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Introduction

The Appalachian Clean Coal Technology Consortium (ACCTC) has been
established to help U.S. Coal producers, particularly those in the Appalachian region,
increase the production of lower-sulfur coal. The cooperative research conducted as
part of the consortium activities will help utilities meet the emissions standards
established by the 1990 Clean Air Act Amendments, enhance the competitiveness of
U.S. coals in the world market, create jobs in economically-depressed coal producing
regions, and reduce U.S. dependence on foreign energy supplies.

The consortium has three charter members, including Virginia Polytechnic
Institute and State University, West Virginia University, and the University of Kentucky.
The Consortium also includes industry affiliate members that form an Advisory
Committee. Affiliate members currently include AMVEST Minerals; Arch Minerals
Corp.; A.T. Massey Coal Co.; Carpco, Inc.; CONSOL Inc.; Cyprus Amax Coal Co.;

Pittston Coal Management Co.; and Roberts & Schaefer Company.

Obijectives

In keeping with the recommendations of the Advisory Committee, first-year R&D
activities were focused on two areas of research: fine coal dewatering and modeling of
spirals. The industry representatives to the Consortium identified fine coal dewatering
as the most needed area of technology development. Dewatering studies were

conducted by Virginia Tech’s Center for Coal and Minerals Processing and a spiral

model was developed by West Virginia University. For the University of Kentucky the




advisory board approve a project entitled: “A Study of Novel Approaches for

Destabilization of Flotation Froth”. = Project management and administration will be

provided by Virginia Tech, for the first year.




Innovative Approaches to Fine Coal Dewatering
Virginia Tech

R.-H. Yoon, D.I. Phillips, G.H. Luttrell, B. Basim, S. Sohn

Introduction

There are no practical solutions to the problems associated with the dewatering
of fine coals at the moment. The mechanical dewatering technologies used today are
inefficient while thermal drying is capital-intensive and costly to operate. Therefore,
there is an impending need for innovative approaches to solving problems in fine coal
dewatering.

In this project, two different approaches are taken. One approach involves
displacing the water on the surface of coal by liquid buténe that can be readily
recovered and recycled. The other approach is to use disposable dewatering
chemicals (aids) in mechanical dewatering.

The objectives of the proposed work are i) to test the liquid butane process on a
variety of coals from the Appalachian coal fields, and ii) to identify suitable dewatering
aids that would enable mechanical dewatering to reduce the moisture to the levels

satisfactory to electrical utilities and other coal users.

Dewatering Using Liquid Butane
Test results obtained using the liquid butane dewatering process have been

described in previous reports. During the past quarter, most of the research work was

done on testing dewatering aids.




Use of Dewatering Aids

A series of vacuum filtration tests were conducted on a variety of bituminous
coals using various dewatering aids developed at Virginia Tech. The nature of the
reagents are not disclosed here due to the proprietary nature. The tests were
conducted using a 3-inch diameter Buchner funnel with a medium porosity. In each test
100 to 200 mi of coal slurry was poured into the funnel before a vacuum pressure was
applied. The various parameters investigated in this quarter were pressure, drying

cycle time, and temperature.
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Figure 1. Moist content at different reagent dosages and temperature on a
-100 mesh Pittsburgh #8 coal sample.

It is well known that increasing the temperature of the coal feed to a vacuum filter

will decrease the moisture content of the product. A -100 mesh sample of Pittsburgh #8

coal was tested at ambient temperature (23° C) and at an elevated temperature of




60°C. As shown in Figure 1, the moisture was initially lower for the increased
temperature, but as the dosage of reagent was increased to 3 Ib/ton the ambient
temperature moisture contents were as low as those using higher temperatures.

The final economics of the dewatering aids is not known yet but preliminary
estimates indicate that reagent consumptions up to 3 pounds per ton of coal are in the
economically viable range. Figure 2 shows that 3 different reagents can reduce the

moisture by up to 10 percentage points on an Elkview coal sample at reagent dosages

of up to 3 Ib/ton.
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Figure 2. Moisture contents for three separate reagents on Elkview coal sample.

The length of time that a sample is exposed to a vacuum will obviously affect the
final moisture content. To better assess this effect and to determine the general range
of drying cycle time to use in testing, a series of tests were performed at different drying

cycle times using no reagent. The vacuum pressure was varied from 15 to 25 inches of

mercury to determine the effect of vacuum on the moisture content. As shown in Figure




3, the drying cycle time has an effect up to 5 minutes. The benefit from increased
drying time is much more pronounced for the lower vacuum (15 inches) than for the
higher vacuum (25 inches). At a fixed drying time of 3 minutes, testing was performed
to determine if the vacuum pressure had much effect when using reagent. Figure 4
shows that at the lower reagent dosages, the higher vacuum still produces lower

moisture contents but at dosage of 2 Ibs/ton the moisture contents are similar.
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Figure 3. Effect of drying cycle time and vacuum pressure on moisture content
with no reagent.

A fine coal sample was also obtained from the Amax R&D Premium Fuels
project in Golden, Colorado. The sample was an Indiana 7 seam coal that had been
finely pulverized in a ball mill. Both reagent A and E were unsuccessful at dewatering
these samples. The base moisture obtained without any dewatering aid was 51% using
bench scale vacuum filtration. With the addition of two different dewatering aids

(separate tests) the moistures did not improve at all, even at relatively high dosages.

Due to the very fine size consist of the sample, a high reagent dosage would be




expected. However, since the high dosages used (10 Ib/ton) gave no improvement in

moisture, one can only assume that the sample had severely oxidized.
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Figure 4. Effect of Reagent A dosage and vacuum pressure on moisture content.

Although testing continues, much has been learned about the
relationships of vacuum dewatering with the use of a dewatering aid. It is becoming
more apparent that the methodology of performing dewatering tests with a laboratory
unit is crucial to consistent results. The nature of the coal surface itself also plays a role
when using dewatering aids. Successful results have been obtained with the use of

specific dewatering aids but more must be learned about the interrelationships and

effects of the other physical dewatering parameters.




Spiral Concentrator Modeling
West Virginia University

T. Meloy

The spiral modeling is complete and all project goals were met. The final report is in
progress.
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STUDY OF NOVEL APPROACHES FOR

DESTABILIZATION OF FLOTATION FROTH

ABSTRACT

Fine coal recovery from fine waste stream using froth flotation technique is
becoming an important and integral part of coal preparation plans. Column flotation
technique has proven to be the most effective and cost-efficient in recovery of fine
coal. However, in some columns use of glycol-based frother produces a stable froth,
which is not destroyed easily. The main objective of this program is to develop novel
approaches for destabilization of stable froth. The approaches involve addition of
either chemically treated coarse coal or addition of chemically treated magnetite-
limestone suspended in an oil medium to the froth to break it down. Mechanical
approaches to be tested involve utilization of ultrasonic energy or cyclone or vacuum.
This report discusses technical progress made during the quarter from January to

March 1996.
INTRODUCTION
In froth flotation process, frothers are utilized to produce stable small bubbles

which carry the floatable particle. In case of an ideal froth flotation, the froth should

have good fluidity and optimal rigidity. The froth should be just stable enough to carry

the floated particles out of the flotation cell. Once the froth is scraped out the cell, it




should collapse to frée and concentrate the volume of floated particles. Such a froth
will minimize the entrainment of undesired mineral particles into the concentrate and
can provide additional selecti\/ity for the flotation process. Too stable or too unstable
froths penalize the separation efficiency and operation smoothness. If the froths are
too stable, they will not break up after being scraped out of the flotation cell.
Usually, such overly stable froths have low fluidity. The unwanted excessive stability
can cause serious problems for downstream processes, such as dewatering of
flotation concentrate, tailings handling, and re-use of processing water.

Generally, alcohol-based frothers provide froth which collapses as soon as
froth is removed from the flotation cell and sprayed with water. Glycol-based frothers
on the other hand produce a much stronger froth which is difficult to break by simple
physical techniques and requires a large amount of chemicals to break the froth,

which adds to the processing cost.

OBJECTIVES AND SCOPE

The main objective of the proposed project is to develop new defoaming
techniques for destruction of overly stable froths produced in fine coal froth flotation.
It is also the objective of the project to study chemical dynamics of the three phrase
froth.

The focus of this project will be to investigate new defoaming techniques. The

existing commercial defoamers, such as surfactants, copolymers, hydrophobic silica,

amide particle, are expensive and thus economically unfavorable for breaking up fine




~ coal froths. In this project, new techniques for defoaming coal froth with less
expensive chemical will be developed. Two approacﬁes will be studied. One will
involve use of coarse coal particles. To ensure that the surfaces of coal particles are
sufficiently hydrophobic, the coal particles will be pretreated with cationic surfactant.
The second approach will be to use magnetite and limestone particles. Since both
magnetite and limestone particles are naturally hydrophilic, it is necessary to coat the
particles with specific chemicals to make the surface highly hydrophobic (contact
angle >120°. The hydrophobic particles are then dispersed in oil. It is anticipated
that these new defoamers will be advantageous over existing defoamers. Besides
their low cost, the use of hydrophobic limestone particles can also help to capture the
sulfur dioxide during combustion and thus reduce the mission.

APPROACH

The project consists of four (4) tasks. Progress made in each task during the
period of April -June, 1996 is described below.
Task 1. Sample Acquisition and Characterization
Destabilization studies of flotation froth will be conducted with both flotation feed
and froth product. Both samples have been obtained from the Pittston Coal Company
which was recommended by the ACCTC. The flotation feed contains 32.93% ash and
column froth product 8.54% ash. Size analysis of the feed and product samples have

be performed and results included in the last quarterly report. The major findings are

that D4, is 40 and 80 um for the feed and product, respectively and the froth product




contains significantly less fine particles (<75 um) than the feed (48 vs. 63%).

Task 2. bynamic Destability Studies of Fine Coal Froth

Experimental

Dynamic destability studies of fine coal flotation froth were performed using the
principles of a “Foam Stabo System” developed at UKCAER, which was shown in the
first quarterly report. Improvements were made to the original system during the
second quarter to obtain reliable data on froth stability. They included:

® Replacing easy-action-plug stopcock with straight-bore-plug stopcock to
reduce disturbance to the system,

e Separating both reference and working foam cells into two portions for
easy cleaning of porous frit used as bubble generator, |

e Connecting the pressure transducer to a computer to establish a data
acquisition system.

e Attaching a smali cup to the foam cell to add chemical reagents, coarse
coal, magnetite and limestone particles during experiment without
disturbance to the system

Experiments conducted during the last quarter indicated that the pressure

measurement with the system was very sensitive to the environmental temperature.
Theoretical error analysis with the froth state equation reveals that a variation of 0.1 K
in temperature leads to a change of 8.31 Pa in pressure. It was, therefore, of critical

importance to perform tests under controlled temperature. This was accomplished by



utilizing a HAAKE C constant temperature bath and circulator that controls the
temperature of water between the inner and outer wall of the froth column. In
addition, the bubble generator in both cblumns has been changed to a fine frit (4-8
um) to reduce the amount of water that may penetrate the frit after bubbling gas is
turned off.

Results and Discussion

In order to calculate the surface area of froth in the working column from the
measured differential pressure, the surface tension of water solution of Allied Colloids
944 B frother currently used at the Pittston Holston plant was determined as a
function of frother concentration. Two different methods were employed for solution
preparation: a), mixing with a magnetic stirrer for 5 minutes and b), emulsifying in a
blender. The tests were conducted at 20.7 °C. The results are shown in Figure 1
over the frother concentration range of 0 to 66 ppm. As can be seen, there is a large
degree of scatter among the data obtained with the solution prepared using a
magnetic stirrer. On the other hand, data obtained with emulsified soiution showed
excellent reproducibility and the curve connecting these data points lies right in the
middle of surface tension values produced with stirrer agitated solution. This
indicated that emulsified frother solution must be used in forth destabilization studies
to ensure data accuracy.

The CMC for this specific surfactant has also been determined. This was

accomplished by measuring the surface tension of solution at different frother




concentrations up to 1000 ppm. The relétionship between surface tension and frother
concentration is shown in Figure 2. The CMC of this frother is determined to be
approximately 80 ppm.

Figure 3 shows the differential pressure between the working column and the
reference column as a function of froth drainage time. Also shown in Figure 3 is the
change of surface area of froth in the working column when froth drained and
destabilized. The dynamic froth was generated by bubbling solution with air for 30
seconds using different air rates. The frother, Allied Colloids 944 B, was used in tests
at a concentration of 250 ppm. The differential pressure increased with time as more
bubbles broke in the working column and transformed the surface free energy into
pressure. When the froth collapsed completely, the pressure reached a maximum.
The froth produced at higher air rate resulted in higher maximum differential préssure
and required longer time to collapse. For example, at an air flow rate of 0.3 I/min the
maximum pressure was 12 mm H,O and froth collapsed in 30 seconds. When air rate
was increased to 1.0 I/min, the maximum pressure increased to 42 mm H,0O and
collapsing time to 40 seconds. This indicated a higher stability of froth generated at
higher gas rate, which is in agreement with the previous conclusion derived from other
techniques.

With the known surface tension value of the solution and the differential

pressure, surface area of froth can be calculated using the equation given below,

A(t) = (BVI20)(AP, - AP(t)) (D).




As can be seen from Figure 3, the surface area of bubbles in the froth decreased as
bubbles coalesced. The decay rate of the froth decreased with time and there
appeared to be an exponential relationship between surface area of froth and froth
drainage time.

Figure 4 shows changes in differential pressure and foam surface area with
drainage time for the steady state froth generated with 250 ppm frother. The steady
state froth was produced by bubbling solution for additional 3 minutes after the froth
reached maximum height at a given air flow rate. The other conditions are the same
as described above. Higher air flow rate produced higher maximum differential
pressure, i.e., more stable froth and more surface area. In comparison with Figure 3,
the maximum pressure and the initial surface area were higher in Figure 4 at a given
air rate. This was because the steady state froth represented the maximum forth
height that can be possibly achieved at a given gas rate and contained more bubbles
than non-steady state froth. Increase in aeration rate generally increased froth
surface area. However, less significant effect of aeration rate on surface area was
observed at higher aeration rate, possibly because higher aeratién rate produced
larger bubble size.

Figures 5 and 6 show results obtained with dynamic and steady-state froths
generated at a frother concentration of 375 ppm. The overall irend of changes in

differential pressure and surface area as a function of drainage time is the same as in

Figures 3 and 4. The dynamic froth at 375 ppm frother concentration generally




showed higher equilibrium pressure and higher surface area of froth than at 250 ppm
concentration. This is consistent with the concept that more frother produces smaller
bubbles and larger gas-liquid interfacial area. With steady-state froth, higher frother
dosages generated higher equilibrium pressure and initial surface area at lower gas
rates (324 and 563 mi/min), but lower equilibrium pressure at higher.gas rates (786
and 1003 mi/min).

Tests were also performed using 500 ppm of frother concentration. The results
are shown in Figures 7 and 8 with dynamic and steady-state froth, respectively.
Differential pressure increased and surface area decreased with froth drainage time,
as observed in Figures 3-6. However, it is noticed that there was much more
significant difference in surface area of dynamic and steady-state froth at 500 ppm
frother concentration than at lower concentrations. In addition, the decay of steady-
state froth was considerably slower at 500 ppm than at lower concentrations while that
of the dynamic froth at 500 ppm was not.

The time required to reach the equilibrium pressure or cpmpletely destroy the
froth increased with increasing the gas rate. This is due to the fact that higher gas
rate generated more bubbles and more stable froth and, therefore, longer time is
needed for liquid film to drain to a critical film thickness where froth collapses. Similar
behavior was observed with respect to frother concentration. Higher frother

concentration produced smaller bubbles which took longer time to drain, coalesce,

and finally rupture. -




To better show the relationship between froth stability and gas rate, the half-
drainage time, defined as the time required for differential pressure to increase to 50%
of the equilibrium or maximum value, was plotted in Figure 9 for dynamic and steady
state froths produced at a frother concentration of 250 ppm. Obviously, more stable
froth was obtained at higher gas rate.

Figure 10 shows the change of differential pressure and surface area of froth
as a function of drainage time at different frother concentrations. Increase in the
frother concentration from 125 to 375 ppm stabilized the froth. However, a frother
concentration of 500 ppm produced less stable froth than 375 ppm concentration,
indicating that an excessive dosage of frother is detrimental to froth generation.
Although the differential pressure at 125 ppm was higher than at 500 ppm, the surface
area was higher at 500 ppm than at 125 ppm, due to lower surface tension produced
by higher frother concentration. |

Table 1 shows the drainage constant and the half-drainage time obtained at
different frother concentrations. These values were obtained by fitting the curves in
Figure 10 with the exponential growth equation (2) over the differential pressure

range of 0 to maximum,

y=a(1-e ). Q)

The most stable froth was obtained at a frother concentration of 375 ppm, as

indicated by its drainage constant k and half-drainage time. The largest surface area

10




Table 1. Drainage constant and half-drainage time at different concentrations

Frother Concentration Drainage Constant (k) | Half-Drainage Time (t,,)
(ppm) (1/s) (s)
125 0.2749 252
250 0.2800 2.48
375 0.2455 2.82
500 0.2768 2.50

was also produced at 375 ppm. At other frother concentrations, the froth drainage
constant and half-drainage time were nearly the same to each other although there
was significant difference in the value of differential pressure and surface area.
Task 3. Fine Coal Froth Destabilization Studies

This task will consist of studies on chemical and mechanical defoaming
techniques for fine coal flotation froth. The chemical process involves use of coal,
magnetite, or limestone particles coated with surfactant for froth spraying. The

mechanical process utilizes cyclone, ultrasonic energy, or vacuum to destabilize froth.

CONCLUSIONS

1. The “Foam Stabo System” developed at UKCAER has proved to be an
effective technique for studying froth stability.
2. Effects of gas rate and frother concentration on two-phase froth have been

studied using “Foam Stabo System” with Allied Colloids 944 B frother and the

11




coal sample from Holston coal mine of the Pittston Coal Company.
3. The differential pressure between the working froth column and the reference

column increased almost exponentially with drainage time as froth destabilizes.
4. Surface area of froth can be determined from the measured differential

pressure. It decayed nearly exponentially during froth breakage.
. More stable froths were generated at higher gas rates and higher frother

concentrations. However, an excessive dosage of frother destabilized froth.
B. Data on surface area of froth produced at different frother concentrations

showed that longer time was required for froth of smaller bubbles to draih,

coalesce, and rupture.

ACTIVITIES FOR NEXT QUARTER

Work on stability of two-phase froth will be continued in the next quarter. Major
efforts will be devoted to studies of stability of fine coal froths with respect to:

+ half-life time

» drainage time constant

» diffusion time constant

A number of defoaming experiments will also be conducted with coal,
magnetite or limestone particles used as defoamer. These particles are to be
rendered hydrophobic by coating with surfactants. The parameters to be
investigated in these tests include particle size, surfactant concentration and

conditioning time, etc.

12
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