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"ARGONAUT" - A GENERALIZED REACTOR FACILITY FOR NUCLEAR 
TECHNOLOGY TRAINING AND RESEARCH 

by 

D. H. Lennox and B . I. Spinrad 

PREFACE 

The m a t e r i a l p resen ted h e r e i s p r e l im ina ry and i s intended 
sole lyfor information as to the p resen t s tatus of the Argonaut 
Reactor concept . 

I. Introduction 

The grea t expansion of nuclear technology which is expected within 
the next decade r e q u i r e s new toolsj both for education and for the pe r fo rm­
ance of t e s t s on the physics design of the sys t ems to be studied. P r e s e n t l y 
exist ing r e s e a r c h r e a c t o r s were not designed to mee t these n e e d s . Their 
high power levels do not pe rmi t flexibili ty of ins ta l la t ion and l imi t the u s e ­
fulness of the r e a c t o r s a s measu r ing tools (for example , for danger coeffi­
cient and pile osci l la t ion s tudies) . The re fo re , such r e a c t o r s as C P - 5 , 
MTR, LITR, and the Brookhaven Reactor have become bas ica l ly h igh- level 
neutron sources for exper iments in pure science and radioact ive engineer ing. 

In designing new r e a c t o r s and measu r ing r e a c t o r p a r a m e t e r s , zero 
power sys t ems have been widely used . (1) The Z E E P at Chalk River i s 
perhaps the inost famous of these systemis and has been the mos t prolific of 
genera l c r i t i ca l i ty s tudies ; but t he re a r e many m o r e . The Argonne ZPR- I 
and II were s y s t e m s which tes ted specific la t t i ces i the North A m e r i c a n 
Water Boi ler , the ANL F a s t Exponential Exper iment^ and the Savannah River 
TTR were used a s low-level sou rces of neut rons for m e a s u r e m e n t s on r e ­
ac tor p rope r t i e s i and the KAPL TTR, the Phi l l ips RMF, and the Westinghouse 
DCTF were designed p r i m a r i l y as analyt ical tools for measu r ing physics 
p rope r t i e s of m a t e r i a l s in r e a c t o r s . 

All of these low power or zero power exper iments have been exce l ­
lent faci l i t ies for the t ra in ing of pe rsonne l in r e a c t o r physics opera t ions 
and reac t iv i ty behavior . Since a l l such faci l i t ies have been flexible sys t ems 
assoc ia ted with exper imen t s which va ry the i r reac t iv i ty s t rongly, the i r 
operat ion has taught the e x p e r i m e n t e r s a g rea t deal about r e a c t o r phys ic s . 

With the advent of the School of Nuclear Science and Engineer ing 
(SNSE) at Argonne, demands for use of C P - 5 as a pedagogical tool have 
competed with i t s use as a high-flux r e s e a r c h tool . Moreover , shutdown 
of C P - 2 has forced the Labora to ry to discontinue danger coefficient and 
pile osci l la t ion work. Consequently, t he re i s need for a r e a c t o r which 
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would fill the pedagogic r equ i r emen t s of the School and a l so be available 
for reac t iv i ty t es t work and as a low-level neutron source for exponential 
exper iments and ins t rument ca l ib ra t ion . Although the TTR type was in i ­
t ia l ly favored, having been used both a s a neutron source and a t e s t faci l ­
i ty, other r e a c t o r sys t ems were examined. F a c t o r s cons idered were 
convenience, safety, cost , and flexibil i ty. Of the var ious types (water 
b o i l e r s , swijximing pools , heavy water l a t t i ce s , graphi te la t t ices) only 
the swimming pool concept seemed competi t ive to the TTR in i t s genera l 
f lexibil i ty. The swimiming pool sys tem i s super io r to the TTR as a tank 
with control rods and in s t rumen t s for genera l ized c r i t i ca l studies? but it 
i s infer ior in sensi t iv i ty and convenience, both of these defects a r i s i ng 
f rom the p re sence of wa te r , which r e q u i r e s e i ther s t a in less s tee l or 
canned exper imen t s and which is not a ve ry good neutron r e f l ec to r . 

A fur ther advantage of the TTR concept i s i t s adaptabil i ty as the 
source core of an in te rna l exponential expe r imen t . This type of e x p e r i ­
ment a p p e a r s so p romis ing for r e a c t o r design work that th is advantage 
cannot be over looked. 

Consequently, the TTR h a s been made the bas i s of a design study 
for a r e a c t o r sys t em to be used for the purposes ment ioned. Since these 
purposes a r e compatible with un ivers i ty nuc lear engineer ing t ra in ing and 
r e s e a r c h requi rements^ i t was decided to a t tempt a min imum cost design 
even at the expense of conventional design p r a c t i c e s . As the concept p r o ­
ceeded, the design changes f rom the or ig inal TTR became so d r a s t i c that 
it was decided to r e n a m e the s y s t e m . "Argonaut'* was chosen a s an eas i ly 
r e m e m b e r e d t i t le combining the L a b o r a t o r y ' s name and l e t t e r s which 
stand for "nuclear a s s e m b l y for un ivers i ty t ra ining"; or as an even s imple r 
mnemonic , "Argonne Naught Power R e a c t o r . " 

II. Genera l Descr ip t ion 

Argonaut" i s a t h e r m a l r e a c t o r consis t ing of an annular cy l indr ica l 
core with an i n t e rna l and external graphi te ref lec tor (see F i g s . 1 and 2). The 
core i s he terogeneous j the fuel e lements consis t ing of Borax- type fuel 
p la tes in a s s e m b l i e s ca , 3 x 6 x 24 . The mode ra to r in the fuel e lement 
i s w a t e r . Graphite s e p a r a t o r s a r e placed between the e l e m e n t s . The c r i t ­
ica l loading of the sys t em i s expected to be l e s s than 4 kg of U^'^ at 20% en­
r i chmen t . The r e a c t o r i s capable of opera t ion at a m a x i m u m of 10 kw of 
t h e r m a l power , at which level , only brief t e s t s a r e r ecommended . T h e r m a l 
neutron fluxes of 10^* neut rons pe r cen t ime te r per second a r e available at 
this power . 

The in te rna l graphi te re f lec tor (also cal led " in ternal t he r ina l column" ) 
may be used as a locus for danger coefficient work or r ep laced by a port ion 
of a la t t ice a s s e m b l y for in t e rna l exponential e x p e r i m e n t s . The d iameter 
of this in te rna l re f lec tor i s dictated by the mLinimum size of a la t l ice port ion 
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which might s t i l l give an equi l ibr ium spec t rum at i t s center i for graphi te 
l a t t i ce s , which have o rd inar i ly the l a rge s t la t t ice spacings , i t appea r s 
that a two-foot d iamete r will be ba re ly sufficient and this d i ame te r h a s , 
t he re fo re , been accepted . 

The annular core i s contained between two a luminum tanksj 2 ' and 
3 ' in d i ame te r , both 4 ' in height, and the fuel e l ement s a r e mounted at 
mid-he igh t . The inner tank su r rounds the in t e rna l t h e r m a l column and the 
outer tank i s sur rounded by a 1' thick graphi te l a y e r . On one side the 
graphite i s extended hor izonta l ly to fo rm an ex te rna l t h e r m a l column. On 
the face opposite the ex terna l t h e r m a l column i s a movable tank for shie ld­
ing s tud ies . 

The two s ides of the oblong thus formed a r e backed up with a shield 
consist ing of ca . 5 ' of solid o rd ina ry concre te block stacked in b r i ck fash­
ion with lead ins tead of m o r t a r . The overa l l d imensions of the sy s t ems 
within the shield a r e 17' long by 15' wide by 8 ' high. 

The top of the la t t ice i s to be access ib l e for loading exper imen t s or 
for the p lacement of an exponential a s sembly ; the re fo re , it i s n e c e s s a r y to 
keep this surface free of control mechanismis . That has been done by con­
s ider ing seve ra l compara t ive ly novel control s y s t e m s . 

F o r the p r i m a r y safety sys t em, two events a r e to be ini t ia ted simiul-
taneously to give fast and absolute shutdown. A rapid d e c r e a s e in mode ra to r 
bulk densi ty i s effected by ni t rogen injection while the mode ra to r (H2O) i s 
dumped through a quickly opening va lve . The injection sys tem is made 
" fa i l - sa fe" by using the ni t rogen p r e s s u r e to close a no rma l ly open m o d e r ­
ator d ra in va lve . 

Secondary control i s to be obtained from conventional absorbing 
m a t e r i a l s placed next to the core in the outer r e f l ec to r . Under cons ide r ­
at ion a r e s eve ra l inse r t ion methods as followss 

1. Grav i ty -ac tua ted rods with a 1 ' t r a v e l , rep lac ing graphi te r e ­
f lector with a cadmium-p la s t i c a b s o r b e r . 

2. Mercu ry shee t s , hydraul ica l ly opera ted . 

3 . Window-shade type b l ades . 

F o r any of the above methods a mul t ip l ic i ty of rods or blades i s 
needed so that only a cascading of mechan ica l fa i lures can impa i r cont ro l . 

With the design jus t desc r ibed , it i s poss ib le to consider a c o m p a r ­
at ively low cost for the systemi as a whole. Excluding fuel r en t a l cha rges , 
it i s believed that the pile could be brought into opera t ion for an outlay of 
l e s s than $100,000. Each component has been sc ru t in ized for cost and, 
where poss ib le , a cheap way of doing things has been se lec ted . Thus , the 
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f rame of the r e a c t o r , within which the graphite s i t s , i s specified a s of 
bolted construct ion (Fig. 3), allowing s tandard components and a minim.um 
of field l abo r . Both the t h e r m a l column and shield a r e manufactured by 
stacking s tandard components . Special p ieces have been reduced to those 
r equ i red for sample holes and to special ly machined graphi te p ieces i m m e ­
diately adjacent to the cyl indr ica l c o r e . Stainless s tee l has been avoided, 
and, since the pile does not opera te at a high power , the heat r emova l 
sys tem i s rud imen ta ry . 

A 50' X 50' floor space with 20' head room i s r ecommended , since 
a useful a s sembly a t t r a c t s to it cons iderable equipment . However , in 
case floor space of this so r t i s not avai lable and the u s e r i s in a posi t ion 
to ins i s t on good housekeeping, a 20' x 30' space with 18' headroom imm,e-
diately above the 5' square core and nearby ref lec tor i s a min imum. F o r 
the a r e a on which the pile r e s t s , a floor loading of 1500 to 2000 pounds per 
square foot i s r equ i r ed . The uti l i ty r equ i r emen t s a r e wa te r , at 10 gallons 
per minute at a max imum t e m p e r a t u r e of 7 5 ° F , and 35 kw of 110 volt AC, 
s ingle-phase e l ec t r i c i t y . 

I l l , Component Detai ls 

A. In terna l T h e r m a l Column 

A s tandard configuration of the r e a c t o r u s e s an in te rna l t h e r m a l 
column which i s 2' in d i ame te r and 3 ' long, cons t ruc ted of pile grade 
graph i te . The cylinder i s pene t ra ted by a sample hole along the axis and 
four other sample holes at 90° to each other and at varying r a d i i . 

B . The Active Region 

The act ive region i s contained between two tanks 4' high, made 
out of type 6061-T4 A l . The tanks a r e 2 ' and 3' in d i a m e t e r , the outer 
being l / 4 wall and the inner , 3 / l 6 " . 

C . Fue l E lemen t s (Fig. 4) 

The fuel p la tes will consis t of 20% enr iched m a t e r i a l , ca , 35 
weight per cent of u ran ium oxide in Al a s the m e a t . The p la tes a r e 2. 8 
wide by 24" long by 0 .09" thick. They a r e to be loaded into a box 3 x 
6" X 24", slotted for plate r emova l and permi t t ing a maximiim of 22 plates 
per box. The boxes a r e loaded into the annulus with the 6 dimension 
along a pile r a d i u s , and will probably be supported on the graphi te wedges 
descr ibed below. 



D. Dummy Fue l 

Cr i t i ca l calculat ions pred ic t that a sma l l e r c r i t i ca l m a s s i s 
achieved by i n t e r s p e r s i n g graphi te blocks in the annular c o r e . These will 
be coated, if n e c e s s a r y , to r e s i s t swelling and crumbl ing in the water en-
vironmient. They a r e of the same shape a s , and in terchangeable with, the 
fuel boxes . In addition, graphi te wedges a r e used to space the fuel e l e ­
men t s so that r ec tang tdar boxes will fit in the c i r c u l a r annulus . 

While the final geomet ry has not been fixed, it appea r s that if 
24 fuel box locat ions a r e provided, min imum c r i t i ca l m a s s i s achieved 
when only eight of the boxes contain fuel and the o the rs contain graphi te 
d u m m i e s . This c r i t i ca l m a s s i s es t imated a s between 3 and 4 kg. 

E . Reflector 

The active region i s surrounded by AGOT graphite in blocks of 
4" X 4" c r o s s sect ion (where filling of i n t e r s t i c e s i s not r equ i red ) , s tacked 
so that the core i s im.bedded in a graphi te block 4 ' high and 5' square in 
c r o s s sect ion. Above and below the core i s one foot of wa te r , 

F . Ex te rna l T h e r m a l Column 

This ex te rna l t h e r m a l column immedia te ly adjacent to the core 
cons is t s of AGOT graphi te 4 ' high and 5' wide. The length of this t h e r m a l 
column, p resen t ly specified a s 5' , i s subject to change pending r e s u l t s of 
calculat ions and measuremients on the cadmium ra t io as a function of g raph­
ite t h i ckness . 

Removable s t r i n g e r s for sample p lacement a r e provided in the 
ve r t i ca l d i rec t ion and along the axis of the column. 

G. I r rad ia t ion Fac i l i t i e s 

Against the unshielded ref lec tor face opposite the t h e r m a l col­
umn i s a tank supported on a movable c a r t . Init ially, the tank will be filled 
with H2O for shielding studies? however , other m a t e r i a l s can be subst i tuted 
in the tank or s tacked d i rec t ly onto the c a r t , 

H. Shielding 

Exper ience with the ze ro power r e a c t o r s in opera t ion at Argonne 
has shown that ex t r eme shielding difficulties exis t when a ba re r eac to r i s 
placed inside a shielded ce l l . Consequently, '^Argonaut" i s cons t ruc ted 
with an in tegra l shield which e l imina tes many of the in ter locking systemis 
and shutdown radia t ion h a z a r d s of cel l const ruct ion, bes ides permi t t ing in­
stal lat ion at a lower cos t . On the s ides of the r e a c t o r ( i . e . , those two faces 
of the square core which do not have the t h e r m a l column and radia t ion 
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facility) walls a r e const ructed of o rd ina ry concre te blocks, 150 pounds per 
cubic foot. 18" X 18" X 30" . These blocks a r e s tacked with l / l 6 " lead 
gaskets used ins tead of m o r t a r . This construct ion has provided adequate 
shielding in c r i t i ca l a s s e m b l i e s at Argonne at a lower cost than m,onolithic 
conc re t e . The max imum th ickness d i rec t ly adjoining the core s ides i s 5 '? 
the ends a r e t ape red . Immedia te ly above the core and surrounding ref lec tor 
i s a h igh-densi ty (250 pounds per cubic foot) concre te plug, 5' square and 
3 ' high. The use of h igh-densi ty m a t e r i a l at th is point i s justified by dou­
bled savings in head r o o m . The r e m a i n d e r of the top shield i s o rd ina ry 
concre te block of max imum 3 ' depth. 

I. Water Circula t ion System 

In o rde r to achieve the del icacy of control r equ i r ed for sensi t ive 
reac t iv i ty m e a s u r e m e n t s , ther inos ta t ing of the water in the core i s n e c e s ­
s a r y . Consequently, a c i rcula t ing pump, with a max imum capaci ty of 
10 gallons per minute , i s included in the water l ine . The water i s then 
passed through a heat exchanger of ca . 25 square feet of su r face . The heat 
exchanger could conceivably be an old automobile r ad ia to r placed in a labo­
r a t o r y t h e r m o s t a t . Cooling water and heating elem.ents m.ay be included in 
the line to allow low power exper iments on t e m p e r a t u r e effects . Water 
l ines a r e s tandard plumbing m a t e r i a l s , or p las t ic tubing where convenient. 

P rov i s ion i s a l so made for a t h r e e - l i t e r mixed-bed ion exchange 
column to keep the water c lean . 

J , Cont ro l 

The shutdown and safety sys t em of s imultaneous n i t rogen in­
ject ion into the water and water dump has a l r eady been desc r ibed . Compo­
nents of th is sys t em a r e being subjected to exper imenta l t e s t . Of pa r t i cu la r 
significance a r e the s t eady-s ta te bubble volume and the r i s e t ime of the 
bubble densi ty in the sys t em as a function of ni t rogen p r e s s u r e and valve 
and nozzle des ign. The secondary safety sy s t em and the regulat ing rods 
have not been se lec ted . Ini t ial ly, the r e a c t o r will be brought into opera t ion 
with gravi ty b lades , but these will be r emoved when another sys tem has 
been checked out, 

K. Star t Up Source 

The r e a c t o r i s to be provided with an an t imony-bery l l ium source 
capable of providing lO'̂  neut rons per second. The antimony i s removable for 
reac t iva t ion in C P - 5 or other high flux p i l e s . A source of th is type has been 
in use at the SNSE for exponential expe r imen t s and equipment for handling is 
in ex i s t ence . P i le cha rges f rom C P - 5 for act ivat ion of the antimony have run 
around $20 per shot and the source itself cos t s ca , $200. 
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L . Ins t rumenta t ion 

Included as an in tegra l pa r t of the r e a c t o r i s al l ins t rumenta t ion 
n e c e s s a r y for s t a r tup and n o r m a l opera t ion . It i s expected that auxi l iary 
ins t rumenta t ion for exper iments will va ry with individual i n t e r e s t s and will 
be obtained separa te ly . However, with the equipment supplied, a va r ie ty 
of exper iments can be per formed to demons t ra te or explore the bas ic c h a r ­
a c t e r i s t i c s of t h e r m a l r e a c t o r s . 

Four independent t r i p channels , effective throughout the oper ­
ating range of the r e a c t o r , will be used . A signal f rom any one of these 
safety c i rcu i t s will be sufficient to ini t iate shutdown if a potential ly danger ­
ous si tuation is r eached . Three of the channels will t r i p at a p r e s e t power 
level , the other at a given r a t e of i n c r e a s e . F o r two of the level t r i p s , DC 
ampl i f ie rs fed fromi pa ra l l e l p la te , -boron-coated ioaoization chamber s will 
be used . A count r a t e m e t e r working f rom a B^®F3 chamber provides an 
additional power level t r i p c i rcu i t . The remain ing t r i p c i rcu i t will be a 
logar i thmic amplif ier and pile per iod m e t e r . This ins t rument will indicate 
the neutron flux level over a wide range without any switching or scale 
changes . 

A continuous r e c o r d of power level will be made with two s t r ip 
char t r e c o r d e r s . One r e c o r d e r will be fed a s tandard bucking voltage to 
provide a differential effect useful for moni tor ing smal l changes in power 
leve l . 

F o r s ta r tup or mult ipl icat ion m e a s u r e m e n t s , t he re will be two 
propor t ional coun te r s . An audio "popper" working f rom one of the p ropo r ­
tional counters will se rve a s an audible indication of the r e a c t o r power . 

Gamma background in the genera l a r e a around the r e a c t o r will 
be moni tored by a separa te c i rcui t working f rom ei ther a scint i l la t ion de­
tec tor or argon chamber . A visual and audible warning sys tem will opera te 
f rom this i n s t rumen t . 

The m e t e r s , swi tches , and r e c o r d e r s , together with ind ica tors 
for rod and source pos i t ions , water flow r a t e , t e m p e r a t u r e , and level , and 
condition of t r i p c i r c u i t s , will be brought out to a console desk . Sc ram 
buttons a r e located on the console , as well as at convenient points on the 
surface of the r e a c t o r shield. 

M. Auxil iary Equipment 

The components of the pile a s desc r ibed a r e al l por table in that 
the pile could be d i sa s sembled and r e - e r e c t e d at another locat ion. In l ine 
with the philosophy of complete por tabi l i ty , a j ib c rane plus e l ec t r i c hois t 
i s provided with the s t r u c t u r e . It i s mounted at the inner wall of one of the 



lo 
10 

side sh ie lds . With this the re i s no need for an overhead c rane in the build­
ing where the pile i s located, although it i s r ea l ly up to the u s e r to d e t e r ­
mine the proper c rane equipment for Ms purpose . 

N. Exper imen ta l Equipment 

Exper ience in the pe r fo rmance of r e a c t o r exper imen t s i s that 
ve ry l i t t le equipment i s r e u s a b l e , except as r aw m a t e r i a l for fabr icat ing 
new equipment . Hence, in Argonaut , emphas i s i s on providing space for 
expe r imen t s , r a t h e r than furnishing equipment . Although many i t e m s 
could be supplied, the i r inclusion in the Argonaut package would i n c r e a s e 
i t s cost marked ly , without significantly improving i t s ut i l i ty . Only i n s t r u ­
ments which a r e useful for r e a c t o r opera t ion a r e provided. 

Moreover , in a imivers i ty environment , the purpose of i n s t r u c ­
tion and r e s e a r c h a r e well se rved by generat ing a "do it yourself" att i tude 
in the u s e r . Hence, while we r ecommend ins ta l la t ion of a pile osc i l la tor 
for c r o s s sect ion t e s t s and a pile "modula tor" for kinetic expe r imen t s , we 
believe that each u s e r should design h is own, making allowance for the in­
clusion of spa re i t e m s which tend to accumula te on l abora to ry she lves . 
S imi lar ly , the pe r fo rmance of exponential expe r imen t s r e q u i r e s ex te rna l 
tanks and l i nes , which mus t be individually designed; in some c a s e s , in ­
t e rna l exponential exper iments will r e q u i r e the inclusion of ex t ra safety 
r o d s , which mus t be cons idered a s pa r t of the exper iment , P rec i s ion f lux 
moni to r s provide an excel lent r e s e a r c h fieldi automat ic r e a c t o r cont ro l 
ought to be cons idered in the same l ight . 

Because potential u s e r s of Argonaut may be genera l ly expected 
to have counting equipment ava i lab le , t h i s , too has been omit tedi if th is i s 
not the ca se , genera l counting needs can be amply satisfied by purchase or 
construct ion of scint i l la t ion counting equipment valued at about $ 5 , 000. 

IV. Safety 

Argonaut belongs in the ca tegory of inherent ly safe" r e a c t o r s . The 
pa r t i cu la r group of which it i s a m e m b e r cons i s t s of the MTR, LITR, BSTF, 
and BORAX r e a c t o r s , and it s h a r e s with these s y s t e m s the following core 
p r o p e r t i e s ; 

a. Water modera t ion 
b . P la te - type fuel e l emen t s , with water channel cooling 
c . Enr iched fuel contained in an a luminum m a t r i x 
d. L a r g e leakage of neu t rons f rom the co re 
e . La rge negative void coefficients 

With these p r o p e r t i e s , t e s t s on BORAX have demons t ra ted that it i s a p r o b ­
l e m of cons iderable magnitude to achieve a nuclear runaway which will 
damage the r e a c t o r , even when safety c i rcu i t s a r e left inopera t ive . 
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While the Argonaut sys tem i s thus designed to be as safe as any r e ­
ac tor can be, it i s neve r the le s s no safer than the u se r makes i t . The fol­
lowing points of safety mus t be examined. F o r r e fe rence , we have used 
comparable l abo ra to ry si tuat ions a s example s . 

1. The equipment mus t be designed so that -unavoidable acc idents 
make it h a r m l e s s to a u s e r who c a r r i e s out opera t ions in a prudent mian-
n e r . This impl ies e i ther that the expe r imen te r i s shielded f rom the con­
sequences of poss ible accidenta l fa i lures (compare with a chemica l 
exper iment in which a potential ly explosive r eac t ion i s pe r fo rmed behind 
safety g lass) or that the exper iment has se l f - l imit ing fea tures (a si tuation 
not commonly encountered in exothermic chemica l r eac t ions except by 
exhaustion of r eagen t ) . 

2. While an exper imen te r ought not to be severe ly hur t by the con­
sequences of h is own folly, the only ul t imate safeguard i s to prohibit Ms 
a c c e s s . Since th is means not per forming an exper iment , the a l te rna t ive 
i s to make a c c e s s difficult enough so that th is difficulty s e r v e s to r emind 
the exper imen te r of poss ib le h a z a r d (compare with the use of high voltage 
equipment, whose casing may be removed for se rv ic ing with some difficulty). 

It i s a l so appropr ia te to point out that the p roper safety atti tude mus t 
be an in tegra l pa r t of any t ra in ing p r o g r a m and that tMs i s the best p r even ­
tive of unsafe p r o c e d u r e . That r e s p e c t for dangerous conditions can be in­
st i l led i s indicated by the smal l number of ca lami t i e s occur r ing in per forming 
haza rdous chemica l r e s e a r c h ope ra t ions . 

3 . The poss ib i l i t ies of a given exper iment being hazardous mus t be 
observable to fellow w o r k e r s in the a r e a , so that they may pro tec t t hemse lves 
(compare to the use of "poison" signs in connection with pe r fo rmance of 
exper imen t s involving genera t ion of HCN or H2S1 or the i l luminat ion of a 
panel light when cu r r en t i s on). 

In th is connection, t ra in ing i s a l so impor tan t , since it i s the r e spon­
sibil i ty of w o r k e r s in the a r e a to judge, f rom the "announced" condition of 
the sys tem, what h a z a r d s to keep in mind. 

4 . The u l t imate r equ i r emen t i s that innocent bys tander s (defined 
a s people who a r e not connected with the exper iment or use of the equipment) 
shal l not be h a r m e d a s a r e s u l t of exper imenta l folly (compare with dangers 
of r e l eas ing noxious gases f rom a chemica l hood). 

Based on these r e q u i r e m e n t s , the p r o p e r t i e s of Argonaut and the 
limiitations on i t s use may be br ief ly examined. 

1, The r e a c t o r i s inherent ly safe in the se l f - l imi ta t ion of reac t iv i ty 
due to boiling. In addition, the moni tor ing m e c h a n i s m s and safety devices 
will au tomat ica l ly c o r r e c t potential ly dangerous s i tuat ions before the 
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inherent safety mechan i sm of boiling shuts the sys t em down. An ex t r eme 
case of accidental fai lure i s s t i l l not d i s a s t r o u s . 

If moni tor ing and sensing or safety m e c h a n i s m s fail while the r e ­
ac tor i s in i t s no rma l configuration, or if the safety in te r locks have been 
by-passed to allow cr i t i ca l i ty while the safety m e c h a n i s m s a r e acting at 
capaci ty, the r e a c t o r can be brought to c r i t i ca l and above by pumping up 
wa te r . This occu r s re la t ive ly slowly and adiabat ica l ly . A high power 
level i s achieved, and if a s c r a m does not occur , the water i s boiled away, 
in probably a bumpy, but not explosive m a n n e r . The nuc lear energy l ib­
e ra t ed would be of the o rde r of that r equ i r ed to boil a l l the water in the 
sys tem, and the t ime r equ i r ed for th is would be s eve ra l m i n u t e s . 

2, The mos t dangerous si tuation would be the dropping of a l a rge 
m a s s of m a t e r i a l into the in te rna l t h e r m a l column while fuel i s in the 
annulus and the water i s up, TMs accident involves folly, r a t h e r thaneqt i ip-
ment fa i lu re , since s tandard p rocedure i s to unload the annulus complete ly 
when making a g ro s s change in in te rna l column c h a r a c t e r i s t i c s . However, 
such a g r o s s blunder (comparable to per forming glass-blowing opera t ions 
in a r o o m in which e ther solutions a r e being evaporated) i s guarded agains t 
by inter locking the water dump with the in t e rna l column removal i and since 
r emova l of the annulus plug i s r equ i red before the in te rna l t h e r m a l column 
can be removed , fuel unloading i s made convenient . 

3 , The warning devices indicating the condition of the a s s e m b l y 
a r e automiatic, and a r e both v isual and a u r a l . Th i s , which i s genera l in 
c r i t i ca l assemibly work, i s far m o r e sa t i s fac tory than the posting of s igns , 
which should, however , a lso be done. Also, the r e a c t o r m a y be shut down 
by anyone in the a r e a who cons ide r s an opera t ion unsafe . 

4 , Except under the conditions postulated in (2) above, the shutting 
down of a nuclear runaway by boiling i s not accompanied by l ibera t ion of 
l a rge quant i t ies of f iss ion gases to the a t m o s p h e r e . In an accident at 
Argonne which was t e rmina t ed by pa r t i a l vapor iza t ion of a hydrogenous 
co re , the act ivi ty was confined to the cell in which the accident o c c u r r e d . 
Neve r the l e s s , the level of act ivi ty , even in th is confined space , soon 
dropped below t o l e r a n c e . 

To s u m m a r i z e , then, the nuclear sys t em of Argonaut i s safe so 
long a s the u s e r t akes the min imum precaut ions agains t g ros s ly unsafe 
p r a c t i c e s . To i n su re t h i s , it i s n e c e s s a r y that a r e s e a r c h es tab l i shment 
with an Argonaut acqui re competent pe r sonne l to superv i se the r e a c t o r 
opera t ion . Init ially, such people can only be t r a ined in exist ing i n s t a l l a -
t ionsj t he rea f t e r , the t ra in ing will be a phase of student act iv i ty . 

The ope ra to r , supe rv i so r , or p ro fessor mus t accept the following 
r e sponsibil i t ie s t 
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1. He mus t see that mon i to r s , t r i p s , and safety devices a r e 

functioning p roper ly by means of operat ional checksi and when they a r e 
not, he mus t have author i ty to shut down the r eac to r until n e c e s s a r y r e ­
p a i r s a r e made , 

2. He mus t review all exper imenta l p roposa l s with r e g a r d to the i r 
safety, and t r a i n a l l e x p e r i m e n t e r s in safe opera t ion . 

3 . He mus t check that exper iments a r e being safely pe r fo rmed . 

These respons ib i l i t i e s a r e rout inely expected of a conscient ious 
indus t r i a l or r e s e a r c h super-visor. 

One final comment on safety i s that in t e rna l exponential e x p e r i ­
ments convert Argonaut into a much different r e a c t o r . Hence, such ex­
pe r imen t s mus t be subjected to a separa te safeguard re-view unless they 
differ in only minor r e s p e c t s f rom pre-viously t e s t ed s y s t e m s . 

V. Types of Expe r imen t s 

The following types of expe r imen t s can be per formed in the s tandard 
sys tem as desc r ibed : 

1. P i le osc i l la tor m e a s u r e m e n t s and danger coefficient s tudies can 
be made in the cen t ra l t h e r m a l column. 

2. Exponential exper imen t s can be pe r fo rmed on the top of the s y s -
t e m | with the top shield column removed and par t i a l ly r ep laced by a g raph­
ite pedes ta l , approximate ly lO'̂  t h e r m a l neut rons per square cen t ime te r per 
second can be furnished in the bottom of the exponential a s s e m b l y . 

3 . F o r pedagogic pu rposes , c r i t i ca l m a s s de te rmina t ions on the 
annular core with var ious geome t r i e s and u ran ium concentra t ions can be 
m a d e . 

4 . Fue l s tandardiza t ions and ins t rument ca l ibra t ion expe r imen t s 
can be per formed in the var ious i r r ad i a t i on holes in the t h e r m a l column, 
and in the shielding faci l i ty, 

5 . Shielding studies of the type now being done at Argonne can be 
under taken in the shielding tank. 

6. The t h e r m a l columns can be used for i r r ad i a t i ons of fuel e l e ­
men t s to get in te rna l flux d i s t r ibu t ions , e t c . 

In addition the following exper imen t s can be pe r fo rmed by making 
changes which a r e allowed by the designs 
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1. By removing the inner tank, g raphi te - re f lec ted c r i t i ca l exper i ­
men t s can be undertaken on fully or par t i a l ly enr iched heterogeneous l a t ­
t ices of 3 ' d i ame te r . 

2. By replacing the in te rna l t h e r m a l column with a port ion of a 
r eac to r la t t ice , mic roscop ic flux in la t t ice cel ls can be mapped in consid­
erab le detail and reac t iv i ty changes due to la t t ice per turba t ion can be 
checked by the danger coefficient method. 

3 . The shield tes t facility can be loaded with a la t t ice to p e r m i t 
exponential m e a s u r e m e n t s in that location. It a lso r e p r e s e n t s a place 
where t h e r m a l migra t ion p rope r t i e s can be m e a s u r e d . 

By way of i l lus t ra t ion , a sequence of exper iments which may be 
t ied into a single p r o g r a m is p re sen ted below. 

Let us suppose that it is des i r ed to invest igate la t t ices containing 
heavy water and depleted u ran ium. The f i r s t step would be to i n t e r ca l i -
b ra te foils which will be used in making flux t r a v e r s e s . This is a c c o m ­
pl ished by removing a graphi te s t r inge r in the external t h e r m a l coltunn 
and mounting foils on a rapidly spinning wheel in the hole provided. The 
foils a r e i r r a d i a t e d s imultaneously and counted against each o the r . 

The second s tep, which i s a l so p r epa ra to ry , would be to cons t ruc t 
a pile osc i l la tor according to a design which may be ant ic ipated as useful 
in an in te rna l la t t ice t es t . Since the osci l la tor m u s t be tes ted , some 
osci l la t ion exper iments on neutron c r o s s section r a t i o s a r e pe r fo rmed in 
the s tandard Argonaut. Next, again looking toward pe r fo rmance of an 
in te rna l la t t ice t es t , a pile modulator (the name i s used to signify a device 
which can a l t e r the reac t iv i ty of the sys t em harm.onically in a frequency 
range up to a few hundred cycles per second) is const ructed , with the ex­
pectat ion of using i t in an in te rna l la t t ice to m e a s u r e r e a c t o r l i fe t ime. 
This equipment may then be t es ted by m e a s u r i n g the t r ans fe r function of 
the s tandard Argonaut and compar ing with theory and -with other expe r i ­
men ta l data. 

We a r e now ready to perform, external exponential expe r imen t s . 
The top shield is r emoved and rep laced by a graphi te pedes t a l . An expo­
nential tank i s ins ta l led and s eve ra l exponential l a t t i ces r tm. The r e s u l t s 
of tMs exponential exper iment may be useful for further inves t igat ions , but 
in pa r t i cu la r a r e n e c e s s a r y to provide cal ibra t ion points for re la t ive r e a c ­
t ivi t ies of the l a t t i c e s . 

By this t ime the Argonaut co re will have become modera t e ly r a d i o ­
act ive owing to i t s operat ion as a neutron sou rce . The ex terna l exponential 
exper iment i s r emoved and an in te rna l exponential exper iment designed. 
This exper iment r e q u i r e s a s epa ra t e safeguard rev iew. Since reac t iv i ty 
wo\ild be added to Argonaut by i t s pe r fo rmance , i t may be decided to include 
-with the exper iment two extra control r o d s . These a r e designed and tes ted . 
Meanwhile, the Argonaut co re has been r e tu rned to low power use for 
other exper imen t s . 
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P r e p a r a t o r y to instal l ing the in te rna l exper iment , the annular core 

is completely unloaded. This mus t be done using coffins. The in te rna l 
exper iment i s ins ta l led and the compound sys tem brought up to c r i t i ca l , as 
in a c r i t i ca l m a s s t e s t , by building the annulus up in smal l i n c r e m e n t s . The 
l ifet ime of the combined sys tem at c r i t i ca l i s m e a s u r e d by the t r ans fe r 
function technique and compared with p red ic t ions . The in te rna l exponential 
exper iment i s then run at low power to obtain la t t ice flux de ta i l s . The cen­
t r a l la t t ice cel l i s pe r tu rbed so as to r e s e m b l e a typical cel l of some of the 
exponential sys t ems studied and a curve of AB^ of the la t t ice v s . Ak of 
Argonaut p r e p a r e d . Samples of proposed cladding m a t e r i a l s a r e then o s ­
cil lated in the exper iment and thei r effect on Argonaut conver ted into e s t i ­
m a t e s of the i r effect on buckling of the tes t l a t t i ce . Exper imen ta l samples 
of plutonium and U^'^ a r e compared by osci l la t ion to de te rmine some of the 
c h a r a c t e r i s t i c s of reac t iv i ty change on i r r ad i a t i on . With th is program, the 
in te rna l exponential exper imen t s may be t e rmina ted and the Argonaut again 
brought back to s tandard configuration. Simultaneously with the ex te rna l 
exponential expe r imen t s , shielding s tudies inay have been pe r fo rmed on 
the var ious shield designs which may have been proposed for the r e a c t o r 
sys tem under study. 

The exper iments jus t outlined might se rve a s an excel lent bas i s 
for physics design of a la t t ice r e a c t o r . Moreover , in the i r pe r fo rmance , 
ample opportunit ies for theore t i ca l ana lys i s a r e p re sen t and exper ience 
i s gained in v i r tual ly every exper imenta l techMque involved in r e a c t o r 
physics design. Such a s e r i e s of expe r imen t s i s , t he re fo re , useful not 
only as a t es t , but a lso may be cons idered a s providing m a t e r i a l for 
s eve ra l student inves t iga t ions . Other p rob lems with different emphas i s 
could a lso lead to p r o g r a m m a t i c use of Argonaut . 

We believe that , although the exper imen t s indicated previous ly 
can al l be pe r fo rmed on Argonaut , they do not, by any m e a n s , exhaust 
the l i s t of possible expe r imen t s ; nor have we yet touched upon i t s use a s 
a teaching demons t ra t ion . We believe that , in the l a t t e r connection, such 
a r e a c t o r might eventually be used in connection with undergraduate work. 
Such work mus t cer ta in ly involve detailed exposit ions of l abora to ry ex­
pe r imen t s with specia l emphas i s on safety. Since the prototype will be at 
Argonne National Labora to ry , one of the f i r s t p ro jec t s under taken h e r e 
will be the wri t ing of such Labora to ry manua l s . 
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