

UNCLASSIFIED

OAK RIDGE NATIONAL LABORATORY
Operated By
UNION CARBIDE NUCLEAR COMPANY

UCC

POST OFFICE BOX P
OAK RIDGE, TENNESSEE

External Transmittal
Authorized

ORNL
CENTRAL FILES NUMBER

CF-57-3-44

COPY NO.

83

DATE: March 11, 1957

SUBJECT: Semipermanent Freeze Plug Tests for HRT-CP

TO: W. D. Burch
FROM: R. H. Winget

DISTRIBUTION

1. HRP Director's Off.	30. J.W. Hill	59. M.J. Skinner
2. G.M. Adamson	31. R.W. Horton	60. I. Spiewak
3. W.L. Albrecht	32. G.H. Jenks	61. R.W. Stoughton
4. H.F. Bauman	33. R.W. Jurgensen	62. J.T. Sutherland
5. S.E. Beall	34. S.I. Kaplan	63. J.A. Swartout
6. E.G. Bohlmann	35. P.R. Kasten	64. E.H. Taylor
7. N.C. Bradley	36. A.S. Kitzes	65. D.G. Thomas
8. R.E. Brooksbank	37. J.O. Kolb	66. D.S. Toomb
9. N.A. Brown	38. R.B. Korsmeyer	67. W.E. Unger
10. F.R. Bruce	39. K.A. Kraus	68. R. Van Winkle
11. J.R. Buchanan	40. J.A. Lane	69. H.O. Weeren
12. W.D. Burch	41. R.E. Leuze	70. R.R. Wiethaup
13. R.D. Cheverton	42. R.B. Lindauer	71. R.H. Winget
14. E.L. Compere	43. M.I. Lundin	72. C.E. Winters
15. J.S. Culver	44. R.N. Lyon	73. F.C. Zapp
16. N.W. Curtis	45. J.P. McBride	74. ORNL Doc. Ref. Lib., Y-12
17. W.K. Eister	46. H.M. McLeod, Jr.	75. Central Research Library
18. J.R. Engel	47. R.A. McNees	76-77. REED Library
19. D.E. Ferguson	48. E.C. Miller	78. ORNL-RC
20. J.D. Flynn	49. E.O. Nurmi	79-81. Laboratory Records
21. D.F. Frech	50. L.F. Parsly	
22. C.H. Gabbard	51. D.M. Richardson	
23. W.R. Gall	52. G.W. Rivenbark	
24. T.H. Gladney	53. R.C. Robertson	82. F.D. Moesel AEC, Washington
25. J.C. Griess	54. A.M. Rom	83-97. T.I.S.E.
26. R.H. Guymon	55. H.C. Savage	98-104. Westinghouse PAR Project
27. P.H. Harley	56. H.K. Search	
28. R.J. Harvey	57. C.H. Secoy	
29. P.N. Haubenreich	58. C.L. Segaser	

EXTERNAL DISTRIBUTION

82. F.D. Moesel AEC, Washington
83-97. T.I.S.E.
98-104. Westinghouse PAR Project

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—**LEGAL NOTICE**—

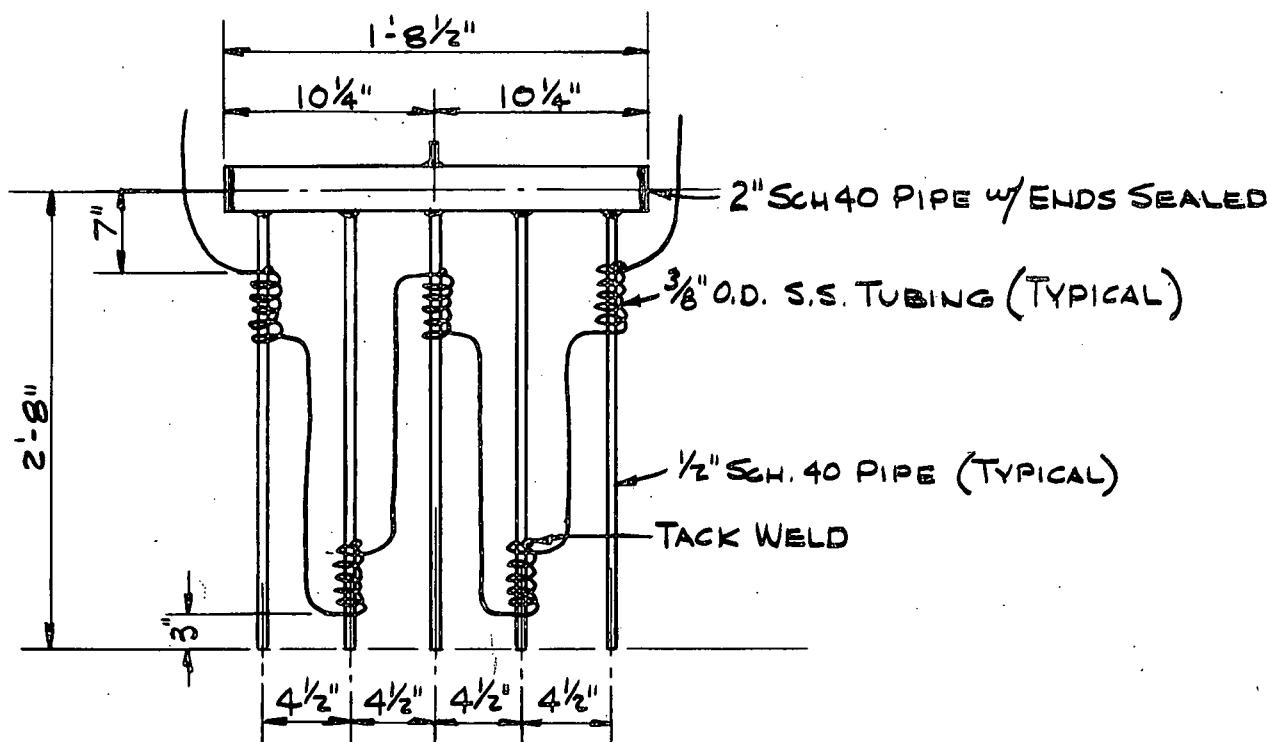
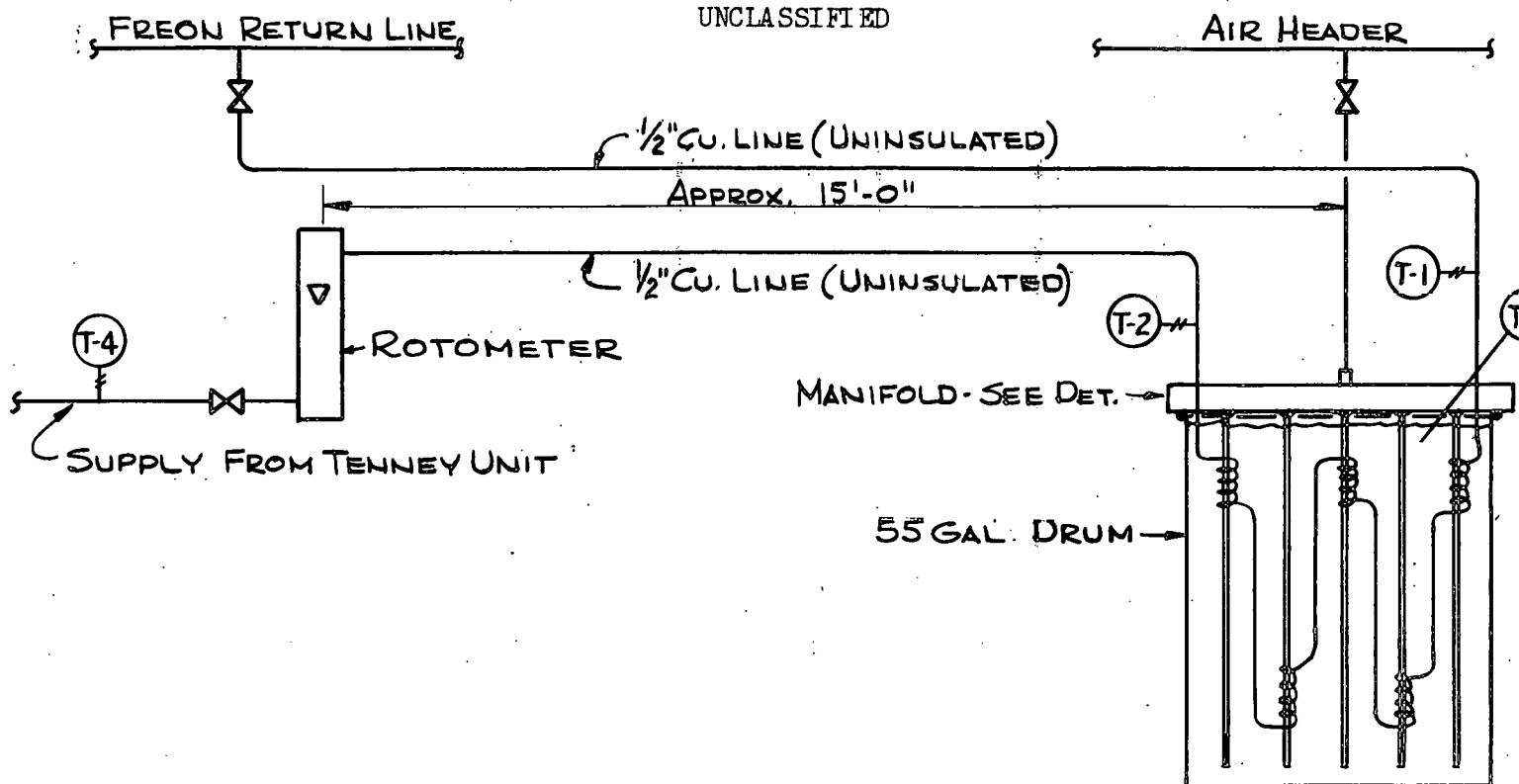
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Summary

Five uninsulated semipermanent freeze coils, series connected, can be frozen when submerged in 70°F water with a Freon-11 flow rate of 1.85 gpm at an inlet temperature of -40°F. The refrigeration unit of the HRT-CP is capable of delivering >3 gpm to a similar semipermanent freeze coil system located in Cell C. Therefore the number of F-11 risers required in Cell C of the HRT-CP can be minimized by series connecting this many semipermanent freeze coils where required.



Equipment

A mockup consisting of five 32" lengths of 1/2" diameter Schedule 40 stainless steel pipe welded to and extending from a 2" diameter stainless steel header into a 55-gallon drum of water was fabricated to simulate submerged process lines. Approximately 12' of 3/8" continuous stainless steel tubing was used to wrap one freeze coil around each of the five submerged legs extending from the common header. The first coil of the first freeze plug was located 6" below the header and the final coil of the second freeze plug was located 3" above the end of the second leg. The three remaining freezers were located similarly to provide a maximum length of submerged uninsulated 3/8" stainless steel tubing. Each coil consisted of five turns with an over-all length of 6-1/2" and was spot welded to each 1/2" leg for support. An 80-psi air-supply line connected to the 2" header permitted a check of the number of solid ice plugs. Freon-11 was metered through a 2.5 gpm rotameter through about 15' of 1/2" uninsulated copper tubing from the F-11 pump to the submerged freezers and returned to the unit via a similar uninsulated line. Thermocouples were provided on the Freon line leaving the pump, the Freon line entering the first freeze coil, the Freon line leaving the fifth freeze coil, and in the water surrounding the coils. Figure 1 shows the details of the mockup.

Procedure

The drum containing the five series connected freeze coils was filled with process water. Steam was used as required to maintain the temperature of the water near 70°F. The 2" header was vented to allow the five legs to fill with water. Temperature readings were taken immediately prior to starting Freon flow. Flow was started to the system at a predetermined rate and temperatures were recorded every five minutes. After ten minutes of Freon flow, 80 psi of air was applied against each of the five freeze plugs to determine how many of the five

UNCLASSIFIED

MANIFOLD DETAIL

Fig. 1. MOCKUP OF FIVE UNINSULATED SERIES CONNECTED FREEZE COILS
UNCLASSIFIED

KNIP

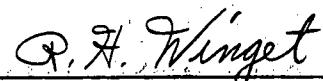
freeze coils had formed ice plugs. Usually if one or more plugs were not holding, the system was vented to atmosphere and the flow stopped in order to allow the temperature of the Freon supply and exit lines to return to approximately room temperature. In a few instances, the header was vented while allowing the Freon flow to continue for several minutes before again testing for formation of ice plugs. Visual observation as well as the sense of touch proved quite useful in ascertaining if ice plugs had formed.

Results

Typical data for some of the runs are shown in Table I. The minimum flow rate of Freon which froze all five ice plugs capable of holding against 80 psi was 1.85 gpm with the Freon inlet temperature around -40°F. Approximately twelve minutes at this flow rate was required to form all five ice plugs. At a flow rate of 1.3 gpm, plugs were not formed in 30 minutes.

Run 1 demonstrated that all five plugs could be frozen in ten minutes with a Freon flow rate of 2.5 gpm. All five plugs held against 80 psi for 2 minutes and 20 seconds after the Freon flow was stopped.

Run 3 was allowed to continue after all five ice plugs had formed at a Freon flow rate of 1.85 gpm to determine the minimum Freon flow necessary to maintain all five ice plugs. The Freon flow rate was decreased from 1.85 gpm to 1.3 gpm for ten minutes, then decreased further to 0.8 gpm for ten minutes, and finally decreased to 0.6 gpm for ten minutes. All five ice plugs held against 80 psi of air during this 30 minutes; however, observation of the exit Freon temperature showed a marked rise after five minutes at 0.8 gpm. The final exit temperature at 0.6 gpm indicated that the plugs would thaw if Freon flow were not returned to at least 1.3 gpm.


TABLE I

Run No.	F-11, Flow Rate, gpm	F-11 Inlet Temperature, °F	ΔT, °F*	Water Temperature, °F	Time Required To Freeze, minutes
1	2.5	-42	17	74	10
2	1.3	-40	29	72	Unable to freeze
3	1.85	-40	21	66	12
3	1.3	-41	24	66	Plugs holding
3	0.8	-42	27	65	Plugs holding
3	0.6	-43	33	64	Plugs holding
4	1.85	-40	17	72	14

*Temperature rise of the F-11 across the five series connected coils.

Recommendations

It is recommended that five uninsulated semipermanent freeze coils be connected in series where required provided that a minimum Freon flow rate of 1.85 gpm is available at -40°F and not more than 12' of exposed tubing including the coils is used. The refrigeration unit of the HRT-CP is capable of delivering >3 gpm to a similar semipermanent freeze coil system located in Cell C.

R. H. Winget

RHW:ms

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK