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THE EFFECTIVE XENON CROSS SECTION.

'ABSTRACT

The notion of effective xenon cross section, as defined in WAPD-HM-128,

has been reassessed in the light of several recent advances in reactor theory:
(i) use of the uindow—shade theory, exemplified in WAPD—RM—ZIO in studying
‘partially inserted’ groups of control rods, (ii) use of the one-dimensional .
multiregion analogue machine (the GODDESS) in solving criticality problems with

a variable absorption Cross sectlon, (11i) use of new techniques in evaluating -

an improved formulatir of the effective xenon cross section. The definition <f/
of effective Xenon cross section appears not. only in the maximum xenon override

problembut slso in the temperature coefficient problem at the time of maximum

xenon override, and differences in the interpretation of the definition in these

two problems are discussed in-detail.

Two examples ‘are studied in. detall which illustrate the inproved ‘
techniques developed in this peper for the evaluation of the .effective xenon
cross section in the maximum xenon override problem., Both examples sérvé to -
1llustrate the striking effect of‘the'presnutdown pover'level onlihe thermal
flux distribution at the time of maximul’ xenon override and reveal convincingly

earlier misconceptions on the problem,

.
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THE EFFECTIVE XENON CROSS SECTION
: :

H. L. Garabedian and R. R, Schiff

1, Introduc tioz;

- The notion of effective 'm' cross égcti@ first._pr-esented itself at
the Westinghouse Atomic Power Division in connection with the xenon override
problen. : The need for such a definition arises from the
iphomogeneous distribution of xemon (and samarium) at the time of shutdown and
the subsequent use of homogeneous reactor theory in the study of the tranasient
xenon problem. The definition of effective xemon cross section and early
applications of the definition are contained in WAPD-RM-128.

By effective xenon cross section is meant that cross section awsociated
vith a homogeneous distribution which is the reactivity equivalent of the actual
non;\mifomly distributed xenon. The. mathematica.l formulation of effect.‘.lvo
Xenon Cross aection is effected with the aid of the generallzed reactiv:lty
formula (Nordheim perturbation formila®™®). In this formulation, the wpperturbed
flux is taken as the flux in the reactor at the time of maximum xenon override
with a homogeneous distribution of xenon po:lson-, the perturbed flux ie the flux
in the reactor at the time of maximm xenon override arising from the preshut-
down distribution of xemon in its sctusl inhomogemeous state. At the time of '
: publiéa_t.ion‘of VAPD-RM-128 it was assumed that the perturbed flux was very little

& H. L. Ge.rabedia.n Theory of Homogeneoua Control of a Cyl‘l.ndrical Ractnr,
- WAPD-19 ’ Septuber 1950., .
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different'fro$ and indeed, to a first order approximation, taken to coincide
with the-hnpertﬁrbed flux. This constrain® was & necessity since it was
impossible to obtain flux distributions in a reactor with a continuously
varying reactor parameter ‘with the use of analytic methods and desk machine
calculations. Moreover, it was generally supposed at the time tﬁat the
perturbation under discussion was very small and hence that it was unnecessary
to know the actusl .form of the perturbed flux, '

It 1s now possitle, with the aid of the analogue machine called the
GODDESS,t to solve one-dimensional multiregion reactor problems, where the

reactor parameters may vary continuously In'pérticular, it has recently been

diacovered "that in the operating range of power levels of the Mark 1 STR the _
flux perturbation described above is substantial rathe; than very emall. /It is

thus the first object of this report to reassess past/calculations of the
effective xenon cross section and to investigate new techniquee of calculating
this reactor parameter in the 1light of substantial perturbations and also the
operating rod configurations. |

The notion of effective‘xenon cross section appears again in reactor

"~ theory in connection with the problem of calculating the temperature coefficient
of reactivity at the time of override of maximum xenon, In this situatdon,

. however, the interpretation of effective xenon cross section differs‘from thaér
encountered in the xenon override proﬁlemu In view of such a difference in
interpretation in the two problems, an additionel objective of this paper is to
discuss the role of the generalized reactivity formula in the temperature
coefficient problem and, in particular, the appearance of the effective xemon
cross section in this protlen.

k R. R, Schiff, The Space Simulator Method for Solving the Group Diffusion
Equations, WAPD-IOS March 1954,




Section 2 of this paper is devoted to & discussion of the effective
xenon cross section in the xenon override problem. Section 3 is concermed with
the role of the Nordheim perturbetion problem in the temperature coefficient
problem. Section 4 includes a discussion of the appearance and interpretation
 of the effective xenmon cross section in a particular temperature coefficient
problem, Section 5 is devoted to a discussion of new techniques of calculating
the effective xenon cross section in the xenon override problem. The paper is
concluded with Section 6, which contains the results of numerical calculations

associated with the techniques described in Section 5.

Two examples are studied in Section 6 which are fictitious in the
sense that the rod configurations involved do not coincide exactly with actual
experimental situstions. However, both exan;les are admirably suited to
illustrate the improved techniques of celculsating the effective xenon cross
section developed in this paper. The first example is of importance in illus-
trating technidues which are applicable in the case of a preshutdown configuration

involving partially lifted xenon rods, The second example is of particular
interest since the preshutdown configuration with all xenon rods fully inserted
corresponds to the conditions assumed to prevail in all previous studies,on the
xenon override problem. Both cases serve to illustrate the striking effect of
the preshutdown power level on the thermal flux distribution at the time of
xenon override and on the over-all effective xenon cross section and reveal

convincingly earlier misconceptions on the problem,




2. The Xenon Override Problem

In W,APD—RM-RB the effective xenon cross section was defined to be

- N
(201) | Z/X_P_éif = 225/.1\ + B sz _/ ’

25

vhere ¢ is the power level preceding shutdown in fissions per second, where
a is called the weighting factor assoclated with the distribution q)s and is.
given by the formula ‘

K
‘ - Vcore CI)s P9 AV
(2.2) a = core
K
d)s av. / 9.9, AV

core core .

b

and where A(t) and B(t) are functions of the xenon cross section, o’x, the
samarium cross section, o S’ and various other psrameters which may be considered
as constants throughout this discussion. The flux @ represents the xenon (or

‘ Samarlum) distribution at the time of shutdown, and P a.nd (p represent fluxes

in the homogeneous reactor at the time of override of maximm xenon, for example,

when all control rods (save half the regulator rod) are assumed to be out of the
reactor,

- Ii the use of formule (2.1), in the past, it has been tacitly assumed
that the perturbation in the flux 9, &S a result of the inhomogeneous distri-
bution of xenon as opposed to its homogeneous distribution, is very small. Two
examples have been sfudied recently which indicate that the perturbation under
discussion may be a substentlial one and that the unreserved use or formula (2.1)
may lead to invalid results. Thermal flux distributions associated with these
two examp}eé are discussed in detail in Seétion 6. |
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The restriction in the conventional use of the Nordheim perturbation
formule is that the perturbation in the flux, as & result of whatever disturb-
ance in the reactor is being studied, is so smell as to be negligible. The
restriction arises from the replacement of the perturbed flux by the first
term in its Taylor's expansion. The need for such a restriction stems from
the lack of knowledge of the perturbed flux in most situations involving
application of the Nordheim formula, Reference to the method of derivation
.of the Nordheim formula, as described in WAPD-19, indicates the adjustments
vhich should be made to the weighting factor (2.2) for the case of large
perturbations. Thus, for lerge perturbations (201).should'properly be written
in the form |

k
: Veore f CI)s (ps(pso av
(2.3) : a = core ,

: x
d, av / 00, av

’ )
- core core

vhere the subscript zero pertains to the flux in the unperturbed reactor with
all rods removed and a homogeneous distribution of xehon, end vhere the flux
Py is the perturbed flux erising from the inhomogeneous distribution of xenon.

Since the perturbed flux mé is known; in the studies of this paper,
formula (2.3) will henceforth be used in calculations of the weighting factor.
Indeed, the validity of (201) is strongly open to question in any studies

' : except possibly in situations where the power
level preceding ehutdown is very low. '

Techniques of evaluating (2.3) and computing the effective xemon
cross section in the xenon override problem will be discussed in Section §
of this paper. |




3, Interpretations of the Nordheim Perturbation Formula

‘The so-called period¥inhour relationship for a bare hombgeneous
reactor 1is giien by the for'mmlat

BTy
T+,

k

| Nk g ok N
(3.1) - dp = ift. = 'r{ ¢ Z
e i

An analogous relationship obtained by Nordheim in the derivation
of the Nordheim perturbation formula is the formula

(3.2) f _‘{8(_1:23)@‘}I Py + SEf(chpf - (og 9p) - stwgdws
~ “reactor ° © ° '

x ~ K s
-SDSV“’SO . vws—SDfV(pfo ° V(pf } av '5'»/‘ z k (pf (p dV

core
. : R . ‘ ‘
L 3
1 ¢s q’s q’fo("f
= = 2 _ 4 dav <+
T _ \A Ve
"reactor i core

vhich is valid for an inhomogeneous reflected reactor. In this formule the

subscript zero refers to. the unperturbed flux; otherwise, the flux is the
perturbed flux,

An identification between (3.1) and (3. 2) is made by the summation
term which is common to the two formulas. Then, by definition,

k The reader is referred to WAPD-19 for an explanation of the notation used in
this section.

- 11 -



(3.3) X / -

reactor core

X
‘PS,(PS (Pf (P
(o) o
{ v + Ve }dv f Z (pfoq)de,

(3.4) S0 = | (kS ok o)+ 8Z.(X 9, - oF 9.) - BT g* o
s'f s f fo f s¥s '8

reactor

3 . ' X . 2 . » X
- 3D8Y7ws° v SDfV(pfo Vos } av = J[ ' Zékp@fowsdv.

core

Formula (3.4) affords a generalization of keff (or of reactivity),
as known for a bare homogeneous reactor, to the case of a reflected inhomogeneous
reactor, and formula (3.3) provides a similar generalization of the lifetime,
,Zt, in a fin;té reactor. These are bona fide generallzations in the sense that
both formulas reduce to the conventional definitions of keff and Aft for a bare
homogeneous reactor, when the perturbed flux is replaced by the unperturbed flux

and when the fluxes associated with a bare homogeneous reactor are used.

In the light of the preceding discussion it might be argued tha£
formula (3.1) ieads to incorrect results, for example, in connection with the
calibration of control rods in a reactor so highly inhomogeneoﬁs

Indeed, this might well be the case except that the measured
periods are so largé that, in (3.1), the first term is always small as compared
to the second term. However, in a study of reactor accidents, where very small
periods might be encountered, the .use of (3.3) as a definition of the lifeﬁime
would improve markedly the accuracy of reactivity calculations.

The use of generaliied reactivity, as given by formula (3.4), might
well improve the accuracy of temperature coefficient calculations in a reactur

with its complicated configurations of control rodsu



While this paper is not concerned specifically with temperature coefficient
calculations, the reappearance of. the effective xenon cross section in the

temperature coefficient problem at the time of méximum xenon -override accounts
for the discussion in this and the following section.

- 13 -




4, The Temperature Coefficient Problem

- In the determination of the temperature coefficient at the time of
override of maximum xenon, with the aid of the generalized reactivity formula,
the contribution to the temperature coefficient of the term involving the xenon
(plus samarium) is given by ‘

% &

' K
- (4.1) - aT ¥g s av < [ 2k 9p PV,
core . core °

since the variation of the samarium cross section with temperature is essentially

& . . .
constant. The xenon cross section can be written in the form

(4.2) 2y = ou(C+Dec Cbs')‘,

where in this discussion C and D are independent of the temperature, where c is
a normelizing factor which depends on the pover level, the amount of fuel, and
the operating flux preceding shutdown, and where Cb represents the xenon
distribution. When c is properly evaluated (4.2) becomes

(4.3) ‘ % =E'/C+ ' core & & /-

s/ °?

FAE- S T A

vhere Q is the power level preceding shutdown measured in fissions per second.

k Cf, WAPD-RM-128,

- 14 -



Substitution of (4.3) into (4.1) gives

3C) oo [ |
‘ X’eff . x N X
(4.4) - —a1 / (psocpsdv 2 f "Z skp(pfo(psdv’
' core core
where
= /s _<L 7
(4.5) sz)eff = oy fC+aD ,
zzad/
.and
vcore [ P Pg @ av
(4,6) ' a = core .
& av ¢§ Q. dv
core core

From the aspect of form, (4.5) and (4. 6) can now be identified with .
(2.1) and (2.3), respectively. However, the interpretations of the weigbting
factors (2.3) and (4.6) are quite different. In the first place, the pertur-
bation in the flux as a result of é unit change in temperature is indeed a
small perturbation.. Thus, the subscript.zero'in (4,6) can be dropped and the
flux ?g taken as the unperturbed flux. In the situation at hand, the unper-
turbed flux P is the thermal flux at the time of xenon override with shim
and xenon rods fully withdrawn. Typlcal examples of such a flux are the
distributions pictured in Section 6. Thus, the xenon weighting factor, a,
in the xenoﬁ override problem and in the temperature coefficient problem'af
the time of xenon override have quite different interpretations.,

- 15 -



5., Techniques of Evaluating the Effective Xenon Cross Section -

The technique of evaluzting the weighting factor w in the xenon over-
ride problem of WAPD-RM-123 implies the writing of (2.3) in the separable form

0=aga, vhere
a a
f r dr f r 52(})@’; (r)g (r)ar
0 0 °

(5.1) 4 = a a )
[ r Cbg(r)drf r‘(pg (r)(ps(r)-dr
0 | 0 °
f f D210} (o2l

. _ O
(5.3) Gz = h ’

/ b (Z)dzf (pt (z)(ps(z)dz
0 ; o

and vhere a and h are the radius and the altitude of the core, respectively.
This procedure implies not only the separability of the xenon distribution
function d) but also the separability of the fluxes (ps and gg. It is also
~recalled thst in WAPD-RM-128 an effort was made to comnute the number a r 98
accurately as possible on the basis of many lzboriously calculated Nordheim-
Scalettar distributions, and further that a,  was calculated on the basis of
cosine distributions for all of the axisl distributions involved in (5.2)

The assumption of separability of the xenon distribution function CD
seems to be a reasonable one, at least on the basis of currently available tech-
niques for the calculation of flux distributions. It is an assumption which is .
invalid only by virtue of the geometric inhomogeneities introduced by the control
rods and the reflector, However, the assump‘tlon of separability of the functions
(ps and Qg is weakened not only by the geametric inhomogeneities but also by the
inhomogeneous distribution of the xenon.

- 16 -



In the discussion which follows the assumption of separability of the
xenon distribution function (ps will persist, but on the basis of the ideas
which have been partially advanced in Section 2 it can no longer be assumed that
¢:o end @g are separable, at least in the usual sense. An immediate implication
of this conclusion is that the weighting function a cannot be assumed to be
separable into the component parts a. and a,. These remarks will be clarifigd

later in the discussion.

' Since the xenon distribution (bs is assumed to be separable, it can be
written in the form®

(5.3) | d(r,0,2) = <®(r,0)Z(2),

vwhere ¢ depends on the power level preceding shutdown. Examples of the distri-
bution £ (z) are given by the distributions displayed in Section 6. The
distribution?Kb(r,e) has been approximated by various methods at the Westinghouse
Atomic Power Division: (i) the Nordheim-Scalettar technique of WAPD-RM-128, (ii)
the two-dimensional analogue machines, (iii) the one-dimensional analogue machine
(the GODDESS), where the control rod ringé are simulated by annuli.

To determine the parameter ¢ in (5.3), first let it be supposed that
cZQ(r 9)==(i where d is a constant and where it is understood that, in the
determination of Z (2), the redial buckling is contained in the absorption

‘ constants. Then, if Q is measured in fissions per second,

x Since all fluxes under discussion in this section are thermal, the subscript |

s will henceforth be omitted. The changes in notation which are made are
self-explanatory.

- 17 -
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1}

f ®(r,8,205, av
v

1ra22 25 d f% v(z-)dz

0

£ —
szs d Z (Z):

whence

- Then, define -

(5.4) b - & 2.
Vi %(2)

1]

2, the 4a\.rerage flux over r and 8 is given by (5.4). Thus,
#(r,9)rardf .
s ' Z(z)
cz(zo) = _QF i'(o) ,
rdrdd vz 25 ’ :

S

Now, in a plane 2z

O
—
]
-
Qo
N
~
1]

(5.5) . _ c = 7 —Q —= o
: szslk(rﬂ) Z (2)

- 18 -



The voint of view in the development which follows 15 influenced -
-greatly by the geometric fact that the rods are capable of moving axially
but not radially. Thus, it is convenient at the outset to define a radial .
weighting factor ar(zo) in a plane z = zo, and then consider a summation
"process over z to obtain finally an over-all weighting factor w. In any

plane z = z_ the maximum xenon cross section is of the form

(5.6) @

A+ B@(r,a,zo)

X)max

i
o3
+
w
l

(o]
K

VoY
*

‘©
(-]

The corresponding effective xenon cross section is given by
(5.7) B Cplegs = A+Ba, g (z)P(2,),

vwhere dD(zo) is obtained from (5.4).

It is interesting at this jtmctui-e to consider the structure of the
perturbed flux ¢(r,f,z) at the time of maximum xenon override. Suppose for
the moment, as a matter of convenience, that ¢ is independent of §. The per-
turbed flux @ in any plane z =3z is certeinly influenced by the xenon
distribution (5.6) in that plane, Thus, the radial component of ¢ in the
plane z = z, is of the fom R = R[;,Cb(r,zo)]o In principle, this function
must be known before the weighting factor ar(zo) can be determined. Indeed,
_the radial weighting factor can be written in-the form

a

. - a .
f rdr f Cb(r,zo)R[;, @(r,zo_)]Rg[;,‘p(r,zoﬂr dr
b

(5.8) a_(z) =

0
a | a o A

/' CID(r,zo)rdr f Rﬁ,q’(r,zoﬂRg[;,d)(r,zﬂr.dr ‘
0 ~ 0 '

- 19 -



The axial component of ¢(r,z) cannot be found until ar(z) , and consequently
5X(fv‘l7eff’ is known. Thus, the total perturbed flux is of the form

(5.9) o(r,z) = Rl;,d)(r,zyZZ;r(z)],

where it is noted that Z is a function of z alone., Although @(r,z) is not
separable, as indicated above, the form of (5.9) suggests that (p(zj,z) might
appmpriately. be termed guasi-separable,

When an analogue machine, such as the GODDESS, is available for
calculations, the radial weighting factor ar(z) can be determined by a much
simpler technique than the direct evaluation of the formula (5.8). Since 7
is the variable parameter to be determined for criticality in the use of the
GODDESS, then 7) can be determined as a function of zeff in the relstion (5.7),
as indicated in Figure 5.1. This follows since the homogeneous poison parameter
Zeff(zo) is a function of z, in each homogeneous criticality calculation in a
plane z = 2 Consequently, n varies with Z» and hence zeff(zo) varies with 7).
Moreover, the parameter Zm(zo) is a function of @(zo) in each heterogeneous
reactor calculation in a plane z = Zge Thus, m varies with 2, and consequently
with Cb(zo), where the relationship between 7 and @(zo) is also displayed in
Figure 5.1, ‘ '

n A Seft / e

}
|
!
!
l
1
{
1

——
Zeff(Z) , d(2)
" Figure 5.1

- 20 -
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A correspondence between-zeff(z) and ®(z) is now established by the
matching of 7's in Figure 5.1. Finally, from formula (507), ur’e(z) is
determined. In this connection, it must be noted that ar’a(z) is a continuous
function of 2z only in the situation that the xenon rods are fully inserted and
the shim rods are fully withdrawn preceding shutdown. If a bank of three or
six xenon rods are lifted during operation at full power with equilibrium xenon,
then two axial regions (neglecting the regulator rod) are generated. Then,
ZE(r,Q) differs in each of the two axial regions, thus creating a discontinuity

in a. 9(2)° Such a discontinuity, however, does not present a serious mathe-
[ ’ N :
matical obstacle.

The next step in the mathematical snalysis of this discussion is to
find the over-all or totsl weighting factor w and consequently the over-all
effective maximum xenon cross section. In this connection, the radial effective

xenon Cross section, given by (5.7), becomes the over-ell maximum xenon cross
section., Thus,

(5.10) Lyl gy = A+ Bo, g(2)P(2),
and'it is desired to find

(5.11) | Cepe = A+B0d,

where

h h
- . 1 _ Z _
(5.12) d = hf b(z)dz = ;Z-%;/ i—%—:—g-dz = qu-s-.
o 2 o) :

From the definition of effective meximum xenon cross section it
follows that .



(o]

| h . h ..
(5.13) [ Zf'x(z)]max Z(z)zz(z)dz = f (zx)eff Z(z)lzt(z)flz;
' 7o ‘ ; 4

where Z[;r 0(2)7 = 7(2). Substitution of the expressions (5.10) and (5.11),
for the xex,xon cross sections, into (5.13) yields the result -

h h
/ dz/ ar(z) o (z)Z(z)z:(z)dz
_ Jo o

h °

h
f Cb(.z)dzf 2(2) 70 (z)dz
o .

(5.14) ®
o
Note that if a'l,(z) were constant throughout the core, the total weighting factor

could be written in the separable form w = a @ _, where a_1is given by (5.2).

In Section 6, comparisons are made between the use of (5.14), with a
variable radial weighting factor, end the use of the separable form o = a3 s
.with a constant radial weighting factor.

- 22 -



6. Results of Numerical Calculations

This section is devoted to the evaluation of the effective xenon
cross sections, associated with two different preshutdown rod configuratibns,
with the use of the techniques outlined in the preceding section. The two
‘cases studied are described as follows.

Case I. Preshutdown Configuration with Groﬁg II1A Rods
‘ Eg;tig;lx Lifted '

Calculation —- Xenon Override
Initial State

Bods S Position (inches)
Group I | _ 43 |
droup 11 . | . 43
Group IIIA _ : 10.95
Group ITIB | o

Reac&gf.Poisons: equilibrium poisons at full power

Loading: no depletion

Final State
Rods oo ' Position (inches)
Group 1 : ' 43
Group II | 43
-Group‘IIIA 43
Group IIIB | 43

Reactor Poigops: maximum xenon

Loading: same as in initial state

-

- 23 -



Actual Experiment -- Xenon Override
Initial State

Rods : Position (inches)
Group 1 ‘ 37.2
- Group 1I : 37.2
Group IIIA 11.8
Group IIIB ‘ 0

Reactor Poisons: equilibrium poisons at full power

Loading: after 93 hours at full power, 19.86 kg

Date of Experiment: June 25 to 29, 1953

Final State
Rods Position (inches)
Group I B 37,3
Group II 37,3
Group IIIA 37,9
Group IIIB | 3.6

Reactor Poisons: maximum xenon

Loading: same as in initlal state

- 24 -



Case I1I. Preshutdown Configuration with Xenon Rods Fully
Inserted . :

Calculation —- Xenon Override

Initial State

‘Rods | Position
Group I out
Group II : out
Group IIIA in |
Group IIIB \ in

.Reactor Poisons: equilibrium poisons at full power

Loading: no depletion

Final Stete
Rods Position
Group I t out
.-Group II out
Group IIIA - out
Group IIIB | out

Reactor Poisons: maximum xenon

Loading: same as in initial state

- 25 -



It is evident, from examination of the conditions pertainiag to the
actual xenon override experiment, described under Case I, that both theoretical
problems studied in this paper are purely fictitious. However, the principal
object of this paper is to exhibit improved techniques of calculating the
effective xenon cross section, and the problems studied yield results which are
highly instructive. -Case I is of importance in illustrating techniques which
are applicable in the case of a preshutdown configuration involving partially
lifted xenon rods. Case II is of particular interest, since the preshutdown
configuration of all»shih rbds out and all xenon rods in corresponds to the
conditions assumed to prevail in all previous studies on the xenoﬁ override -
probiem. Both cases serve to illustrate the striking effect of the preshutdown ‘
power level on the thermal flux distribution at the time of maximum xenon over-
ride and on the over—all effective xenon cross section. The calculations are

explained in detail in the step-wise procedure which follows.

Case I

Preshutdown Configuration with Group IITA Rods
Partially Lifted '

Step 1. Preshutdown Radial Flux Distribution

_ The reactor used in this célculation was considered as undepleted
with equilibrium xenon at 460°F. The xenon bank was considered as fully
inserted and represépted by an annulus of rod material. The shim bank was
considered as fully withdrawn and the resulting lacunae represented by a
water annulus. The regulator rod was considered as fully withdrawn and the
resulting lacuna represented by a circular water hole. Flux distributions
were found for ihis reactor. ' A
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Step 2. Xenon Override with Uniform Poison (Radial Cage)

The xenon rods are fully withdrawn. In any horizontal cross section
a uniform poison (zx)éff is given by (5.7), that is,

O  Eeg - A+ Ba(2)P(s),
shere
(6.2) A ‘=  .03388 2,
(6.3) B = ,2052 x107°2,,
end vhere |

| 2 (z)
- Blz) - v'iqﬁs "%f::)

is the preshutdown flux averaged over the plane z = Zge

Any given value of ar( zo)qD(zo) leads to a particular value of
[%( zoﬂeff vhich is constant throughout the plane z = z_ . By use of the
simulator the value of 7 corresponding to some @x) ofg can be found. Henmce,

it is pogsible to plot 7 as a function of aer., This relationship is found:
to be linear:

4

(6.5) 7_(uniforn) = 1,707 + .2520 x 10714 a .

The function nr(unifom) is plotted as a function. of ar‘-'p in Figure 6.1,




25

l o I [ ‘
FIGURE 6.1

4 b— oo . m VERSUS a,P AND &

RADIAL CASE (Refer to Cose I, Steps 2 and 3)

Related to (zx)eff

. Reilated to(Xy)

) I 2 3 Y 5 6
107" % a, ® (Zeet)

To Jahd x@(zmax )




Step 3. Xenon Override with Non-Uniform Poison (Radial Case)

‘The maximum xenon cross section in a plane. .z = z is given by (5f6),-
that is,

: : , CID(ZO)
(6.6) (Zi)max = A+B 1 (r) '7Z(r).

When the simulator is used to solve the criticality problem in a plane z = 2,9
with the non-uniform poison distribution given by (6.6), qr(non—uniform) is
obtained as a function of P, This relationship, which is non-linear, is also

plotted in Figure 6.1,

The matching of s in Figure 6.1 generates a functional relationship
between a. and P which is displayed in Figure 6.2. The procedure described in
Steps 1 and 2 is the equivalent of that described in Section 5 in connection

with the schematic diagram of Figufe 5.1,

A

Step 4. Preshutdown Axial Flux Distribution

The problem considered from a radial point of view in the preceding
steps is now continued from an axial point of view. The configuration under
consideration is pictured from a schematic point of view in Figure 6.3. 1In
this configurationzp° = .010 em ™ vas assigned to all of the xenon rods, and
the poison worth of the IITA bank of xenon rods in region II was found to be
ZP = .006 cn™t corresponding to criticality (n = 2.12). Flux distributions

are available for this configuration, the thermal flux being pictured in
Figure 6.5,
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Stép 5. Xegon Override with Uniform Poison (Axi Case)

The xenon rods are withdrawn and consideration is.given to an over-all
. (Zx)eff‘ In f.his connection, equation (5.11) is

(6.7) Cos = A+Bad,

where w 1s the over-all weighting factor, and where

" (6.8) 5: /hdb(,z)dz= Zf Md - L8
V

f
o :l (2) szs

= [
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As in Step 2, plot m versus wa). This relationship is found to be linear and

is given by

(6.9) n(wiform) = 1.686 + .2532 x 1071 w®.

Step 6. Xenon Override with Non-Uniform Poison (Axial Case)

- The reacf,or must now be considered from a one-dimensional a)d.él point
of view. In any horizontal cross section the non-uniform xenon distribution is
replaced by the radial effective xenon cross section (5.7). In the axial
problem the radial effective xenon cross section becomes the -over-all maximum

xenon cross section. Thus, as in (5.10),

(6.10) ZZ{(Z)]m_ax = A+8B ar(z)@(z),

where

(6.11) P(2) = —Qf— éﬁ_L :—g—»—)- Do
VZ25 Z(z Z (z)

For a given CTJ, the value of ®(z) corresponding to any z can be found
from the distribution Z(z) and the relation (€.11). Moreover, a, is related to
® in Figure 6.2. Thus, for any given value of P, Ex(zﬂmx is known as a
function of z. Finally, values of 7 assogiated with Ex(zﬂm can be found with
the aid of the one-dimensional simulator. In other words, 7)(non-uniform) is
obtained as a function of P,

If. 7m(uniform) versus o® and 7 (non-uniform) versus D are plotted
on the same system of coordinate axes, then by matching 7's, as in Step 3, @

is obtained as a function of Cb This plot is given in Figure 6.4.
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Step 6a. Note that w is the over-all weighting factor associated with tne

non-separability of the axial and radial weighting factors. Previously, the
axial and radial weighting factors were obtained separately and the over-all
weightihg factor was written as ag . It is of interest then to compare o G,

with w.

To find arazrsuppose first that a, is unity for all 2z, and then
proceed as in Step 6. The distribution ZS% qi7 nax’ corresponding to & given
®, will not be the same as it was previously., Again, 7 (uniform) can be
found as a function of azq): '

' . an -14 =
(6.12) 7N(uniform) = 1.686 + 2532 x lO z@’,
and 7 (non-uniform), associated with Zik(zl7max, can be found as a-fuéftion
of P, The matching of 7's, as in Step 6, gives a, as a function of P,

‘ + To each number P there now- corresponds the quantitles W, &, and a,.
Figure 6.4 includes plots of a £8, versus ® and u¢(araz) versus P. The last
curve is a measure of the effect of non-separzbility of the axial and radial

weighting factors.

Figure 6.5 exhibits the preshutdown axial thermal flux,# (z), and
illustrates the pronounced effect of the power level on the axial thermal flux,

Z(z), at the time of maximum xenon override.

- Comments on Case I

1. The radial welghtlng factor a, is calculated only for the
case of gll xenon rods inserted before shutdown and all rods out during over-
ride. This situation does not actually pertaln in the problem under discussion,
since the Group IIIA rods are partially raised preceding shutdown. Thus, the

problem solved serves primarily to 1llustrate the new procedures and techniques
established in this paper.
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2. The values of a.s @, zand @ for® = 0 can be computed from
forumla (2.3), since the fluxes and then adjoints approach limits, as ® tends

to zero, which can be found on the simulator by setting CZX) = sz)eff = 0.

max
Indeed, w can be written in the form

x
!
dvf c (DS (ps(pso av

core core

k 2
/ c (I)s dav f (ps<pso av
core

core

(6.13) W =

where it is recalled that P is the thermal flux for the reactor heterogeneously
poisoned with the poison distribution sz)max’ where‘mso is the thermal flux in
the reactor uniformly poisoned with the appropriate effective poison sz)eff,
where ¢)S is the preshutdown thermal flux, and where c is proportional to the

power level. Note that @SO depends on the correct choice of w.

Let the thermal flux in the reactor with no poison (but in
the override configuration) be denoted by @Z, end let the limiting value of w
as ¢ tends to zero be denoted by o’. As the preshutdown power level, and hence

c, tends to zero, P and Ps, tend to mzu Then, in the limit,

o ok
av CI)S G g dV
(6.14) O - core core
o ok
CIDS av f po, av
core core

3. All flux distributions for the cases studied in this problem

are available,

4., Tlux levels up to 10 x 1014 neutrons/cmz—sec are considered

in the axial cases and up to 15 x lO14 neutrons/cmz—sec in the radial cases.

e



As noted previously Case II is primurily of apademic interest, since
the preshutdown configuration of all shim rods withdrawn and all xenon rods
fully inserted is purely fictitious with respect to the xenon override problem.

Nevertheless, consideration of the problem is of importance
since the configuration studied is associated with =1l previous studies at the
Westinghousé Atomic Power Division on the xenon override problem and since the
results of the study reveal convincingls earlier misconceptions on the problem.
Since qualitative results are of primery interest in Case II, the study of this
case has been-made for the Speciaiécase in which a, = 1. Accordingly, the stgps
corresponding to Steps 1, 2, snd 3 of Case I =zre omitted in the detailed dis-

cussion of Case 1II which follows,

Case 11

Preshutdpwn Confi uration with Xenon Rods

Full:r Inserted

Steps 1, 2, 3. These steps are omitted since a_ = 1,

Step 4. Preshutdown Axial Flux Distribution

< Since the shim rods are fully withdrawn and the xenon rods are fully
inserted (the regulator rod is omitted from c’onsideration), the axial thermal
flux is a cosine in character, that is, the.flux is a .cosine except for the

effect of the end water reflectors. This flux distribution is pictured in
Figure 6.8.

Step 5. Xenon Override with Uniform Poison (Axial Case)

The over-all effective Xenon cross section is of the form

(6.15) (ZX)eff A+B azcb ,
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where a, is now the over-all weighting factor, where

' h .
d .- 1 4z = —2 dz = _Q_,

and where % (z) is the preshutdown thermal axial flux. With the aid of the
gimilator and the use of (6.15), 1 can be found as a function of az.(b. This

relationship is found to be linear, as in Case I, and is given by

(6.17) 7 (uniforn) = 1.683 + .2532 x 107 a, ®.

- Step 6. Xenon Override with Non-Uniform Poison (Axial Case)

- When al; = 1 the over-all maximum xenon cross section 1is of the form

(6.18) | ‘EX(Z)]].nax = A+ B®(2),
| where -
(6.29) b(z) = -2 X8 _ —‘ﬂa.

vzf 7)) E(2)

For a given C’é, the value P (z) corfesponding to any z can be found from the
distribution % (z) and the relation (6.19). . Then, for any given value of P,
[zx( z)_7 is known ‘a8 a function of z. Finally, 7(non-uniform) can be found

as a funct.ion of Cb with the use of [Ex( z_)_7 in the simulator criticality
calculationa. ' '

The relationships 7(uniform) versus az@ and 7(non-uniform) versus®
are plotted on the same system of coordinate axes in Figui-e 6.6. The matching '
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_ of n's i in the functions of Figure 6.6 yields a functional relationship between
o, and d) The relationship a, versus ® is pictured in Figure 6.7. The
limiting value of a, as d) tends to zero is obtained by the’ procedure described
in Comment 2 under Case I

Note once again that o, is the over-all weighting factor associated
with a xenon override problem for the special case where it is assumed that
a_ =1, ‘ ' '
r .

Step 6a. Figure’6.8 is devoted to a graph of the preshutdown axial flux,

%(2), and graphs of the thermal axial flux atJthe time ‘of xenon override,

zZ(3z), correaponding to a wide'range of values of the preshutdown power level.
Note that Z(z) was thought to be essentially;a cosine in character prior to

) the time that the present study was undertaken. Graphs of the fast fluxes,

. corresponding to the thermal fluxes of Figure 6.8, are exhibited in:Figufe 6.9.
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