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ABSTRACT 

Co-precipitation methods are attractive for the preparation of 
mixed tkia-urania sols, as possible alternates to solvenf extraction 
methods. Excepttonally stable sols (>I8 mo.) resulted from the co- 
precipitation of thorium and U(IV) hydroxides in Th/U ratios of 1/1 
and 3,5/1. Satisfactory microspheres were formed and calcined from 
one of these sols. A new co-precipitation method was developed for 
preparing 3 Th/l U mole ratio sols using hexavalent uranium, featuring 
the attainment of low nitrate-to-metal ratios by a "seed sol " techniqw, 
The sols readily formed noncracking microspheres in  2-ethyl-1-hexanol 
by the conventional ORNL method and were fired to 99.5% of theoretical 
density and less than 1% porosity. 
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y . Developments in sol-gel processes at Oak Ridge National Laboratory for the 

J 
preparation of aqueous colloidal oxide sols of thorium and uranium, and their con- 

1-6 
version to ceramic nuclear fuels, have been reported by others. In brief, thoria 

sols are made by peptizing steam-denitrated thoria with water and nitric acid, and\ 

urania sols are made by peptizing precipitated U(0H) with nitric acid under an 
. ..  4 

, inert atmosphere. Both thoria andurania sols are suspended as l iquid droplets in a 

column of upflowing 2-ethyl-1-hexanol, with suitable surfactants, unti l gelled to 

firm round beads. These beads, or microspheres, are removed from the column,.further 

dried in superheated steam, and calcined at about 1 150°C. Because of the colloidal 

nature of the gels, sintering to almost theoretical density and hardness takes place 

at this. relatively low temperature of 1 150°C, and the materials are suitable for use 
. . I  " 

as ceramic fuels in nuclear reactors. 

For some types of ceramic' fuels, thoria-urania sol mixtures . are - used. These 

mixtures can be prepared in several ways, such as the peptizing of steam-denitrated 

thoria with uranyl nitrate solution, 'the co-denitra tion. of uranyl and thorium nitrates 

followed by peptizing with H N O  (both methods for mixtures less than 10 mole'% 3 
1 

in  uranium ), p'eptizing precipitated and washed thorium hydroxide with uranjll ni- 

tratef6'7 the blending of thoria and urania sols, 214f6 the co-precipitation of thorium 

2,6,8 
and tetravalent uranium hydroxides from nitrate solution, the co-precipitation 

8 9,lO 
of thorium and hexavalent uranium hydroxides, and solvent ~. extraction methods. 

The ~resent paper describes recent work at ORNL with the two co-precipitation 
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methods, including scouting tests with the U(IV)-Th method and a more detailed 

, account of the U(VI)-Th sol forming method. In the latter method, bead breakage, 

which was a problem with mixed sols of U(VI ) -~h formed by means of hydroxide 

precipitation and peptization with nitrate, was eliminated by reducing the nitrate 
. . 

levels in  the sols and using very .slowe microsphere heatup rates in the early firing 

stages. The co-precipitation methods were explored in order to develop alternate 

routes to the sol-mixing and solvent-extraction methods currently used. 

- 
2. T ~ o ~ - u o ~ ' S O L S  FROM THE CO-PRECIPITATION OF MIXED THORIUM 

AND'URANOUS HYDROXIDES 
, . .  

The object o f  hydroxide precipitation from nitrate solution as 6' precursor to 

. . 
sol forming ir to el iminate most of the.nitrate in ion '  without forming crystal l i te r ,  

which are too large to be amenable to colloidal dispersion. In the microsphere- 

forming process at  OKNL, the sol crystalllite size, determined by x-ray line 

broadening, normal l y  lies between about 30 A and 150 A, with values'of about 50 

to 80 A p;eferred. Thoiium oxide produced by ignition in air consiits of nbndis- 

, ,  
persible crystallites of the order of hundred's to thousands ot anstroms in size. Steam 

denitration in the ORN L rotary calciner at about 4750C produces a thoria ,powder 

, *  
of about 70 A, which i s  dlmost completely dispersible and can be made into micro- 

spheres up to about1 mm in diameter. Thorium hydroxide p6ecipitation normally 

\ 
.results in crystallites below 30  in size, kh ich readily disperse to colloids, but the 

crystallitks must be enlarged in some'way for microsphere production. The tetravalent 

3 
uranium hydroxide (6r- hydrated oxide) of McBride readily forms aqueous sols 



with crystallites of about 50 A, without lengthy digestion. I t  therefore seemed 

worthwhile to investigate the properties of sols made from mixed precipitates, to 

see i f  acceptable size ranges could be achieved and thus b ~ - ~ a s s  the separate 

operation of the steam denitration of thorium nitrate. 

Several of such mixtures were successfully made, based on the method ,of 

McBride, who advocated hydroxide precipitation from a vigorously stirred solution 

0.5 M in lJh(lV) + U(IV)] nitrates, with optional addition of 0.6 mole of formic - 

acid per mole of U, and using 3 - M NH40H--0.5 - M N2H4.H20 as the precipitant. 

Ammonia addition was normally stopped when pH 7.0 was reached. The nitrate 

solution contained 0.5 mole of urea per mole of uranium as a holding reductant, 

and the precipitation was carried out under argon. The mixed precipitate was 

washed on a Biichner funnel with water unti l  nitrate removal ceased, and then 

either allowed to stand for several days at room temperature or heated to 65OC 

to form the sol. Table 1 sumniorizes tlie co-precipitation tests. 

As Table 1 shows, several variations of the standard uranium preparation 

rr~atl.locl were tried. Among the most interesting of the results were: 

1. Sols in,the Th/U range of 1/1 to 3.5/ were stable indefinitely in closed 

containers, without a trace of precipitate. 

2. Crystallites were large enough for probable success in  microsphere pro- 

duction. Beads of 150 p were rnclde frol-1'1 one sol '(CP-3) which, after 

firing to 1 150°C in air, resisted a crushing load of about 1200 g. After 

hydrogen firing at 1250°C, the average resistance to crushing was about 

540 g, which i s  adequate strength for reactor fuel. 



Table 1. Sols Mode frcm Co-Precipi;oted U(IV)-Th(lV) Hydroxides 

Mole Rotio, 

NCI~-,'<T~ + U) 
Sol Mole Rotio, ' % U( V) Crystollite Size S d  

Code Th/U Nitrate Method Variations A d d d  Found - M (Th + U) in  U (A) Stability 

42 >18 mo. CP-I 1/1 Spontaneously ~ept ized at 1/2 nornol wash 0 0.46 0.78 5 1 
volume on suction filter 

CP-2 1/1 Formote method, ppfd. a t  5O0C 

CP-3 1/1 Formats method, 25OC 

" CP-4 1/1 DUF. of CP- I, drier coke. 

>I8 mo. 

>18 mo. 

>18 mo. 
0. 

Thickened in  2 mo. C P-5 1/19 Pptn. pH 8.0, fast fi ltering* 

CP-6 1/19 Pptn. pH 7.0, fast fi ltering* 

CP-7 3.5/1 . Slow filtering 

CP-8 1/99 P*atr. pH 7.5, fast filtering' 

>I8 mo. 
i 

Formed gel in 4 d. 
Foped  gel in 2 d. 

CP-9 1/99 Pptn. pH 7.5, fcst filtering' 

CP-10 1/19 Ppt6. a t  10°C 

0.04 ' -1 .O 

Liquefiec on Filter. batch lost 

- - Formed gel i n  2 mo. 

CP-I 1 3.5/1 Pptd. at pH 8.5 0.10 0.51 0.76 32 50 >I8 mo. 

*Fast filtering -- focton of 5 to 10 times foster than filtering rote of pure U(OH)4 o t  pH 7.0. 



I 
I .  . 3. Nitrate-deficient f i l ter cakes, such as those prepared at 50°C or 

at  a pH higher than 7, formed stable sols when sufficient nitrate was 

added as dilute H N O  to complete the peptization. 
3 < .  

4. Nitrate contents tended to be higher in these co-precipitation sols 
" 

than in pure uranium sols. I n  the nitrate methodfor pure n sols, the 

NO~-/U ratio normally i s  0.05-0.08, and in the.formate method i t  ' i 

3 
i s  approximately 0.18. Our mixtures had nitrate ratios as high as 

5. .The percentage.of U(lV) in  total U, normally more than 85 in pure 

urkniasols, ti'ere was 4nly about 50, due to spontaneous oxidation of 

the tetravalent to hexavalent uranium by the nitrate, .even in an argon 

atmosphere. This produced nitric oxide and a drop in pH, probably 

according to the reaction: 

... - 
The nitric' oxide sometimes pressurized the containers, which required 

. . 
periodic venting. 'The gas was obviously'riitric oxide, since if was 

colorless in the glhss container; and turned instantly to brown NO 
2 

in a i r  when vented. . 

6. The sp6ntaneous peptizing arid lique'faction of batch CP-10, precipitated 

at  1 O°C and washed partially free of nitrate on the filter, shows a tendency 

toward high nitrate retention'in the precipitate. This was probably due to 

the increa'sed surface area known to be associated with low-temperature 



precipitations. This low-temperature effect had. been observed 

with pure uranium preparations and w i l l  be discussed further in a forth- 

coming report. 

7. Sols from these co-precipitated hydroxides were sometimes too dilute at  

0.7-1.0 - M for microsphere formation, but i t  was.found that they could"be 

concentrated, without damage, to 1.5-2.0 - M by .evaporation under vacuum. 

3. Tho2-U03 SOLS BY CO-PRECIPITATION OF HYDROXIDES 

The precipitation of mixed U(IV)-Th(lV) hydroxides for the preparation of the 

thoria-urania sols described above requires the reduction of uranyl to uranous nitrate 

as a preliminary step. The mixing of UO sols with Tho ,sols made from steam- 
2 2 

denitrated thoria, which i s  another useful method for preparing mixed sols at ORNL, 

in addition requires the thoria denitration and thoria Sol preparation steps. Co- 

precipitation of U(VI ) -Th( l~)  hydroxides from mixed uranyl and thorium nitrates would - 
bypass both the uranium reduction and the thorium-steam-denitration steps. The hy- 

8 
droxide co-precipi tation method has been employed at KEMA, apparently with some 

limitations on its usefulness, and at the Houdry Process Corporation in the United 

11  
States. A t  ORNL, 3/1 thoria-urania sols prepared by co-precipitation were formed 

into nearly theoretically dense nonporous microspheres in the 250-p size range, with- 

out sphere cracking or pitting. No'internal gelation was used, and no washing of the 

gel for nitrate removal was required. 
c j : 1  

Our process, which produces dense noncracking microspheres, has the fol lowing J 

interesting features: 



1. Carbon dioxide, normally strongly absorbed by thorium hydroxide, and a 

precipitating agent for thoria sols, i s  excluded by the use of an inert 

blanketing gas in the entire series of operations. 
12 

2. Precipitation of the mixed hydroxides i s  made by "reverse strike", i.e., 

the nitrate solution (0.5 M) i s  added to the ammonium hydroxide solution - 
(3 M), a typical rate of addition being 18 min for a half-mole batch. - 

3. The temperature during precipitation i s  maintained at 80 * 5OC. 

4. The ammonia i s  present in 70% excess, assuming that a l l  nitrate i s  replaced 

by hydroxide. 

5. The fast-settling yellow precipitate i s  filtered by suction and washed with 

10 to 12 cake volumes of water at 80 * 5OC, containing about 5 ml of 

concentrated N H  OH per liter to prevent peptization and promote nitrate 
4 

removal. The filtering and washing normally take about 2.5 hr for a half- 

mole batch, using an 18-cm Bijchner funnel. The NO~- / (T~  + U) mole 

+ 
ratio i s  thus reduced in the filter cake to about 0.003, and the NH4 / 

(Th + U) mole ratio to 0.05. The ammonium diuranate content of the cake 

i s  hence very smal I, and the ammonium nitrate i s  almost completely re- 

moved. 

6. We then expel the remaining ammonium ion, as ammonia, from the mixed 

hydroxides, to a residual level ot 10-3U ppm, by boiling the hydroxides as 

a water slurry for about 2.5 hr, or until the pH of the evolved steam de- 

creases from its initial value of 9-1 0 to about,6. The hydroxides have a 

crystallite size of <30 A, measured by x-ray line broadening. An electron 

micrograph at 69,000X illustrating the flocculated pattern i s  shown in Fig. 1. 



Fig. 1.  Flocculated 3 Th/l U(VI) Hydroxides (69,000X). 



- # a  

7. With the nitrate thus washed out of the hydroxide mass, i t  i s  now possible 

to peptize to a low-nitrate sol, which i s  essential for the prevention of 

pitting and cracking in the microspheres. We have found that when nitrate 

i s  left in the hydroxide, due to using other methods of precipitation and 

washing, the nitrate ratio required for peptizing to a sol i s  higher than i s  

the case when starting from a denitrated hydroxide (e.g., 0.6 to 0.8 vs 

0.13). The lowest nitrate ratio we have obtained by direct boiling of nitric 

acid with the denitrated hydroxide i s  0.1 9 in 12 hr. Even lower ratios of 

0.13 to 0.14 are obtained by a three-step "seed sol " peptization process 

for these 25 mole % U03--75 mole % Tho2 sols, as follows: 

a) One-third of the hydroxide slurry i s  boiled for a few minutes with 

enough nitric acid to yield a nitrate-to-metal ratio of 0.13 to 0.14, 

computed on a whole-batch basis. Traces of C 0 2  introduced by 

the ammonia and water washes are expel led because of the low pH, 

and a clear red sol quickly forms, with a nitrate-to-metal ratio of 

about 0.40. 

b) Half of the remaining hydroxide i s  added, with continued boiling 

for about 20 min, until peptized also. The nitrate ratio i s  now about 

0.20. 

c) The last of the hydroxide i s  now added to the "seed sol ", and boiling 

i s  continued under reflux for about 8 hr, or until, the sol i s  a clear 

dark red. This sol can be concentrated by evaporation until satu- 

rated at about 1.5 - M (Th + U). Figure 2 i s  a typical electron micro- 

graph of such a sol, with an x-ray crystallite size of 44 A, showing 

that the amorphous masses of crystallites have grown from their ori- 

ginal size of <30 A at precipitation and have dispersed, 





Figure 3 shows typical gel microspheres after being formed and partially dried 

in 2-ethyl-1-hexanol containing 1 .l% H20, 0.3% Span 80, and 0.5% Ethomeen 

S-15. These perfect spheres contrast sharply with the . distorted a--- , . z I .---P and - ' s  coated G spheres 
r -;I A .- ,< air I+ " . ,,.-E,- ,-' 87.. 

from another sol with a much higher N O ~ - / ( T ~  + U) ratio of 0.78 and a crystallite 

size of 40A (Fig. 4). This latter sol had retained too much nitrate in the hydroxide 

precipitate because i t  was precipitated at pH 7 instead of by reverse strike with 

an ammonia excess. 

Figure 5 shows 140°C-dried beads, still perfectly shaped, made from low- 

nitrate sol, and Fig. 6, by contrast, shows another lot of dried beads from a high- 

nitrate sol, with extensive pitting and breakage. 

Furnace firing studies on the dried microspheres from low-nitrate sols re- 

vealed breakage problems here also, however. Figure 7 shows the sudden breakage 

encountered between 200 and 250°C when temperature rise rates of about 300°C/hr 

were used. Less frequent breakage occurred at lower rise rates, and at a rate of 

20°C/hr in this critical temperature region the breakage ceased. Figure 8 shows 

microspheres fired in  air at 1 140°C for 4 hr. The light reflections on the black sur- 

faces reveal their high brilliance and gloss. Density of this material in mercury at 

1 atm i s  101.8%, and at  15,000 psi, 102.6% of theoretical, computed as a solid 

solution of U02  in Tho2. We do not yet know i f  these higher-than-theoretical 

densities are due to analytical errors or to some other unidentified factor. The crush 

resistance between parallel flat plates of tungsten carbide i s  about 2500 g for the 

250-p size fraction. Porosity i s  less than 1%. 

This ability of the beads to be fired in air i s  of importance in burning out the 

organic carbon introduced by the 2-ethyl-1 -hexanol and the surfactants, but for 
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Fig. 3. Gel Microspheres from 3 Th02/u03 501 with Fig. 4. Gel kt\icrospheres from 3 Tho /U03 501 with 
N03-/(Th + U) Mole Ratio of 0.13 C35X). NO3-i(Th + U) Mole iatio of 0.78 (33X). 2 



Fig. 6. Gel Microspheres from Same Sol as Fig. 4, 
with 1.5% H20  Added fa the 2-ethyl-l-hemnol (33X). 

Fig. 5. Gel Micropheres of Fig. 3, Dried at 
140°C @3X). 



Fig, 7. Breakage of Low Nitrate Microspheres at Fig. 8. 3 Th02/W03 Microspheres Fired in Air 
200-250aC at Temperature Rise of 300°C/hr (33X). 4 hr at 1140CC (33x3. 



reactor fuels the microspheres must be fired afterward in hydrogen in order to re- 

duce uranium oxides to UO Figure 9 shows the 177- to 250-y size fraction' 
2' 

(-60 +80 mesh) after hydrogen firing at 1 200°C. The density of these beads i s  

99.5% of theoretical, the crush resistance about 1700 g, and the porosity stil l less 

than 1%. 

I t  i s  thus apparent that both the U(IV)- and U(VI)-thorium co-precipitation 

routes in the range of crbout 25 mole % uranium show promise as alternative paths 

to mixed thoria-urania microspheres. 
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Fig. 9. Same Microspheres as in Fig. 8, Fired 4 hr in Argon + 4% H at 
1200°C. Sieve fraction of 177- 2 
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