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Abstract 

A study is presented of the surface temperature distribution 

of spherical pellets in a fixed-bed, pell et- type reactor . The temperature 

near a point of contact is determined experimentally by means of an 

electrolytic tank analogue. An analytical approach involving the use 

of the IBM (CPC) calculator is described. Suggestions for further 

study a re included . 
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Temperature Distribution in Spherical Pellets 

Introduction: 

This report summarizes the progress on the study 0f the temperature 

distribution in spherical pellets of a pellet type reactor . Of primary 

importance in this investigation is the determination of the magnitude of the 

peak surface temperature. Hot spots occur on the surface at the points where 

the pellets are in contact for in this region the coolant velocity approaches 

zero with a resultant reduction of heat transfer . 

Two general approaches are being pursued in this program. One involves 

an analogue technique which utilizes an electrolytic tank current flow field to 

f -
simula te the heat flow field . The other makes us~ of an analytical treatment 

with numerical results achieved by digital techniques on an IBM card programmed 

calculator ( CPC) . 

The results of these two approaches are complementary in that the 

problems solved are somewhat different . At first it was planned to make 

exclusi ve use of the electrolytic tank because of the obvious comple xity and 

the immense labor necessary to achieve numerica l results from analytical 

methods •. However , while awaiting the construction of the tank considerable 

progress was made in developing an analytical method . Of paramount importance 

in furthering this phase of the work was the suggestion that the CPC calculator 

at the Westinghouse Anacom Laboratory be employed for the numerical calculations . 
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The material presented is divided ?S follows : 

I . Mathematical Formulation of the Problem 

II . Transformation of the Problem 

III . Electrolytic Tank Analogue 

IV . Analytical Solution 

V. Conclusions and Further Work 

Appendix A - Fundamental Basis of the Tank Analogue including 

tank design information . 

Appendix B Mathematical Analysis of the Problem and its 

solution in the form of an infinite series. 
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I. Mathematical Formulation of the Problem 

The problem under consideration is the determination of the temperature 

distribution on the surface and in the interior of a spherical pellet in a fixed 

bed of identical pellets. The pellets have a core of fissionable material covered 

with a suitable cladding for the purpose of minimizing corrosion . Coolant flowing 

through the bed removes the heat generated by fissions in the core of the pellets . 

Figure 1 shows a cross section of one possible arrangement . In this 

instance the matrix of spherical pellets is cubical artd results in six points of 

contact on each sphere . Other packing arrangements may result in as many as 

twelve contacts. 

The effects attributable to coolant variables such as velocityj 

viscosity and pressure are taken into account by a concept known as the film 

coefficient. The film coefficient relates the heat transfer between the surface 

and the coolant to the existing temperature differential . The effect of the 

coolant variables on the film coefficient is determined from experiment . 

The data on the heat transfer coefficient for spherical pellets in a 

bed is rather meager . The only available information is that given by W. H. Denton 

who treats the case of eight points of contact . The data shows that for a Reynolds 

number of 50, 000, the case of ifiterest here , the heat transfer coefficient rises 

rapidly from a zero value at the point of contact and attains its average value 

at an angle roughly five degrees removed from the contact point. Outside this 

region the coefficient is generally greater than the average value and at places 

attains a value of as much as one and a half times the average . 
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,- The impact of Dentons data on the course of this pr ogram has been 

considerable . The narrowness of the 11dead- zone 11 ar ound the point of contact 

implies tha t as a· first approximation, each point may be treated separately . 

The temperature decreases rapidly from a peak value at the point of contact 

to a value wh i ch varies slowly with the slowl y varying film coefficient over t he 

non- contact regions . _The large ratio of active heat t r ansfer area to dead-zone 

area e nsures that the points of contact do not affect each other. 

A further .simplificat ion of the pr oblem is achieved by neglecting 

the variation of the film coefficient wit h the l ongitudi nal angle ¢, of 

Figure 2 . This assumption reduces the problem to a two dimensional one with 

temperatures and fluxes dependent only on the r and g variables . Actually 
(1) 

there is a variation of .film coefficient with ¢3 as Denton 1s data shows, 

but it is not as important as t he g variation . The first phases of this 

st udy, in fac t all of the work reported here , neglect the influence of the 

¢ variable. 

The final step in the r eduction of the problem consists of approximating 
( 1) 

the data by a step function variation of fi lm coefficient which has zero va lue 

in a region OS 9 S 90 and a constant value in a region go SG SGniax • The 

maximum angle, 9max, should be sufficient ly large so t hat the temperature at 

this point is not greatly influenced by the dead-zone angle 90 • In this 

study 9max is 90° . 

- 7 -
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For non-corroded spheres the dead-zone angle is about five degree~as 

explained earlier . The effects of some corrosion in the hot- spot region may be 

approximately evaluated by varying 90 • It is presently contemplated to let 

Q0 vary from five to thirty degrees. The results obtained for the larger 

dead- zone angles must be viewed with considerably more skepticism than the small 

dead- zone angles since in the former instances the interaction effects between 

points of contact may invalidate the assumptions employed . 

The final formulation of the problem is illustrated diagramatically 

in Figure 3. Heat is generated uniformly over the core regi on, r S a . It 

flows to the water from the sphere over the surface, r = b3 which is 

characterized by the film coefficient variation of Figure J B. 
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II. Transformation of the Problem 

The problem formulated in Part I may be transformed using the principle 

of superposition. As this transforma~ion is of value in the · a,nalogue approach as 

well as the mathe~atical analysis, it is explained here to unify the treatment as 
.... 

far as possible. 

The basis of the transformation consists of the following observation. 

The zero film coefficient over the dead-zone~ 0 < 9 < 90 , implies that no thermal 

flux can leave the sphere in this region . This boundary condition may be achieved 

by adding two solutions which have equal magnitude but oppositely directed fluxes 

at the boundary in this region. 

Consider the two cases illustrated in Figure 4. In Figure 4A the film 

coefficient is independent of 9. ·lhder this condition all of the thermal flux 

is radial, uniform and has a surface value q0 • The negative of the surf ace flux: 

density, - q
0

, is used in the second case, illustrated in Figure 4C, to obtain 

zero flux density in the dead-zone when the two solutions are added . In the 

latter case the heat generated in the core is taken to be zero and it is this 

conpition which makes the transformation ·advantageous . In the electrolytic 

tank analogue it is much more convenient to apply the f orcing ±'unction at the 

boundary than uniformly over the volume. The tank and the analytical methods 

are set up to solve only the second part of the problem, as the radial flow 

case of Figure 4A and 4B is readily calculated. The complete s olution is 

obtained by adding the two solutions. 

- 9 --
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The justification of this transformation consists of observing that 

the differential equations involved are linear and tHat the boundary conditions 

are properly fulfilled. 

In Figure 4D the current density for 9 > 90 is shown dashed since it 

is not known in advance , but is obtained from the solution of the problem. 

- 10 -
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III. Electr.olytic _Tank ·Analogue 
V 

The fundamental basis of the current flow analogue of the heat flow 

field is explained in detail in Appendix A. The analogy stems from the equivalence 

of the differentia~ equations governing the two phenomena. 

There are two types of current flow analogues in common use. One of 

these makes use of a continuous conduct ing medium in which the flow of current 

and the resulting potentials are described by partial differential equations. 

The second type approximates the continuous mediUIQ. by a mesh of lumped resistors for 

which the currents and potentials are described by difference equations which 

approximate the differential equations of the electrical field. rn'general the 

fineness of the mesh structure must be such as to adequately re,present the 

variables in regions of rapid change . 

Early experience on the present problem indicates that very steep 

temperature gradients are expected in the vicinity of the contact points. 

Consequently, in this region, at least, a fine mesh of resistors is required 

for a discrete type of analogue. The f~rther consideration which admits of 

varying the dead- zone angle leads to a prohibitively large number of resistors 
, . 

for this type of representation. 

The con~inuous type analogue is not restricted by the rapidity of the 

variations of the variables . However, there is another kind of difficulty in 

this case which arises from the necessity of representing the film coefficient . 

If electrolytea are used to represent the thermal conductivity of the core and 

clad materials it becomes a practical difficulty to connect a condutive material 

at the boundary to represent the film coefficient. 
' 
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A compromis€ involv~ng both methods is used. Electrolytes represent 

the conductivities of the core and clad regions . At the surface fixed resistors 

are connected for every degree of angle to represent the film coefficient . The 

one degree increments are believed adequate to handle the expected temperature 

gradients and the electrolytes eliminate the necessity of extending this fine 

mesh over the entire area represented . 

The design is illustrated diagrammatically in Figure 5. The tank 

represents a section of the sphere of widt h 6¢ . It is not necessary to 

represent the entire sphere since th~ solutions are independent of ¢ under 

the assumptions employed . The variable thickness of the section, increasing 

as r sin 9 9 is accomplished by inclining the tank to the horizontal. A 

slight approximation is introduced by the fact that the sides of the tank are 

straight and not curved to represent the curvature of the spherical surface , 

This effect is minimized by keeping t he angle 6¢ small; in this instance 

ll/J = O. 16 rad . 

There is an insulating barrier inserted at the clad- core interface 

to prevent mixing of the two electrolytes which have a conductivity ratio 

representative of the similar thermal conductivity ratio . Connection between 

the two regions is achieved by using small U shaped pieces of copper separated 

from each other and placed at one degree inter vals along the interf ace boundary . 

Similar pieces are located every degree along the outer boundary for connection 

to the fixed resistors which represent the surface film coefficient . 

, . Current is fed into the tank over the dead- zone region and flows out 

through the film coefficient resistors . The resistors are connected to a common 

- 12 -
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ground and the measurement of potentials relative to this ground are related to 

the temperature difference between the corresponding point in the thermal system 

and the water. To this temperature must be added the temperature resulting from 

the uniform flow as explained in Part II . 

The results of tank measurements are plotted in Figure 7 and show the 

functional dependence of the dimensionless ratio 

(1) ~ T(r =b) = f(G) 
bT qo 

for several values of 80 • The other dimensionless parameters 9 

(2) 7Tl = ( Kc ) rm .. 2 · !, 7T2 = ( b ) L25 = 
a 

7T 6 :i:: hbT 
"" ·15 .1 

Kc 

were held constant during the course of the experiment . The symbols are defined 

in the nomenclature at the end of the report . 

An important inference t o be drawn f r om Figure 7 i s t he linear 

dependence of hot spot surface temperature on the dead zone angle 80 • 

= 13 -
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IV o Analytical Solution 

The heat flow problem in spherical pellets formulated in Parts I and 

II is a boundary value problem o There are a variety of analytical methods which 

have been developed to treat such problems o In general the methods involve 

series or iterative methods of computation which have the disadvantage of being 

very time consuming , The advent of moder n machine met hods has greatly reduced 

this limitation and has made these techniques available for the solution of 

practical problems o 

Unfortunately the analytical methods deal mostly with problems which 

specify either the potential or the flow variable on the boundary , In the present 

instance the specification over part of the boundary is in the form of a film 

coefficient which is the ratio of heat flux to temperature differential across 

the sphere -water interface . A str aightforward approach to this problem which 

would yield solutions in a reasonable time, even wit h machine methods , has not 

been found, However, a method which makes use of both series and iterative 

techniques has been developed that appears t o offer pr omis e of an adequate 

solution , 

The appr oa ch is to change the pr oblem to one of the standard types. 

In t his case the ther mal flux over the surface of the sphere is specified o The 

resuJt ing temperature · distribut ion i s then determined by a s eries method, 

Comparison of the assumed thermal flux and the calculated temperature indicates 

the manner in which the flux assumption should be modified to achieve the constant 

film coefficient condition , 

- 14 -
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Figure 6 shows the assumed thermal flux distribution . The heat flow 

density over the region near the point of contact is uniform and directed into the 

sphere .as required by the boundary condition . As a first approximation the flux 

density is assumed constant over the rest of the sphere and may be modified in 

successive calculations to conform with the resulting temperature distr~bution. 

In Appendix Bit is shown that the temperature distribution within the 

sphere may be represented by 

(J) qob 
CD [ r 2n r -(2n+l) J P2n(El); a S rSb Tc - T0 = I (5) A2n + (5) B2n kc n=l 

gob 
Cl) r 2n 

Tm - To - I (-) C2n P2n( El) i OSr Sa 
kc n=l b (4) 

The constants A2nj B2n and C2n are determined from the equivalence 

of the temperature and thermal flux at the clad-meat interface and from the 

impressed thermal flux at the outer boundary . The equations are 

2n 
(5) ( ~) A2n 

2n 
(6) ( ~ ) 

(7) 
1 

(1 + 2n)B2n = 

(8) µ = 

+ B2n 

=(2n+l ) -
A2n - ( S-) [ ( ~ ) ( 1 + 2~) + 1 J B2n = 0 

cos g 

15 -

( ;c 

l 
~ qs (µ)P2n(µ) dµ 

0 

( 
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The functions P2n (µ) are the Legendre polynomials of the first kind 

which are orthogonal over the range oS µS L qs (µ) is the· impressed flux 

distribution . 

The series of Equations (3 ) and (4) omit the non- varying terms 

corresponding to the zero values of the index n, alt hough these terms 

satisfy the ·differentia l equations . The reason for this ·omission is that 

the corresponding constant s A0 , B0 and C0 ar e indet er minate for a boundary 

condition in terms of thermal flux density~ These constants are determined by 

accounting for the temperature drop in the surface film . 

The temperature on the surface, r = b is obtained from Equation (3) 

by summing the series at r = b . 

(9) 

The calculation of the temperature distr ibution for four cases of 

dead zone angle , 90 , is being performed at the Anacom Laboratory on the IBM 

CPC equipment . Results of this calculation wi ll indicate the temperature for 

ten degree increments of G for each of the four 90
1s . 

The next approximation to the case of constant film coefficient is 

obtained from these results by perturbi ng the heat flux assumption in the 

required direction. The machine program must be modified to perform an 

iteration since the definite integral of Equation ( 7) changes with the new 

flux distribution. For the flux distribution shown in Figure (7) , the 

- 16 -
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evaluation was greatly facilitated by the fact that qs(G) is constant in each 

of the two regionso In this case the integral may be evaluated from the expression 

(10) f Pn(µ)d~ = Pn+l(µ) - Pn=l(µ) 
2n + l 

in which only the values of the Legendre polynomials at 90 are requiredo 

These values may be computed with the aid of the recurrence formula, 

(11) (n-tl) Pn+l + n Pn=l .. (2n+l)µ.Pn 

In the first iteration the evaluation of the definite integral may be 

accomplished by varying the assmned thermal flux in a series of steps so that 

use may be made of Equation (10). At the present time it is not planned to 

perform this iteration owing to the cost of the c omputation . Since the problem 

as formulated in Part I is in itself only an estimate as to what will take 

place in the bed, it seems inappropriate to go to great expense to represent 

this approximation· in an exact manner. Rather these initial calculations may be 

viewed as complementing the electrolytic tank worko They provide additional 

bounds on the temperature variat ions which may occur . 

17 -
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Conclusions and Further Work 

The surface temperature distribution of a spherical pellet in the 

vicinity of a point of contact has been -determined experimentalLy by means of 

an electrolytic tank analogue . The results show the variation of surface 

temperature with the spherical coordinate G for several different values 

of dead zone angle 90 • It is assumed throughout that the heat transfer coefficient 

is zero in the dead zone and constant outside this region . 

Similar results are expe cted shortly from an analytical method which 

makes use of a series expansion technique . The necessary numerical calculations 

are being performed by the Westinghouse Anacom Laboratory on the IBM, CPC 

calculator. The results achieved analytically will differ from the electrolytic 

tank results and should be somewhat more pessimistic . The reason for this is 

that the analytical method is an iterative one and which needs several 

iterations to converge . At present only the first approximation is planned. 

The results of this study may be expanded in several directions if it 

is desired . The electrolytic tank a s designed can readily be used for different 

conductivity ratios and with relatively minor modifications for different ratios 

of clad to meat radii. The analyt ic techni que is even more flexible in these 

regards since to change ratios one merely replaces an old ratio with a new one 

and repeats the computation. 

The problem of modifying the film coefficient to conform more 

closely with the experimental data is one which may be worthy of attention. 

The present approach assuming the coefficien t to be zero :in the dead zone 

- 18 -
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and c onstant outside this region is undoubtedly pessimistic . However 9 if the 

t emperatures as computed thereunder are t:oo large it may be necessary to explore 

the possibility of refining this assumption. 

I Cf 
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Nomenclature 

Tm Temperature in the meat or core - °F 

Tc - Temperature in the clad - °F 

kc 

h 

q 

V 

j 

o-m 

c.,-c 

- - Component of temperature independent of r and g - °F 

- Meat conductivity - Btu/hr sq ft °F/ft. 

Clad conductivity - Btu/hr sq ft °F/ft. 

- Film coefficient - Btu/hr sq ft °F 

Heat generated per unit volume - Btu/hr cu ft. 

- Thermal flux density - Btu/hr sq ft. 

Constant surface thermal flux density corresponding to flux case of 
uniform film coefficient. Btu/hr sq ft. 

Surface flux density - Btu/hr sq ft. 

- Voltage in analog1,1e - volts 

Voltage applied to the current density source resistors. 

Electrica l current density - Amps/sq ft. 

Volumetric production of current - amps/cu ft. 

- Electrical analogue conductivity of the meat - mhos/ ft. 

- Electri cal analogue conductivity of the clad - mhos/ft. 

A - Electrical analo gue conductivity of t he film - mhos/sq ft. 

aT Radius of meat in thermal system ft . 

bT Radius of Glad in thermal system ft . 

-Ri 

Radius of me~t in electrical system - ft. 

Radius of clad in electrical system - ft. 

- Resistance associated with the i th connection at the surface. 
(represents the film coefficient - ohms). 

- 20 --
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Current density source resistors. 

Spherical coordi nate variables. 
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Appendix A 

1. Basis of Current Flow Analogue 

The possibility of using a current flow field to represent a thermal 

heat flow field stems from the equivalence of the differential equations governing 

the two cases. 

In the thermal case 

(12) q k \i' T 

V · q 

In the electrical system 

(13) j = - o-V v 

V · j 

The correspon ance between these systems of equations forms the basis of the 

analqgy. The jv term is not used in the analogue but is included here to 

show what is required if the transformation described in Part II is not employed. 

The mere correspondance of the differential equations of an analogue 

and the system it represents is not sufficient in itself to insure that the 

systems are completely equivalent. It is also necessary that the particular 

numerical values of the dimensionless ratios chracterizing the systems be 

made equal. 

- 22 -
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The present systems may be characterized by the following dimensionless 

ratios. 

Thermal Electrical 

7TlT = (kc/km) 7Tle = (crc/crm) 

7T2T = (bT/aT) ~e = (be/ae) 
(14) 

7TjT = gT 75e = ge 

7T4T = go 11"4e = 9o 

11".5T = ( kc/bT )( T/ q) 7f.5e = (crcfbe)(V/j) 

7T6T = (h bT/kc) 7f6e = (Abe/o-c) 

For the analogue to represent the physical system it is necessary that 

7Tne ; n = 1, 2, ... 6. 

Representation of the Film Coefficient 

As explained earlier the film coefficient is represented by fixed 

resistors connected to the outer boundary of the tank at one degree intervals. 

The numerical value of a resistor is determined from the equivalence of the 

. ~6's and the size of the elemental area served by one point of connection . 

The resistance is 

(1.5) 1 1 = = 
AAi Abe2 sin 9i 69 6¢' 
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6-1/2; 89-1/2. 

and substituting for A from Equation (14) 

.,,.6 

there results 

(16) 
1 

ohms. 

The final selection of the resistance depends on the choice of uc 

and the value of 7T6· For the present p~oblem 

(17) 7T6 = 15 .l; be = 25 in. 

Instead of conductivity it is more common in electrical systems to use 

the reciprocal quantity, resistivity, and the value chosen for the clad resistivity, 

Pc, is 

(18) 

Pc 
1 

O-c 
= 250 ohm-cm. 

The resulting expression for the film resistances is 

93 .6 
sin gi ohms . 

The resistances for gi = 5-1/2 to 29-1/2 are connected to the tank 
j 

through switches so they may be disconnected at times when it is desired to 

extend the dead-zone above 5°. 

- 24 -
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Source Res i stors 

The constant current density which is sµpplied over the dead zone angle 

i s achieved by using a voltage source and large series resistors connected to 

t he t ank at one degree intervals. The following resistance va+ues 

(19) = (200)(93.6) 
sin 9i 

= 18,720 
sin 9i 

ohms; = 1=1/2; 

r educe the source voltage by a factor of about one hundred and adequately 

meet the current density source condition. The switches which discon!l:lct 

t he film coefficient resistors 9-t the same time connect additiona 1 source 

r es i stanc~ when the dead zone is extended above five degrees . 

.•• 29-1/2 

:q1H;~~~~irig the value of .,,. 5 from measured analogue voltages it 

is convenient to express the dead-zone current density, j 0 , in terms of 

t he more readily measur ed applied voltage . 

Assuming the tank voltage small compared to the ~pplied voltage, the 

appli ed current density is 

(20) = 

where the factor of t wo hundred is the one used in computing the source 

resistors. 

From Equat ion (14) 

(21) 7r6 

- 25 -
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and upon substituting into the expression for j 0 yields 

(22) 

form 

7r6 
200 Va. 

Upon this result -rr5 from Equation (14) is reduced to the following 

= 
200 V 

-rr6 Va 
('!.__) 13 .2 Va 
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Appendix B 

Analytical Solution of the Heat Flow Problem in a Sphere when 
the Boundary Condition is Specified in the Form of a Thermal 
Flux. 

The differential equation governing the steady flow of heat in a 

conducting region is known as Laplace's equation. In spherical coordinates the 

general solution of this equation, for fields which are independent of ¢ 

may be expressed in terms of an infinite series of the form 

co 
(23) T L 

n=o 
J._ I n + 

-(n+l) J 

where r and 9 are the spherical coordinates and Pn(9) are the Legendre 

polynomials of the first kind of order n. To be perfectly general the solution 

should include the functions Qn(9), the Legendre polynomials of the second 

kind. However, all of these functions are infinite for 9 = 0 a 'rrl are therefqre 

not admissible in this problem. 

The Legendre polynomials are orthogonal over the range from O to 7T . 

It is therefore convenient to imagine that the 9 variation is extended from 

TT/2 to TT and that in this region the film coefficient is symmetrical a bout 

-rr/2. This in no way affects the solution in the interval from O to 77/2 but 

permits t~e use of the orthogonal properties of the Legendre polynomials. 

The symmetry about 9 = -rr/2 eliminates the odd-order polynomials from 

the soiution. Separate expressions for the temperature are required for the core 

and clad regions because of the different conductivities. It is convenient to 

change the constants Ab and B' n slightly to make them dimensionless. 

these changes Equation (23) takes the form 

- 27 -
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(24) 2:: 
n=l 

(l) 2n 
(2S) = I 

n=l 
C2n (i) P2n(G) 

where To is the contribution from the zero term of the series, as explained 

earlier. The expression for the temperature in the meat does not involve the 

reciprocal r terms since they are infinite at the origin. 

The constants are evaluated from the boundary conditions at 

(26) r = a 

( 

and at r = b 

(27) 

which upon substitution from Equations (24) and (2S) yield the expression 

given in Equations (S) , (6) and (7). 

- 28 -
'.'f ~ r ( 2 7 



1. 

Bibliography 

W. H. Denton, "The Heat Transfer and Flow Resistance 
for Fluid Flow Through Randomly Packed Spheres." 
p. 371. Published by The Institution of Mechanical 
Engineers . Proc. of 11 General Discussion on Heat 
Transfer" 11-lJth September 19.51. 

- 29 -
9' 28 



.. 

., . 

' . 

CROSS SECTl"ON OF A PELLET BED 
FIGURE I 

POINT 
OF CONTACT 

SECTION OF A SPHERICAL PELLET 
FIGURE 2 

- 30 -
' '1 (''29 



~ I ' ' 

_POINT OF CONTACT 

MEAT 

A 

31 

SECTION OF A SPHERICAL PELLET SHOWING 

MEAT AND CLAD REGIONS 

FIGURE 3 

h -hav 
1.0 

0 

t . .• ,· . • . t .. 

1'/2 
8 

B 

ASSUMED VARIATION OF 

FILM COEFFICIENT 



I 

\.,.) 
I\) 

l \ . ) ~ 

_h_ I.Oa-------­
hav 

8 

( A) 

8 

(8) 

3 

APPLICATION OF SUPERPOSITION TO 
THE HEAT FLOW PROBLEM OF PART I 

FIGURE 4 

- · • • • , • J • ( 
I · t 

8 

(C) 

--- · ---
8 

CD) 



. 
I • 

\ J. ' • .I • 

33 

ELECTROLYTIC TANK 
FIGURE 5 

~• . ,. 
I ti) 

r 



--

Ps 

~:' 

· 8 Tr/2 

• SURFACE FLUX DENSITY ASSUMED AS A 

FIRST APPROXIMATION IN THE ANALYTICAL METHOD 

FIGURE 6 

• 

' -. 
. . , 

- 34 -

033 



~ 

J~ ~ 

• 

., , 

• 

.. . 
... . .. 

' 

... 

""°'' !l -. ' PLOT OF THE DIMENSIONLESS RATIO 
Tr5 = ~ T(~:b) vs 8 AT CONSTANT 80 AS DETERMINED 

.J:J 
II 
... 0 
..... t:r 
1-

. 36 

~lk .20 

II 

FROM THE ELECTROLYTIC TANK 

I. Bo= 5° 
2. Bo= 10° 
3. Bo= 15° 
4 . B0 = 20° 
5 . 80 = 30° 

It') F .161------1--...-...,---+-----+-__,.,.,---1------+-----lr.,+-----+----------l 

5 10' 15 20 25 30 35 40 
B - DEGREES 

FIGURE 7 

- 35 -- 9, ') 


