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SOME THEORETICAL FACTORS IN THE
ZONE MELTING PROCESS

by

Richard J. Dunworth

INTRODUCTION

Zone melting is a process recently developed by Pfann(4) for the
purification of metals, The method removes solute elements to such a de-
gree that a metal may be obtained of purity higher than hitherto possible.
Trace elements may be concentrated to an amount sufficient for analytical
detection, The process may also be used to homogenize alloys. Certain
phase-diagram information, such as eutectic composition and peritectic
formation at low solute concentrations, can be determined. Zone melting
is an important research tool and, in the transistor industry, of indispen-
sable commercial value,

Purification of an alloy by zone melting depends on the difference
in solute concentration between the liquid phase and the solid phase. A long
rod of the alloy is laid horizontally in a boat. A small length of the rod is
melted and this molten zone is made to move along the rod as shown in
Fig. 1. If purification is desired, the zone is moved repeatedly in the same
direction; the greater the number of passes, the greater the purification.
Increased purification is obtained as the ratio L/z increases, where L is
the length of the rod and z the length of the molten zone, Solutes that lower
the melting point of the system (k < 1) concentrate in the last zone, while
solutes that raise the melting point (k >1) concentrate in the first zone.
The distribution coefficient, k, shown in Figure 2, is defined by

L

where Cg is the solute concentration in the solid and Cj, is the solute con-
centration in the liquid. As k approaches 1, the purification obtained in a
given system becomes less,

Other factors that influence the purification are: the diffusion rates
of the solute in the solid and liquid phases; the degree of thermal or mag-
netic stirring in the liquid zone; the irregularity of the solidifying interface;
a concentration gradient in the liquid near the interface. These factors
relate to solidification phenomena and will be discussed in the second sec-
tion. The first section will treat of the mechanics of the theoretical separa-
tion obtained by varying k, L/z, and the number of passes.
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SECTION I. THEORY OF ZONE MELTING

The mathematical treatment of zone melting was first described by
Pfann.(4) Subsequent papers by the same author 5,6, 7,8, 9 gescribed ex-
periments and additions to the theory for transistor manufacture. Additio?al)
solutions of the zone melting equations are presented by Lord, (11) Reiss,\!
and Burris.(37) The latter paper presents excellent graphs for a certain
number of passes and relatively small L/z ratios, such as may be encountered
in laboratory practice.

The type of segregation obtained by normal freezing has been dis=-
cussed by Scheuer,(l Hayes and Chipman,(?-) McFee,(3) and Pfann.(4) This
segregation is described by the equation [derived in the Appendix (page 29)],

Cg=kColl -gk-1 , (2)

where C, is the initial concentration in the rod, g is the fraction solidified,
and C, and k have the same meaning as before. A schematic drawing of a
metal rod solidifying by normal freezing is shown in Figure 3. Initially,
the rod was melted completely and freezing has progressed to a certain
fraction, g, as shown in the drawing. The process continues until all the
metal has frozen progressively from the one end. Curves showing solute
distribution as a result of normal freezing are shown in Fig. 4. Improved
purification, as k becomes much greater than 1 or much less than 1, is
quite evident. Equation 2 depends on the following assumptions: (1) Dif-
fusion in solid negligible; (2) Diffusion in liquid complete; (3) k is constant,
i.e., does not vary over the composition range of interest; (4) Equilibrium
distribution of solute between the solid just freezing and the liquid is
obtained. Purification by normal freezing can be accomplished by cropping
20% or 30% of the solute rich end and repeating the purification of the purer
end. This method is a batch operation and wasteful of the solvent metal.
The great advantage of zone melting is that it is continuous and conserves
the maximum amount of the solvent metal.

Zone Refining Process

The zone melting process differs from the normal freezing process
in that only a small length or zone of the bar is molten at any one time,
Greater purification is obtained by normal freezing than by a single pass
of the molten zone through a bar. This may be shown by comparing the
curves in Fig. 4 for normal freezing with the curves in Fig. 5 for a single
pass of the zone. The difference is due to the fact that the small zone
becomes enriched more rapidly in solute than the longer molten bar. After
five passes (Fig. 6), however, the zone melting process has resulted in con-
siderably more purification than that obtained by one normal freezing cycle.
After 10 passes, or at the ultimate purification (Fig. 9), there is no longer
any value in comparing the two processes. It may be noted that the theoretical
curves are all derived on the basis of the assumptions listed for Equation 2.

«
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In addition to these assumptions the following are also required for zone
melting: (1) a constant zone length and (2) a constant cross~sectional
area,

An equation may be derived for the first pass of a zone melted bar
(Appendix, P. 31):

Cg(1) = Co +Y e ~0% (3)

wherea = k/z,v =D e Co D 1)= 2 Co,s x = distance zone has travelled
from the front of the rod, and the subscript(l) refers to the first pass.
Equation 3 describes the concentration, Cg, at any point, x, in the frozen
solid (shown in Fig. 1). This equation represents an integration of the

zone melting process up to the point, x. A small increment of solid charge,
dz, of composition C is melted and added to the liquid zone, z, of uniform
composition, Cj,. At the same time a small amount of solid, dx, of com-
position, kCy,, freezes and is added to the frozen solid. These solid incre-
ments (dx) increase in concentration until the concentration Ci, equals Co/k
(x Cp = Co). Then the concentration frozen in dx equals the concentration
melted in dz and no further change in Cy, is obtained. A uniform concentra-
tion is maintained along the remainder of the bar until the last zone is
reached. This is illustrated by the curves in Fig. 5 for k= 0.5, 0.6, 0.7,
and 0.8. In the last zone all the solid charge has been melted and the solute
distribution is given by Equation 2 for normal freezing.

Equations have been developed for the 2nd, 3rd, and succeeding
passes. The derivation is similar to equation 3 and is given in the Appendix,

pp. 31, 32:
Cg(2) = Co + (ayxe Kk +5) e~ % (4)

where & = D(Z) a =-Cyo, D(2) = z/.z Cs(1) dx

2
and Cs(3) = Co * (Oﬁze'Zk'Y(—)—{%Ez—-i-oc e K 5x +€)e"0‘x (5)

kZ 2k z
where € D(3) a=-Cy —'Z—'Ye- » D(3) = z/ CS(Z) dx.

The equations for the succeeding passes become quite complicated and labo-
rious to solve. Since the terms7Vy,0,€, ... are negative, the number of
significant figures required is quite large for values of Cg belo 10~*
These objections also apply to the equations developed by Lord. 11)
Furthermore, neither set of equations is applicable in the last zone and
apply only to that section of the bar not affected by the normal freezing

in the last zone. This section, L', of the bar is given by the relation

L'=L - nz (6)
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where n is the number of passes. After 10 passes, then, the last 10 zones
are not computed by the equations. A method of pass by pass computation
may be used as a good approximation. The solute concentration frozen out
at any point, x, is given by kCj,. In Figure ], dx and dz are usually chosen
equal to one half the zone length or one zone length. The amount of solute
added to the liquid zone by melting dz is found from the Cg curve of the
preceding pass. The amount of solute frozen out is estimated and then
checked by a material balance at the point calculated. This method of
calculation was used to obtain the data for Figures 6 and 8 which show the
distribution after 5 passes for k <1 and k>1, respectively. In all the graphs
z was equal to 0.1 L, which was the value used in the experimental runs.

After a large number of passes, a distribution is reached that ad-
ditional passes will not change. This curve is called the ultimate distri-
bution and, if k <1, is given by the equation

BL.
Cg = AeBx where A = Gy E (7)
eBZ = %+ 1

If k > 1, the distribution is given by

Cg = Ae-Bx where A = Cy BL (8)
. Bz
" 1-e"Bz

Equations 7 and 8 are derived in the Appendix, p. 33, It may be noted that
semi-logarithmic plots of equations 7 and 8 result in straight lines. These
equations are plotted in Figs. 9 and 10 for various values of k. Although
the lines are plotted through the last zone (from x = 9 to x = 10), the values
are not accurate. More exact values for the last zone may be obtained by
using Equation 2 and calculating the distribution for normal freezing. The
value of Cy in Equation 2, used in this calculation, is the difference between
the amount originally present in bar (10 gm/cc) and the amount frozen out
in the solid up to the point x = 9. This amount is given by an integration of
Equation 7 from x = 0 to x = 9 or by noting that, at the point x = 9, the
amount of solute in the zone must equal Cg(x = 9)/k. The difference is
greater between the values given by Equation 7 and Equation 2 as k ap-
proaches zero or infinity. In Fig. 11 the values obtained from these
equations are plotted for k = 0.5 and, in Fig. 12, for k = 0.1. The practical
significance of the shape of the curve in the last zone is slight, however,
when it is considered that both curves represent the same amount of solute
and the last zone undoubtedly will be discarded.
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The more rigorous solution to the zone melting equation described
by Burris(37) takes the shape of the last zone into account in calculating
the ultimate distribution curve. In Tables 1, 2, and 3, values listed by
Burris are compared with values obtained from the solution of Equations 7
and 8, In Figs. 11 and 12 a comparison is made between values obtained
from Equation 2 and values from Burris' paper. The agreement in the
values calculated by different methods is quite good, especially in a
practical range of the distribution coefficient (5> k> 0.1). Again, when
discussing solute concentrations, it seems of little practicality to dispute
about values (listed in Table 3 for k = 10 and x = 9) differing by a factor
of 102 when the absolute value is 1072, It is an extremely small amount
of solute in either case. The factor of 2 difference (in Table 1 for k = 0.1
and x = 0) has as little significance. In Table 2, where the L/z ratio is
only 5, the effect of the last zone is more important and a greater difference
is shown in the values listed. In most experimental or commercial ap-
plications of zone melting, in which the distribution coefficient, k, will lie
between 0.1 and 5, and the L/z ratio will be greater than 10, the rapid
calculation by Equations 7 and 8 will more than compensate for the slight
inaccuracies inherent in their use.

he existence of an ultimate distribution curve, first postulated by
Pfann,(4 and later shown by Burris 37, in pass by pass calculations, may
be deduced with the aid of Fig. 13. In this diagram, k=0.1, L =10,z =1
and Cy = 1. At the point x = 1.8, we have a concentration of solute in the
solid of cs(l) = 6.6 (10-12) and a liquid zone, z;, of solute concentration
Cr(1) = 6.6 (10-!1) as, by definition, Cg = kCy,. After the zone, z;, has
moved a short distance Ax we may enter the zone melting equation with
values taken from the graph and solve for Cyp (3).

CL(2) = CL(1) + &2 Cg(3) - Ax Cg(a) (9)

or

{]

CL(1) + x[Cy(3) - Cy(g)]

as Ax = A=z

CL(2)

This equation merely states that the amount of solute in the zone after
solidifying a volume A x and melting a volume A z equals the amount
initially present plus the amount dissolved in A z minus the amount frozen
in Ax. Solving Equation 9 we obtain CL(2) = 9.6 (107™") ana consequently
Cs(2) = 9.6 (10-'%). This is the value of Cg(;) obtained from Equation 7. A
similar calculation at any point on the curve will produce the same results.
There is, therefore, no change in the cuz‘ve and the ultimate distribution
has been reached. As shown by Burris, 37) the earlier passes follow the
ultimate distribution curve from the last zone to the front as shown by the
dashed curve in Fig. 13. A calculation on this curve for Cg(1) and Cs(Z)
results in C'g(;) and C's(2) of lower value showing that the ultimate
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distribution has not been reached. Further passes will bring the values
of C'g(1) and C's(2) into agreement with Cg()) and Cg() of the ultimate
distribution curve. Only one set of points will satisfy Equation 7, since
it was derived on this basis.

The number of passes to obtain the ultimate distribution depends
on the purification ratio, L./z, and the distribution coefficient. The number
of passes required increases as the ratio L/z increases and as k approaches
1. By using the value of Cg at x = 0 on the ultimate purification curve, the
necessary passes may be estimated. If, in each pass, each value of Cg
(at x = 0) were equal to k Cg of the preceding pass, the total purification
would be equal to k™ (where n is the number of passes). Because of the
length of the zone, only a certain percentage of this theoretical limit is
attained. In Table 4, percentages are listed for several k's. It is evident
that, as k approaches one, the efficiency drops off quite rapidly. For
example, in Fig. 9, Cg is 107 at x = 0 for the curve k = 0.1 If kP = 10~'%,
fourteen passes would be required. An efficiency factor of 75% (taken from
Table 4) increases the number of passes required to 18.6 (= 14/0.75).
Similarly for k = 0.5, C is 1075 k™ = 10-5; and n = 16.6; and correcting n
for percent efficiency, we have 16.6/0.50 = 33.2 passes required. As k
approaches one, the ultimate purification is less for a greater number of
passes.

The preceding treatment describes the theory of zone melting using
the optimum conditions obtainable. The many assumptions, on which the
equations are based, are not entirely justified. Negligible diffusion of
solute in the solid state and constant k are two assumptions that, in many
cases, are not going to be sources of great error. Considerable difficulty
is encountered, however, in maintaining a constant zone length and equal
cross sectional area throughout the rod --~ at least in laboratory melting.
It may be expected that, in certain commercial applications, these con-
ditions may be met and this source of error removed. The assumptions of
complete diffusion in the liquid and equilibrium distribution of solute between
liquid and solid phases are of considerable theoretical interest and will be
discussed in next section.
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SECTION II. SOLIDIFICATION STRUCTURE OF METALS

e o

The structure of metal castings has been the subject of many investi-
gations. The elimination of macro defects such as shrinkage, pipe, porosity
and segregation has been a primary concern. The size, orientation and shape
of the cast grain structure are discussed in some papers. Recently, atten-
tion has been directed to developing theories of solidiﬁcat%on by examining
atomic movement at the liquid-solid interface. Zapfee postulates the
presence of micelles or atomic blocks in the liquid. As freezing progresses,
these micelles are attached to the interface much in the same manner as
bricks are laid to build a wall. The subcrystalline imperfections or mosaics
and the cleavage facets observed on fractured surfaces are the evidence on
which Zapfee bases this theory. The size of the micelles is of the order of
10~% cm, which would make cubes of 300 atoms to a side. The more popular
theory assumes that a continuous and rapid interchange of atoms takes place
between the solid and liquid phases as described by Turnbull(21) and
Chalmers. (25,29, 30) The latter theory provides the basis for the following
discussion.

Rate of Freezing

Freezing progresses and the interface advances as heat is removed
through the solid metal. The probability that an atom will become attached
to the interface is defined as the accommodation coefficient by Chalmers. (25
The body-centered cubic structures have higher accommodation coefficients
than the close-packed structures - face-centered cubic and hexagonal close~
packed. Where the type of crystal bonding is partially covalent (e.g., silicon
and germanium), the accommodation coefficient is quite low. The calculated
rate of advance of the interface, for a slight amount of supercooling, is very
fast. Evidence for the rapid growth rates may be deduced from Turnbull’s
work(42) on supercooled alloy droplets. The small Cu-Ni drops were super-
cooled about 300° C before solidification started. Dendritic growth was ob-
served near the surface of the small drops where freezing was most rapid.
It is difficult to conceive of dendritic formation at very rapid growth rates
without postulating a greater velocity to the atom that is solidifying than to
the freezing interface. The rate of advance of the solidifying interface is
dependent more on the rate of extraction of the latent heat of fusion than on
the time required for atom movement from the liquid phase to the solid phase.

If a face-centered cubic crystal is considered, the accommodation
coefficient of the (111), (100), and (110) planes would be in the ratio 1:1.5:2
(Chalmers(25)). Then the following relations are postulated:

R (111) < RF (100) < RF (110) (10)

Tr 11) <TF (100) <TF (110) (11)
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where Ry is the rate of freezing, Ty is the equilibrium temperature for
freezing, and the subscript refers to the plane on which the freezing proc-
ess is occurring. Depending on the initial orientation, either a (111) or a
(100) plane will predominate in the interface at the expense of the faster
growing planes which grow out of existence. [See also Turnbull, (21)
Desch. 38)] If the accommodation coefficient is approximately equal to
the area in the plane not occupied by atoms, the values for face-centered
cubic planes would be: (111) - 0.093; (100) - 0.215; (110) - 0.44. For
the same body-centered cubic planes, the values are: (111) - 0.28;

(100) - 0.41; (110) - 0.17. It would be expected that the axis of the colum-
nar grains found in cast metals would be in the [111] direction for face=-
centered metals or in the [110] direction for body-centered metals. Ac-
cording to Barrett, (39) however, the columnar axis for both cubic systems
is in the [100] direction. The same orientation is found in dendritic growth
and a mechanism, similar to that described in the section on dendrites,
may be postulated. For the rate of freezing, Ry, and the rate of melting,
Rms Chalmers(25) has developed the following equations:

- -Qp /RT
Rp = Ap Gp Ve (12)

Ry = Ay Gy Ve Qm/RT , (13)
where A is the accommodation coefficient, G is the probability of atom
vibration being in the right direction, v is the vibration, Q is the activation
energy, R is the gas constant and T is the absolute temperature. Using
these equations Chalmers estimates that the Ry and Ry for copper at the
melting point are about 3000 cm/sec; that is to say, the atoms leave or
become attached to the solid at this speed. Of course, at the melting point
Ry is equal to R)4. For one degree of supercooling, Ry is greater than
RM, and Ry - Ry = 2 cm/sec. By using other equations presented by
Chalmers(25) it is possible to show that the following relation is approxi-
mately valid:

(Te = T)L./RTT,

RE , (14)

— =

M

where Tge is the equilibrium temperature for the melting and freezing proc-
ess and L is the latent heat of fusion. Equation 14 is derived in the Appen-
dix, p. 34. Turnbull(2l) derived an equation for the rate growth, G, of the
solidifying interface and obtained the following equation:

G :%r- (1 - e'AF/RT) , (15)
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where A is the interatomic spacing, k is the Boltzman’s constant, h is
Planck's constant, and AF is the difference in free energy between atoms
in the liquid and solid phases. The calculation of G for one degree of
supercooling by Eq. 15 results in a value of 720 cm/sec (Appendix, p. 34).
This rate differs by a factor of 360 from the value of 2 cm/sec but the
rapidity of growth for one degree of supercooling is evident.

Supercooling

Supercooling in the liquid may be of two forms - thermal super-
cooling in which the temperature of the liquid is actually lower than the
temperature at the interface; and constitutional supercooling resulting
from a high concentration of solute at the interface. Constitutional super=-
cooling was mentioned by Chipman(z) and later developed mathematically
by Chalmers(13) and Wagner. (24) The effects of constitutional supercooling
are considered by Chalmers in many papers. (14, 15, 17, 28, 31

Figure 14 shows schematically freezing conditions in which no
supercooling exists. The thermal gradient near the interface is relatively
flat according to Chalmers, (25) who measured the gradient with a thermo-
couple in the bar. The temperature of the liquid does rise, however, and
is higher than the interface temperature at all points. It may be assumed
that most of the superheat in the liquid and the latent heat of fusion are ex-
tracted through the solidified metal in a direction to the left (in Fig. 14).
The conditions for thermal supercooling are shown in Fig. 15, The direc-
tion of freezing is the same as in Fig. 14. The temperature in the liquid
is lower than the interface temperature (Tj) at every point. In order to
accomplish this type of supercooling an appreciable amount of heat must
be extracted from the liquid by radiation or conduction. It is probable that
a large amount of the heat will continue to be removed through the solidified
metal. Itis not likely, in the zone melting process, that any thermal super-
cooling can occur. Since the heat is generated in the molten zone, it is fairly
certain that the temperature of the liquid will be greater than the interface
temperature. If the molten zone becomes very large in comparison to the.
length affected by the heater, and if the rate of solidification becomes very
rapid, some thermal supercooling might occur in the liquid near the inter=-
face. The zone length should be the same length or smaller than the heater
length to eliminate any possibility of thermal supercooling.

Constitutional supercooling is a relatively new concept in solidifica-
tion of alloy systems, Although postulated some tirme ago by Chipman(z) it
was not until recently that much experimental data was offered to support the
theory. Constitutional supercooling is used to explain much of the phenomena
observed in alloy solidification by ChaImer’s,<13: 4, 15, 16, 17, 25, 28, 29,
30, 31y Hali, (40) Burton, (41) and Ruddle. (43) Constitutional supercooling is
caused by an increased concentration of solute atoms at the interface due to
non-equilibrium freezing conditions. This increase results from the fact that

10
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the diffusion rate of the solute atoms into the liquid zone is less than the
rate of freezing. Calculations by Chalmers 13) showed that as little as
0.01% of solute is sufficient to cause a slight amount of constitutional
supercooling but that a slow freezing rate or a steep temperature gradient
will eliminate a small alloy effect. The presence of hexagonal projections
on the solid-liquid interface, observed by Pond and Kessler,(18
Chalmers(14’ 15) and Prince,(35) lends support to the possibility of super-
cooling at very low alloy concentrations. In alloys of appreciable solute
concentration the presence of dendrites in the cast structure can be ex-
plained by a solute concentration gradient at the interface.

According to Jost,(23) diffusion coefficients in the liquid state are
1075 cm?/sec within a factor of 10. The following systems are listed: Mg
in Al at 700°C; Au in Bi at 500°C; Au, Rh, and Pt in Pb at 500°C; Ag, Au
and Pb in Sn at 500°C. The diffusion coefficient of Si in Fe, however, is
2.4 (107%) cm?/sec at 1480°C and 10.8 (1075 cm?/sec at 1560°C. While not
very many systems have been studied, the consistency is good if compared
with the diffusion coefficients in the solid state. Substitutional diffusion co-
efficients vary from 108 to 107!2 cm?/sec and interstitial diffusion co-
efficients vary from 107% to 1078 cm?/sec. A freezing rate of 0.04 cm/hr
(1/64"/hr) would balance a diffusion rate of 107> cm/sec. Most of the work
described by Chalmers has been done at freezing rates of 6 cm/hr to 60 cm/
hr, or about 100 to 1000 times the average diffusion rate.

To obtain constitutional supercooling, the concentration gradient of
solute, in the vicinity of the interface, will be as shown in Fig. 16. A molten
zone is pictured with the different solute concentrations designated by C.

At the left of the figure, the concentration curve of the solute in the solid,
frozen after the passage of the molten zone through distance, x, is given by
Cg. At the interface between liquid and solid just freezing, the concentration
of solute in the solid is CS(I) =k CL(I)' CL' is the concentration in the liquid
at any distance x' from the interface. Cj, is the concentration in the bulk of
the liquid and C, is the concentration of the feed rod at the right in Fig. 16.
The point Cg(]) is very nearly equal to Cy. In a short distance, Cs(p) will
equal Cq, equilibrium will be obtained between the freezing solid and the
melting solid, and Cs(1) will be a constant value as in zone melting theory,
The difference is, of course, that Cy, is much less than Co/k and the total
purification is less. The effect is to make the experimental distribution
coefficient, k., closer to one. The dashed line, at the left is the curve
which would be followed by the solute distribution in the solid if the theo-
retical distribution coefficient were followed.

Equations have been developed by Chalmers(13) and Wagner(24) to
describe the concentration gradient shown in Fig. 16. According to
Chalmers,

CL = CL(I) e-RX'/D + CL , (16)
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where R is the rate of freezing and D is the diffusion coefficient. In Fig, 16,
the characteristic distance, L, is defined as the distance, x', at which

1
so that

Lc = D/R . (18)
If D is approximately 10”5 cm?/sec, then Lg varies from 0.0003 "
to 0.003" as R varies from 10" /hr to 1"/hr. The distance over which this
concentration gradient operates is probably of the order of fluid film thick-
nesses. If this is the case, an increase in agitation would have little effect
on the concentration peak. The experiments of Burton, (41) however, show
that agitation results in an improvement in purification, presumably by
lowering the solute concentration at the interface. The maximum value of
the solute concentration at the interface is obtained when equilibrium has
been established between the concentration of the solidifying metal and the
concentration of the melting metal, i.e., Cg(1) equals Cp. This value of the
interface concentration is given by the equation

CL(1) + CL = C¢/k . (19)

A greater amount of solute will thus result in more supercooling. As an
example, choose k = 0,1; if C4 = 0.1% then Cy,(1) + C1, = 1%; if C4=1%,
CL@) +CL = 10%. There is, however, little change in L¢ with increased
solute and the shape of the exponential curve is essentially the same in
both cases.

The method by which the concentration gradient produces super=-
cooling may be seen in Fig. 17, In the top half of the diagram, the concen-
tration gradient in a liquid zone is shown as well as the gradient in part of
the freezing solid on the left and the melting solid on the right. The bottom
half of the diagram is a plot of the temperature gradient in the rod (heavy
line) superimposed on the solidus and liquidus temperatures (dashed line).
The amount of supercooling is represented by the cross-hatched area. It
must be remembered that the diagram is out of proportion and that L is
about 1072 or 10~3 of the zone length, z. The effect of constitutional super-
cooling on the shape of interface and the segregation of solute depends on
the depression of the temperature at the interface, AT, coupled with the
fact of slight temperature gradient in the liquid. The difficulty in the equa-
tion is that the freezing rate produces a greater effect than predicted by the
equation. The term, R, in the equation should probably be squared.

12
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Hexagonal Cellular Structures

The formation of projections on the freezing interface has been ob~
served by Chalmers(14) and Pond(18) in castings solidified slowly from one
end, The longitudinal striae or corrugations on the surface of the casting
are other sections of the same structure. It is believed that constitutional
supercooling causes these projections. This structure is formed in a cer-
tain range of freezing rates, slight thermal gradient and a sufficient amount
of solute impurity.

The projections extend 1 mm into the liquid when a tin alloy of either
0.1% Pbor 0.1% Sb is frozen at a rate of 0.7 cm/min [Chalmers(14)]. The
projection is then 100 times the distance, Lg, described by Equation (18).

The amount of solute present has a definite effect on the spacing of
the surface striations and thus on the diameter of the projection. Goss 36)
found that in Sn of 99.997% purity the spacing was about 0.004" at a rate of
growth of 1.2" /hr. If 0,01% to 0.1% of Ag, Cd, Zn, or Pb were added to
the liquid tin, the spacing was much broader. An addition of 1% Sb or In,
which are more soluble in tin than these metals, produced very broad lines.

The size of the projection is also affected by the rate of growth of
the interface. Growth rates in the range of l"/hr to 30"/hr produced these
hexagonal projections with about 0.1% solute impurity [Chalmers, (14)
Pond, (18) and Goss(36)]. The more rapid growth produced smaller projec-
tions. If slower speeds than l"/hr or faster speeds than 30"/hr were used,
the projections disappeared. Prince, (35) however, observed similar pro-
jections in weld deposits of 18-10 Cr-Ni steel. At an estimated solidifi-
cation rate of ZGO"/hr, the alloy content was sufficient so that the projections
formed. These hexagonal projections can be explained satisfactorily by
means of constitutional supercooling since the formation of the projection
depends, to a marked degree, on the amount of sotute present.

Dendrites

When a large amount of thermal or constitutional supercooling is
present in the ligquid, dendrites will grow into the liquid. Most alloy cast-
ings exhibit dendrite formation, as shown by Rhines, (19) Bever, (26) and
Turnbull. (42) In certain alloys the primary dendrite phase will be broken
up by subsequent phase changes. Dendrites are not found ordinarily in cast
billets of pure metals but, under special conditions, Chalmers(16) was able
to obtain dendrites in high purity lead castings,

The influence of various solidification factors on dendrite spacing
was investigated by Rhines. (19) About 100 alloys of Al, Cu, Mg, and Sb in
a composition range of 1% to 90% were examined for dendritic formation.
The alloys were chill cast into cast iron molds and all the billets contained
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certain dendritic types. The dendritic spacing increased with larger solute
concentrations and slower growth rates. There was some tendency for the
spacing to increase when the crystal structure of the solvent metal was
more complex (less densely packed). There was no relation between den-
dritic spacing and grain size or freezing range. Rhines explains the forma-
tion of dendrites as growing from a single idiomorph at fast rates of growth.
A corner of the idiomorph grows preferentially and develops into another
crystal of the same size and shape as the original crystal. The growth
continues in the direction of supercooling until a dendrite is formed. At
slow rates of growth, the idiomorph increases in size uniformly with no
preferential growth at the corner,

Chalmers(16) produced a dendritic structure in high purity lead by
melting the lead in a horizontal boat and rapidly withdrawing the boat from
the furnace. Apparently the liquid was supercooled sufficiently by radia-
tion for the formation of dendrites. The model of dendritic growth proposed
by Chalmers is a pyramid which is constructed of faces of closely packed
planes. The pyramid extends rapidly into the liquid and the area of the base
grows much more slowly. A bar is formed by this mechanism of square
cross section and a pyramidal tip. The 111 planes that form the faces of the
pyramid are the only ones that survive in the initial rapid growth. Loosely
packed planes, that grow rapidly, grow out of existence. When the bar has
grown to sufficient length, the formation of secondary and tertiary branches
will depend on suitable conditions of supercooling being present in the vicin-
ity of growth. Depending on the crystal structure there is a certain direc-
tion of dendritic growth. As listed by Chalmers, (16) for face-centered
cubic and body-centered cubic lattices, dendrites grow in the [100] direction;
hexagonal close-packed dendrites grow in the [1010] direction; body-centered
tetragonal (tin) in the [110] direction. Each direction forms the axis of a
pyramid of closely packed planes.

The effect of dendritic growth on the purification obtained from zone
melting could be quite serious. A considerable amount of liquid of high
solute concentration might be entrapped between the dendrites. If short
zone lengths are used, however, the amount of thermal supercooling, that
will be produced, is negligible. According to Chalmers, (16) even very
rapid, uniform rates of moving the boat did not produce dendrites, and it
was necessary to remove the furnace completely before the structure was
obtained.’ In induction heating, the maximum concentration of flux (and
consequently temperature) is obtained at the center of the coil, and the
temperature gradient in the liquid will necessarily be unfavorable to den-
dritic growth. If long zones (greater than 1") are considered desirable,

a coil length should be chosen nearly equal to the length of the zone. Then
the flux will be distributed over the zone length and a thermal gradient will
be obtained that increases to the center of the zone.

14
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It is more difficult, however, to reduce a high concentration of
solute at the interface in order to eliminate constitutional supercooling.
Here, again, the use of a coil equal in length to the zone length will tend
to increase the stirring action at the freezing interface. The use of lower
frequency induction equipment would also increase the mixing of solute.
Mechanical or supersonic stirring might be beneficial. If the amount of
solute is less than 0.1%, the constitutional supercooling will not be suf-
ficient to form dendrites, but the hexagonal projections will be produced
instead. These projections will tend to increase the area of the solidi-
fying interface but not to entrap any liquid. It may be suspected that, in
the zone melting process, a high concentration of solute at the freezing
interface will reduce purification per se rather thanthrough effects suchas
dendrites and hexagonal projections on the freezing interface.

Lineage structures or mosaics are defects found in single crystals
grown from the melt. These markings are formed by arrays of disloca-
tions in a direction parallel to the direction of heat flow. At higher rates
of solidification the lineage boundaries tend toward the characteristic
direction of dendritic growth. According to Chalmers, (15) the lineage
boundary'intin tended to grow in the [110] direction. The actual direction
of growth is a compromise between the direction of dendrite growth and
the difection of heat flow. .The effect of the.lineage boundaries appear as
striations on the surface and disappear at rapid growth speeds. The orien-
tation may vary from 5 min to 2° between mosaic blocks. A mechanism
for the formation of mosaics is shown in Fig. 18 [due to Chalmers (15 1.
The direction of growth of two crystal faces is shown by the arrow. This
direction is determined by the rate at which the planes AB and BC advance.
In Fig. 18 (a), equal rates are postulated for both faces. The dashed lines
indicate the position after a certain growth, g. Since the rate of heat trans-
fer through the face BC is less than that through the face AB (as measured
by the ratio of the projections of the faces, CD/AD), the position shown in
Fig. 18 (b) is more likely. In this diagram the face BC has grown one half
the amount of the face AB. If there were a great difference in accommoda~
tion coefficients between the two planes AB and BC, the resultant growth
might be as shown in Figs. 18 (c) or 18 (d). In a consideration of mosaic
structures where the orientation difference is slight, such a difference in
the accommodation coefficients is hardly possible. If the two faces were of
different crystals (as in polycrystalline material), however, the direction
may be as described in Figs. 18 (c) or 18 (d). The line BB' would now be a
grain boundary separating the crystals., The formation of columnar growth
in castings proceeds by this method. This type of defect does not have any
apparent effect on the purification obtained by zone melting.
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Effective Distribution Coefficient

The effect of various solidification factors on the distribution co=-
efficient has been investigated by Hall, (40) Burton(41) and McFee. (3) 1If
k is less than one, the distribution coefficient approaches 1 as the rate of
freezing increases and the purification obtained is less than that theoreti-
cally possible. The effective distribution coefficient may be plotted ver-
sus the rate of freezing and a curve will be obtained similar to that shown
in Fig. 19. Two mechanisms may be proposed to explain this decrease.
A concentration gradient of solute may exist in the liquid with the highest
concentration at the interface. Solidification proceeds with k equal to the
theoretical distribution coefficient, but the solid freezes from a liquid of
high solute concentration, The effective k becomes greater than the theo-
retical k, and the purification is correspondingly lower. According to
the other theory, solute atoms, in excess of the theoretical amount, be-
come adsorbed or trapped on the interface. The interface is being bom-
barded by so many solvent atoms in the process of solidifying, that there
is no opportunity for excess solute atoms to be released from the interface.
It is probable that both mechanisms occur; the former process is domi-
nant at slow speeds and the latter process is dominant at fast speeds.

The effective distribution coefficients of group III and group V ele-
ments in Ge and Si were measured by Hall, (40) In Ge the values were:
B -10; Al, P, Ga, As -« 0.1; In, Sb - 0.002. In Si the values were:
B-~0.9; Ga, As -0.08; P -0.05; Sb- 0.01; Al - 0.002; In - 0,0007.
The coefficients of the group V elements (P, As, Sb) had more dependence
on the speed of solidification than the group III elements. Hall also found
a variation in k with the plane of growth, i.e., for the 111 plane, k = 0.010;
for the 100 plane, k = 0.009; for the 110 plane, k = 0.008. The planes,
111:100:110, are in the same order as in Equation 10, where the 110 plane
had the most rapid freezing rate, the highest equilibrium temperature for
freezing and the highest accommodation coefficient. The first two factors
contribute little to the distribution coefficient obtained, since the freezing
rate was held constant and the diffusion rate probably was unchanged by
the slight increase in freezing temperature., It is more likely that the dis-
tribution coefficients of the less densely packed planes, by virtue of higher
accommodation coefficients, approach the equilibrium distribution coeffi-
cient more closely than the densely packed planes. Alternatively, it may
be surmised that the different planes have different coefficients. Whichever
supposition is correct, it has been demonstrated that there is a variation
of distribution coefficient with the accommodation coefficient. In the zone
melting of polygrain material, it may be expected that the distribution co-
efficient closest to one will be obtained as the 111 plane is presumed to be
most numerous in the grains of the interface.

McFee(3) measured the rejection of K ion by growing crystals of
NaCl at various freezing rates. The data are plotted in Fig. 19 as an ex-~
ample of distribution coefficient versus freezing rate experiments. It may

16
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be expected that the freezing rate will be faster than shown in Fig. 19 when
zone melting metallic alloys. The halogen compounds have very low accom-
modation coefficients due to the strong ionic bond in the crystal.

The experiments of Burton(41l) on Sb in Ge provide evidence for the
existence of a high concentration of solute near the interface. Burton was
able to produce stirring at the interface by rotating the crystal as it was
withdrawn from the melt. In this method of crystal growth, a certain
amount of rotation is desirable so that a uniform cross section may be ob-
tained. At a rotation of 57 RPM, the distribution coefficient changed from
3.5 (107%) to 8.6 (107%) as the freezing rate increased from 1-1/2"/hr to
10-1/2 "/hr. At a rotation of 1440 RPM, however, the coefficient increased
only slightly - from 3.1 (10~3) to 3.8 (10~3) with the same change in growth
rate., It is interesting to note that even at a slow speed of 1—1/2" hr some
concentration gradient exists, as evidenced by the improved coefficient at
1440 RPM. These experiments and the formation of dendrites in cast alloy
billets coupled with the absence of dendrites in cast pure metal billets,
constitute the most important proofs for the existence of a concentration I
gradient at the solidifying interface. 7

Summary

In the first section, equations are presented for calculating solute
distribution after zone melting. These equations are based on certain as-
sumptions that may not be fully realized in practice, The difficulties in
pass-by-pass calculation are given but the ultimate distribution may be
obtained rather easily. A method is given for estimating the number of
passes required to obtain the ultimate distribution.

In the second section, the influence of various solidification factors
on the purification resulting from zone melting is described. The effect of
hexagonal projections, if present, is considered to be slight and dendrites
are presumed to be absent. The existence of a high solute concentration at
the solidifying interface is demonstrated. The importance of this solute
gradient on the purification is emphasized, The necessity of using slow
rates of solidification or agitation to reduce the effectiveness of this gra~’
dient is shown,



| 3

COMPARISON OF VALUES FROM BURRIS’ REPORT
WITH VALUES CALCULATED BY EQUATION 7

Table 1

L=10,z=1,k <1

X=0 X=2 X=5 X =9
5 Burris Equation 7 Burris Equation 7 Burris Equation 7 | Burris | Equation 7
0.01| 2.,02(10727) | 4.66(10727) | 8,03(107%2) | 19.8 (107%%) | 1.55(107"%) | 5,5 (10713) 0.10 0.07
0.1 4.25(10715) | 6.9 (107'%) | 5,71(1073) 9.6 (107'%) | 2,80(1077) | 4.99(1077) 0.99 0.97
0.2 5.30(1071*) | 7.45(107**) | 1.07(1078) 1.52(107%) | 3.04(107%) | 4.46(107%) 1.93 1,86
0.5 4.43(107%) | 4.65(107%) | 5.35(107) 5.66(107%) | 2.19(107%) | 2.4 (107%) 3.77 3.58
Table 2
L=10,z=2,k <1
X =0 X=2 X=5 X=9
) Burris Equation 7 Burris Equation 7 Burris Equation 7 | Burris | Equation 7
0.01 | 6.77(107) | 29,5 (107'4)| 3.37(107*) | 17.9 (107™M) | 9.14(1077) | 29.8 (1077) 0.10 1.27
0.1 1.28(1077) 2.5 (1077) | 4.59(107%) 9.33(107) 1.14(107%) 2.13(1073%) 0.92 2.96
0.2 1.43(107%) 2.22(1073) | 2.03(107%) 3.17(107%) | 1.14(107?) 1,71(107%) 1.67 3.44
0.5 1,05(107%) 1.16(1072) | 3,67(107%) 4.1 (107%) | 2.43(107") 2,71(1071) 2.65 3.36

81
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COMPARISON OF VALUES FROM BURRIS' REPORT WITH VALUES CALCULATED BY EQUATION 8

Table 3
L=10, z =1, k >1
X=0 X =0.2 X = 0.5 X=1 X=5 X=9
k
Burris | Equation 8 | Burris | Equation 8 | Burris | Equation 8 Burris Equation 8 Burris Equation 8 Burris Equation 8
2| 15.96 15.9 11.6 11. 54 7.17 7.16 3.22 3,24 5.37¢(10°%) |5.6(107%) |[8.47¢107%) | 9.7(107%)
50 49.7 49.65 18.0 18.4 3.93 4.15 0.311 0.346 4.74(1071%) | 8.4¢1071%) | 1.13¢107 21y | 1.92¢107 %)
10 | 100 100 13.0 13.5 7.78 0.674 | 3.66¢(107%) | 4.5¢10"%) |3.96(10723) | 1.9¢107%%) | 1.15¢1073%) | 8.2¢1074%)
Table 4
% Efficiency of Multiple Passes
k 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% | 90 83 75 65 58 53 50 48 47 44 35

61
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APPENDIX

Derivation of Equation 2

Let k= C./Cp;
g = fraction of total volume solidified (Fig. 3);
Cg = gm/cc solute in solid at the liquid-solid interface;
Ci, = gm/cc solute in the liquid after solidification has begun;

(assumed uniformly distributed);
Cp = gm/cc solute initially in the bar;
V., = total volume of rod;
s = gm solute remaining in the liquid.

Assume (1) diffusion in the solid is negligible;
(2) complete mixing in the liquid;
(3) k is constant.

Then CS =k CL;

s
Ci =777
L (1-g) vV

ks

C.=777"7—
s (l-g) Vt

Let Vi =1 cc. After a fraction, g, has frozen, freeze an additional
amount, dg. Cg in dg is

where s

(g+dg) 2 ®(g)

Therefore,
ks _ _4s
l-g = dg

and
s g
ds - -k dg
s s (1-g)
0 0

Then In __gs_ = In (1~ g)k
0

or s = 8¢ (l-g)k

28



29
29

Substitution then gives

C, =k s (1-g)< !
. S
Since C =-\—/.-%
and Vi=1lcc ,
k-1 .
Ci=k G (1-g) . (Equation 2)

Derivation of Equation 3, first pass

Let x = length solidified (Fig. 1);
z = length of molten zone;
L = total length of rod;
s = gm solute in zone, z, at any X ;
Sp = gm solute in zone, z, at x =0 ;
Cs = gm/cc solute in dx ;
CL = gm/cc solute in zone z (assume uniform) ;
Co = gm/cc solute initially in rod ;
G = cross sectional area = 1 cm?.

Assume k<1; k, Gy, z, and G constant.
Diffusion in solid negligible and complete mixing in the liquid zone.
The last zone will be neglected in this derivation.

In Fig. 1 after an amount, x, has frozen, advance the zone a distance dx.

An amount, dx, will freeze and an equal volume, dz (= dx), will melt.
The amount of solute frozen (sdx) is

where Cjp = S—

The amount of solute melted (sg,) at x + z is
84z = Cy dz = Gy dx,

since dz = dx.

The net change (ds) in s is

ds:(CO-k—Zs)dx ’



from which T

% k s =Gy
or

%;S{- + P(x) s = Q(x)

Let s = uv.
Then %z u% + v%

Substitution givés

du dv
V&"‘ ua--i' Puv = Q

or

du dv
Va“'(d—x'*'PV) u-Q

Choose v = e-/P dx

so that

dv

d—x+ Pv=0

dv

~ - [P ax
Then

Vd_u= Q

x
du=—Q—dx

Accordingly,

e-fP dxl:fQ edex dx + D:l >

rx fx. x /‘x.
- De-j" Pdx + e /0 Pdx Qe’0 Pdx dx
0
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Since for the first pass, P=—=a, and Q = Cy

-LX -ax
)

1
+ COE (]. - e
where the subscript (1) refers to the first pass.

-0 X

Sy 7 %2y T G0 [Pye- G e

ox

=Co+ve (Equation 3)

where

Derivation of Equation 4, second pass.

The equation for s(z) may be developed as before and

X
*Pdx i f *pPdx / *pPdx
0 +e ’0 Qe’? dx
0

=D

*2)7 ") °

where now

k
P_—z—= s Q:Cs(l)atx+z

Thus -
B (x+ 2)
-0lx -0, X -ai{x+ 2z ax
s =D e + e [C + Y } e dx
@)= P jf
0
or
1 1 -0 X
S(z)zE Co +a-(a7xe +6)e
where
6 = [ D(Z O - CO:}
and [x:z
D = C dx
)" % s(1)
Cs2) %)

(Equation 4)
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Derivation of Equation 5, third pass,

Here P=§=a.; Q=C at x + =z,
z s(2)

(2

Now %
-ax -ax ox
s3y= D3y e +e / C dx
() 7G) o s(2)°
X
-0Xx -xX -k -O(,(X“I'Z)l ax
s =D e + e C+[a, xtz)e +6]e e Tdx
(3) " T(3) [ { 0 Y (x+ z) ]
_1 1|, =2k _ (x+z)? -k - ax
s(3)-—aCo+a[cx e Y toe dx+e| e
where
-2k K?
¢ =Dga-C-e " Gy
X=z
D = C dx
(3) "% Jo s(2)
2 -2k _ (xtz)? -k -0x .
. as(3)=cs(3)=Co+ o° e Y +0e Ox+€)le (Equation 5)

Derivation of Equation 7, ultimate distribution.

The ultimate distribution after a certain minimum number of passes
is defined as,
Cs = F(x) .

For a molten zone (of length z) to pass through this bar with no further
change in concentration, the concentration of melting and freezing increments
must be given by the equation above for ultimate distribution. The concen-
tration in the liquid, CL, is

1 Xtz 1 Xtz
Cy, ;/}; Cs dx:;’/o F(x) dx

Since C
s

H

I}

k CL by definition, we have

Xtz
F(x) =§ f F(x) dx

L]

Cs
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a solution of which is

Co = AeD¥ (Equation 7)
where A-c BL
- BL
e -1
Bz
k =
eBz-l
and
k <1,
If k>1, then
Cq = Ae~Bx (Equation 8)
where
BL
A = Co *BL - Co BL
l1-e
k = Bz =~ Bz
~Bz
1-e

Derivation of Equation 14, ratio of freezing rate to melting rate.

The equations presented in the text for the freezing rate and melt-

ing rate are
Rp = Ap GFVe-QF/RT (Equation 12)

Ay GV e'QM/RT . (Equation 13)

i

Rm

Using Qp ~ Q for diffusion in the liquid, and Qp - Qp = L (latent heat of
fusion), Chalmers(25) has calculated that

RF = RM = 3000 cm/sec

for copper at the melting point.

The accommodation coefficients are related as follows:

A
e s WRTe
F

where T, is the equilibrium temperature of melting and freezing.
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Then

3t
Rrp Arpe

-QF/RT (GFv)
RM " ay e WM/RT ()

1 o~ Qp/RT + Qy/RT

T LRT.
.(Qm - QF/RT)-L/RT,
If QM - QF =L

o

= eXP; %;— (—1- _-T_l')J= eL(Te B T)/R TTe (Equation 14)
e

ks

If T > T, then Ry > R and freezing will result.

If To = 1406°K, T = 1405°K, L = 2.7 k cal/mol, R = 2 cal/deg/mol,

RF _ e(1)(.2700)/.2(1405)(1406) . ,0-000683

Y =1.0007
Thus Ry = 1.0007 Rpg for 1° of supercooling.
If Ryy = 3000 cm/sec, then

Ry = 3002.1 cm/sec
and G = Ry - Ry = 3002.1 -~ 3000

=2.1 cm/sec.
Calculation of G by Turnbull’ s Equation
G =>\% ( - e—AF/RT> (Equation 15)
-] -

A =3.48A, k=1.39 (107!¢) erg/deg

h=6.6 (1027) erg sec, T = 1406°K

R =2 cal/deg/mol, AH¢ = 2.7 kcal/mol



AF ~

]

AHf AT 2700(1)
Te 1406

_3.48 (107%)1.39 (10-16)

1

6.6 (10-27)

1.03 (109) (1 1

721 cm/sec.

~1.0007

2700(1)
1406 [1-e‘( 1406

> =1.03 (10%) (0.0007)

2(1406)

)
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