >>v, ., neglect the term in

1 odg

Ve ot

th

Then the equations can be rewritten:

D A<1> -Z qs +k°°Zth¢th

Dy, 80y, - B

th - 2

a
th /v 18y + 2 6 =




"2 ()

H

f
k, Z:h = vzth and is independent of the poison present, so that we

have perturbed the system through the uniform addition of thermal poison
of the amount:

o
(poison) = ——

2th

Vth

If now we find the reactivity change (Ak/k) induced by this perturbation,
we have the following equation for the prompt neutron lifetime:

o A
Z:h(poison) = 5= ( f/k) ;
th th
’ (Ak/k)
=2 (poi
Vih th(po1son)

Actually, one should make the Maxwellian correction to Z:'h(poison)

as one does to the other slow absorption cross sections. By taking various
small values of &, successive estimates of £ can be obtained and the result
extrapolated to a = 0. For the critical system under study here, this yields
a prompt neutron lifetime of 1.9 x 10™* sec.

Particularly revealing is the worth of 1 cc of H,O relative to 1 cc
of void distributed in the interstitial graphite. As shown on page 37, if
some of the graphite were replaced by water, introduction of a void into
the water would yield a positive reactivity change. While the over=-all
void coefficient is still negative, it is possible for the temperature coeffi-
cient to be positive under these conditions. Other requirements disre-
garded, this possibility alone serves to require that as much as possible
water be confined to the fuel-bearing region.
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V. CRITICAL PROPERTIES OF ONE- AND TWO-SIDED LOADINGS

These loadings (Fig. 1) can be approximated by slabs. Because of
the internal thermal column these become three-region problems.

The coordinate systems and designations used in these problems are:

I 1I III
Left Hand Reflector Fuel Region Right Hand Reflector
0 = x, 0—Y ey, 0 z — 7z,

In Region I:

N
¢>f = A, sinh jx

¢ ho SA; sinh ,ufx + A, sinh Moy X

t
ae
_ £ . > (14)
Jf = Df = —IJfo ctnh }Jff x A, sinh ,ufx

Jth =S Dth “’f ctnh /Jf x A} sinh ,ufx

+ 'uth Dth ctnh “thx A, sinh ,U.thx

Thus
- - - —_

¢f 1 0 A; sinh fo

= Y, (x) V()

¢th S 1 A, sinh Hx

Jf Hfoctnh fo 0

15
Jth S uthh ctnh .Uthx u tthh ctnh chx (15)
where Y, is a 2 x 4 matrix and YI is a 1 x 2 matrix.
In Region II:
7

¢f = B, sin £y + B, cos £y + B; sinh my + By cosh my

¢th = §;B, sin £y + §;B, cos £y + S,B; sinh my + S,B, cosh my
J. = -DfﬂBl cos Ly + J@DfB2 sinly + mB;3D; cosh my + mD B, sinh my (16)
T = -SlDthﬁ By cosly + S, ﬂDth B, sinfy + S,mB, D,, cosh my
+ S,mB, D, . sinh my
th )



- —

¢f = | sin dy coshly

$in| = | S1sinly S, cos Ly

J’f = -Dfﬁcos by 4Dy sin by
_Jt}l = L_-s,nthl cosy § lDthsin Ly

¢/

sinh my cosh my B,
Szsinh my S; cosh my B,
=Y, Vv
me cosh my mesinh my By I I (1 7)
Sszthcosh my Sszthsuxh my By,

where YII is a 4 x 4 matrix, and VII is al x4 matrix.

In region III, there are two sets of conditions usable:

(a)

One-sided loading. Region IIl is considered infinite in
extent, and the flux vanishes at infinity.

Two-sided loading. Region III is bounded by the median
plane between the two slabs and the currents vanish there.

Case (a)
. 3
¢f = Cle Mfz
@, = Cpe th® 45 oM
" > (18)
Jf =—I~lfoCIe
- “Hfz -Knz
Ten = "SHPDy e HinPnC2® )
b, 1 0 C,e HZ
- z
b S 1 C,e th
- =Y., V2 (2) (19)
; LD 0 III ' 11
f ff
Tth =S KDy 1 Ptn
L —J L. —
where Ya is the 2 x 4 matrix, and Va the 1 x 2 matrix.

III

III

41
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> (20)

C, cosh f(zl - z)

L2
Case (b):
¢'f = C, cosh y.f(zl - z)
¢th = S C; cosh Mf(zl - z) + C, cosh 'uth(zl - z)
J; = -KD,C, sinh p.f(zl - z)
Jth = -S,U-thhCI sinh p,f(zl -z) - p.tthhCz sinh ;Lth(zl - z)
or
¢f 1 0
th| S 1 C, cosh
\p -kD, tanh (z, - z) 0
=< - -
Tin €uD,, tanh (zy - z) KD, tanh (zy - z)
= .,b b
= Yy (2) Vg ()

The criticality condition in either case is of the form:

Y, (x;) VI (x1) = YH(O) VII(O) ;
YIII(O) VIII(O) = YH(Yl) VH(Yl)
Then write

VII = YI_Il (o) YI (x,) VI (x1)

and find

YIII(O) VIII(O) = YH(Yx) YI'II(O) YI (x,) VI (x1)

Let:
- -1
Let Q be such that:

QY =0

th(

z;

- 2)

(21)

(22)
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The critical equation is then

det QY YI(xl) =0

Now

- -1 .

hence

Y Y o} = Y (n)

Let the elements of Y be Yij , Where i denotes row and j the column.

Y (o) = | 0 1 o
0 s, 0
-D ./
Df 0 me
- y
| -SD,t 0 smDy
YH(YI) =11 1
S, s,
-szctn Ly, Y/ than»@ Y1
-SlDthﬁctn Ly, 5,4 D, tan y;

sinf y
0
0
0

0 0
cosly 0
0 sinh my,
0o 0

For any row, i, one finds

a

Yil + sl y12

a

Vi1 + S Yia

i2

i

me

Sszt

ctnh my,

hctnh my;

43
(23)
(24)
1 -
Sz
metanh my,
Sszthta.nh my,
a
(25)
= *
YII D
(26)
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vis (- €Dg) +yig (-5, 4Dg) = aj,
Yi3 (me) t Vig (Sszs) = 3i3
where a;; are the elements of YII(yI). Then

Siaiq =~ Sai,

T s s

s,
S (28)

. _ __ S aj) S, aij
Vis *5.s, Ip, TS5 -5, mD

f f
-1 a; aj

. S i1 i3

Yig = - 7 + o

Sl Sz Dth me

/
If Eq. (23) is now multiplied through by S; - S, and if Y is redefined as

ypl=vy* |

where D is the diagonal matrix in Eq. (25), then the elements of Y* are
given by
* *

Y. = Sl a.

*
-5, aj etc.
i1 iq 2 <1z ’

* %
where a;, are the elements of Y I(yl). This step makes numerical accu-

racy a little easier to attain.

Yy(x%) = ] 0
S 1
ufo ctnh KX 0
SlJ-thh ctnh p.fxl p.tthhctnh/.L thxl

In both cases x; = 30 cm; DgD¢}, and S have all been given pre-
1 fYth g b
viously. The perpendicular buckling is now increased by the buckling in
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one lateral direction. Assuming a reflector saving of about 15 cm from
the "infinite" graphite reflectors on either end, the equivalent bare length

of a 6} box array is
60 cm + 30 cm = 90 cm.

Hence the additional buckling is:
Bj = ™/(90)? =

added to the vertical buckling Bf, =
BZ = 0.00297 cm™2. Then:

pf = 0.00570 cm~?

“ih = 0.00337 cm~?

Hex = 2.2647

ctnh (2.2647) = 1.0237070

Y(x,) = 1 0
-1.42641000 1
0.08500761 0

-0.09953991

0.00122 cm”™

2

.
r

.00175 cm™?, this yields a total

He = 0.07549 cm-!
= -1
'uth 0.05805 cm

“thxl = 1.7415

ctnh (1.7415) = 1.0633769

0.05574131

Let the matrix Q for case (a) be denoted by Q_:

1
Q. = 1 0 —_— 0
a HeDg
e
f\Kf  Hth Kth~th
= 1 0 12.04253422 0
0 1 5.16067523 19.07699761
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For case (a) the critical loading will be in the neighborhood of 2 kg. The
determinant will be examined for bucklings corresponding to 2 kg and

2.2 kg and the resulting function of buckling will be extrapolated or inter-
polated to find that buckling at which the determinant vanishes. This will
vield a first estimate of the predicted critical mass.

The active volume is 54.231645 liters; hence the volume fraction
per kg of U?® ig

X = 9.86060 x 10™*/kg.

At 2 kg: At 2.2 kg:
X = 19.7212 x 1074 X = 21.69332x 1074
. 0.05641912 cm™? 0.06206097 cm™!
£ = 0.01303442 cm=™! 0.01303186 cm*™!
L? = 3.92866935 cm? 3.63363576 cm?
B% = 0.01038971 cm™? 0.01089301 cm™?
k = 1.6896420 1.71903181

Then from Eq. (28), the following elements y;; are obtained for a
loading of 2 kg: J

Y = —3.11014699 0 -25.77651937 -49.41697474—

0 3.11014699 -8.77293518 7.12548526
1.25147827 -0.29056933 1.36972917 -3.27008372
_—0.05158443 0.43442164 -0.12672376 2.90442658_J

QaY = q8.18111688 -3.49919110 -9.28150897 -88.79706984—
_5.47439673 9.89807366 -4.12171678 45.6573844(_)_




DYl = A B
—
A ={ 0.96140553
0
0
L__0
B =F_1
-1.42641
0.08500761
-0.09953991
therefore
DYF 0.96140553
-0.39245566

126.72472049

-148.38871620

For a loading of 2.2 kg:

Y =

DY,

3.03728662
0

1.46835477
L-0.03675408

20.71999918
6.87654445

0.97236816
0
0

0
L

0.97236816
-0.33299924
170.00875066

o O o o

Ll =]

[ I

o

-2.

10

o o © o

0
0

L:199.07226960 111.47839185

20
0
27513524 0
1990.7455994
0
.05574131 ;
27513524
.096131
-24.51333415
.03728662 -7.71465444
22773452 0.93201144
44497968 -0.12264253
74250075 -13.31239918
.35089904 -5.24449743
0
23345268 0
1999.923897
0
.23345268

0

0

0
1440.7459348

—

-47.80130875
7.37453137
-3.48124200

2.83448779

-89.72428466
43.48248915

J—

0
0
0

1999.924147

47
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Evaluating the determinants and extrapolating the determinant as
a function of buckling to the point where it vanishes, one finds a cri-
tical mass of 1.6 kg, corresponding to a critical buckling of 0.00913 cm-?,
The observed critical mass is about 2 kg. Numerical accuracy is improved
if, in evaluating

a b
A-—-det 3y
c d

one divides by cd :

and the quantities (a/c), (b/d) are of order of magnitude unity; thus the dif-
ficulty of computing the difference of two large but nearly equal numbers
is avoided.

Case (b):

The volume of each slab is 6/6.5 times the volume of the slab in
case (a). If the same concentrations are used as before only the matrix
(Qp) need be computed anew; there will be a slight increase in the buckling
since the slab is slightly shorter, but this may be neglected for the moment
and treated as a perturbation.

¥pgle) = | 1 0
S 1
- 4fDystanh Ufzy 0
_—S)uthhtanhp.le -,utthhtanh,uth z_l_ ;
therefore
Q- |1 0 1
b~ + UeDystanh Ufz,
0 p == (-1 ¥ 1 1
Df \Hgtanh ugzy  piptanh uepzs |+ pepDin tanhugnz
. ctnh Ugzy = 1.0237070
tanh ugz; Ffzn = L
1

m = ctnh MKthz1 = 1.0633769




Qp =

0 1

For £% = 0.00741971 cm~?:

OpY

ol

At 2.2 kg:

ﬂZ

QbYDYl =

2
b

'gC

£

BZ
C

o a 49

+12.32802657 0
+6.16793088 +20.2849752

18.53840435 -3.58214642 -8.89046177 -89.73065373
6.67264258 10.13016764 -2.89512866 45.70802077

12205.8100748
-7146.9994285

ale

0.2541

0.00792 cm?
0.08901129 cm

]

15866.8542495
-10113.7691915

c
3 - 0.52050

0.08285 cm ™}

0.00686 cm™2

0.00983 cm™?

-7457.2557291
3800.9468498

-1.707823 + 1.961946857

-10113.7691904
4840.6490177

The extrapolation yields a critical mass of 3.323 kg. The change
in buckling due to the shorter length of the slabs is 0.00011 cm~%; and
perturbation theory indicates that this will increase the mass by about 6%
or to about 3.52 kg. The observed critical mass for this configuration is

3.6 kg.
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VI. SUMMARY

Three different methods of solving the two-group equations for the
critical loading of Argonaut for as many different types of core configura-
tions have been presented.

The critical mass is overestimated for the lattices with highest
critical mass and is underestimated in the case of lowest critical mass.
In the cases of highest interest, the two-sided loading and the 3-inch annu-
lar loading, the mass prediction is very good indeed. In any case, the dif-
ference between experiment and theoretical prediction is not more than
400 gm.

There is some question as to the proper value of the age; the value
chosen for the 3-inch annular loading (Section III) yields an estimate of the
critical mass which is known to be too high. Use of the lowest estimation
of the age yields the results summarized in the preceding paragraph. The
annular array is the only one in which a reasonably good idealization of the
physical set up can be made; since the calculation has been coded for a
large computing machine (AVIDAC) it is anticipated that more precise cal-
culations will allow a better empirical determination of the approximate
age. At present, the best value appears to be that predicted by the formula
of Deutsch (See Section II).
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