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o Abstract

% A study is presented of the surface temperature distribution
of spherical pellets in a fixed-bed, pellet-type reactor. The temperature
near a point of contact is determined experimentally by means of an
electrolytic tank analogue. An analytical approach involving the use
of the IBM (CPC) calculator is described. Suggestions for further

study are included.




Temperature Distribution in Spherical Pellets

Introduction:

This report summarizes the progress on the study of the temperature
distribution in Spherical‘pellets of a pellet type reactor. Of primary
importance in this investigation is the determination of the magnitude of the
peak surface temperature., Hot spots occur on the surface at the points where
the pellets are in contact for in this region the coolant velocity approaches
zero with a resultant reduction of heat transfer.

Two general approaches are being pursued in this program. One involves
an analogue technique which utilizes an electrolytic tank current flow field to
simulate;%he heat flow field. The other makes use of an analytical treatment
with numerical results achieved by digital techniques on an IBM card programmed
calculator (CPC).

The results of these two approaches are complementary in that the
problems solved are somewhat different. At first it was planned to make
exclusive use of the electrolytic tank because of the obvious complexity and
the immense labor necessary to achieve numerical results from analytical
methods.. However, while awaiting the comstruction of the tank considerable
progress was made in developing an analytical method. Of paramount importance
in furthering this phase of the work was the suggestion that the CPC calculator

at the Westinghouse Anacom Laboratory be employed for the numerical calculations.
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The material presented is divided as follows:
I. Mathematical Formulation of the Problem
II. Transformation of the Problem
III. Electrolytic Tank Analogue
IV. Analytical Solution

V. Conclusions and Further Work

Appendix A - Fundamental Basis of the Tank Analogue including
tank design information.
Appendix B - Mathematical Analysis of the Problem and its

solution in the form of an infinite series.
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I. Mathematical Formulation of the Problem

The problem under consideration is the determination of the temperature
distribution on the surface and in the inte;ior of a spherical pellet in a fixed
bed of identical pellets. The pellets have a core of fissionable material covered
with a suitable cladding for the purpose of minimizing corrosion. Coolant flowing
through the bed removes the heat generated by fissions in the core of the pellets.

Figure 1 shows a cross section of one possible arrangement. In this
instance the matrix of spherical pellets is cubical and results in six points of
contact on each sphere. Other packing arrangements may result in as many as
twelve contacts. |

The effects attributable to coolant variables such as velocity,
viscosity and pressure are taken into account by a concept known as the film
coefficient. The film coefficient relates the heat transfer between the surface
and the coolant to the existing temperature differential. The effect of the
coolant variables on the film coefficient is determined from experiment.

The data on the heat transfer coefficient for spherical pellets in a
bed is rather meager. The only available information is that given by W. H. Denton(l)
who treats the case of eight points of contact. The data shows that for a Reynolds
number of 50,000, the case of interest here, the heat transfer coefficient rises
rapidly from a zero value at the point. of contact and attains its average value
at an angle roughly five degrees removed from the cohtact point. Outside this
region the coefficient is generally greater than the average value and at places

attains a value of as much as one and a half times the average.
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The impact of Denton's data on the course of this program has been
considerable., The narrowness of the M"dead-zone" around the point of contact
implies that, as a first approximation, each point may be treated separately.
The temperature decreases rapidly from a peak value at the point of contact
to a value which varies slowly with the slowly varying film coefficient over the
non-contact regions. .The large‘ratio of active heat transfer area to dead-zone
area ensures that the points of contact do not affect each other.

A further simplification of the problem is achieved by neglecting
the variation of the film coefficient with the longitudinal angle @, of
Figure 2. This assumption reduces the problem to a two dimensional one with
temperatures and fluxes dependent only on the r and © variables. Actually
there is a variation of film coefficient with @, as Denton"s(l)data shows,
but it is not as important as the © variation. The first phases of this
study, in fact all of the work reported here;, neglect the influence of the
@ variable.

The final step in the reduction of the problem consists of approximating
the data(l)by a step function variation of film coefficient which has zero value
in a region 0<0<@, and a constant value in a region ©5<0<@uax. The
maximum angle, ©paxs; should be sufficiently large so that the temperature at
this point is not greatly influenced by the dead-zone angle ©6g. In this

study Opgx 1is 90°,




For non-corroded spheres the dead-zone angle is about five degrees; as
explained earlier. The effects of some corrosion in the hot-spot region may be
approximately evaluated by varying ©g. It is presently contemplated to let
©o vary from five to thirty degrees. The results obtained for the larger
dead-zone angles must be viewed with considerably more skepticism than the small
dead-zone angles since in the former instances the interaction effects between
points of contact may invalidate the assumptions employed.

The final formulation of the problem is illustrated diagramatically
in Figure 3. Heat is generated uniformly over the core region, r<a. It
flows to the water from the sphere over the surface, r = b, which is

characterized by the film coefficient variation of Figure 3B.
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ITI. Transformation of the Problem

The problem formulated in Part I may be transformed using the principle
of superposition. As this transformation is of value in the analogue approach as
well as the mathematical analysis, it is explained here to unify the treatment as
far as possible. 3

The basis of the transformation consists of the following observation.
The zero film coefficient over the dead-zone, 0<©<6,, implies that no thermal
flux can leave the sphere in this region. This boundary condition may be achieved
by adding two solutions which have equal magnitude but oppositely directed fluxes
at the boundary in this region.

Consider the two cases illustrated in Figure L. In Figure LA the film
coefficient is independent of ©. ‘Under this condition all of the thermal flux
is radial, uniform and has a surface value q,. The negative of the surface flux
density, <-q,, is used in the second case, illustrated in Figure LC, to obtain
zero flux density in the dead-zone when the two solutions are added. In the
latter case the heat generated in the core is taken to be zero and it is this
condition which makes the transformation advantageous. In the electrolytic
tank analogue it is much more convenient to apply the forcing function at the
boundary than uniformly over the volume. The tank and the analytical methods
are set up to solve only the second part of the problem, as the radial flow

case of Figure LA and LB is readily calculated. The complete solution is

obtained by adding the two solutions,
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The justification of this transformation consists of observing that

the differential equations involved are linear and that the boundary conditions

are properly fulfilled.

In Figure LD the current density for ©>0, is shown dashed since it

is not known in advance, but is obtained from the solution of the problem,
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III. Electrolytic Tank Analogue

Tﬁé fundamental basis of the current flow analogue of the heat flow
field is explained in detail in Appendix A, The analogy stems from the equivalence
of the differential equations governing the two phenomena.

There are two types of current flow analogues in common use. One of
these makes use of a continuous conducting medium in which the flow of current
and the resulting potentials are described by partial differential equations.
The second type approximates the continuous medium by a mesh of lumped resistors for
which the currents and potentials are describéd by difference equations which
approximate the differential equations‘of the electrical field. In general the
fineness of £he mesh structure must be such as to adequately represent the
variables in regions of rapid change.

Early experience on the present problem indicates that very steep
temperature gradients are expected in the vicinity of the contact points.
Consequently, in this region, at least, a fine mesh of resistors is required
for a discrete type of analogue. The further consideration which admits of
varxépg the dead-zone angle leads to a prohibitively large number of resistors
for this type of representation.

The conpinuous type analogue is not restricted by the rapidity of the
variations of thé variables. However, there is another kind of difficulty in
this case which arises from the necessity of representing the film coefficient .,
If electrolytes are used to represent the thermal conductivity of the core and
clad materials it becomes a practical difficulty to connect a condutive material

at the boundary to represent the film coefficient.
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A compromise involving both methods is used. Electrolytes represent
the conductivities of the core and clad regions. At the surface fixed resistors
are connected for every degree of angle to represent the film coefficient. The
one degree increments are believed adequate to handle the expected temperature
gradients and the electrolytes eliminate the necessity of extending this fine
mesh over the entire area represented.

The design is illustrated diagrammatically in Figure 5. The tank
represents a section of the sphere of width A@. It is not necessary to
represent the entire sphere since the solutions are independent of @ under
the assumptions employed. The variable thickness of the section, increasing
as r sin ©, 1is accomplished by inclining the tank to the horizontal. A
slight approximation is introduced by the fact that the sides of the tank are
straight and not curved to represent the curvature of the spherical surface.
This effect is minimized by keeping the angle AP smally in this instance
AP =0.16 rad.

There is an insulating barrier inserted at the clad-core interface
to prevent mixing of the two electrolytes which have a conductivity ratio
representative of the similar thermal conductivity ratio. Connection between
the two regions is achieved by using small U shaped pieces of copper separated
from each other and placed at one degree intervals along the interface boundary.
Similar pieces are located every degree along the outer boundary for connection
to the fixed resistors which represent the surface film coefficient.

Current is fed into the tank over the dead-zone region and flows out
through the film coefficient resistors. The resistors are connected to a common

S e
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ground and the measurement of potentials relative to this ground are related to
the temperature difference between the corresponding point in the thermal system
and the water. To this temperature must be added the temperature resulting from
the uniform flow as explained in Part II.

The results of tank measurements are plotted in Figure 7 and show the

functional dependence of the dimensionless ratio

K T(r=b) =
SRS fo 22) - 1(e)

for several values of ©,. The other dimensionless parameters,

Ko

(2) T o= o ) = 25 Ty = ( g D S T
= E.EI_ =
T e 151

were held constant during the course of the experiment. The symbols are defined
in the nomenclature at the end of the report.

An important inference to be drawn from Figue 7 is the linear

dependence of hot spot surface temperature on the dead zone angle 6.




IV. Analytical Solution

The heat flow problem in spherical pellets formulated in Parts I and
IT is a boundary value problem. There are a variety of analytical methods which
have been developed to treat such problems. In general the methods involve
series or iterative methods of computation which have the disadvantage of being
very time consuming. The advent of modern machine methods has greétly reduced
‘this limitation and has made these techniques available for the solution of
practical problems.

Unfortunately the analytical methods deal mostly with problems which
specify either the'potential or the flow variable on the boundary. In the present
instance the specification over part of the boundary is in the form of a film
coefficient which is the ratio of heat flux to temperature differential across
the sphere-water interface. A straightforward approach to this problem which
would yield solutions in a reasonable time, even with machine methods, has not
been found. However, a method which makes use of both series and iterative
techniques has been developed that appears to offer promise of an adequate
solution.,

The approach is to change the problem to one of the standard types.

In this case the thermal flux over the surface of the sphere is specified. The
result ing temperature distribution is then determined by a series method.
Comparison of the assumed thermal flux and the calculated temperature indicates
éhe manner in which the flux assumption should be modified to achieve the constant

film coefficient condition.
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Figure 6 shows the assumed thermal flux distribution. The heat flow
density over the region near the point of contact is uniform and directed into the
Sphere .as required by the boundary condition. As a first approximation the flux
density is assumed constant over the rest of the sphere and may be modified in
successive calculations to conform with the resulting temperature distribution.

In Appendix B it is shown that the temperature distribution within the

sphere may be represented by

b X[ rc2n -(2n+1)
(3) e~ %o ® %{Qg n%l [ () 4Aon + (%) Bon }P2n(9)5 asr=b
@ 2n
() R R LR e i L T et
K, 2 b

The constants A2ps Bppn and C2n are determined from the equivalence
of the temperature and thermal flux at the clad-meat interface and from the

impressed thermal flux at the outer boundary. The equations are

2n =(2n+1)
(5) Cn = (£) d2n + (§) B2n
2n =(2n+1) :
(6) (2) [(E)-1] mn-(3) [(EE)@ +5) +1] B =0
1 1
(7) R U L R S f ag (1)P2n(p)d
(¢]
(8) i = cos 8
S



The functions Pop(u) are the Legendre polynomials of the first kind
which are orthogonal over the range 0Su<1l. qg(n) is the impressed flux
distribution.

The series of Equations (3) and (L4) omit the non-varying terms
corresponding to the zero values of the index n, although these terms
satisfy the differential equations. The reason for this omission is that
the corresponding constants A,; Bo and C, are indeterminate for a boundary
condition in terms of thermal flux density. These constants are determined by
accounting for the temperature drop in the surface film.

The temperature on the surface, r = b is obtained from Equation (3)

by summing the series at r = b,

- @
(9) e - To/(%?—) . égi [A2n * B2nJ Pop(0)

The calculation of the temperature distribution for four cases of
dead zone angle, ©,, 1is being performed at the Anacom Laboratory on the IBM
CPC equipment. Results of this calculation will indicate the temperature for
ten degree increments of © for each of the four ©p's.

The next approximation to the case of constant film coefficient is
obtained from these results by perturbing the heat flux assumption in the
required direction. The machine program must be modified to perform an
iteration since the definite integral of Equation (7) changes with the new

flux distribution. For the flux distribution shown in Figure (7), the

b
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evaluation was greatly facilitated by the fact that qg(8) is constant in each

of the two regions. In this case the integral may be evaluated from the expression

(10) ‘an(p)d@ = Pn+l(p) = Pn-1(u)
: 2n + 1

in which only the values of the Legendre polynomials at ©p are required.

These values may be computed with the aid of the recurrence formula,

(11) (n*1) Pnyy + n Ppg = (2n+¥l)uP, -

In the first iteration the evaluation of the definite integral may be
accomplished by varying the assumed thermal flux in a series of steps so that
use may be made of Equation (10). At the present time it is not planned to
perform this iteration owing to the cost of the computation. Since the problem
as formulated in Part I is in itself only an estimate as to what will take
place in the bed, it seems inappropriate to go to great expense to represent
this approximation in an exact manner. Rather these initial calculations may be
viewed as complementing the electrolytic tank work, They provide additional

bounds on the temperature variations which may occur.
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Conclusions and Further Work

The surface temperature distribution of a spherical pellet in the
vicinity of a point of contact has been determined experimentally by means of
an electrolytic tank analogue. The results show the variation of surface

temperature with the spherical coordinate © for several different values

of dead zone angle ©g. It is assumed throughout that the heat transfer coefficient

is zero in the dead zone and constant outside this region.

Similar results are expected shortly from an analytical method which
makes use of a series expansion technique., The necessary numerical calculations
are being performed by the Westinghouse Anacom Laboratory on the IBM, CPC
calculator. The results achieved analytically will differ from the electrolytic
tank results and should be somewhat more pessimistic. The reason for this is
that the analytical method is an iterative one and which needs several
iterations to converge. At present only the first approximation is planned.

The results of this study may be expanded in several directions if it
is desired. The electrolytic tank as designed can readily be used for different
conductivity ratios and with relatively minor modifications for different ratios
of clad to meat radii. The analytic technique is even more flexible in these
regards since to change ratios one merely replaces an old ratio with a new one
and repeats the computation.

The problem of modifying the film coefficient to conform more
closely with the experimental data is one which may be worthy of attention.

The present approach assuming the coefficient to be zero im the dead zone

ek




and constant outside this region is undoubtedly pessimistic. However, if the
temperatures as computed thereunder are oo large it may be necessary to explore

the possibility of refining this assumption.
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Nomenclature

Temperature in the meat or core - °F

Temperature in the clad - °F

- Component of temperature independent of r and 6 - OF

Meat conductivity - Btu/hr sq ft °F/ft.

Clad conductivity - Btu/hr sq ft °F/ft.

Film coefficient - Btu/hr sq ft °F

Heat generated per unit volume - Btu/hr cu £6.
Thermal flux density - Btu/hr sq ft.

Constant surface thermal flux density corresponding to flux case of
uniform film coefficient. Btu/hr sq ft.

Surface flux density - Btu/hr sq ft.

Voltage in analogue - volts

Voltage applied to the current density source resistors.
Electrical current density - Amps/sq ft.

Volumetric production of current - amps/cu ft.
Electrical analogue conductivity of the meat - mhos/ft.
Electrical analogue conductivity of the clad - mhos/ft.
Electrical analogue conductivity of the film - mhos/sq ft.
Radius of meat in thermal system - ft.

Radius of clad in thermal system - ft.

Radius of meat in electrical system - ft.

Radius of clad in electrical system - ft.

Resistance associated with the ith connection at the surface.
represents the film coefficient - ohms).

- 20 -
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Current density source resistors.

Spherical coordinate variables.

gl =



Appendix A
1. Basis of Current Flow Analogue
The possibility of using a current flow field to represent a thermal
heat flow field stems from the equivalence of the differential equations governing
the two cases.

In the thermal case

(12) g = = VT

In the electrical system

(13) j = - oVv

The correspondgﬁéé between these systems of equations forms the basis of the

analogy. The Jjy term is not used in the analogue but is included here to

show wﬁat is required if the transformation described in Part II is not employed.
The mere correspondance of the differential equations of an analogue

and the system it represents is not sufficient in itself to insure that the

systems are completely equivalent. It is also necessary that the particular

numerical values of the dimensionless ratios chracterizing the systems be

made equal.
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The present systems may be characterized by the following dimensionless

ratios.
Thermal Electrical
Mr = (ko/km) Te = (9¢/0y)
Top = (br/ap) Te = (be/ae)
(1k4)
By = ez Dar =9
7 A The = 6
Ty = (ke/br)(T/q) Tge = (o¢/be)(V/3)
Tgr = (b br/ke) Tee = (Nbg/ogc)

For the analogue to represent the physical system it is necessary that
Tagr = Tpe s n = 1,2, ... 6.

Representation of the Film Coefficient

As explained.earlier the film coefficient is represented by fixed
resistors connected to the oqter boundary of the tank at one degree intervals.
The numerical value of a resistor is determined from the equivalence of the
Tg's and the size of the elemental area served by one point of connection.

The resistance is

1 i1k
1 84 % ¥
(15) i = NAL Abe2 sin 65 46 Ag °

- 21 =



e = 5-1/2;5 6-1/25 .... 89-1/2. .

and substituting for A from Equation (1)

o
)\=_c7r
Bt
there results
il
(16) Ry = ohms.

T4 o, bg Sin 05 48 AP

The final selection of the resistance depends on the choice of T

and the value of 7g. For the present problem
(17) Tg = 185,13 by = 25 in.

Instead of conductivity it is more common in electrical systems to use

the reciprocal quantity, resistivity, and the value chosen for the clad resistivity,

PC’ is
R R
Pe = — = 250 ohm-cm.
e
The resulting expression for the film resistances is
(18) Ry = 93.0 ohms.

sin ©i

The resistances for 63 = 5-1/2 to 29-1/2 are connected to the tank

through switches so they may be disconnected at times when it is desired to

extend the dead-zone above B




Source Resistors
The constant current density which is supplied over the dead zone angle
is achieved by using a voltage source and large series resistors connected to

the tank at one degree intervals, The following resistance values

= (200)(93 06) = 18’720 e . = Q - ° S
(19) Rsi —’——'——"——'sin ei EH—QI oth, Ql 1/2 ) 1 1/2, 000 29 1/2

reduce the source voltage by a factor of about one hundred and adequately
meet the current density source condition., The switches which disconrect
the film coefficien£ resistors at the same time connect additional source
resistanceswhen the dead zone is extended above five degrees.

In. eomputing the value of Tg from measured analogue voltages it
is convenient to express the dead-zone current density, Jo, in terms of
the more readily measured applied voltage.

Assuming the tank voltage small compared to the applied voltage, the

applied curremt density is

(20) Jo = 585 Ve

- where the factor of two hundred is the one used in computing the source
resistors.

From Equation (1L)

(21) =BT
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and upon substituting into the expression for j, yields

22 SR 21 LS T N
ol Jo bg 260 *

Upon this result 7g from Equation (1L) is reduced to the following

form

200 ¥

v
ol 5 S ) (R
T Vg 3 (Va

e
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Appendix B

Analytical Solution of the Heat Flow Problem in a Sphere when

the Boundary Condition is Specified in the Form of a Thermal

Finres

The differential equation governing the steady flow of heat in a
conducting region is known as Laplace's equation. In spherical coordinates the
general solution of this equation, for fields which are independent of g

may be expressed in terms of an infinite series of the form

o -(n+l) ]

e 0)
(23) B e Pp(0)
n=o

where r and © are the spherical coordinates and Pp(8) are the Legendre
polynomials of the first kind of order n. To be perfectly general the solution
should include the functions Qn(G), the Legendre polynomials of the second
kind. However, all of these functions are infinite for © = O amnd are therefore
not admissible in this problem.

The Legendre polynomials are orthogonal over the range from O to 7.
It is therefore convenient to imagine that the © variation is extended from

7/2 to T and that in this region the film coefficient is symmetrical about
7/2. This in no way affects the solution in the interval from O to 7/2 but
permits the use of the arthogonal properties of the Legendre polynomials.

The symmetry about © = 7/2 eliminates the odd-order polynomials from
the solution. Separate expressions for the temperature are required for the core
and clad regions because of the different conductivities. It is convenient to
change the constants Aj, and B} slightly to make them dimensionless. Making

these changes Equation (23) takes the form

- P
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00 2n -(2n+1)

(20) To-To = %2 O [an @) ¢ Ba B [Pp(®)
¢ n=1 :
b @® 3 2n
(25) Tl = %?‘ ) 2%- Con (g) Pon(e)
(67 n=

where To 1is the contribution from the zero term of the series, as explained
earlier. The expression for the temperature in the meat does not involve the
reciprocal r terms since they are infinite at the origin.

The constants are evaluated from the boundary conditions at

= 3, 0%
(26) r = a T~ Ty kn GB = ke %%g
andxat r =_Db as = - kg %%%
@
(27) =-=-qoZl [ZnAgn - (2n+l)B2n] Py, ()
n=

which upon substitution from Equations (2L4) and (25) yield the expression

given in Equations (5), (6) and (7).

- 28 -
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