OpF-9¢ 1113~

Electronic Aroma Detection Technology for Forensic and Law Enforcement Applications
Stacy-Ann Barshick, Wayne H. Griest, and Arpad A. Vass

Oak Ridge National Laboratory* A =
Oak Ridge, TN 37831 2 GEWV eD

N LL
osTl

MASTER

*Qak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp.,
for the U.S. Department of Energy under contract no. DE-AC05-960R22464.

SISTRIBUTION OF THIS DOCUMENT 18 UNLIITED

retains a 3
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do 80, for U.S. Govemment
purposes.”

. BT



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




Electronic aroma detection technology for forensic and law enforcement applications
Stacy-Ann Barshick, Wayne H. Griest, and Arpad A. Vass

Oak Ridge National Laboratory
Oak Ridge, TN 37831

ABSTRACT

A major problem hindering criminal investigations is the lack of appropriate tools for proper crime
scene investigations. Often locating important pieces of evidence means relying on the ability of trained
detection canines. Development of analytical technology to uncover and analyze evidence, potentially at
the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address
this problem, a new technology based on gas sensor arrays was investigated for its applicability to
forensic and law enforcement problems. The technology employs an array of sensors that respond to
volatile chemical components yielding a characteristic “fingerprint” pattern representative of the vapor-
phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural
networks that are trained on known aroma patterns.

Several candidate applications based on known technological needs of the forensic and law
enforcement communities have been investigated. These applications have included the detection of
aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the
manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification.
The results to date for these applications have been extremely promising and demonstrate the potential
applicability of this technology for forensic use.

Keywords: aroma detection, sensor technology, polymer sensor array, neural network, forensic
applications, drugs, accelerants, time since death

1. INTRODUCTION

Aromas are mixtures of volatile organic chemicals: each vapor sample may contain hundreds of
volatile components. The key to aroma detection is not to monitor individual chemicals but to have an
array of sensors able to respond to a large number of different chemicals. The goal of an aroma detector
is to ensure that every component in a vapor is detected by at least one sensor so that each vapor sample
gives a characteristic fingerprint from the sensor array. This is the basic operating principle behind some
recently developed devices called “electronic noses™."* It is our belief that these devices can be used in

forensic and law enforcement applications where trained canines are generally employed.

Canines are used in a number of aspects of forensic investigations such as the detection of drugs,
explosives and accelerants and in search and rescue/recovery efforts. The limits of a dog’s sense of smell,
however, have yet to be defined and the actual components of an aroma that cause an alerting response
are generally not known.® Because of this, the reliability of search dogs is often questioned and the
evidence produced from a successful search inadmissable in a court of law. What is known about the
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canine olfactory system is that odor detection occurs in the nasal cavity on a mucus-covered membrane
called the sensory mucosa.® One theory for scent detection is the “lock and key” theory which states that
each scent has a different shape which must fit within a scenting cell of the corresponding shape to be
registered by the brain.' After a scent molecule is accepted by a scenting cell, the impulse is sent to the

brain for identification.

The detection mechanism of the electronic devices mimics these main aspects of the canine (and
human) olfactory system: sensing, signal processing, and recognition.? A vapor sample is introduced
across an array of sensors where each sensor within the array exhibits a change in electrical resistance
upon interaction with the volatile components. Recognition and identification can then be achieved using
an artificial neural network. As in canine training, identification by the neural network is only as good as
the training set (i.e. the more data that is presented, the more discriminating the instrument becomes).
Despite the similarities between trained canines and the electronic noses, aroma detection technologies
have not yet been implemented in forensic or law enforcement work. The objective of this work is
determine those applications in which aroma detection technology may be used to supplement the work
of canines, to provide information at scene, and to determine the suitability for field use.

2. EXPERIMENTAL

The instrument used in this evaluation was the AromaScanner (AromaScan, Inc.,Hollis, NH).
The device operates using an array of sensors that respond to different volatile (and semi-volatile)
chemicals to yield a unique “fingerprint” for each vapor sample. The AromaScanner detects the
composition of an aroma using an array of 32 electrically conducting, organic polymer sensors. An
inking or masking process is used to put the polymer sensors on a single computer chip or board. The
organic polymers are based on heterocyclic compounds, such as aniline and pyrrole, and are sensitive to
the steric, ionic, hydrophobic and hydrophilic variations of a sample. Adsorption and subsequent
desorption of volatile chemicals at the polymer surface causes temporary changes in electrical resistance.
The kinetics of the reversible adsorption and desorption processes occur rapidly at room temperature.

2.1 Sample handling

The variables that can affect a change in sensor response, temperature and humidity, need to be
precisely controlled to achieve consistent results. This is accomplished by adjusting the temperature and
humidity of the reference air and by conditioning the sample under the same conditions prior to analysis.
The AromaScan Sample Station incorporates an incubator to provide a constant temperature (35°C) and
a humidifier to adjust the water content (absolute humidity) of the reference air. Since the sensors zero
themselves during the calibration part of the data acquisition process it is important to ensure that the
reference air has a similar humidity to the sample. Matching the humidity of the reference air to that of
the sample tends to reduce the effect of water and enhances the volatiles in the vapor phase of the sample.

The two sampling techniques used with the AromaScanner are equilibration and dynamic
stripping. Equilibration is generally used when the characteristic compounds of the aroma are more
volatile. In this technique, the sample is placed in a disposable sealed pouch (capacity ~500 mL), filled
with reference air, and allowed to equilibrate in the Sample Station. During the equilibration period, the
volatiles accumulate in the headspace which is then drawn from the pouch and pulled across the sensors.




Dynamic stripping is reserved for samples that are wet or have aromas of lower volatility. In this
technique, the headspace does not need to equilibrate because it is constantly being replenished with the
conditioned reference air. Samples are placed in bottles (capacity ~500 mL) for dynamic stripping and
short lengths of PTFE tubing are used to connect the inlet and outlet ports to the reference air and sensor

array, respectively.

2.2 Data acquisition

Acquisition methods consist of a four-step sequence of actions to transport the headspace from
the sample across the sensors. Depending on the requirements of the sample, step sequence and duration
can be programmed using the software. Each step in the sequence represents a change in valve state that
controls the flow of air across the sensors. A typical valve sequence and duration is: reference (0.5 min),
sample (2.0 min), wash (1.0 min), and reference (1.5 min). In the first sequence, reference air is sampled
to give a stable baseline reading. The headspace from the sample is then introduced in the second
sequence. A sampling time is chosen such that the sensor response has equilibrated during that interval.
Volatiles are removed from the sensors during the wash sequence. A wash solution of 2% butanol in
water is typically used. The final valve sequence is generally reference air to remove any remaining wash
vapors and to allow the sensors to re-stabilize.

2.3 Data processing

After acquisition of the raw data, data manipulation software is used to develop databases
characteristic of a specific aroma. This is done by selecting the region of data with the smallest deviation
in pattern. The regions of greatest instability are those at the start and end of the runs. These are
generally not used. The selected region is added to the database in slices representing segments of five
seconds each over the time interval selected.

The databases can then be mapped to provide a pictorial representation, or AromaMap, of pattern
similarity or difference. The AromaMap is a multi-dimensional compression of the data into a 2-
dimensional plot defining the magnitude of the sample aroma differences by distance and direction. The
statistical technique is based on Sammon Mapping.® The AromaMap can be used to check the similarity
between known and unknown data for initial classification and to provide a means of assessing data
patterns used for neural network training. For example. if two patterns overlap, the neural network will
have difficulty in distinguishing them. Measurement of the Euclidian distance between aroma patterns of
different samples provides a quantifiable indication of the difference between two samples. The higher
the Euclidian distance, the greater the difference in aromas.

Databases can also be used to train the artificial neural network software so that specific aromas
can be identified. The training process used by the software is known as supervised feed-forward using a
three-layer network. The pattern recognition technique used is fuzzy-back propagation. The neural
network is trained using selected descriptor databases. The database name is used by the neural network
as the global classifier description and the data slice name is used as the descriptors for subclassifiers.
Once trained and validated, the neural network can be used to provide real-time aroma identification
during data acquisition or can be used for classification of database files.



3. RESULTS AND DISCUSSION

Several candidate applications based on known technological needs of the forensic and law
enforcement communities have been evaluated using electronic aroma detection technology. These
applications included drug detection for deterring the manufacture, sale, and use of drugs of abuse,
cadaver decomposition research for determining time since death, and arson investigation for identifying
accelerants in fire debris. The preliminary results obtained for each of these applications will be
described, as well as recommendations for continued research and related future applications.

3.1 Drugs

Drug standards were analyzed using the equilibration technique and by direct sampling out of the
actual drug containers. Equilibration time was 30 minutes at 35°C. For direct sampling analysis, the drug
containers or bottles were held directly under the sniffing port of the analyzer. The drugs analyzed
included cocaine (1 g), opium (5 g), marihuana leaf (1 g), morphine sulfate (50 mg), amphetamine (100
mg), heroin hydrochloride (5 g), and pseudo scent formulations for cocaine, marihuana, and heroin. The
reference air humidity was set to 1.0 g/m’. The method used for analysis was reference (0.5 min), sample
(2 min), 2% alcohol wash, and reference (1.5 min).

Pure drug standards were analyzed using the equilibration method and by sniffing the contents
directly out of the bottle. For most of the drug standards analyzed, little response relative to the
reference air was observed using either sampling technique. This may be a result of the low vapor
pressure® of these chemicals, not using enough material in the analysis, or the use of pure drug standards
rather than street drugs which are known to have trace impurities. Distinctive fingerprints were obtained
for the heroin and opium samples and the patterns were reproduced with either sampling technique. The
fact that fingerprints were obtained for these two drugs may be due to the higher amounts of drug (5 g)
used in the analysis relative to the amounts used for the other drugs (<1 g). In addition to the drug
standards, three pseudo drug scents, cocaine, marihuana, and heroin were also analyzed. These
formulations, developed by Sigma Chemical Co., are used for training drug detection dogs. As for the
cocaine and marihuana drug standards, the corresponding pseudo scents did not show characteristic
patterns. The pseudo formulation for heroin did produce a weaker but somewhat characteristic
fingerprint. The normalized sensor response for heroin (thick line) and the pseudo heroin scent (thin line)
are shown in Figure 1. Results are shown for the average of two analyses. Although this pseudo
formulation is used as a canine training aid, it is interesting to note that the electronic nose indicates that
the two sample aromas are somewhat different.

The fact that poor responses were observed for the majority of drugs suggests that further work
needs to be performed to determine the cause of the problem. It may be determined that the vapor
pressures of these compounds are too low to produce an appreciable “aroma” or that lengthy
equilibration times are needed making this technology unsuitable for remote drug detection. An
alternative use may be for detecting product tampering or for the detection of trace manufacturing
impurities such as the volatile solvents used in production processes.
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Figure 1. Sensor response for heroin (thick line)
and pseudo heroin scent (thin line).

3.2 Time since death

Samples consisted of soil specimens collected from underneath cadavers in various stages of
decomposition. An aliquot (1 g) of the soil collected was diluted by adding 10 g of sand and 5 mL of
water to create a slurry. A 10 uL aliquot of this slurry was pipetted into a sample pouch. Samples were
analyzed using the equilibration technique with an equilibration time of 30 minutes at 35°C. The absolute
humidity of the reference air was set at ~8.0 g/m®. The method used for analysis was reference (0.5 min),
sample (2 min), acetone wash (1 min), and reference (6.5 min).

Despite the fact that trained canines can detect human versus animal remains even after several
years of decomposition, little is known about the aroma emanating from a corpse. The odor of death is
extremely characteristic and pungent consisting of a multitude of volatile chemicals including, phenols,
sulfides, indoles, and fatty acids. An understanding of decomposition chemistry may lead to better canine
training methods, complementary instrumentation for search and recovery, and determination of
forensically important information such as time since death.” It is the latter application that was
investigated using the AromaScanner. Soil samples collected from beneath different cadavers were
analyzed using the equilibrium technique. The samples were acquired from a hispanic male (HM), a
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white female (WF), a white male (WM), an unknown corpse (UNK), a dog, and a control soil (CTRL).
The fingerprints for each of the samples were easily distinguished (Figure 2). The numbers indicate the

date the sample was taken.
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Figure 2. AromaMap of cadaver soil samples.

These results bring up the question - why are the fingerprints different? By looking at the actual
sensor response for each of the cadaver samples, it is obvious that the fingerprint patterns are virtually the
same. The Euclidian distances between the samples are very small (0.354 to 2.249) indicating that the
aromas are similar. This can be seen by looking at the actual sensors response for the soil samples, Figure
3. In this figure, the sensor pattern is reproduced for each of the samples with only slight differences.

The fact that the fingerprint is virtually identical for these samples implies that the aroma is also
the same. This suggests that something other than the chemical composition of the aroma is causing the
difference in the patterns displayed in the AromaMap. The other factor that can be considered to cause
this difference is concentration. This theory was tested by obtaining soil samples from the same cadaver
but taken at different days of decomposition. The fingerprint patterns for these samples were taken at 36,
73, 98 days of decomposition. If the actual intensities of these samples are compared without
normalizing the sensor response, a clear indication of a concentration effect is seen. This is shown in
Figure 4 where the intensity of the sensor response increases with increasing decomposition interval.
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Figure 3. Sensor response for soil samples taken from different cadavers.
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Figure 4. Sensor response as a function of decomposition interval.
(bottom = 36 days, middle = 73 days. top = 98 days)




If the Euclidian distances between the control and the cadaver soil samples are plotted, Figure 5,a
correlation can be seen relating to the decomposition interval (converted to accumulated degree days
which account for average daily temperatures). This information with further time points may prove
useful as a means of determining time since death.
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Figure 5. Euclidian distance versus decomposition interval.

3 3 Accelerants and fire debris

Accelerants and residues were analyzed using the equilibration method. Fire debris and accelerant
residues were collected from a controlled burn of an abandoned house. Aliquots of neat accelerant (1-2
L) were spread across a 1-2 ft area of carpeting and ignited. After a burn period, the fire was |
extinguished and samples were collected in sample pouches and paint cans. Neat accelerants (100 pL) or
fire debris samples (~10 g) were placed into sample pouches and allowed to equilibrate at 35°C for 30
minutes prior to analysis. The reference air humidity was set to ~7.0 g/m’. The method used for analysis
was reference (0.5 min), sample (2 min), 2% alcohol wash (1 min), and reference (1.5 min).

The use of chemical sensor arrays and neural networks has been applied to the analysis of
automotive fuels.® This study was performed to expand upon that work and to determine the applicability
of the technology for the analysis of fire debris. The accelerants tested as neat chemicals included
gasoline, kerosene, mineral spirits, lacquer thinner, motor oil, and diesel fuel. An AromaMap of the
resulting databases for the neat chemicals :ndicated that all were distinguishable except mineral spirits and
kerosene which showed some overlap in pattern. Two separate analysis at 100 pL and 10 mL of neat
chemical were unable to detect appreciable differences in the fingerprints of these two chemicals under
the conditions used. These results are shown in the AromaMap in Figure 6.
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The databases for the neat accelerants and known fire debris samples were then used to train the
neural network. Each accelerant (gasoline, kerosene, and diesel fuel) was used as a global classifier and
the subclassifiers were neat, strong residue, and weak residue. Unknown fire debris samples that had
been collected in paint cans were transferred to sample pouches (2 pouches per sample were prepared),
analyzed, and classified using the trained neural network. The samples corresponding to diesel fuel were
classified with the correct global class and the subclass varied between weak and strong residue. The
samples corresponding to gasoline and kerosene, however, were incorrectly classified as diesel fuel or
unknown. It is believed that the incorrect classification was due to the much higher humidity of the
unknown samples relative to the samples used to train the neural network. To test this theory, drierite
was added to the unknown samples in an attempt to remove the excess water. Re-analysis of the
unknown samples showed no decrease in sample humidity and no change in sample classification. The
drierite was also analyzed by placing it in a sample pouch and allowing it to equilibrate. Both unknowns
corresponding to kerosene were identified with the correct global class and with a subclass of weak
residue. The unknown samples corresponding to gasoline were also classified with the correct global w
class and a subclass of either neat or strong residue. The sensor response for the strong gasoline residue
sample (thick line) and the unknown sample (thin line) are shown in Figure 8 and for neat gasoline (thick
line) and the drierite (thin line) used to dry the unknown sample in Figure 9.
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Figure 8. Sensor response for gasoline residue (thick line)
and the corresponding unknown sample (thin line).
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Figure 9. Sensor response for neat gasoline (thick line)
and drierite sample (thin line).

4_CONCLUSIONS

Preliminary results for the applications evaluated were quite promising. Further work will be
necessary to define fully the utility of aroma detection technology for law enforcement work. In this
study it was found that most of the pure drug standards analyzed did not have sufficient vapor pressure
for this technique. Aroma detection technology, however, may be useful in related drug applications
such as detecting product tampering or manufacturing impurities. The results for the time since death
study were extremely promising. A correlation was found by measuring the Euclidian distances between
the control and the decomposition samples and plotting this versus the decomposition interval. Further
sample points will need to be taken to understand fully this potential correlation and its relation to
estimating time since death. The arson work is the most complete to date and the results have been
extremely promising. The main problem to overcome is the issue of humidity. To eliminate this problem,
the sample introduction technique needs to be addressed. The preliminary work done with sorbent
sampling may be the answer to this problem.
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