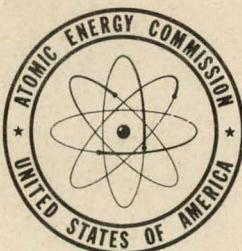


UNCLASSIFIED


AECD-4041

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

10

PHYSICS
PHYSICS

UNITED STATES ATOMIC ENERGY COMMISSION

POISON TRANSIENT AFTER POWER CUTBACK
AND ITS EFFECT ON REACTIVITY

By
C. Roderick

Photostat Price \$ 3.30

Microfilm Price \$ 2.40

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

May 14, 1952

North American Aviation, Incorporated
Downey, California

Technical Information Service Extension, Oak Ridge, Tenn.

884-001

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CARRYOVER-FIRST LINE OF TEXT

SINK

POISON TRANSIENT AFTER POWER CUTBACK AND ITS EFFECT ON REACTIVITY

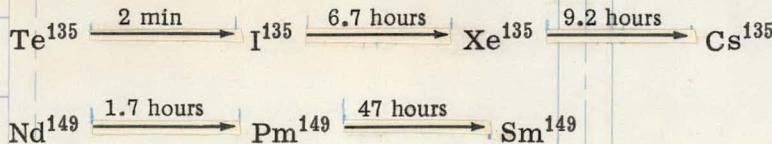
HEADLINER
CARRYOVER

By C. Roderick

CHAP. TITLE

ABSTRACT

The xenon-135 and samarium-149 transients due to rapid power cutbacks and the effects of these transients on reactivity are studied and presented in a general manner, so as to be applicable to both the Converter and PuP Reactors.


OPT. CENTER I. GENERAL

SMALL FIGS.

OPT. CENTER
SMALL FIGURES

Xenon and samarium are important and demand design consideration because of their large absorption cross-sections for thermal neutrons. The poison problem is accentuated when the reactor suffers a sudden power cutback to some fraction of operating level or to zero power (scram) since xenon and samarium continue to be formed from fission product decay but are "burned out" at a slower rate. This results in the poison building up to a maximum before it ultimately decays. It is possible for such a poison buildup to make the reactor inoperative for a period of time if the reactivity available is insufficient to override the poison.

Xenon and samarium are formed in the following manner:

II. XENON BUILDUP

A. Iodine Concentration

Assuming that iodine-135 is produced directly by the fission process in the fractional yield A, then the rate of increase of I^{135} nuclei with time is

AECD-4041

1

ACTUAL MSG NO. COLLECT NO. *Initials*

TYPED

SAME SIZE TIS Form 138 (Rev. Sep. 1953)

884 002

$$\frac{dI}{dt} = A\Sigma_f \phi - \lambda_1 I - \phi I \sigma_{a_1}$$

where λ_1 is the decay constant for iodine-135 and ϕ is the flux. Since σ_a for I^{135} is approximately equal to 7 barns and the discussion which follows considers fluxes of 10^{15} or less, the term $\phi I \sigma_{a_1}$ may be neglected in comparison with $\lambda_1 I$, ($\lambda_1 = 2.9 \times 10^{-5} \text{ sec}^{-1}$). The above equation then becomes

$$\frac{dI}{dt} = A\Sigma_f \phi - \lambda_1 I \quad (1)$$

In general, ϕ is a function of time, but for purposes of this analysis ϕ is held constant at ϕ_0 until power cutback, at which time ϕ drops to ϕ_1 , a fraction of steady operating level, ϕ_0 .

B. Xenon Concentration

Xenon is formed by the decay of iodine-135 at a rate $\lambda_1 I$ and is destroyed by neutron capture and radioactive decay, such that the rate of change of Xe with respect to time is

$$\frac{dXe}{dt} = \lambda_1 I - \lambda_2 Xe - \sigma_{a_2} Xe \phi_1 \quad (2)$$

where λ_2 is the decay constant for $Xe^{135} = 2.1 \times 10^{-5} \text{ sec}^{-1}$ and σ_{a_2} is the thermal neutron absorption cross-section for $Xe^{135} = 2.6 \times 10^{-18}$.

C. Solution of Eqs. (1) and (2)

The assumption is made that the reactor has been running for a long enough time, such that equilibrium iodine and xenon concentrations have been attained. That is:

$$I = \frac{A\Sigma_f \phi_0}{\lambda_1} \text{ p from Eq. (1)}$$

$$X = \frac{\lambda_1 I}{\lambda_2 + \sigma_{a_2} \phi_0} = \frac{A\Sigma_f \phi_0}{\lambda_2 + \sigma_{a_2} \phi_0}, \text{ from Eq. (2)}$$

These amounts of I and Xe are present at time $t = 0$ when reactor power is suddenly cut back to P_1 , and, for all practical purposes, the flux may be considered to drop to ϕ_1 .

Eq. (1) may be written

END OF TEXT

884 003

ACTUAL NO. _____ CANCEL NO. _____

TYPED

$$\frac{dI}{dt} + \lambda_1 I = A \Sigma_f \phi_1$$

subject to the condition that at

$$t = 0, I = \frac{A \Sigma_f \phi_0}{\lambda_1}$$

The solution is

$$I = \frac{A \Sigma_f}{\lambda_1} \left[(\phi_0 - \phi_1) e^{-\lambda_1 t} + \phi_1 \right]$$

HEADLINER
CARRYOVER

Eq. (2) may be written

$$\frac{dXe}{dt} + (\lambda_2 + \sigma_{a_2} \phi_1) Xe = \lambda_1 I = A \Sigma_f \left[(\phi_0 - \phi_1) e^{-\lambda_1 t} + \phi_1 \right]$$

The solution is

$$Xe = A \Sigma_f \left\{ \frac{(\phi_0 - \phi_1)}{[(\lambda_2 + \sigma_{a_2} \phi_1) - \lambda_1]} (e^{-\lambda_1 t} - e^{-(\lambda_2 + \sigma_{a_2} \phi_1)t}) + \left(\frac{\phi_0}{\lambda_2 + \sigma_{a_2} \phi_0} - \frac{\phi_1}{\lambda_2 + \sigma_{a_2} \phi_1} \right) e^{-(\lambda_2 + \sigma_{a_2} \phi_1)t} + \frac{\phi_1}{(\lambda_2 + \sigma_{a_2} \phi_1)} \right\} \quad (3)$$

CHAP. TITLE

HEADLINER

AUTHOR

TEXT

OPT. CENTER
SMALL FIGURES

As will be seen later, it is convenient to write Eq. (3) in the form

$$\frac{\Sigma_a(Xe)}{\Sigma_a U}$$

$$\frac{\Sigma_a(Xe)}{\Sigma_a U} = 0.84 \sigma_{a_2} A \left\{ \frac{(\phi_0 - \phi_1)}{[(\lambda_2 + \sigma_{a_2} \phi_1) - \lambda_1]} (e^{-\lambda_1 t} - e^{-(\lambda_2 + \sigma_{a_2} \phi_1)t}) + \left(\frac{\phi_0}{\lambda_2 + \sigma_{a_2} \phi_1} - \frac{\phi_1}{\lambda_2 + \sigma_{a_2} \phi_1} \right) e^{-(\lambda_2 + \sigma_{a_2} \phi_1)t} + \frac{\phi_1}{\lambda_2 + \sigma_{a_2} \phi_1} \right\}$$

FT. NT.
B. TO B.

where $\Sigma_f U$ has been replaced by 0.84 $\Sigma_a U$.

III. SAMARIUM BUILDUP

A. Promethium Concentration

Since neodymium has a 1.7 hour half-life, the assumption is made that 47 hour promethium is formed directly as a fission product.

END OF TEXT

884 004

ACTUAL NO. _____ GAULET NO. _____

TYPED *Sheet for 3*

$$\frac{dPm}{dt} = B\Sigma_f \phi - \lambda_3 Pm - \phi Pm \sigma_{a_3} \quad \text{with } B = 0.014$$

As in the discussion of iodine buildup, the absorption cross-section of Pm is small, and hence $\phi Pm \sigma_a$ may be neglected in comparison with $\lambda_3 Pm$

$$\frac{dPm}{dt} = B\Sigma_f \phi - \lambda_3 Pm \quad (4)$$

SINK

CHAP. TITLE

B. Samarium Concentration

Samarium is formed by the decay of promethium-149 at a rate $\lambda_3 Pm$ and is destroyed by neutron capture, such that the rate of change of Sm with respect to time is

$$\frac{dSm}{dt} = \lambda_3 Pm - \sigma_{a_3} Sm \phi \quad (5)$$

where

$$\lambda_3 = 4.1 \times 10^{-6} \text{ sec}^{-1}$$

OPT. CENTER
SMALL FIGS.OPT. CENTER
SMALL FIGURES

$$\sigma_{a_3} = 5.3 \times 10^{-20} \text{ cm}^2$$

C. Solution of Eqs. (4) and (5)

When the same conditions are applied to Eqs. (4) and (5) as were applied to Eqs. (1) and (2), the following results.

$$\text{Equilibrium Pm} = \frac{B\Sigma_f \phi_0}{\lambda_3}$$

$$\text{Equilibrium Sm} = \frac{\lambda_3 Pm}{\sigma_{a_3} \phi_0} = \frac{B\Sigma_f}{\sigma_{a_3}}$$

FT. NT.
B. TO B.

The solution of Eq. (4) is

$$Pm = \frac{B\Sigma_f}{\lambda_3} \left[(\phi_0 - \phi_1) e^{-\lambda_3 t} + \phi_1 \right]$$

The solution of Eq. (5) is

$$Sm = \frac{B\Sigma_f}{\sigma_{a_3}} \left\{ \frac{(\phi_0 - \phi_1) \sigma_{a_3}}{(\sigma_{a_3} \phi_1 - \lambda_3)} \left[e^{-\lambda_3 t} - e^{-\sigma_{a_3} \phi_1 t} \right] + 1 \right\} \quad (6)$$

END OF TEXT

Eq. 6 may be rewritten

$$\frac{\Sigma_a(Sm)}{\Sigma_a U} = 0.84B \left\{ \frac{(\phi_0 - \phi_1)\sigma_{a_3}}{(\sigma_{a_3}\phi_1 - \lambda_3)} \left[e^{-\lambda_3 t} - e^{-\sigma_{a_3}\phi_1 t} \right] + 1 \right\} \quad (7)$$

IV. EFFECT OF POISONS ON MULTIPLICATION

The effective multiplication factor for a bare reactor is given by

$$k_{eff} = k_{\infty} \frac{e^{-\mathcal{K}^2 \tau}}{1 + L^2 \mathcal{K}^2} = \eta \epsilon p f \frac{e^{-\mathcal{K}^2 \tau}}{1 + L^2 \mathcal{K}^2}$$

HEADLINER
CARRYOVER

Since there is negligible change in neutron scattering due to the presence of Xe and Sm, the fast neutron leakage will remain constant. The thermal migration area will decrease somewhat, but the thermal non-leakage probability, $1/(1 + L^2 \mathcal{K}^2)$, is not very sensitive to changes in L^2 and, for purposes of this analysis, can be considered invariant. Therefore, k_{eff} may be taken proportional to the thermal utilization, f .

If f_1 is the thermal utilization at $t = 0$, that is with steady state Xe and Sm poisons, and f_2 is the thermal utilization at time t , then

OPT. CENTER
SMALL FIGS.

$$\frac{k_{eff_2} - k_{eff_1}}{k_{eff_2}} = \frac{f_2 - f_1}{f_2} = \text{reactivity, } \rho, \text{ if at } t = 0, \text{ the reactor is critical; i.e., } k_{eff_1} = 1$$

$$\rho = \frac{f_2 - f_1}{f_2} = 1 - \frac{f_1}{f_2} = 1 - \frac{\Sigma_a U / (\Sigma_a U + \Sigma_a R + \Sigma_a P_0)}{\Sigma_a U / (\Sigma_a U + \Sigma_a R + \Sigma_a P)} = 1 - \frac{\Sigma_a U + \Sigma_a R + \Sigma_a P}{\Sigma_a U + \Sigma_a R + \Sigma_a P_0}$$

$$\rho = 1 - \frac{1 + \frac{\Sigma_a R}{\Sigma_a U} + \frac{\Sigma_a P}{\Sigma_a U}}{\frac{\Sigma_a R}{\Sigma_a U} + \frac{\Sigma_a P_0}{\Sigma_a U}}$$

where $\Sigma_a U$ = absorption cross section of the fuel

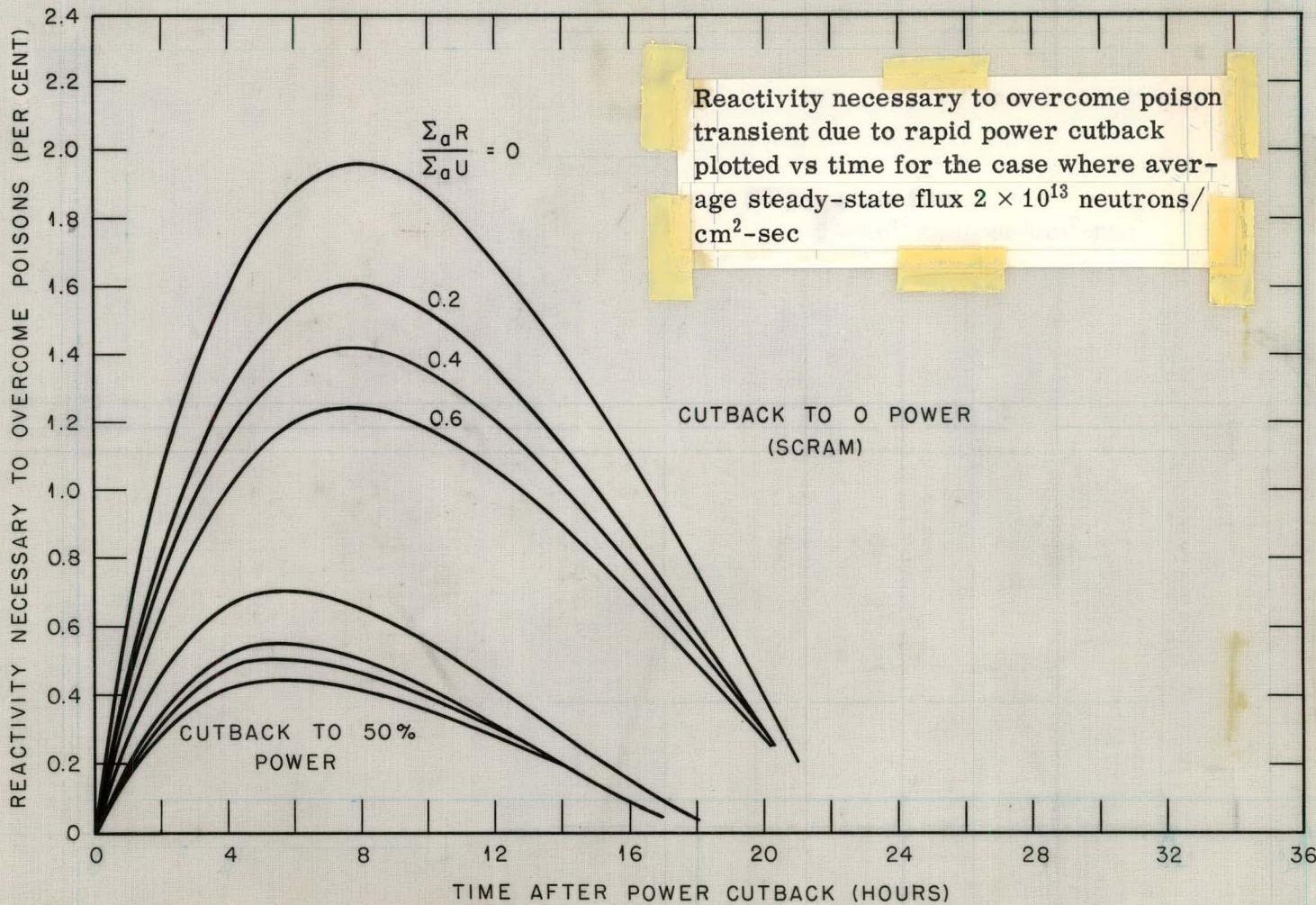
FT. NT.
B. TO B

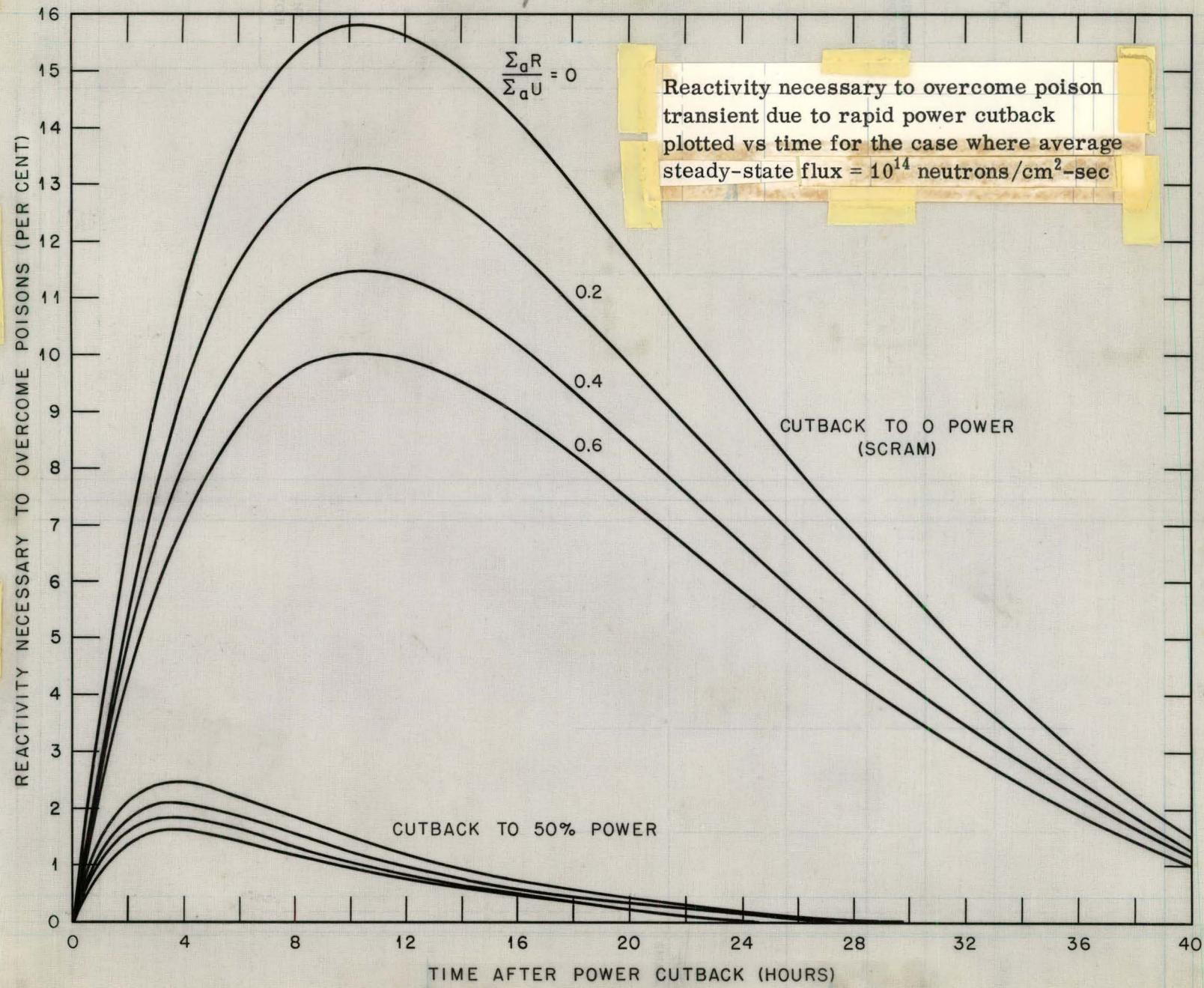
$\Sigma_a R$ = absorption cross section of the moderator and structure

$\Sigma_a P_0$ = absorption cross section of the equilibrium poison

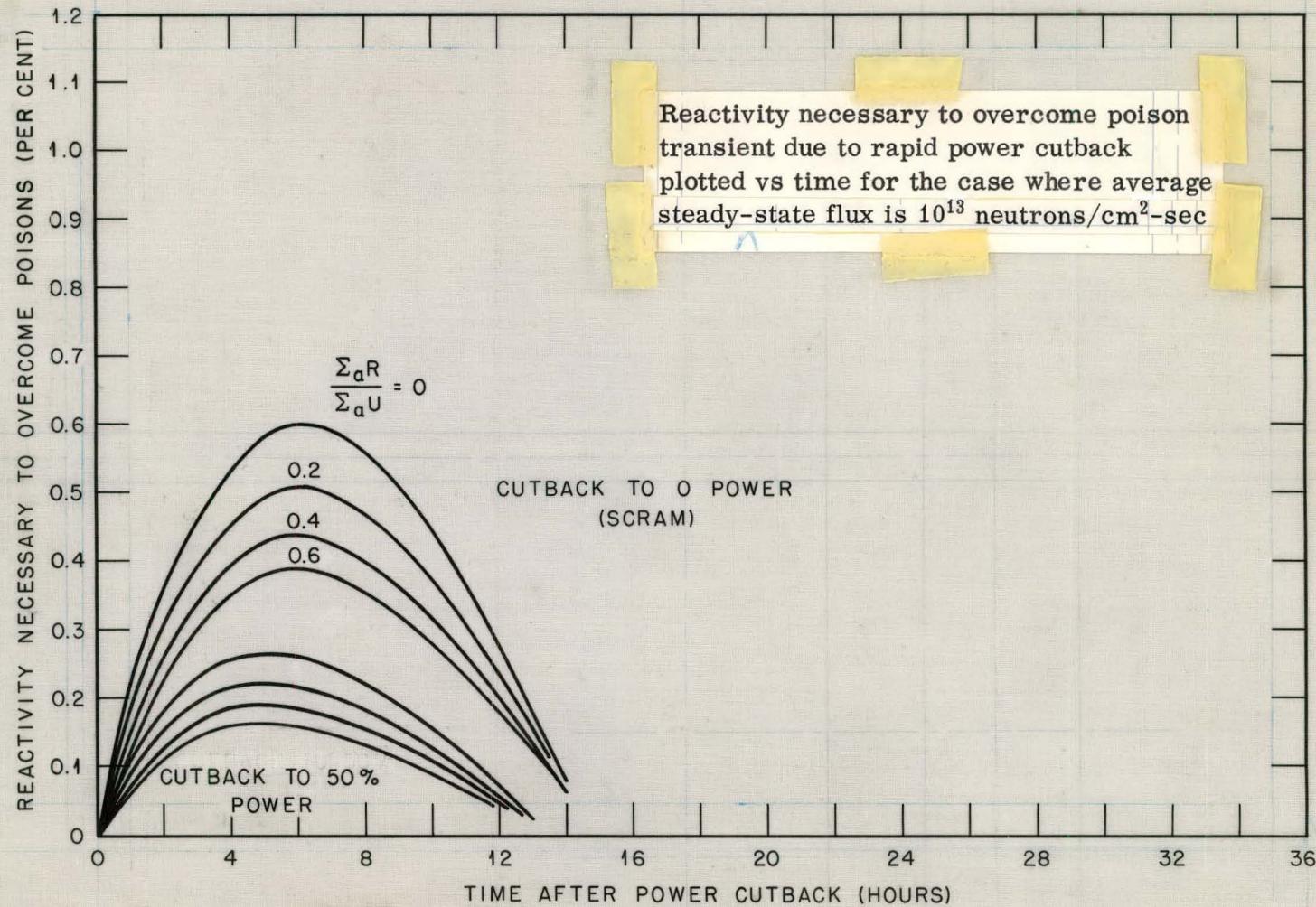
$\Sigma_a P$ = absorption cross section of the poison at time t

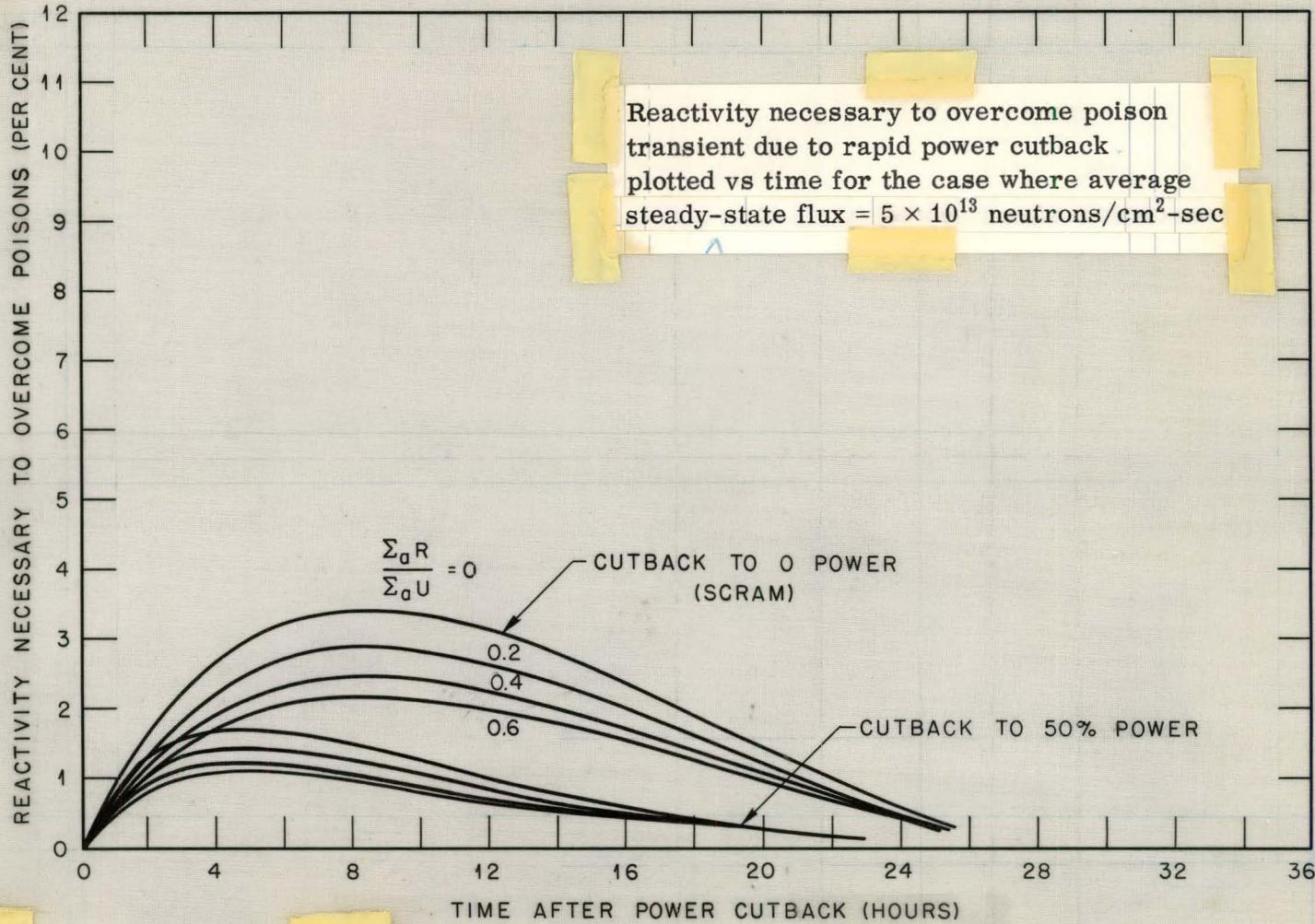
In the plotting of ρ vs t , the parameters ϕ_0 and $\Sigma_a R / \Sigma_a U$ are varied over the range of interest in the Converter and PuP Reactors. $\Sigma_a R / \Sigma_a U$ is allowed to take on the values, 0, 0.2, 0.4 and 0.6, and ϕ_1 / ϕ_0 is permitted to assume the values 0 and 0.5.


END OF TEXT


ACTUAL PAGE NO. _____ GALLEY NO. _____

TYPIST


SAME SIZE TIS Form 138 (Rev. Sep. 1953)


884 006

Reactivity necessary to overcome poison
transient due to rapid power cutback
plotted vs time for the case where average
steady-state flux = 10^{14} neutrons/cm²-sec

OPT. CENTER
SMALL FIGURESOPT. CENTER
SMALL FIGURES

SINK

CHAP. TITLE

HEADLINER
CARRYOVER

HEADLINER

AUTHOR

TEXT

ACTUAL MS PG.

GALLEY NO.

END OF TEXT

884 010

0-9

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK