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ABSTRACT 
-1 

The notion of effect ive xenon cross section, a s  defined i n  WAPD-RM-128,' 

has been reassessed in the l i g h t  of several recent advances i n  reactor theory: 
, . .' ; . - .  , .  . .  . . 
. . . I . '  

, . 

(i) use of t h e  adov-'shade theory, exemplified i n  WAPD-IM-210, in studying 
I.. ". . ' 

par t i a l ly  inserted groups of control rods, ( i i )  use of the one-dimensional .. 
. . 

multire&&n analogue &chine (the GODDESS) in solving c r i t i c a l i t y  problms' with 
. . . . 

a variable absorptioi ardiis section, ( i i i )  use of new techniquee in evaluating . 
. . / 

a .  improved formulatj-- of  'the effect ive xenon cross section. , The d e w t i o n  ( 
of effective xenon cross section appears .not. only in the numimum xenon override 

prob1em~'but a l so  in. the temperature coefficient probleta a t  the t h e  of maximam 
. .  . 

xenon overrid?, and di'ff erences i n  the interp$etation of the . def in iuon in theee 
I 

tyo problems a re  discussed in ,de ta i l ,  \ 

Two examples .are studied i n  .de ta i l  which'illustrate the Improved 

techniques developed in this paper f o r  the emluation o f ,  the,  effect ive xenon 

cross section i n  .the maximum -xenon override problem. Both examples set7ie: to '.'-.;'' 
. . 

i l l u s t r a t e  the str iking ef fec t  o f  t h e  pre'shutdoun poier . level on ' the t h e d  

flux' distr ibut ion a t  t h e  time of rnaxf.m~' xenon override and reveal convlncinglf 

ea r l i e r  mieconception? on the pmblenn, 



THE EFFECTIVE XmOBO mss SECTIM 

1, Introduction 

The notion of effective xqoa'croas section f i r s t  presented i t s e l f  at 
the ~estinghouae Atamic Power Mvisioxh i n  aonneetipn with the xenon override 

pr0bI.m. 'Phe need for-  such a definition arises fmm the 

inhcmogeneoufl distribution of xenon (and aemaFium) a t  the time of shutdown end 

the subsequent use of homogeneous reactor aeory  i n  the, study of the 

xenon problem, .The dafinition of effective xenon cross section and early 

applications of the defini tion are contained i n  WAPD-RM-128 ,- 

By.effective xenon cross section is meant that  cross seotion a~t iwc iakd  

wlt& a homogeneous distribution which i s  the reactivity equivalent of the ac.tPal 
n o n d f o m l y  distributed xenon. The mathematical formulation of effective 

xenon cross section i e  effected w i t h  the aid of the generalized reactivity 

fo.rmla (lordhelm perturbation fomulaM). In  this formulation, th. rm..rtubd 
flux is taken as  the flux i n  the reactor a t  the time of maxhm =on override - 
with a homogeneous distribution of xenon poison; the pe r tu rb4  - flux ie the flux 

in the reactor a t  the time of maximum xenon override arising f h m  the prerrhut- 

down distrlbatian of xenon In i t s  actual inhomogeneom etate. A t  the tlme of ' 

publlcatian of VAPD-lO4-l28 It was assuned that the perturbed flux w e  very l i t t l e  



\ 

di f ferent  from and indeed, t o ' a  f i r s t  order approximation, taken to coincide 

with the :mperturbed Plux. This constraint 'ms a necess i ty  since i t  was 

impossible to obtain f lux  dis t r ibut ions i n  a reactor with a continuously 

varying reactor parameter'with ihe use of analytic methods and desk machine 

calculations, Moreover, it was generally supposed a t  the time t h a t  the 

perturbation under discussion.was very ' m a l l  and hence that  i t  wa/e unnecessary 

. - to  know the actual ,form of the perturbed flux, 

It  i e  now possfkle, with the aid of the analogue machine called the 

GODDESS,' t o  solve 

reactor parameters 
,-_Ri. +--- 

rdrscovered .. I . t ha t  i n  

thus the f i r s t  object of t h i s  report to. 

effective xenon cmss  section and to investigate new techniques of calculating 

th i s  reactor parameter i n  the l i g h t  of substantial  pertrirbations add a lso  the 

. operating rod configurations, 

The notion of effect ive 'xenon cross section appears again i n  reactor 

theory i n  connection with the of calculating the tempex&tu.re ooefficient 

of reac t ivf ty  a t  the time of override of ma* xenon, In  this si tuat ion,  
, . 

however, the interpretat ion df effec'tive xenon cross section d i f f e r s  f -  that 

encountered i n  the xenon override problem., I n  d e w  of such a difference In 

interpretat ion in the two problems, an additionel objective of W e  paper ie to 

diecuss the ro le  of the generalized r e a c t i d t y  f o r n u b  in the temperature 

coefficient problem and, i n  par t icu ls r ,  the appearance of the  effective xenon 

cross section i n  t h i s  problem, 

t R, R, S c u f f ,  The Space Sfnulator Method for SolrLng the' Gmup Mffueioaa 
. . 

Equations, WAPD-105, March 1954, . 



section '2 of this paper i s  devoted to a discussion of the effect ive 

xenon cross section i n  the xenon override problem, Section 3 is concerned with 

the ro l e  of the Nordheim pe r tu rk t ion  problem in the temperature coeff ic ient  

problssn, Section 4 includes a discussion of the appearance a d  interpretat ion 

of the effect ive xenon cross section i n  a par t icular  temperature coeff ic ient  

problem, Section 5 i s  devoted to a discussfon of new techniques of calculating 

the effective xenon cross section i n  the xenon override problepl, The paper i s  

concluded with Section 6, which contains the resu l t s  of numerical calculations 

associated w i t h  the techniques described i n  Section 5, 

Two examples a re  studied i n  Section 6 which a r e  f i c t i t i o u s  i n  the 

sense tha t  the rod,configurations involved do not coincide exactly w i t h  actual 

experimental si tuations,  However, both em.;!les a r e  admirably suited to 

i l l u s t r a t e  .the improved techniques of eelc&ting the effect ive xenon cross 

section developed i n  this paper, The first example is of importance i n  i l l u s -  - 
t ra t ing  techniques which a r e  applicable i n  the case of a preshutd6wn cnnfiguration 

involving pa r t i a l ly  l i f t e d  xenon rods, The second example i s  of 

in te res t  since the preshutdown configuration with a l l  xenon.mds frilly inserted 

corresponds to the conditions assumed to prevail  i n  all previous studies,on the 

xenon override pmblem, Both cases serve to i l l u s t r a t e  the s t r iking ef fec t  of 

the preshuMown power l e v e l  on the thermal flux distr ibut ion a t  the time of 

xenon override and on the over-all effectf  ve xenon cross section and reveal 

convincingly e a r l i e r  misconceptions on the problem, 



2. The Xenon O v e r r i d ~ m b l e @  

I n  UAPD-&-~EB the e f fec t ive  xenon cross section was defined to be 

where Q i s  the power levelpreceding shutdown i n  f i s s ions  per second, where 

a i s  called the veiphting factor  associated w i t h  the  d i s t r ibu t ion  as and is. 

given by the formula 

v 
,, core / a s q jqRdv  s s  

J 
core 

a = .--- ,. A 9 

- 
core core .. 

and *ere ~ ( t )  and ~ ( t )  a r e  functions of the xenon cross section,bx, the 

samarium cross section, d and various other  p~rameters  which may be considered S3 
a s  constants throughout t h i s  discussion.. The f lux  Qi represents the  xenon (or  

t samarium) dis t r ibut ion e t  the time of shut.doun,and q~ m d p s  represent Iluxes 
S 

i n  .dk homogeneous reactor  a t  the time of ovemj.de of m a x h u m  xenon, for example, 

when all control  rods (save half the regulator rod) are assumed to be ou t  of the 

reactor, 

' I n  the use of formule (2.,1), i n  the pest, it has been t a c i t l y  assumed 

tha t  the  perturbation i n  the  flux qs, LS a r e su l t  of t h e  inhamogeneous d i s t r i -  

bution of xenon a s  opposed to its homogeneous d i s t r ibu t ion ,  is very emall. k 

examples have been studied recently which indicate t h a t  the perturbation under 

discussion may be a substant ia l  one and that the unreserved use ar f o w u l a  (2.1) 

may lead to invalid  result^, Thermal flux dfetr ibut ions  associated w i t h  these 

t w o  examples ,are discussed fn d e t a i l  i n  Section 6, 



The res t r ic t ion  i n  the 'conventionhl use of the Nordheim perturbatdon 

formule i s  that  the perturbation in the flux, a s  a r e su l t  of whatever disturb- 

ance i n  the reactor i s  being studied, i s  so d l  a s  to be negligible. The 

res t r ic t ion  ar i ses  from the replacement of the perturbed f lux  by the first 
term i n  i t s  Taylorss expansion. The need fo r  such a res t r ic t ion  stems from 

the lack of knowledge, of the perturbed f lux  i n  most s i tuat ions involving 

application of the Nordheim formula, Reference to the method, of derivation 

.of the Nordheim fomuls., a s  described i n  WAPD-19, indicates the adjustments 

which should be made to  the weighting factor ( 2 , ~ )  for  the case of large 

perturbations. Thus, for l&rge perturbations (2,l)  .should properly be written 

i n  the form 

'core / 9s9:0 dv 
a' = core- 

9 

core core . . 

where the subscript ,zero pertains to the f lux  i n  the unperturbed reactor with 

a l l  rods removed and a homogeneous dis tr ibut ion of xenon, and where the f lux  

Qis i s  tbe perturbedflux ar i s ing  fmm the inhomogeneous dis tr ibut ion of xenon. 

Since the perturbed f lux  vs is  known, i n  the s tudies  of this paper, 

fornula (2,3) wi l l  henceforth be used in calculations of fhe weighting factor.  

Indeed, the va l id i ty  of (2,l) i s  strongly open to question i n  any studiea 

except possibly i n  s i tuat ions where tbe power 

l e d  preceding 8hutdown is very low. 

Techniques of W u a t i n g  (2,3) and computing the effective xenon 

cross section i n  the xenon override problem wi l l  be discussed i n  Section 5 

of thia  paper, 



3, Internretations of the Nordheim Perturbation Formula 

The so-called period-inhour relationship f o r  a bare homogeneous 
t 

r$actor i s  by the formula 

An analogous,relationship obtained by Nordheim i n  the derivation 

of the Nordheim perturbation fonuula i s  the formula 

it dt 
3 .  / { s ( L s ) ~ ~ ~ , + s ~ ( ~ ~ ~ ~ - I ~ ~ ~ ~ ) - s ~ ~ Q ~ ~ ~  

reactor 0 " 0 0 

t t } d v t /  ~ l ~ q ~ ~ c p d v  -SD~VV,  vQs-~~*vcpf O VVf 
0 0 

s P f 0  s ,, 

core 
0 

I '. 

core i 

which is valid f o r  an inhomogeneous reflected reactor, In  t h i s  formula the 
subscript zero re fers  t o t h e  unperturbed flux; otherwise, the f lux i s  the 

perturbed flux, 

An ident i f icat ion between (5.1) and (3,2) i s  made by the mnymtion 

term which i s  &mmon to the two formulasv Then, by definit ion, 

t The reader i s  referred t o  WBPD-19 f o r  an explanation of the notation used in 
t h i s  section, 



t 
' p tg  fo 

(3.3) = keff { + - } d v + J  I J ~ ~ ~ : ~ ~ v ,  
reactor Vf core , 

- (3.4) 6~ = { 8 ( k ~ $ p $ + ~ ~ ( p ~ ~ ~ - q ~ m ~ ) - ~ ~ ~ c p ~ ~ ~  f~ o 
reactor 

a t } dv + J I s p f o  r qtmsdv. - 8~~ Vqs o VVs - 8Df V ' P ~  ' v p f  
o o core 

Foxmula (3.4) affords a generalization of keff (or  of react ivi ty) ,  

a s  known f o r  a bare homogeneous reactor, to the case of a ref lected inhomogeneous 

reactor, and formula (3.3) provides a similar generalization of t h e  l ifetime, 

J', i n  a f in i t ;  reactor, These a re  bona f ide  generalizations i n  the sense that 
-.  

both f o ~ u l a s  reduce to the conventional i e f in i t ions  of keff and 1' f o r  a bare 

homogeneous feactor, when the perturbed f lux  i's replaced by the unperturbed f lux  

and when the fluxes associated w i t h  a bare homogeneous reactor  a re  used. 

In the l i g h t  of the preceding discussion it might be argued t h a t  

formula (3.1) leads to incorrect resul ts ,  f o r  example, i n  connection with the 

calibration of control 'rods i n  a reactor so high* inhomogeneous. 

Indeed, t h i s  might well be the case except tha t  the measured 

periods are  so large that,  i n  (3.1), the f i r s t  term i s  always small a s  compared 

to the second tern, However, i n  a study of reactor accidents, where very smal l  

periods might be encountered, the p s e  of (3,3) a s  a definit ion of the l i fe t ime 

would improve markedly the accuracy of react ivi ty  calculations. 

The use of generalized react ivi tx ,  as given by formula (3.4), might 

well improve the accuracy of temperature coefficient calculations i n  a reactur 

d th  i t s  complioated configurations of control rods; 



While t h i s  paper i s  not conctikned specif ical ly  w i t h  temperature coeff ic ient  

calculations, , the reappearance of .  the effect ive xenon cross section i n  the 
. . 

temperature coefficient problem a t  the time of maximum xenon.override accounts 

fo r  the discussion in t h i s  and the following section. 



4. The Temperature Coefficient  Problem 

In the determination of the  temperature. coef f ic ien t  a t  the time of 

override of maximum xenon, Kith the a id  of t he  generalized r eac t i v i t y  formula, 

the contribution to the temperature coeff ic ient  of the term involving the  xenon 

(plus samarium) i s  given by 

" * - , rn,?,d~ + / I * 8 v s d V ,  s P fo 
core core 

since the var ia t ion of the samarium cross section with temperature is. e s sen t i a l l y  

constant.' The xenon cross section can be wri t ten i n  t he  f o m  

where i n  t h i s  discussion C and D a r e  independent of the temperature, where c i s  

a normalizing factor  which depends on the power l eve l ,  the amount of fue l ,  and 

the operating f lux preceding shuMom, and where as represents the  xenon 
8 dis t r ibut ion.  Wherl c i s  properly evaluated (4,2) becomes ' 

where Q i s  the  power l eve l  preceding shutdown measured i n  f ies ione per  second. 

h Cf. UAPD-EPI-128, 



(4.4) 

where 

and 

(4.6) 

Substi tution of (4,3) i n t o  (4.1) gives 

- '('~'eff a T .I q q d ~ +  ' 

s S 
0 

/ I S P f 0  k mB rn,d~, 
core core 

core 
0 

core 
a = 

P n 
0 

Q~ dv J b rp dv 
so 

core core 

Fmm the aspect  of f ~ m ,  (4.5) and - (4.6) can now be fden t i f i ed  with 

(2.1) and (2.3), respectively. However, the in te rpre ta t ions  of t he  weighting . . 

fac tors  (2.3) and (4.6) a re  qui te  di f ferent .  I n  t he  f i r s t  place, the pert- 

bahion i n  the f l ux  a s  a r e su l t  of a un i t  change i n  temperature i s  indeed a 

small perturbation. Thus; the  subscr ip t .  zero i n  (4.6) can be dropped and the 

f l ux  gs taken a s  the  unperturbed flux. I n  t h e  s i tua t ion  a t 'hand,  the -per- 

turbed f lux qB i s  the  thermal f lux a t  the  time of xenon override w i t h  shim 

and .xenon mds  f u l l y  withdrawn. Typical examples of such a flux a r e  the 

d i s t r ibu t ions  pictured i n  Section 6. Thus, the xenon. weighting factor ,  a, 

i n  the xenon override pmbleg and i n  the  temperature coef f ic ien t  problem a t  

the time of xenon override have qui te  di f ferent  in terpreta t ions .  



5. Techniaues of Evaluating the Effective Xenon Cross Section 

The technique of evaluating the weighting fac tor  o i n  the  xenon over- 

r ide  problem of WhP~-Rt4-128 implies the writ ing of (2,3) i n  the separable form 

0 = a a where r n' 

and where g and a re  the radius and the a l t i t u d e  of t he  core, respectively. 

This procedure implies n o t  only the separabi l i ty  of the xenon d i s t r ibu t ion  
It function as but a l so  the separab i l i ty  of t he  fluxes q and cps. 'It i s  a l so  
so 

recalled t h a t  i n  WAPD-RM-128 an e f f o r t  was made t o  compute the  number or a s  

accurately a s  possible on ?he basis of mhny l ~ b o r i o u s l y  calculated Nordheim- 

Sca le t ta r  d is t r ibut ions ,  and fur ther  t h a t  aZ was calculated on the basis of 

cosine d i s t r ibu t ions  f o r  a l l  of t he  &el .d i s t r ibu t ions  involved i n  (5.2) 

The assumption of separabi l i ty  of t h e  xenon d i s t r ibu t ion  function 

seems to be a reasonable one, a t  l e a s t  on the basis of current ly  ava i lab le  tech- 

niques f o r  the  calculation of f lux  dis t r ibut ions .  I t  i s  an assumption which is  

invalid only by v i r tue  of t he  geometric inhomogeneities introduced by the c o n t d  

rods and the ref lector ,  However, the assumption of separab i l i ty  of the f'unctlona 

and qS i s  weakened not only by the geanetric inhomogeneities but also by the 
9so 
inhomogeneous d i s t r ibu t ion  of the xenon. 



I n  the discussion which follows the assumption of separab i l i ty  of the 

xenon c$istribution function as w i l l  pe rs i s t ,  but on the k s i a  of t h e  ideas  

which have been partially.advanced i n  Section 2 it can no longer be assumed t h a t  
h 

(Pso 
end qs a r e  separable, a t  l e a s t  i n  the usual sense. An immediate implication 

of t h i s  conclusion i s  tha t  the weighting function a cannot be assumed to be 

separable i n t o  the component par t s  ar and aZ. These remarks w i l l  be c l a r i f i e d  

l a t e r  i n  the discussion. 

Since the xenon dis t r ibut ion QS i s  assumed to be separable, it can be 

writ ten i n  the form 

where c depends on the power leve l  preceding shutdown, Ekamples of the  distri- 

bution (z)  a r e  given by the d i s t r ibu t ions  displayed i n  Section 6. The 

dis t r ibut ion= ( r ,@ has been approximated by h r i o u s  methods a t  the Westinghouse 

A h @ c  Power Division : ( i )  the Nordheim-Scalettar technique of MUD-RM-128, ( i i )  

the two-dimensional analogue machines, ( i i i )  the one-dimensional analogue machine 
' 

(the GODDESS), where the control rod r ings  a r e  simulated by annuli. 

To determine the parameter c i n  (5,3), f i r s t  l e t  i t  be supposed that 

c R ( r , e )  d, where, d i s  a constant and where it i s  understood that ,  i n  the 

determination of 2 ( z ) ,  the r ad i a l  buckling i s  contained in the absorption 

constants. Then, i f  Q i s  measured'in f i s s ions  per second, 

f Since a l l  f luxes  under discussion i n  t h i s  section a re  thermal, the subscript  
s will henceforth be o d t t e d .  The. changes i n  notation which a r e  made a r e  
self-explanatory. 



whence 

Then, define 

(5.4) 

Now, i n  a plane z = z the average flux o.ver r and 6 is given by (5.4). Thua, 
0 ' ,. 

whence 

(5.5) . 



The point  of view i n  the  development which follows i s  influenced 

grea t ly  by the geometric f a c t  t h a t  the  mds. a r e  capable of moving axially 

but no t  radia l ly .  Thus, it i s  convenient a t  the ou tse t  to define a r a d i a l  

weighting fac tor  ar(zo) i n  a plane z = zoy and then consider a summation 

'process  over z to obtain f i n a l l y  an over-all weighting fac tor  o. I n  any 

plane z = z the maxhum xenon cross section i s  of t h e  foxin 
0 

The corresponding effect ive  xenon cross sect ion i s  given by 

where @( zo) i s  obtained from (5.4). 

It i s  in te res t ing  a t  t h i s  juncture to consider t h e  s t ruc ture  of t h e  

perturbed f l u x  cp(r,8,z) a t  the time of maximum xenon override. Suppose f o r  

the moment, a s  a matter of convenience, t h a t  q~ i s  independent of 8. The per- 
turbed f l ux  q.~ in any plane a = zo i s  cer thinly  influenced by the  xenon 

d i s t r i h t i o n  (5,6) in t h a t  plane. Thus, the  rad ia l  component of rp i n  the  

plane z = zo i s  of the  fonn R = G,@ ( r ,  zoY. In  principle,  t h i s  function 

must be known before the weighting f ac to r  ar(zo) can be detelmined. Indeed, 

the  r a d i a l  weighting f ac to r  can be wri t ten i n  the  form 



The axial  component of q( r, z) cannot be found u n t i l  a,( Z) , and consequently 

&(=Ueff,  i s  known. Thus, the total perturbed flux i s  of the form ' 

where it i s  noted tha t  Z i s  a function of z alone, Although cp(r,z) i s  not 

separable, a s  indicated above, the form of (5,9) suggests tha t  q(r, z) might 

a p p m p r ~ t e l y .  be termed quasi-separable , 

When an analogue machine, such a s  the GODDESS, i s  available f o r  

calculations, the radial  weighting factor  a,( z) can be determined by a m c h  

simpler technique than the d i r ec t  evaluation of the formula (5,8). Since 77 
i s  the variable parameter to be determined f o r  c r i t i c a l i t y  i n  the use of the 

GODDESS, then 7 can be determined a s  a function of Zeff i n  the relhtion (5.7), 

a s  indicated i n  Figure 5.1. This follows since the homogeneous poison parameter 

Zeff(zo) i s  a function of zo i n  each homogeneous c r i t i c a l i t y  calculation in a 

plane z = z Consequently, 7 w r i e s  wi th  zo, and hence Zeff(zo) var ies  w i t h  q. 
0. 

Moreover, the parameter z-(zo) i s  a function of @ ( zo) i n  each heterogeneous 

reactor calculation i n  a plane z = so. Thus, 7 varies  with zo and consequently 

w i t h  @ ( z ) , where the relationship between 7 and @ ( zo) i s  also displayed in 
0 

Figure 5.1. 

' Figure. 5,l 



A correspondence betweenZeff (a) and @ (2) i s  now established by the 

matching of. s i n  Figure 5.1. Finally, from formula ( so?) ,  ar,e(Z) i s  

determined. I n  t h i s  connection, it must be noted t h a t  a ( z) i s  a continuous 

h c t i o n  .of z only i n  the s i tuat ion t h a t  the xenon rods a r e  fWly  inser ted  and 

the shim rods a re  f u l l y  withdrawn preceding shutdown, I f  a bank of three o r  

s i x  xenon rods a r e  l i f t e d  during operation a t  f u l l  power w i t h  equilibrium xenon, 

then two ax ia l  regions (neglecting the regulator rod) a r e  generated. Then, 

'$(r,B) d i f f e r s  i n  each of the two d b l  regions, thus creat ing a discont inui ty  

i n  a r , p  0 
Such a discontinuity,  however, does not present a serious mathe- 

matical obstacle, 

The next step i n  the mathematical snalysis of t h i s  discussion i s  to 

find the over-all o r  to th l  weightirig factor  o and consequently the over-ql l  

effect ive h u m  xenon cross section. I n  t h i s  connection, the  radial ef fec t ive  

xenon cross section, given by (So?), becomes the over-all maximum xenon cross  

section. Thus; 

and it i s  desired to find 

where 

From the def ini t ion of effect ive *urn xenon cross section it 
I 

followe tha t  
I? 



where Z ~ ~ , ~ ( Z Y  = ~ ( z ) .  Substitution of the expressions (5.10) and (5.U), 

: f o r  the xenon croes aectione, i n to  (5,13) yields  the r e su l t  

Note' t ha t  i f  a,(z) were constant tbroughout the mre,  the total weighthg factor 

could be written i n  the separable foxm o = araZ, where a z  i s  given by (5.2). 

I n  Section 6, comparisons a re  made between the use of .(5,14), wi th  a 
variable radial weighting factor,  and the'use of the separable f o w  a> = a a 

r S' 
w i t h  a canetent rad ia l  weighting factor,  



6. Results of Numerical Calculations 

This section i s  devoted to the evhluation of the effect ive xenon 

cross sections, associated withtwo different  preshutdown rod configurations, 
w i t h  the use of the techniques outlined i n  ,the preceding section.. The- two 

cases studied a re  described as follows, 

Case I Preshutdown Confirnation with Grou~ I I I A  Rode -* 

Calculation -- Xenon Override 

I n i t i a l  State  

Rods , .  - Position (inches) 

Group I 43 

Group I1 43 

Group I I I A  10.95 

Group I I I B  . O  

~ e a c &  Poisons: equilibrium poisons a t  full pow& 

. L o a w :  no depletion 

. . 
Final State  

Roda ' Position (inchee) 

Group I 43 

Group 11 43 

Group' I I I A  43 

Group IIIB 43 

Reactor Poisons: mrudmum xenon 

L o a w :  same as  in i n i t i a l  s t a t e  



Actual Experiment -- Xenon Override 

I n i t i a l  S t a t e  

Rods - Posit ion (inches) 

Group I 37.2 

Group I1 37.2 

Group I I I A  11.8 

Group I I I B  0 

Reactor Poisons: equilibrium poisons a t  f u l l  power 

Loadine;: a f t e r  93 hours a t  full power, 19.86 kg 

Date of Experiment: June 25 to 29, 1953 

Final S t a t e  -- 
Rods - Posi t i o q  (inches) 

Group I 37.3 

Group I1 37.3 

Group IIIA 37.9 

Group I I I B  23.6 

Reactor Poisons: maximum xenon 

Loading: eame a s  i n  i n i t i a l  s t a t e  



Case 11. Preshutdown . . Confimration w i t h  Xenon Rods Fully 

Inserted 

Calculation -- Xenon Override 

I n i t i a l  S t a t e  

'Rods - Posi t ion 

Group I out  

Group I1 

Group I I I A  

ou t  

i n  

Group I I I B  i n  

.Reactor Poisons: equilibrium poisons a t  f u l l  power 

Loading: no depletion 

Final Stete '  

Rods - Posit ion 

Group I out  

Group I1 

Group I I I A  

Group I I I B  

Reactor Poisons: maximum xenon 

ou t  

out  

ou t  

Loadine: same aa i n  initial s t a t e  



It i s  evident, from examination of the conditions per ta ining to the  

actual  xenon override experiment, described under Case I, t h a t  both theore t ica l  

problems studied i n  t h i s  paper a r e  purely f i c t i t i ous ,  However, the pr inc ipa l  

object  of t h i s  paper i s  t o  exhibit  improved techniques of calculat ing the 

e f fec t ive  xenon cross section, and the  problems studied yield r e s u l t s  which are 
' 

highly instructive.  .Case I i s  of importance i n  i l l u s t r a t i n g  techniques which 

a re  applicable i n  the case of a preshutdown configuration involving p a r t i a l l y  

l i f t e d  xenon rods. Case I1 i s  of par t i cu lhr  i n t e r e s t ,  s ince the preshutdown 

configuration of al1.shi.m rods out and a l l  xenon rods i n  corresponds to the  

conditions assumed to prevai l  i n  a l l  previous s tudies  on the  xenon override 

Both cases serve to i l l u s t r a t e  the s t r i k ing  e f f ec t  of the  preshutdown " 

power l e v e l  on the thermal f lux d i s t r ibu t ion  a t  the  time of maximurn xenon over- 

r i de  and on the over-all e f fec t ive  xenon cross section. The calculat ions  a r e  
. . 

explained i n  d e t a i l  i n  the step-wise procedure which follows. 

Case I 

Preshutdown Confimration with- G r o u p  I I I A  Rods 

P a r t i a l l y  Lif ted 

Ster, 1. Preshutdown Radial Flux Distribution 

The reactor  used i n  t h i s  calculation was consiIdered a s  undepleted 

with equilibrium xenon a t  460'~. The xenon bank was considered a s  f u l l y  

inser ted and represented by an annulus df rod material.  The shim bank was 
considered a s  f u l l y  withdrawn and the  resul t ing lacunae represented by a 

water anndus. The regulator rod was considered a s  f u l l y  withdrawn and tbe 

resu l t ing  lacuna represented by a c i rcu la r  water hole. Flux d i s t r ibu t ions  
were,found f o r  this reactor. 



Step 2. Xenon Override with Unifom Poison (Radial Case) 

The xenon rods a r e  f u l l y  withdrawn, In  any horizontal  cross section 

a u n i f ~ m  poison @X)eff is given by (5.7) , t h a t  is, 

(6.1) 'x) e f f  = A + B ar(zo)@(zo), 

where 

(6.2) A = .03388 Z,,, 

and, where 

i s  the preshutdown f l ux  averaged over the plane z = zo.' 

Any given value of ar(so)@ (zo) leads t o  a pa r t i cu l a r  value of 

4( ~ 2 e f  f uhich i s  constant throughout the  plane z = zoo By use  of t he  

simulator the  value of 7 corresponding t o  some can be found. Hence, 

it i s  possible t o  p lo t '  r)  a s  a function of ar@' This relationship i s  f&d 

to be l inear :  

The function q ( u n i f o n )  i s  plot ted as a f u n c t i o n o f  or@ i n  Figure 6.1. 





p 3 Xenon Override w i t h  Non-Uniform Poison ( ~ a d i a l  Case) 

The maximum xenon cross sec t ion  i n  a p lane .  z = z o i s  given by (5.6), 

t h a t  i s ,  

When the  simulator i s  used to solve  the  c r i t i c a l i t y  problem in a plane z = z 0' 

with the  non-uniform poison d i s t r i b u t i o n  given by (6,6) (non-unifoxm) is , T r  
obtained a s  a function of @. This r e l a t ionsh ip ,  which i s  non-linear,  is a l s o  

p lo t t ed  i n  Figure 6.1. , 

The matching of T !  s i n  Figure 6-1 generhtes a func t iona l  r e l a t i o n s h i p  

between o and @ which i s  displayed i n  Figure 6,2. The procedure described 'in r 
Steps 1 and 2 i s  t h e  e q u i w l e n t  of t h a t  described i n  Section 5 i n  connection 

with the  schematic diagram of Figure 5,1, 

Step 4. Preshutdown Axial Flux Dis t r ibut ion  

The problem considered froin a = d i a l  po in t  of  view i n  the  preceding 

s t e p s  i s  now continued from an a x i a l  point  of view, The conf igura t ion  under 

considerat ion i s  pictured from a schematic po in t  of view i n  Figure 6.3. I n  

this configurat ion 1 = -010 cm-l was assigned to all of t h e  xenon rods, and 
Po 

the  poison worth of t h e  I I I A  bank of  xenon rods i n  region I1 was found to be 

= .006 cm-I corresponding t o  c r i t i c a l i t y  (7 = 2.12). Flux d i s t r i b u t i o n s  P 
a r e  ava i l ab le  f o r  t h i s  configurat ion,  the  thermal flux being p ic tured  i n  

Figure 6.5, 
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~ t e ~  5. Xenon Override with Uniform Poison (Axial Case) 

The xenon rods a r e  withdrawn and consideration i s  *given to an over-all 

%) ef f  I n  t h i s  connection, equatioq (5,ll) i s  

where o i s  the  over-all weighting factor ,  and where 
8 



- 
A s  i n  Step 2, p l o t  q versus o@. This re la t ionship  i s  found to  be l i n e a r  and I 
i s  given by 

-14 - 
7] (uniform) = 1.686 + .2532 x 10 a@. 

Step 6. Xenon Override w i t h  Non-Uniform Poison ( ~ x i a l  Case) 

The reac tor  must now be considered from a one-dimensional &a1 po in t  

of view. In  any horizontal  cross sect ion the non-uniform xenon d i s t r i bu t i on  i s  

replaced by the r ad i a l  ef fect ive  xenon cross sect.ion (5.7). I n  the  axial 

problem the r ad i a l  e f fec t ive  xenon cross section becomes the .over-al l  maximup 

xenon cross section. Thus, a s  i n  (5.10), 

where 

- 
For a given @, the  value of @ ( z )  corresponding to any z can be found 

from the  d i s t r i bu t i on  X (z) and the r e l j t i o n  ( ~ ~ 1 1 ) .  Moreover, a i s  r e l a t ed  to 
- r 

@ i n  Figure 6.2. Thus, f o r  any given value of a, &(zvmX is known as a 

function of z. Finally,  values of 7] associated w i t h  &( ZGELX can be found w i t h  
the aid of t he  one-dimensional simulator. I n  other  words, -r](non-uniform) is  

obtained as a function of 5. 
- 

IF ~ ) ( u n i f o m )  versus o5 and ~(non-uniform) verrus @ are p lo t t ed  

on the same system of coordinate axes, then by mtch ing  ? I s ,  as i n  Step 3, m . 

i s  obtained a s  a function of @. This p l o t  i s  given i n  ~ i g u r e  6.4. 
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Step 6a. Note t h a t  o is. the  over-all weighting f s c to r  associa ted.wi th  t n e  

non-separability of the a x i a l  and r ad i a l  weighting factors .  Previously, the  

ax i a l  and r a d i a l  weighting fac tors  were obtained separately and I the over-al l  

weighting f ac to r  was writ ten a s  a r aZ .  It i s  of i n t e r e s t  then t o  compare araz 

with o. 

To f ind  oraz suppose f i r s t  the& a i s  un i ty  f o r  a l l  z, and then 

proceed 'as i n  Step 6. The d i s t r i bu t i on  &Tzgmax, corresponding t o  a given 
- 
@, w i l l  not be the  same ss i t  uas previously. Again, 7 (uniform) can be 

- 

found a s  a function of aZ@: 

and ~(non-uniform) , associated d t h  4( zumax, can be found a s  a function - 
of 5 .  The ,matching of T1s, a s  i n  Step 6, gives a a s  a function of @. 

Z 

To each number there now corresponds the quan t i t i es  o, a and az. 
- r' 

~ i ~ u r e 6 . 4  includes p lo t s  of a o versus and u/(a a ) versus @. The l a s t  r z r z 
curve i s  a measure of the e f f ec t  of non-separ~bi l i ty  of the  a x i a l  and radial 

weighting fhctors. 

Figure, 6.5 exh ib i t s  .the preshutdown ~ x i a l  thermal f lux,  2 ( z) , and 

i l l u s t r a t e s  the pronounced e f fec t  of the paver l a r e l  on the  ax i a l  thermal f lux,  
. . 

Z(z),  a t  the  time of maximum xenon override. . ' 

Comments on Case 

1. The r ad i a l  weighting fac tor  a? i s  calculated only f o r  the - 
case df $11 xenon m d s  inse r ted  before  shutdown 2nd a l l  rods  out  during over- 

ride. This s i tua t ion  does not  ac tua l ly  pertain the  problem under discussion, 

since the  Group I I I A  rodi a r e  p a r t i h l y  ra ised preceding shutdown. Thus, the 
problem solved serves primarily to  i l l u s t r a t e  the new procedures and techniques 

established i n  t h i s  paper. 
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- 
2. The values of or, a,, and o f o r @  = 0 can be colnputed - from 

forumla (2.3), since the fluxes and then adjoints approach limits, as @ tends 

to zero, which can be found on the sirnulato; by set t ing gX), = @X)eff = 0. 

Indeed, o can be written i n  the form 

/. C Q , ~ ~ V  s s so 

a =  - core core 

Jcomv (t 9 

o r :  as dv So 

where it is  recalled tha t  9, i s  the thermal flux f o r  the reactor  heterogeneously 

poisoned with the poison dis tr ibut ion (xx)mex, where pso i s  the thennal flux i n  

the reactor uniformly poisoned with the enpropriats effect ive poison @x)eif, 

where as i s  the  preshutdown thermal flux, and where c i s  proportional to  the 

power level. Note tha t  qs depends on the correct choice of a. 
0 

Let the thermal flux i n  the reactor with no poison (but in 

the override configuration) be denoted by W:, and l e t  the l imi t ing  value of m 

a s  c tends to  zero be denoted by 2. A s  the preshutdown power level,  and hence 

c, tends to  zero, qs and qso tend to $ Then, i n  the b i t ,  s 

/ dV[ @ s V ~ ~ : k d ~  

a0 = core core 
P f' m 

core core 

3. A l l  f lux distributions f o r  the c ~ ~ s e s  studied in M a  problan 

are available. 

2 4. Flux levels  up t o  10 x 1014 neutrone/em -see ere considered 
2 in  the axial cases and up to  15 x l0 l4  neutmns/cm -sec i n  the radia l  cases. 



A s  noted previous ly  C ~ s e  I1 i s  pril;n:irily of  c~cademic i n t e r e s t ,  s i n c e  . 

t h e  preshutdown confi,7uration of a l l  shim rods  wit,lidr;:wn and a l l  xenon r o d s  

f u l l y  i n s e r t e d  i s  pure ly  f i c t i t i o u s  wi t ! )  r e s p e c t  t o  t h e  xenon o v e r r i d e  problem. 

Nevertheless ,  cons iderh t ion  of t h e  problem i s  o f  i npor t ance  

s ince  the  c o n f i ; y r a t i o n  s t u d i e d  i s  a s soc i a t ed  wit11 2 1 1  previous s t u d i e s  a t  t h e  

Vestinghouse Atomic Power Divis ion on t h e  xenon a v e r r i d e  problem and s i n c e  t h e  

r e s u l t s  of  t h e  s tudy r e v e a l  conv inc ing l :~  e a r l i e r  misconceptions on t h e  problem. 

Since q u a l i t a t i v e  r e s u l t s  a r e  of   prim^.^ . i n t e r e s t  iil Case 11, t h e  s tudy  of  t h i s  -- 
case has  been.made f o r  t h e  s p e c i a l  ca se  i n  which a = 1. Accordingly, t h e  s t e p s  r 
corresponding t o  S t eps  1, 2, :;nd 3 of  Case I. nre  olni t t e d  i n  t h e  d e t a i l e d  d i s -  

cussion of  Case I1 which follows. 

Case I1 -- 

Preshutdo-m Confi,.ruration w i  t i ~  Xenon Rods 

Full.: I n s e r t e d  
P . .. . - -- - 

Steps  1. 2. 3. These s t e p s  a r e  omit ted s i n c e  a = 1"; 
r 

- 

Step  4. Preshutdown Axial  F l u  D i s t r i b u t i o n  

Since ' the shim rods  a r e  f u l l y  withdrawn and t h e  xenon rods  a r e  f u l l y  

i n s e r t e d  ( t h e  r e g u l a t o r  rod i s  omit ted froin cons ide ra t ion ) ,  t h e  a x i a l  thermal 

f l u x  i s  a cosine i n  cha rac t e r ,  t h a t  i s ,  t h e . f l u x  i s  a ,cosine except  f o r  the 

e f f e c t  of t h e  end water r e f l e c t o r s .  This  f l u x  d i s t r i b u t i o n  i s  p ic tu red  i n  

Figure 6.8. 

Steu 5. Xenon Override with Uniform Poison ( ~ x i a l  case)  

The ove r -a l l  e f f e c t i v e  xenon c r o s s  s e c t i o n  i s  o f  t h e  form 



where az i s  now the  over-all weighting factor,  where 

and where X (z) i s  the preihutdom thermal ax ia l  flux. With the a id  - of the 

&..mulator and the use of (6.15), 7 can be found a s  a function of a?. This 

relationship i s  found to be l inear ,  as i n  Case I, and i s  given by 

S t e ~  6. Xenon Override with Non-Uniform Poison (Axial Case) 

When ar = 1 the over-all maximum xenon cross section i s  of the forn 

where 

- 
For a given a, the value @(z)  corresponding to  any z can be found 'from the. - 
distribution 2 (s) and the re la t ion  (6.19). ' Then, for  any given value of a, 
&(& is  known ita a function of z. Finally, ~(non-unifonn) can be found 

U. 

a s  a function of 0, with the use of 4(zumax i n  the simulator c r i t i c a l i t y  

- - 
The relationships ?(uniform) versus az@ and q(non-uniform) versus @ 

are plotted on the same system of coordinate axes i n  Figure 6.6. The matching 





. . : of 7' s +'&I th; functions of Figure 6.6 yields  a functional relationship between 
- .  - 

az and @. The relationship aZ versus @ i s  pictured i n  Figure 6.7. The 

Umiting value of aZ a s  5 tends to ziro i s  obtained by the,pmcedure described 

in Comment 2 under Case I. 

Note once again tha t  az is  the over-all weighting fac tor  associated 

w i t h  a xenon override problem f o r  the special  case where it is assumed that 

Step 6a. Figure 6.8 i s  devoted to a graph of the preshutdown ax ia l  flux, 

2 ( a), and graphs of t h e  thelmal ax ia l  f lux a t  the time o f  xenon override, 

~ ( a ) ,  corresponding to a wide range of values of the preshutdown power level.  

Note tha t  Z(z) was thought to be essent ia l ly  a cosine i n  character prior to 
- the time tha t  the present study was undertaken. Graphs of the f a s t  fluxes, 

corresponding to the thermal fluxes of Figure 6.8, a r e  exhibited i n  Figure 6.9. 
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