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THE THREE GROUP, THREE REGION REACTOR WITH SHELLS 

I - ~ r -  s-s-- I - 
I. Introduction t 

The first part  of t h i s  report is  intended t o  be an outline of the theory . 

of the three group, three region reactor with she l l s .  Derivational d e t a i l  is 

avoided and may be found in another report . ( l )  It i s  hoped, however, t ha t  suf- 

f i c i en t  information is presented t o  sa t i s fy  the average user of the three group, 

three, region reactor code. 

 he second section is  . .  m i t t e n  . as an operation manual fo r  the  main code 
"-"\ 

and the two auxil iary codes. The form of input data and the mechanics of code 

running are  t reated i n  considerable &tail.  

11.. Theory 

A .  Different ial  Equations and Boimdary Conditions 

1. Different ial  equation. Nine equations apply ' t o  the  regions : 

T 25 .(r) = (1, f O 1, ( r )  + f2,OEj(r) + f 33 O 35 . ( r )  6 .  + Zx Olj(r) } J ' 1 3  

(1) Soon : t o  be published. 



i denotes group, 
L 

,i " - j denotes region, 
i 

rlC' 
D = diffusion coefficient,  +-. 

I - Q = flux, 

.-. 
-, -L. .Q'\ Q" = first, second derivatives with respect t o  r, 

7 = 0, 1, 2 f o r  slab, cylinder, or sphere, 

r = distance from origin, 

B: = unreflected buckling f o r  ith group, 

C, = absorption cross section,i 

. - L, = t ransfer  c rosssec t ion;  i .e . ,  probabili ty per uni t  

path length a neutron be t ransferred from one group 

t o  the 'one below it, 

T = source term, 

f i j  = yZf ; 2 = f i ss ion  cross section, 
.. i j  

6 = ' f raction of neutrons born in to  the second group. 

2. ~ound& conditions fo r  the d i f f e ren t i a l  equation. The boundary 

conditions a re  : 



3 

where I .  denotes the inner radius of the dth shel l ,  J j  denotes the outer radius 
J 
th: .of the. . j.. . . -shell ,  and P, Q, R, and S are defined i n  the notes on anisotfopic 

. .  , 

scat ter ing i n  th in  s h e l l s  by R. R .  Coveyou and R. R. Elate . (&I  Briefly, they 

may be described as  follows: 

If 'one considers, &t: most, ..two kollisions .of a :nh t rdn  i n ,  a t h i n  s h e l l  

and seeks expressions fo r  the currents, casting these expressions in to  familiar 

diffusion theory f om, there resul ts :  

for  the forward ex i t  current, - @m1(x) ; 
4 2 

fo r  the backward e x i t  current, Eii. - E D ~ ( I )  
4 2 i\ 

The P, Q, ' E, and. which are  coefficients .of . the . usual ,.diffusion theory. .. - terms are  somewhat cqmplicated f'unctions of the  sheU constants. It i s  t o  be 
. . 

noted tha t  i n  ( 5 ) ,  (6), and (7) R = ( 1  - ) S = ( 1  + 3) .  
7. 

Now, defining 

* . I  

4 

( l) Appendix,. 

- f i j  - f; - - , 
"lj  . 



(1) may be written a s  

7 ' 4 + - r ( r )  - a. 1J 4 .  1J ( r )  + ( r )  1 J = 0 , 

- 
Li- while (2),  (3),  and (4) become 

B. The Difference Equation and Boyndary Conditions 

1. Difference equation. The dffferenee equation which approximates 

4 (12) with an error  of order h where h is the l a t t i c e  spacing, 

h2 Multiplying through by -, (16) is  put in to  the f o m  
2 



where 

and' now 

SZk = flux at  space point k, 



Note subscript k refers  t o  the space point. The Pk, Qk, Rk, and Sk above 

should not be confused with the P, Q, R, and S of the shells.  They _ _ -  are not the 

same nbr are they related,. 
7 

. . 2. Innkr shel l  boundary conditions for the difference equation. 

a .  Form I1 of original boundary conditions. . . Defining quantities 

which w i l l  hereafter be used to .  describe the shells, 

2p2 = RS + F'Q 

saying 

where 

-A_' - and f inal ly  defining 
.. - -  

t 1 + y - , t = shel l  thickness , 
C - I 

i-, -) 

. - ( 5 )  and (6) may be written as  



This is a new form of the  boundary conditions al; the inner she l l s .  

b .  Space points i n  the she l l s .  The subscripts on D!'-, M ,  N, and L 

indicate i n  t h i s  instance, f o r  1, the  region in t e r io r  t o  the s h e l l  and, fo r  2, 

the region exter ior  t o  the she l l .  Two f i c t i c ious  points have been introduced 

above; nsmely, I + l  and J-1 po,ints. The sequence of a t  a s h e l l  i s  shown 

i n  Figure 1. 

1 
Figure 1. I l lus t r a t ion  of seqyence of space points a t  a shell.. 

( 

*, 

, .  ; ,  

hl h l  
' Fegiorh 1 ; , I I I 1 " -ikl I I Region, 2 

It is  as though the  she l l lhas  been removed. J-1, J, and J+1 points have 

4 
I 

properties of Region 2 while 1-1, I, and I+1 points have properties of Region 1. 

Shel l  properties appear only i n  the f3Os and i n  Y. Note tha t  the l a t t i c e  spacings 

need not be the same i n  Regions 1 and 2. Even though it shohld happen hl > t - $ 

such t h a t  I+1  l i e s  t o  the r igh t ,o f  J-1, the order of Figwe 1 is  always con- 

sidered t o  hold. I n  the case of no shel l ,  t = 0 and I+1 coincide with J+1, 

provided h l  = k o  I 

1 '  0 , 
I ! I  ! , 



c. Reduction of form 11 t o  region in te r io r  difference equation 

form. Now, by eliminating RJ+l, QJ, and RI-l from (29), ( JO), (17) a t  I, and 

(17). at  J, one gets the form 

Elimination of RJ+l, RI, and RI-l gives the form 

(31) and (32) have the form of the difference equation within a region. 

Upon computation of the coefficients the  s h e l l  indeed has been removed. The 

coefficients are: 

+ - 
i.T 

and, 



I where . . 

- ,. 

3. Other boundary conditions of the difference equation. 

a. Introduction of A nethod. Now aseuming.the relatfon 

-. - it can be seen, 
. ..C 



b. Boundary condition a t  the  origin.  Using (8), the boundary 

condition a t  the origin, 

c . , Boundary condition .at, the  outer boundary. Defining 

where N subscript indicates the outside boundary, the outer boundary condition 

becomes 

S Z ~ + l  = - 

i o t e  t h a t  subscripts on D, L, M, and N a r e  unnecessary since there is one 

medium only with which t o  deal. They have been retained f o r  consistency. 

: A t  t h i s  point the d i f fe rence  e&tion has been revealed and the bounbary 

conditions put, in to  sui table  form. The balance of the paper w i l l  be . . concerned 

with the codes. 



111. Codes 

A. Main Code, Three Group, Three Region 

1. Code logic. The calculation rigs as  follows: 

1) A f l a t  source i s  introduced i n  fissionable regions; 

zero source elsewhere. . . 

2) F i r s t  group r 0 and A. a re  calculated; then, by means 

of (40) and (41), the rt s and A9 s are  calculated t o  N1, 

the spscc point of the Inner surface of the f i r s t  shel l :  

3 )  r's and A's a re  calculated through the f i r s t  s h e l l  

by using (31)' - (36), (40), and '(41). 

4) r' s and A's are  calculated through the second region, 

.the second shel l ,  and the  th i rd  region t o  the outside 

boundary. 

5 )  (44) is sa t i s f i ed  at  the outside boundaryo 

6 ) .  (37) allows computation of the ilk. After each Qk is 

computed, the source a t  k t o  the next group is found. 

The' calculation works ' in  t o  r = 0' from the outside 

boundary. 

7)  With the coxuputed sources, the  calculation is repeated 

fop the second group. Sources fo r  the th i rd  group are  

computed. 

8) 'The t h i r d  group calculation is done; 

9 )  The t h i r d  group fluxes are  added over the  reactor and 

norplalized co~esponding t o  the d i f f e ren t i a l  operation 

f33(f) * L r zi .; i -- i te ra t ion  . 



xi 
10) k is  coiputed by the  quotient - , 2' being a fiked 

. . 2' 
nwnber, the largest  number the Oracle can accommodate. 

11) The th i rd  group fluxes and the sources fo r  the next 

i te ra t ion  are  divided by k t o  keep them within range of 

the machine numbers. Each t h i r d  group f lux i s  then com- 

pared with the  corresponding f lux from the previous 

i terat ion.  When tw scaled third-group fluxes from two 

sncceedlng i te ra t ions  d i f f e r  by no more t-hm 6 ,  the con- 

vergence cr i te r ion  which is  i n i t i a l l y  s e t  t o  one-half, 

a is divided by two and the calculation repeats s t a r t ing  

with the first group and the new sources. 

12) When k is computed, it i s  scaled by and punched 

out i n  decimal convention. E is  then punched. The pro- 

grammer rollows € u n t i l  he is sa t i s f i ed  with the con- 

vergence. He then has the option of asking fo r  a l l  fluxes 

t o  be punched o u t  The i n i t i a l  conditions w i l l  be punched 

following the  fluxes. If  he chooses, the  programmer may 

dispense with punching the fluxes and have only the i n i t i a l  

conditions punched. 

Since the  input for  the  three group, three region code uses the constants 

(22), and since it has been recognized tha t  these are  not the  most convenient 

q u s n t i t i e s  t o  speak of or t o  compute, a constant preparation program has been 
* 

coded which uses more f d l i w  hntities and prepares input t o  3G3Re 

2. Code operat ion Instructions on running 3G3R and the form of the  

output a re  a s  follows: 



< 

Instructions f o r  running 3G3R9 Program Number 6. 

operat ion 

1.  lade program 6 under reader: 

3. Place i n i t i a l  condi$ions 

under reader. 

5 .  When sa t i s f i ed  with con- 

Result 

Reads program in to  memory s t w t i n g  a t  

memory c e l l  P A .  

Sums all .words i n  the  memory t o  see i f  

program was read i n  correctly.  I f  the 

sum is correctz goes t o  beginning of 

,.code, reads i n  i n i t i a l  conditions, ,and 

st&s co~nputing. The sum check:may be 

used only once. If it is desired t o  

check the sum again, the'sum check code 

must be read in.  For t h i s  give 90 25A 

then;b3 25A. . 

Computation stops on the  r igh t  of 1CE. 
. 

vergence, s e t  break point 

6 .  Remove break poin t .  and give Fluxes punched if  desired. . . I n i t i a l  con- 

41: ICC . dit ions punched always. 

7. Place next case i n i t i a l  con- 

di t ions under reader. 

80 43 001. 

9. Hereafter give 43 001 f o r  each 

new case 

Running time per case i s  6 - 10 minutes. 



1 3.  Form of output. The form of 3G3R output is  

Numbers System ' 

Symbol Quantity i n  which Punched 'Scaling 

k1 f i r s t  i t e r a t ion  k  decimal 

E 1 first i t e ra t ion  convergence c r i t e r ion  hex 1 

k2 ti.. 

0 / 

. . kn nth i t e ra t ion  k decimal 
., .. 

. . 

E~ t h  n . i t e r a t ion  convergence cpiterion hex 

word of FP s t o  ,mark s t a r t  of f irst - 

group fluxes 
- 

Rlk 
(1) first g o u p  fluxes at  51 space points d e c d  

K word of F D s  t o  mark start of second - 
group fluxes 

second group fluxes decimal 

work of F q s  t o  m m k  start of t h i r d  - 
group fluxes 

(1) t h i r d  group fluxes decimal - 
n3k 

m F  , word of F w s  t o  mark.stapt of problem - - 

parameters 

x hex - case numbe~ 

region 1 space poin%s - produced hex - - 

- - 
region 2 space points hex - _ I.+ N2, 

-. 

Fluxes a r e  punched from the outside boundary t o  r = 0. There ape 44 re -  

gion fluxes and 7 s h e l l  and boundary fluxes; i.e,,  51 space points. 



Numbers System 
in which.Punched Scaling 

- 
Quantity 

hex 
N3 region 3 space points 

- - 
fina1,convergence criterion hex 

hex 

decimal 

geometry factor 

shell 1 thickness 

decimal 

decimal 

region 1 lattice spacing 

t2 shell 2 thickness 

%? region' 2 lattice spacing 

decimal 
' h3 region 3, lattice .spacing 

a& group 1, region 1 a" 

a; group 1, region, 2 a '' 
($3 *' group 1, region 3 a'". 

4 DL ' . group 1, region 1 D'" 

decimal 

' decimal 

decimal. 

decimal group 1, region 2 D '' 

group 1, region 3 D-" decimal 

decimal 

decimal 

.. '. 
group 1, region 1 f :' 

.. . 
group 1, region 2 f " 

groupl, region 3 f* decimal 

>< 

group 1, region 1 ,p " decimal 

group 1, region 2 p"' decimal 

decimal 
i c  

group 1, region 3 p " 

p1 for group 1, shell. 1 

p1 for group 1, shell 2 

decimal 

decimal 

decimal P2 for group 1, shell 1 

P2 for group 1, shell 2 decimal 

decimal 8 for group 1, shell 1 
- .3 



Numbe.rs System 
i n  which ' Punched ... Scaling Quantity 

p3 fo r  group 1, s h e l l  2 decimal 2 'l 

decimal 2 'l 84 for  group 1, s h e l l  1 

decimal 

decimal 

decimal 

decimal 

.f34 f o r  group 1, s h e l l  2 

p5 fo r  group 1, s h e l l  1 

B5 for  group 1, s h e l l  2 

group 2 ,  region 1 a" 

decimal 2-7 group 2, region 2 a?' 
. .  . 

group 2, region 3 pi' decimal 

decimal 2-1 p1 for  group 2, s h e l l  1 

decimal for  group 2, s h e l l  2 5 
group 3, region 1 a" decimal 

.. . 

decimal -i 8 f o r  group 3, s h e l l  2 
5 .  



B . Constant Preparation Routine 

1. Code logic,. The constant preparation routine accepts more familiar 

constants than (22) and arranges and punches them i n  sui table  form for' input t o  

3G3R. It a lso  optimizes the N f s  i n  the following sense. 

(181) and (20) show, for  y = 0, i f  ax: 2 12 the diffe.rence equation breaks 

down since . . Pk and Rk become l e s s  than 0. It has been arb ' i t rar i ly  said, then, 

t ha t  a" be no larger  than 4. A s  is seen from (22), a"' depends on the l a t t i c e  

spacing. CPR t e s t s  aG1s f o r  a l l  combinations of Nl, N 2 ,  and N 3  subject t o  the 

conditions Nl + N2 + $ = 44, N l r  4, N2 2 4, Nj 2 4. The s e t  of N ' s  which, 

minimizes the worst a'" is  chosen. There follows a t e s t  t o  see i f  the a'? < 4. 

Should an a'" be Larger than 4, it . is punched out i n  decimal followed by the 

group and region it characterizes The mchine stops a f t e r  a l l  the bad a"'s a re  

punched. 

2. Oracle decimal convention. Before giving the form of the input t o  

. CPR, a word on decimal fixed point and f loat ing point notation i s  i n  order.. . - I n  
,! 

decimal fixed point convention, the f i r s t '  d i g i t  is the sign d ig i t .  A 0 indicates 

a posftive numb'er.; and F indicates a negative number. The decimal point l i e s  

a f t e r  the sign d i g i t .  For example; 0.0032 would be %mitten as  .OOO32OQOOO while 

-0.01 appears as F010000000. This convention applies t o  fract ions.  To repre- 

sent numbers outside the  range .of machine numbers, f loa t ing  point decimal 

convention: may be used. I n  t h i s  convent ion the.  magnitude of the number is scaled 

by parers Of t en  u n t i l  it is .the largest  f ract ion possible. It is then wri t ten 

a s  a decimal fixed point number. Immeaiately following the  magnitude, the expo- 

nent of t en  is written so a s  t o  bring the fract ion t o  i ts  proper value. The 

l a s t  several d i g i t s  i n  the word.are reserved f o r  the value of the exponent. A 

0 f o r  the f i r s t  d i g i t  . indicates a posit ive exponent; and Ft indicates a negative 



exponent. For example, 320 would be m i t t e n  a s  032OOOOOO0, OOOOOOOOO3 while 

-0.01 takes the form F100000000,. FOOOOOOOO~ A 0  must be written . . as 0000000000, 

8000000000. Note tha t  these conventions may not be used by the programmer arbi-  

t r a r i l y .  He must b e  a code equipped t o  accept them. 

3. Form of input. The form of inp,ut t o  CPR is  as  follows: 

- - " 
Position Symbol Quantity 

Notation 
C onTient ion Scaling 

2& Group number. I f  neg- binary fixed - g 

. at ive,  3G3R does 2 groups; point 

if positive,  3G3R does 3 

groups . See be.iow. 

2811 x Flux and case n ~ b e r s .  binary fixed .- 

Se,e below. point 
-. 

J (1) 
2813 7 Geometxry' Factol-. binary fixed 2 -2 

point 

28F Region 1 thickness* *decimal f loa t -  - 

R1 exponent ing point 

Region. 2 thickness. decimal f l o a t  - 291. - 

R2 exponent ing point'  

?93 Region 3 thickness. decimal f loa t -  . - 
R exponent 3 ing point' . .  

295 tl , 7 Shel l  1 thickness. 

tl exponent 
. I 

decimal f l oa t  - - 
ing point 

297 t2 1 Shel l  2 thickness. decimal f l o a t  - - 
. .. 

t2 exponent . . ing point 

11) For s lab  0000000000; cylinder 2000000000; sphere 4000000000. 



Memory 
Position 

Notat ion 
Symbol Quantity Convent ion Scaling 

299 hl ), Region 1 l a t t i c e  spacing - - - - 

exponent ) t o  be f i l l e d  i n  by CPR. 

Put i n  0 's .  

Z a l l  'I Group 1, region 1 absorp- ' : decimal f loa t -  

exponent t i q n  cross section- ing point 

7 Group 2, region 1 absorp- decimal f loa t -  . 

exponent ,/ t i on  cross section. ing point 

2 9 ~  Group 3, region 1 absorp- decimal f lba t -  

e ypone~t  t ion  cross . section. ing point 

Gll 
Group 1, region 1 transfer  deciuYl f loa t -  

exponent J cross section. ing point 
. . 

I 

a 3  Group 2, region 1 t ransfer  dec;bmal f loa t -  

exponent cross section. - .ing point 

a 5  ~ r o i i  3, region 1 transfer  decimal' f loa t -  

ewonent J cross section. ing point 
- 

2A7 D l 1  ) Group 1, region 1 dif -  decimal f loa t -  

exponent figion coefficient.  ing point 

a 9  D21 ) Group 2, region 1 dif  - decimal f loa t -  

. ) exponent fusion coefficient . ing point 

2AB D31. . Group 3 ,  region 1 dif - decWl.  f l o a t  - 
exponent fusion coefficient.  ing point 

( l )  s are obviously zero. put i n  as 0000000000, 8000000000. G3 



Notat ion 
Convent ion 

Memory 
Posi t  ion Scaling Symbol Quantity 

dec'imal f l o a t  - 
VCf V x g r o w  1, region 1 

exponent f i s s ion  cross section. ing point 

decimal f loa t -  vCf2i ) v x g o u p  2, region 1 

ing point 

decimal f loa t -  

exponent ) f i s s ion  cross section. 

vzf31 1 v x group 3, region 1 

ing point 

decimal f loa t -  

exponent ) f i s s ion  cross section. 

Fraction of neutron born 

exponent " . in to  group 2 i n  region 1. " - i ing point 

Region 2 l a t t i c e  spacing. 

exponent F i l l ed  i n  by CPR. Put 

dec iml. float - 
ing point 

~ e ~ i o n  2 1al;tice spacing. 

::exponent F i l l ed  . i n  . by CPR. Put 

exponent ) 

~ B B  . - %32 

exponent 

exponent ) 
> . '  . , 

exponent J 



Notat ion 
. Convent ion Scaling 

Memory 
Posi t  ion Symbol Quantity 

Region 2 l a t t i c e  spacing. decimal f loa t -  - 

exponent ) Fi l led  i n  by CPR. put ing point . . 
. . 

' i n O t s .  . . 

exponent 

exponent ) 

exponent J 
2CF 62 Fraction of neutrons born 

exponent in to  group 2 i n  region 2. 

h3 I Region,3 l a t t i c e  spacing. 

expqnept F i l l ed  i n  by CPR. Put i n  

. . . . 
(1) ' s are  obviously zero. F'ut i n  as  0000000000, 8000000000. : 53:: .... .,. . . _ . .  



Motat ion Memory 
Posit ion 

- 

Quantity Convent ion Scaling Symbol 

Region 3 l a t t i c e  spacing. decimal f loa t -  

F i l l e d ' i n  by CPR. Put ing point exponent J 

=a23 .I 
exponent 

exponent ) 

exponent J 

exponent I 
. , 

I1 1' . . - 
: :2DD 

. . 
exponent 

. . 

2E1 

exponent 

2E3 

exponent 
. . D33 I 

. , 

( l )  G3, s are  obviously zero;  Put i n  a s  0000000000, 8000000000 ; 



Memory Wotat ion 
Position Symbol Quantity Convent ion Scaling 

vZf13 
1 Region 3 l a t t i c e  spacing. decimal f loa t -  - 

exponent j Fi l led  i n  by CPR. Put ing point 

exponent J 

exponent ) 

Fraction of neutrons born 
. . 

2EB . . 

exponent in to  group' 2 i n  region 3. 

Unreflected group 1 

exponent :) buckling. 

Unreflected group 2 

exponent J buckling. 

Unreflected group 3 .11 

. . 

decimal fixed 

! exponent ) buckling. 

P l  for .  group 1, .she l l  1. 

point 
. .! ... . , I1 . . . ... 

11 

B1 f o r  group 1, s h e l l  2. 

P2 for  gr'nrp 1, s h e l l  1. 

P2 for  group 1, s h e l l  2. 

B3 fo r  group 1, s h e l l  1. 

P 3 f o  ,r S o u  ,, p 1,. .,.. s h e l l  2. 

p4 fo r  group 1, s h e l l  1. 



Notation 
Convent ion Scaling 

.~Iuiemory 
Position Symbol 

. . 

2FA 8412 

Quantity . .. 

B4 for  group 1, s h e l l  1. decimal fixed 2 -l 

point 

@ . 5  f o r  ,group 1. 

,Dl f o r  group 2, s h e l l  1. 

for  group 2, s h e l l  2.  
. . 

B2 for  group 2, s h e l l  1. 

p2 f o r  group 2, s h e l l  2. 

f3 f o r  group 2, s h e l l  1. 3 
p3 fo r  group 2, s h e l l  2 . 

8 fo r  group 2, s h e l l 2 .  4 
f o r  graup 2. 5 

81 f o r  group 3 , s h e l l  1. 

B1 fo r  group 3, s h e l l  2. 

p2 fo r  group 3, s h e l l  1. 
. . 

B2 f o r  group 3, s h e l l  2. 

f3 f o r  'group 3, s h e l l  1. 3 
p3 fo r  group 3, s h e l l  2. 

p4 f o r  group 3, s h e l l  1. 

84 for  group 3, shell!.i2. 

B5 f o r  group 3. 



4. Variations of the 3G3R bode. The possibility of doing a two-group 

skipped. However, something mst be put i n  the second group positions. The 

correct procedure is  t o  make the second and third group constants the same. 

A l l  6 should be zero. 9 
X gives. the programer the choice of punching fluxes in  JGJR, t h e  f i r s t  

three digi ts  controll ing If a group flux i s  desired, a 2 should be placed i n  

the corresponding place among the f i r s t  three digits .  For example, i f  f i r s t  

- 
and th i rd  group fluxes are t o  be punched, 3 appears as 2020000000; i f  a l l  three 

fluxes are wanted, is written as 2220000000. m e  remaining seven digi ts  may 

be used t o  identify the reactor. 

*. Note that  i f + t h e r e . q e  no shells, the situation may be .. .. expressed by set-  

t i ng%,  = t2 = ' O ; @ l  = p2 = 1 ; B 3  = 84 = @5 = 0 requires the 

; -. flux be 0 a t  the outside boundary while p5 = 1 de~um~ds the returncurrent  

be 0. 
- 

To t r ea t  a two region reactor, collapse one of the shells, place an arbi- 

t rary  boundary, andmake . . the region constants on either side of the collapsed 

shel l  the same. 

Whkn a shel l  i s  collapsed, note that  three fluxes are repeated i n  the 

punch out ... of 3G3R; namely, !2J+1j nJ, S2J-lo 

5. Code operation. Running instrubtions for CPR, Program V are: 

Operat ion 

1. Place CPR, Program V under reader. 

Result 

Load CPR into memory s tar t ing with 

memory c e l l  394. 



Operation ~esult 
. . 

3 .  Place initial conditions under : :  -.:::Sum check is done and if correct, goes 

reader. to main part of code. If bad &"s 

40 43 394 punch, review initial conditions. 

5- At end of punching, advance Puts a double space at the end of each 

tape a short distance. case. This divides cases for 3G3R. 

6 U&,e~!corrZction subroutines to 

alter basic. ,caacj! for new cases. 

See below s 

7 .  After all corrections give 41 00.. 

8. ~ont inue correcting akd ,using 

41 OOA for ,rest of cases. 
. . 

Running time per case is approximately one minute. 

6 .  Initial conditiom correction tapes, Three tries of corrections 

may be made: 

1) Straight correction. 

2) Decimal fixed point to binary fixed 

3.) Decimal floating point to binary floating point.. 

For 1, make a correction tape of the form ( / indicates single space) ... . 

address of correction / correction / next address / next correction / etc. 

* 0 °  / mmJ=q / 
Plaee under reader and give 43 152. 

For 2, the tape has the form 

address o? correction / correction in decimal fixed point / etc. 
... / FFFFFFFFFF / 

Load under reader and give 43 159. 



For 3, the tape should be 

address of correction / magnitude / exponent / e tc .  

0 . .  / / 
Place under reader and give 43 163. 

Examples of correction tape form: 

1) Change case number and geometry, 

280 / 2220000002 / 28e / 4000000000 / FmTFFFTFF / ; 
2) Change p 5 qs,  

2FB / 0500000000 / 304 / 0500000000 / j0D / 6500000000 / FFFFJ9TETF / ; 

I 3 ) Changg R2 and R3 , 
291 / 0100000000 / OOOOOOOOCe / 293 / 0150000000 / 0000000002 / 

' FFFFl?FFFFF / 
C'. Group Constant Preparation,Rout.ine. 

For, a limited class  of reactors a code is available which computes , ' 

s o u p  constants and prepares the  input for  CPR. The code may be used fo= l igh t  

water moderated and ref lected reactors only. Two elements i n  addition t o  H, 0, 

and U may be used i n  the core. Only water is allowed in  the ref lec tor .  The 

-theory is tha t  described by Perry. (1) 

1 Form of input. The input t o  GCPR is as follows : 

Memory 
Position Symbol Quantity 

. . 
Convention . . Scaling 

2x3 Cross section indication. 'hex.. - . m 

See below. 

2E4 Q Group 'number. See CPR hex 

section. 

( l )  Perry, . . . . . . :..:l!*i . , $oncePt~a l l J l e~ ign  of a Pressurized Water Package ' Power ~ e a c t o r "  , 
ORNL 1613, . p . 124 f f . 



, Memory 
Position Symbol 

Notation 
Convent ion Scaling Quantity 

2E5 f Flux and case number. hex 
. . - - f - 

See CPR section. 
, 

-A: - - 2136 6 Geometry fac tor .  See hex 2 -2 

CPR section. 

2E7 Region 1 thickness. decimal f l o a t  - - 
'R1 

exponent ing point 

Region 2 thickness. I1 

exponent " I 
Region 3 thickness. 11 

exponent I 
tl 

exponent 

Shel l  1 thickness. 11 

i t  Shell  2 thickness. 

exponent I 
Fraction of neutrons born decimal fixed 

in to  group 2 i n  region 1. point 

Sac below. . .,, 

Fraction of neutrons born 11 

in to  group 2 i n  region 2. 

See below. 

Fraction of neutrons born I1 

in to  group 2 i n  region 3 .  

, See below. 



Memory 
Position Symbol Q u a t  i t y  

See CPR. 

Notation 
Convention Scaling. 

. . 

decimal fixed 2 -1 

point 

11 

3OF N,(H) Nuclear density of 
11 

H i n  core. 

11 

N R ( ~ )  NucLear d9nsit.y nf R 

i n  re f lec tor .  

Nuclear density-of 0 

i n  core. 

312 NR( 0 Nuclear density of 0 
11 11 

i n  re f lec tor .  

313 N( 0) Nuclear density of U 

i n  core. 

N(4)'l) Nuclear density of 11 

314 

element 4 i n  core. 

315 ~ ( 4 )  Average lethargy loss  per 
11 

' col l i s ion  f o r  e.lement 4. 

316 1 - . 11 t l  
p ' =  average cosine o f :  

3(l+i4)) sca t te r ing  angle. 

317 N( 5 ) (l) Nuclear density of element 
11 

5 i n  core. 

~ ( 5 ' )  
11 3.18 Average lethargy loss  per 1 

col l i s ion  f o r  element 5 .  
. .. 

.. . 
. .  . . . . . 

( l )  use v o ~ d  fract ions f o r  alloys.  



Memory 
~ o s i t i o n '  

. . 
Symbol Quantity 

DJotat ion 
Convention Scaling 

- 
p = .average cosine decimal fixed 1 

of scat ter ing angle. point 
- - -1- - . - 3 1 A  'in( Ine las t ic  scattering 

J 
- .  factor .  See below. 

' ,313 . .w. Unreflected half width lo-5 11 

of p r i s m .  

'4;h Unreflected half width 

of prism - or half height 

of cylinder. 

R Radius of GCPR model. 

2. Vwiations and specia.3, cases of G;CPR. m is a positive or  negative 
- ,  

number (for convenience, a l l  0 's  dr a l l  F ' S )  which, when positive, allows the 
. . 

-. programmer t o  inser t  h is  own t h i r d  region constants and, when negative, asks 

the  program t o  insert-  i t s  second region constants in to  the t h i r d  region position.'  

The 6 's  are  considered t o  be normally 0. When they are  other than 0, 

change memory position - 029 from 6 0 7 ~ ~ 8 l j 7 ~ ~  t o  6 0 7 ~ ~ 8 4 7 ~ ~ .  ~t was realized too 

l a t e  the inconsistency of l imiting fissionable material t o  region 1 and yet 

3 having 62 and B3 specified i n  the i n i t i a l  conditions,., 'They must be zero unless 

the  regions a re  t o  be penm&ed. . . 

C a i n . l  allows f ~ r  in&last ic  scat ter ing i n  the  manner described by Perry. 

-. : The ine las t ic  scat terer  mst be element 4. 

Note tha t  31B and 31C need not always be f i l l e d .  For f i n i t e  systems, s lab 

geometry f i l ls  both, cyl indrical  geometry f i l l s  3 1 C  and spherical geometry' f i l l s  - 
. . 

neither.  



Regions may be permuted by se t t ing  the break point.  When the machine 

stops on the l e f t  of l jF ,  the region constants may be punched out and read in to  

the proper places. Retiwning t o  the  l e f t  of l3F punches the constants i n  the 

new order. The tab le  below gives the  positions of the  constants. 

Memory Positions 
Region of Constants 

. 1  3B9 - 3C3 

3.  Code operation. 

Operat ion Result 

1. Select from the l ib ra ry  of cross 

section'elements 4 .and 5. 
. . 

.2. Place program under reader; Loads GCPR routine in to  memory s t s r t i n g  

90 35c. 

Place element 4 cross section 

tape.under reader; 90 27B. 

P+e element 5' cross' section 

tape under reader; 90 3lE. 

Place i n i t i a l  conditions under 

reader; 43 3AO. 

A t  end of punch out, give a 

short tape advance. 

with memory c e l l  35C. 

Loads 31 values of 3% and 31 values of 

u, i n to  4 posi t ione 

Loads 31 values of Job and 31 values of 

ua i n to  5 position. 

Checks the sum. I f  correct, goes in to  

routine. . . . 

Puts double space between cases. 



. Operation Result 

7. To .change i n i t i a l  conditions fo r  
t 

new cases, see section on correc- 
- 

- 4. t ions beiow. . - 
\ 8. TO use CPR, program v2, inser t  Alters CPR t o  accept output of GCPR. 
.... 

correction tape number 1. 

4. Corrections t o  i n i t l a l  conditions,, . . , If  no element 5 is 'used, cor- 

rect ion routine number 1 may be read in to  element 5 positions with no other 

reading-in required. Give a 90 3U. With element 5, the  correction routine 

i s  placed i n  pos$tions which a re  used during the main routine. In  t h i s  case, 

correction routine number 2 mst be read i n  pr ior  t o  each s e t  of corrections. 

Give 90. 

Two corrections a re  possible: s t ra ight  corrections and decimal binary 

, c.orrections. The correction routines .. . a re  so  arranged t h a t  the s t ra ight  cor- 

rections a re  given f irst  i n  the same manner a s  described i n  CPR section followed 

by a word of 3''s. Then the  decimal t o  b i n a ~ ~  correctio& are  given, again f o l -  

lowed by a word of F g s .  The routines complete the s t ra ight  corrections and go 

automatically t o  the decimal-to-binary corrections. When these a re  finished, 

the  main routine is entered a t  the  proper place. 

To summarize: 

Correction routine numbe~ 1 (no element 5, read i n  once) 

With comectf ons under reader, 43 323. 

Correction routine number 2 (with element 5, read i n  each time) 

90 338 

With corrections under reader, 43 TED. 



APPENDIX 

Treatment - of ~ n i s o t r o ~ i c  Scattering ' -- i n  Thin Shells 
- 1 

Roger R.  Bate and Robert R. Coveyou 
- 

. i' .A. 

e - We assume t h a t  t b e  angular d is t r ibut ion  of neutrons entering the s h e l l  i s  

Then the angular d is t r ibut ion  of neutrons penetrating t o  depth z  without col- 

lis,%&s 'is 

the  a n ~ u l a ~ ,  distr ibut ion before s fa t te r ing  of neutrons i n  s l i c e  (z, z  + dz) 

Which w i l l  be sca t te~e? .  5.n slice ( 2 9  Z + d ~ )  is 
.. . 



The scattering,kernel expanded in spherical harmonics is 

We now state without proof a theorem: If the angular distribution of 

- neutrons ,before scattering -is given by 

and the scattering kernel is 

then the resulting distribution after one scattering is 
I 

Applying this theorem to distribution in equation (3) the angular distribution 

of neutrong, after 'first scattering in slibe (z, z + dz) .becomes 
. . - 



3 5 

The angular dis t r ibut ion of neutrops before the second scat ter ing i n  s l i c e  

(w, w + dw) which have been f i r s t  scattered i n  s l i c e  (z, z + dz) and w i l l  be 

scat tered i n  s l i c e  (w, w + dw) is 

r(w- dw e' P - + a z  = w > z  
P 

Expanding i n  spherical harmonics 



Applying the theorem in equation . (7)) the angular distribution of neutrons 

which suffered tbe fipst collision in slice (z, z +' dz) and the second collision 

in slice ,.(w, w + dw) is 

E~(.~H - TZ) + 3Kd5p %(w - rz) + 8 



When w < z equation (10) becomes 



From equation (2), the  uncollided forward ex i t  current is  
-4 

- A  
where T = ~ t .  . 

If we multiply the d i s t r ibu t ion  i n  equation (8) by the probability tha t  a 1 

* - 
neutron w i l l  go from z t o  t without col l is ion and integrate over p, we get the 

single scattered forward e x i t  current 



similarly, the single scattered backward exit current is 

Similarly, from equations (10) and (11) we get the double scattered forward exit 

b .> current. 



The formula f o r  the badkward double scat tered e x i t  current i s  the same as  equation 

r, (15) except t h a t  the t.erms En(T - y)  w e  ?ep1aced by ( - l ) n  E,(y) .' . - 
' - 

a If we expand the E functions i n  "lqgarithmic" power ser ies  and perform the 

- 
. integrations equation (12), the uncoliided forward e x i t  current becomes : ," . .> ' 



i 
Y 

=, - equation (13), the single scattered forward exit current, becomes: 

.4 . 

equation (14), the single scattered backwaxd exit . current, becomes : 

Equation (15) the double-scattered forward exit, current, becomes : 

- I 

' - 
s 

L The double-scattpred backward exit current becomes: 



t -  

. I < , ' .- ""(I) ' [K:(3 - 27 - 21fl) '$ - 3K3? + m(f12 + $~dfl) + o($) , a  (16) 
. 3 2 9  4 

/ 

.? 

... 3 The sum of expressions (12'), (l3'), and (15') gives the forward exit current 

4 - 

c The sum of expressions (14') and (16) give the backward exit current 

- 
cb . Hence, if we .define 

J 



Then, the forwa~d e x i t .  current , is 



. . 
L 

4.- 
* - 

.and the backward ex i t  current is 

f ' . ?% 
2 

, 5  dropping the  er ror  terms. - 
v 

v 

It is clear  tha t  the  current incident upon the exter ior  of the  s h e l l  can be - 
4 

% t rea ted  i n  exactly the  same way. The above treatment was based on ari i n f in i t e  
1 

slab; we can approximate t o  a large r,adius spherical s h e l l  as follows, remembering 

that the above expressions are  currents per uni t  area. The boundary conditions are  

and 

2 
9 (26) 

2 2 4 

or  

(258 ) 

and. , 

(26' 

where J = I -+ t , is.' the outer radius of - t he  she l l .  
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