Caun 96-2719
LA-UR o dF- 97014 -]

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: ON OPTIMAL STRATEGIES FOR UPGRADING NETWORKS
AUTHOR(S): S. O. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi, R. Ravi,
R. Sundaram

g 4
= b Lk
SUBMITTED TO: Symposium on Discrete Algorithms(SODA) 5 E? @ 3 023

January, 1997
New Orleans, LA Q S T E

MASTER

DISTRIBUTION OF THIS DOCUMENT IS ﬂem

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

LOS AlAMOS e AmeeNantioics 575is

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

On Optimal Strategies for Upgrading Networks
(Extended Abstract)

S.O. Krumke ! H. Noltemeier! M.V, Marathe? S.S.Ravi® R.Ravi? R. Sundaram’
Tuly 2, 1996

Abstract

We study budget constrained optimal network upgrading problems. Such problems aim at finding
optimal strategies for improving a network under some cost measure subject to certain budget constraints.
Given a edge weighted graph G(V, E), in the edge based upgrading model, it is assumed that each edge
e of the given network has an associated function c(e) that specifies the cost of upgrading the edge by a
given amount. A reduction strategy specifies for each edge e the amount by which the length ¢(e) is to
be reduced. In the node based upgrading model anode v can be upgraded at an expense of cost(v). Such
an upgrade reduces the cost of each edge incident on v by a fixed factor o, where 0 < ¢ < 1. For a given
budget B, the goal is to find an improvement strategy such that the total cost of reduction is at most the
given budget B and the cost of a subgraph (e.g. minimum spanning tree) under the modified edge lengths
is the best over all possible strategies which obey the budget constraint. Define an (o, 3)-approximation
algorithm as a polynomial-time algorithm that produces a solution within o times the optimal function
value, violating the budget constraint by a factor of at most .

The results obtained in this abstract include the following,

1. We show that in general the problem of computing optimal reduction strategy for modifying the net-
work as above is NP-hard.

2. In the node based model, we show how to devise a near optimal strategy for improving the bottleneck
spanning tree. The algorithms has a performance guarantee of (21nn, 1).

3. For the edge based improvement problems we present improved (in terms of performance and time)
approximation algorithms.

4. We also present pseudo-polynomial time algorithms (extendable to polynomial time approximation
schemes) for a number of edge/node based improvement problems when restricted to the class of
treewidth-bounded graphs.

"Department of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany. Email:
{krumke,noltemei}@informatik.uni-wuerzburg.de.

’Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM 87545, USA. Email:
madhave@c3. lanl.gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

*Department of Computer Science, University at Albany - SUNY, Albany, NY 12222, USA. Email: ravi@cs.albany.edu.

4GSIA, Camegie Mellon University, Pittsburgh, PA 15213, Email: ravi+@cmu. edu.

>Delta Trading Co. Work done while at MIT, Cambridge MA 02139. Email: koods@theory.lcs.mit.edu. Research
supported by DARPA contract N0014-92-J-1799 and NSF CCR 92-12184,

1 Introduction

Several problems arising in areas such as communication networks and VLSI design can be expressed
in the following general form: Enhance the performance of an underlying network by carrying out upgrades
at certain nodes and/or edges of the network [32, 31, 25].

Consider the following scenario which best illustrates the type of problems we investigate. A large com-
munication company is approached by a client with the requirement to interconnect a set of cities housing
the client’s offices (e.g. banks with high transaction rates between branches). The company has a list of
feasible links that it can use to construct a network to connect these cities. Each link has a construction cost
associated with it. One of the main concerns of the client is to build a communication network of minimum
cost. This is the ubiquitous minimum spanning tree problem. With the advent of optical communication
technology, the client would like to upgrade the communication network and has allocated a fixed budget to
do so. In communication networks, upgrading a node corresponds to installing faster communication equip-
ment at that node. Such an upgrade reduces the communication delay along each edge emanating from the
node. Similarly upgrading an edge can be achieved by replacing the old line with a new optical cable. In
general, there is a cost for improving each link (node) in the existing network by a unit amount. The goal is
to design a strategy to upgrade the links of the network so that the total cost of upgrading the links (nodes)
is no more than the fixed budget, and the cost of a minimum spanning tree for the upgraded network is the
least over all the possible improvements of the network satisfying the budget constraint.

Although substantial work has been done in findng optimal networks (e.g. spanning trees) in graphs,
there has been little work on how to modify a graph so as to optimize the cost of the network in the re-
sulting graph. In this paper, we formulate and study such network upgrade problems and call them budget
constrained optimal network upgrading problems.

The paper is organized as follows. Section 2 introduces the node and edge based upgrading models.
In Section 3 we formally define the problems under study. Section 4 briefly summarizes our results. In
Section 5 we briefly justify our claims that our formulation is indeed general and robust. In Section 6 we
present our approximation algorithm for the bottleneck node upgrading problem on general graphs and es-
tablish its performance guarantee. In Section 7 give pseudo-polynomial time algorithms for node upgrading
problems. It is shown in Appendix B how these algorithms can be converted into fully polynomial approx-
imation schemes. In Section 8 we treat the edge upgrading problem under study. Appendix C contains the
hardness results,

2 Node versus Edge Based Models for Network Upgrade

Throughout the presentation we assume that G = (V, E) is a connected undirected graph. Letdbea
nonnegative edge-weight function defined on G. For a spanning tree T = (V, ET) of G, we the bottleneck-
delay of T under d is defined to be the weight of the heaviest edge in T'. The total weight of T under the
cost function d is the sum of the weights d(e) of the edges e € T'. Finally, the diameter of T (with respect to
d) is the length of a longest simple path in T'. We now describe our node based and the edge based upgrade
model.

In the node based upgrading model we are given the following situation: With each edge ¢ € E from
the graph G, the nonnegative number £(e) represents the length or delay of the link e. When a node v is
upgraded, the delay of each edge incident on v decreases by a fixed factor o, where 0 < ¢ < 1. Thus, if
e = (v, u} is an edge, its delay after upgrading exactly one of v and u is of(e); the delay of e falls to g%¢(e),
if both v and v are upgraded. The cost of upgrading a node v is denoted by cost(v). For a subset V' of V,
the cost of upgrading all the nodes in V’, denoted by cost(V"), is equal to Y vey COst(v)

In the edge based upgrading model, with each edge e € E, there are associated three nonnegative values
as follows: £(e) denotes the length of the edge e and £y;n(€) denotes the minimum length to which the edge e
can be reduced. Consequently, we assume throughout the presentation that £in(€) < £(e). The nonnegative

value c(e) indicates how expensive it is to reduce the length of e by a certain amount: shortening e by ¢ units
will involve a cost of tc(e).

Given a budget B, we define a feasible reduction to be a nonnegative function r defined on F with the
following properties: For all edges e € F, £(e) — r(e) > fmin(e) and X cpc(e) -r(e) < B. Ifrisa
(feasible) reduction, in G we can consider the graph G with edge weights given by the “reduced lengths”,
namely (£ — r)(e) := £(e) — r(e) (e € F). We denote the total weight of a minimum total length spanning
tree with respect to the weight function £ by MST g (£). Similarly, if r is a reduction in G then MST g (£ — r)
denotes the weight of a MST with respect to the reduced lengths £(e) — r(e) (e € E).

3 Problem Formulations and Notion of Approximation

We are now ready to define the problems studied in this paper. Our formulation of these problems is
based on the work of [29]. A generic node/edge based network upgrade problem (f1, f2, §), is defined by
identifying two minimization objectives , - f; and f,, - from a set of possible objectives, and specifying
a membership requirement in a class of subgraphs, - S. The problem specifies a budget value on the first
objective, fi, under one cost function, and seeks to find a network having minimum possible value for the
second objective, fa, under another cost function, such that this network is within the budget on the first
objective. The solution network must belong to the subgraph-class S.

For example, the node based upgrading problems studied here can be formulated as follows. Given a
node and edge weighted graph G as above, a speedup factor 0 < ¢ < 1 and a bound B, (Node-cost,
Bottleneck, Spanning Tree) is to upgrade a set V' C V of nodes of cost cost(V”) at most B such that the
bottleneck delay of a bottleneck spanning tree in the resulting graph is minimized. The problems (Node-
cost, Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are defined similarly.
Similarly, the edge based upgrading problem can be stated as: The (Edge-cost, Total-weight, Spanning
Tree)is to find an (edge-) reduction r of cost at most B such that MST (£ — r) has the least possible value.

We argue in Section 5 that this approach for modeling network upgrade problems is both general as
well as robust. Next, we now discuss what we mean by finding approximation algorithms for such upgrade
problems.

Definition 3.1 We say that a polynomial-time algorithm is an («, 3)-approximation algorithm for one
of the problems (1, f2, §) defined above, if for each instance of the problem, it produces a solution
in which the first objective (f,) value, is at most o times the budget, and the second objective (1)
value, is at most 5 times the minimum for any solution that is within the budget on f;. The solution
produced must belong to the subgraph-class S.

For example, an (o, 3)-approximation algorithm for (Edge-cost, Total-weight, Spanning Tree) finds
areduction r of cost at most 3 times the budget B such that —MI\%STMG(;—:% < «, where r* denotes an optimal

edge-reduction on G of cost at most B.

4 Summary of Results

- For the first time, we study the complexity and approximability of a number of node weighted and edge
weighted upgrade network improvement problems. We consider three objectives to evaluate the cost of
the spanning tree in the modified network: the bottleneck delay, the diameter and the total cost. We show
that the problems are hard even for very restricted classes of graphs. The hardness results contrast with
the results in [25] about the complexity of edge based upgrading problems. For instance, while (Edge-
cost, Total-weight, Spanning Tree) is polynomial time solvable on trees [25], we show that (Node-cost,
Total-weight, Spanning Tree) and (Node-cost, Diameter, Spanning Tree) are NP-hard even on a chain.
Given the hardness of finding optimal solutions, we focus on devising approximation algorithms with good
performance guarantees.

1. We believe that the discussion in the previous section provides a sound formulation for studying
network improvement problems. Following [29], we can show that the formalism is both robust
and general. It is more general because it subsumes the case where one wishes to minimize some

Cost Measures - Bottleneck Diameter Total Cost
Node-Cost polynomial-time | (weakly NP-hard) | (weakly NP-hard)
N a, 1_+ €) (1,1+¢)

The row is indexed by the budgeted objective. As mentioned all the results directly extend to finding Steiner
trees instead of spanning trees. Similar results also hold for edge based problems.

functional combination of the two criteria. It is more robust because the quality of approximation is
independent of which of the two criteria we impose the budget on. Section 5 provides justification for
these claims. _

2. For the edge based improvement problems we present improved (in terms of performance and time)
approximation algorithms. The algorithms are based on an elegant technique introduced by Megiddo
[30] and can be extended to obtain approximation algorithms for more general network design prob-
lems such as those considered in [15, 16]. This includes problems such as generalized Steiner trees,
k-connected subgraphs, etc. '

3. We show that the bottleneck upgrading problem (Bottleneck, Node-cost, Spanning Tree) is NP-
hard for any fixed 0 < ¢ < 1 even when there are unit costs on the nodes, i.e. cost(v) = 1 for all
v € V and even for bipartite graphs.

We provide a polynomial time approximation algorithm for (Bottleneck, Node-cost, Spanning
Tree) with a performance guarantee of (21n n, 1). We counterbalance this approximation result with
the following lower bound result: Unless NP C DTIME(n!°81ogn), there can be no polynomial
time approximation algorithm for (Node-cost, Bottleneck, Spanning Tree) with a performance
guarantee of (o, §) forany o < Inn and 8 < 1/p, where 0 < ¢ < 1 is the speedup factor given in
the instance.

Our results constitute the first approximation algorithms for node weighted network improvement
problems in the literature. The technique for establishing the logarithmic performance is of indepen-
dent interest and might be useful in obtaining bounds for other node based improvement problems.

4. For the class of treewidth-bounded graphs we give algorithms with improved time bounds and per-
formance guarantees for each of the three performance measures of a tree mentioned above. This is
done in two steps. First we develop psendopolynomial-time algorithms based on dynamic program-
ming. We then present a general method for deriving fully polynomial-time approximation schemes

(FpAS) from the pseudopolynomial-time algorithms. The results for treewidth-bounded graphs are
summarized in Table 1.

The FpAs for a number of node/edge based network improvement problems restricted treewidth-
bounded graphs are based on fairly general techniques. Our research in this direction is motivated
by the fact that communication networks encountered in practice usually have a small treewidth (e. g.
rings, trees, near-trees, series parallel graphs, outerplanar graphs, etc).

|
|
i
|
Table 1: Results for node based spanning tree upgrade prdblems restricted to treewidth-bounded graphs.
|
|
|
1

4.1 Related Work

To the best of our knowledge, the problems considered in this paper have not been previously studied.
The node upgrading model used in this paper was introduced in a recent paper by Paik and Sahni [31],
although they considered different problems than the ones considered here. Frederickson and Solis-Oba 1
[12] considered the problem of increasing the weight of the minimum spanning tree in a graph subject to
a budget constraint where the cost functions are assumed to be linear in the weight increase. In contrast to
the work presented here, they showed that the problem is solvable in strongly polynomial time. Berman {3]

3

considers the problem of upgrading edges in a given tree to minimize its shortest path tree weight and shows
that the problem can be solved in polynomial time by a greedy algorithm. Phillips [32] studies the problem
of finding an optimal strategy for reducing the capacity of the network so that the residual capacity in the
modified network is minimized. Reference [25] considers network improvement problems under a different
model where there are cost functions associated with improving edge weights.

Finally, some important questions remain unsolved. these include approximation algorithms for the
node based minimum total cost spanning trees, minimum diameter spanning trees, etc.

5 Formulation: General and Robust

In Section 3, we claimed that our formulation for bicriteria problems is robust and general. In this
section, we justify these claims.

We claimed that our formulation is robust because the quality of approximation is independent of which
of the two criteria we impose the budget on. To see this note that there are two natural ways to formulate
a bicriteria problem: (i) (fi, f2, S)- find a subgraph in § whose f; -objective value is at most B and which
has minimum f,-objective value, (ii) (f2, f1, S)- find a subgraph in S whose f2-objective value is at most
B and which has minimum f; -objective value. Using ideas similar to the ones in [29], we can show that

Theorem 5.1 Any («, 5)-approximation algorithm for (fi, f2, S) can be transformed in polynomial
time into a (5, «)-approximation algorithm for (f3, f1, S).

Thus our approximation results for (f;, f2, S) problems in the following sections will also yield approx-
imation algorithms for the symmetric problem { f2, f1, S).

For justifying our claims of generality, let f; and f; be two objective functions and let us say that we
wish to minimize the sum of the two objectives f; and f,. Call this an (f;+ f2, S) problem. Let BiAlg(G, B)
be any (o, §)-approximation algorithm for (f;, f2,) on graph G with budget B specified for the objective
fi. Using a binary search on the range of values of f; with an application of the given approximation
algorithm, BiAlg, at each step of this search we obtain the following theorem.

Theorem 5.2 Let BiAlg(G, B) be any («, 8)-approximation algorithm for (f1, f, S) on graph G with
budget B under A. Then, there is a polynomial time max{«, 3}-approximation algorithm for the
(fi + f2, S) problem.

A similar argument shows that an (a, 8)-approximation algorithm BiAlg(G, B), for a (f1, f2, S) prob-
lem can be used to find devise a polynomial time o - # approximation algorithm for the (f; - f5, S) problem.
A similar argument can also be given for other basic functional combinations.

The above discussion points out that a good solution to the (f1, f2, S)-network upgrade problem yields
a “good” solution to any unicriterion version (the converse is not necessarily true). It is in this sense that we
say our formulation of network upgrade network design problems is general and subsumes other functional
combinations.

6 Approximation Algorithm for (Bottleneck, Node-cost, Spanning Tree)

In this section, we present our approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).
Recall that in the (Bottleneck, Node-cost, Spanning Tree) problem we are given a bound § on the
bottleneck-delay of a tree and the goal is to upgrade a set V' of the vertices of minimum cost such that
the upgraded graph contains a bottleneck spanning tree of delay at most 8.

6.1 Overview

We can assume without loss of generality that all the delays on the edges of the given network are taken
from the three element set {§/0?, §/p, §}. If the delay of an edge is greater than 8/, then vertex upgrading
cannot reduce its delay value to 6. Thus, in the sequel we will assume that the delay of each edge is one of
the three above values.

Heuristic-(Bottleneck, Node-cost, Spanning Tree)

Let G’ := bottleneck(G, £, §) and let Cy, . . . , Cy be the connected components of G”.
Initialize S to empty and F to the set of edges in G’.

Repeat while we have more than one component

LetC = {Cj ..., Cgy} be the set of clusters, where ¢ = |C| is number of remaining components.
Find anode v € V in the graph G minimizing the ratio

AWV ph W -

. cost(v) + T, (v, Cj)
min 1 - n .
2<r'<q {C1....,.Cu}CC T

Here, the cost ¢(v, C}) is defined in the following way: If v € C; or v is adjacent to a node in
C; viaan edge of delay 6/, then c(v, C;) := 0. If all the edges from v to C; are of delay §/¢2,
then c(v, Cj;) is defined to be the minimum cost of a vertex in C; adjacent to v. If there is no
edge between v and any node in Cj, then ¢(v, C}) := +o0.

7 Letv be thenode and Cj, . . . , C, be the components in C chosen in Step 6 above, where w.L.o.g.
v € Cy. Let f(v) = cost(v) + X7 (v, Cy).

8 Letey,..., e beasetof edges in G connecting v to Cy, . . . , C, respectively.

9 Add the edges ez, .. . , €, to F so as to merge Cy,C, ... ,C, into one component. Add v and
the other endpoint of each edge from {ez, ... , e, } whose delay is §/0% to S.
Note that the total cost of the nodes added to the solution S is exactly f(v).

10 Output S as the solution.

Figure l : The approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).

We first give a brief overview of our algorithm. The algorithm maintains a set S of nodes, a set F' of
edges and a set C of clusters which partition the vertex set V' of the given graph G. The set C of clusters
is initialized to be the set of connected components of the bottleneck graph bottleneck(G, ¢, d), which is
defined to be the edge-subgraph of G containing only those edges e which have a delay £(e) of at most 4.
The set S of upgrading nodes is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To this end, in each iteration it
determines a node v of minimum quotient cost.

The algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree) is shown in Figure 1. Step 6 can
be implemented in polynomial time by using ideas similar to those in [21]. We omit the details due to lack
of space. -

Itis easy to see that the set S output by algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree)
is indeed a valid upgrading set, since all the edges added to F in Step 9 will be of delay at most & after
upgrading the nodes in S. In the sequel, we use V* to denote an optimal upgrading set; i.e. an upgrading set
of minimal cost OPT := cost(V™*). We now proceed to prove the performance guarantee provided by the
algorithm. Our proof (of Theorem 6.4) relies on several lemmas, which are presented below. We estimate
the cost of the nodes added by the heuristic in each iteration by first establishing an averaging lemma and
then using a potential function argument. The notion of a claw decomposition which is introduced below
will be a crucial tool in the analysis.

Definition 6.1 A claw is either a single node or a K 1, graph for some r > 1. If there are at most
two nodes in the claw then we can choose any of the nodes as its center. Otherwise, the node
with degree greater than 1 is the unique center. The vertices in the claw different from the center
are said to be the fingers of the claw. A claw with at least two nodes is called a non-trivial claw.
Let G be a graph with node set V. A claw decomposition of V in G is a collection of node-
disjoint nontrivial claws, which are all subgraphs of G and whose vertices form a partition of V.

The following theorem can be proven by induction on the number |V'| of nodes.

Theorem 6.2 Let G be a connected graph with node set V, where |V| > 2. Then there is a claw
decomposition of V in G.

6.2 An Averaging Lemma

Lemma 6.3 Let v be a node chosen in Step 6 and let C denote the total cost of the nodes added
to the solution set S in this iteration. Let there be ¢ clusters before v is chosen and assume that in
this iteration r clusters are merged. Then: C/r < OPT/q.

Proof: Let T* be an optimal tree with the nodes V* be the upgraded nodes. Let C = Cy,...,C, be the
clusters when the node v was chosen and let T*(v) be the graph obtained from 7 by contracting each C;
to a supernode. T*(v) is connected and contains all supernodes. We then remove edges (if necessary) from
T™(v) so as to make it a spanning tree. Note that all the edges in this tree have original delay at least § /.

Let H C V* be the set of nodes in the optimal solution that are adjacent to another cluster in 7*(v).
Clearly, the cost of these nodes is no more than OPT. Take a claw decomposition of 7 (v). We now obtain
a set of claws in the graph G itself in the following way: Initialize E’ to be the empty set. For each claw in
the decomposition with center C] and fingers C3, ... , C] we do the following: For each edge (C7, C}) the
optimal tree 7 must have contained an edge (u, w) with v € C] and w € C}. Notice that since this edge
was of original delay at least §/p, at least one of the vertices v and w must belong to H C V*, We add
(u, w) to E'.

It is easy to see that the subgraph of GG induced by the edges in E’ consists of disjoint nontrivial claws.
Also, all edges in the claws were of original delay at least 4/ and the total number of nodes in the claws is
at least g. We need one more useful observation: If a claw center is not contained in H, then all the fingers
of the claw must be contained in H, since the edges in the claw were of original delay at least &/ o.

Let H. be the set of nodes from H acting as centers in the just generated claws. Let H‘fs/ ¢ denote
the fingers of the czlaws contained in H which are connected to their claw center via an edge of delay
8/ 0, whereas H ;f/ ¢ stands for the set of fingers adjacent to the center via an edge of délay &/ and also
contained in H. For each claw with exactly two nodes we designate an arbitrary one of the nodes to be the
center. Then by construction, H., H; 4/¢ and Hf‘s/ ¢ are disjoint. Therefore,

OPT > > cost(u)+ » cost(u M
uEH.:UH‘;/“’2 UGH;/Q

For anode u € H,, let N,, denote the number of vertices in the claw centered at u. We have seen thatif a
center is notin H, then all the fingers belong to the optimal solution. Thus, we can estimate the total number
of nodes in the claws from above by summing up the cardinalities of the claws with centers in H and for all
other claws adding twice the number of fingers. Hence

> Nu+ 2[H}V9| > |{w : wbelongs to some claw}| > gq,)
‘uEHc

since the total number of nodes in the claws is at least q.
We now estimate the first sum in (1). If « € Hc, then the quotient cost of u is ar most the cost of u plus
the cost of the fingers in the claw that are in H f/ ¢" divided by the total number of nodes in the claw. This

in turn is at least C'/r by the choice of the algorithm in Step 6. By summing up over all those centers, this
leads to

i

> cost(w) > = Z N,. 3

uEHcUHj/Qz " ueH.

Now, for a node » in H ;/ ¢, its quotient cost is at most cost(«) /2, which again is at least C/r. Thus

C
> cost(u) > > 22 = 2|H‘;/"|-—.)
uEH}V" UEII:/‘? r r

Using (3) and (4) in (1) yields

c sty @ C
OPT >) cost(u)+ Y, cost(v) > — (2 N, +2|H/?|] > ~-q. '6))
weHLH @ ueH;/e ueHe

This proves the claim. : (]

Theorem 6.4 Algorithm Heuristic-(Bottleneck, Node-cost, Spanning Tree) is a polynomial time
(21nn, 1)-approximation algorithm for (Bottleneck, Node-cost, Spanning Tree).

Proof: Let OPT denote the cost of an optimal upgrading set. Assume that the algorithm uses f iterations of
the loop and denote by vy, . . . vy the vertices chosen in Step 6 of the algorithm.

Let ¢; denote the number of clusters after choosing vertex v; in this iteration. Thus, for instance,
$o = g, the number of components at the beginning of this iteration in (S, F). Let the number of clusters
merged using vertex v; be r; and the total cost of the vertices added in that iteration be c;. Then we have
¢j = ¢j—1 — (r; — 1). Since r; > 2, we have ¢; < ¢j—1 — '%f'j. By Lemma 6.3: r; > flgp}-’%’— for all
0 < 5 < f. Thus, we obtain the recurrence

e
¢jS¢j—1—5'—OTT—=¢J'—1'(1—2_(J)PT)- ©

Observe that ¢; > 2 for j = 0,..., f -1, since the algorithm does not stop before the f-th iteration. Notice
also that ¢y > 1. We now use an analysis technique due to Leighton and Rao [27] to complete the proof as
in [21]. Using the recurrence (6), we obtain .

¢,«s¢of[(1—2_gl,r). ™

Taking natural logarithms on both sides and simplifying using the estimate In(1 + z) < z, we get

f
2. OPT-ln(z—i) > e ®)

=1

Notice that by Lemma 6.3 we have ¢; < OPT - ¢;i - < OPT < 2 - OPT, and so the logarithms of all the
terms in the product of (7) are well defined. Note also that ¢ < n and ¢; = 1 and hence from (8) we get
Ele ¢j < 2-OPT-In(n). Notice that the total cost of the nodes chosen by the algorithm is exactly the
sum Zle c;. This completes the proof. m

7 Treewidth-Bounded Graphs

In this section we will provide improved algorithms for the node upgrading problems under study if re-
stricted to the class of treewidth-bounded graphs. Treewidth-bounded graphs were introduced by Robertson
and Seymour (see [34, 2] and the references therein). Independently, Bern, Lawlér and Wong [4] introduced
the notion of decomposable graphs. Later, it was shown [2] that the class of decomposable graphs and the
class of treewidth-bounded graphs coincide. A class of treewidth-bounded graphs can be specified using a

7

finite number of primitive graphs and a finite collection of binary composition rules. We use this character-
ization for proving our results. A class of treewidth-bounded graphs I' is defined in [4]. For completeness
the definition is also given in the appendix. Let I' be any class of decomposable graphs. Let thié maximum
number of terminals associated with any graph G in I" be k. Following [4], it is assumed that a given graph
G is accompanied by a parse tree specifying how G is constructed using the rules and that the size of the
parse tree is linear in the number of nodes. Moreover, we may assume without loss of generality that the
parse tree is a binary tree. The first main result of this section is the following theorem which states the ex-
istence of pseudopolynomial-time algorithms for the node weighted network improvement problems given
in the Table 1, when restricted to the class of treewidth-bounded graphs. Note that the theorem is symmetric
in that we could interchange the budget and objective values.

Theorem 7.1 Every problem in Table 1 can be solved exactly in O((n - B)®(1))-time for any class
of treewidth bounded graphs with no more than & terminals, for fixed £ and a budget B on the first
objective.

Proof: Bottleneck Problem: Suppose that the maximum cost of nodes that can be upgraded is B. Let « be
a partition of the terminals of G. We keep the following information along with each partition 7 of terminals
of Gandeach0 < i< B: »

CostT = Minimum bottleneck cost of a tree for each block of 7, such that the terminal nodes oc-
curring in each tree are exactly the members of the corresponding block of w, no pair of
trees is connected, every vertex in G appears in exactly one tree, and the cost of nodes
updated in the tree is exactly i.

For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is
defined to be +oo.

Note that the number of cost values associated with any graph in T is O(k* B). We now show how the
cost values can be computed in a bottom-up manner given the parse tree for G. To begin with, since I is
fixed, the number of primitive graphs is finite. For a primitive graph, each cost value can be computed in
constant time, since the number of forests to be examined is fixed. Now consider computing the cost values
for a graph G constructed from subgraphs G and G, where the cost values for Gy and G have already
been computed. Notice that any forest realizing a particular cost value for G decomposes into two forests,
one for G; and one for G, with some cost values. Since we have maintained the best cost values for all
possibilities for G; and G2, we can reconstruct for each partition of the terminals of G the forest that has
minimum cost value among all the forests for this partition obeying the diameter constraints. We can do this
in time independent of the sizes of G; and G5 because they interact only at the terminals to form G, and we
have maintained all relevant information. ,

Hence we can generate all possible cost values for G by considering combinations of all relevant pairs
of cost values for G; and G». This takes time O(k*) per combination for a total time of O(k’c B?). Asin[4],
we assume that the size of the given parse tree for G is O(n). Thus the dynamic programming algorithm
takes time O(k*nB?). This completes the proof of the bottleneck problem.

The case of total cost spanning tree is similar to the bottleneck spanning tree and is omitted. The only
difference is that we need to keep track of the total cost of the spanning tree instead of bottleneck cost. In
case of the diameter problem, we need to keep more information about each subtrees. Specifically, we need
to keep information about the distance of each node from every other node in the tree in a particular partition
as well certain other distances. We omit the discussion due to lack of space.

The pseudopolynomial-time algorithms described in the previous section can be used to design fully
polynomial-time approximation schemes (FPAS) for these problems for the class of treewidth-bounded
graphs. We describe this in the Appendix.

8 Fast Approximation Algorithms for Edge-Improvement Problems

In this section we are going to present a fast approximation algorithm for the (Edge-cost, Total-weight,
Spanning Tree) problem. This algorithms improves on the results in [25] in terms of performance and

8

running time. Recall that in the (Edge-cost, Total-weight, Spanning Tree) problem, the task is to find
an edge-improvement strategy r of cost at most B such that MST (¢ — r) is as small as possible. In [25]
(Edge-cost, Total-weight, Spanning Tree) has been shown NP-hard.
8.1 The Basic Ideas for an Improved Improvement Algorithm

Lety > 0 be an accuracy parameter. Define an interval by 7 := [1"7"11 ffél}} £min(e), i"—;—ll rgxeaExf(e)].
Note that if MST g (£ — r*) denotes the total weight of a minimum spanning tree after an optimal reduction
r* then }{MSTG (€ —r*) € Z. For each K € T we define compound weights hx for the edges of G in the
following way:

. K £(e) if K > B/c(e),
= £e) —t+ —=cle)t) = .
hi(€) tG[O,l(g)llIllmin(e)] (() —t+ B ()) {emi,,(e_) + K &) =tmin(e))c(e) "‘mg‘ 202% if K < Bfc(e) 19)

Thus, for each edge e, the compound weight hx (e) viewed as a function of K is a linear function with
- exactly one breakpoint at B/c(e). For K < B/c(e), the function has the constant value £(e), while for
K > B/c(e) it has slope ﬂfﬂ'}%ﬂk@ If we plot the compound weight hx (e) for each edge e € E,
for increasing K we get a linear function with exactly one breakpoint at B/c(e). It is easy to see that, given
two edges e and ¢/, their ordering with respect to the compound weights hx changes at most twice when K
varies. Also, these at most two values of K, can be computed in constant time.

The proofs of the following two lemmas can be found in the appendix.

Lemma 8.1 fMSTq(hg) < (1+7)K'forsome K’ > 0, then MSTg(hk) < (14+7)K forall K > K'.
Let K™ be the minimum value K € Z such that MST¢(hx) < (1+7)K. Then K* < OPT/~.

Lemma 8.2 If the ordering of the edges with respect to their hx«-weights is known, we can con-
struct a tree T and a reduction r in time O(n + mlog 3(m, n)) with the following properties:

(i) The cost 3_, . c(e)r(e) of the reduction r is at most (1 + v)B.
(i) The weight (¢ — r)(T) in the modified graph is no more than (1 + 1/7)OPT.

Lemma 8.2 suggests finding an ordering of the edges in the graph according to their compound weight
at K. Basically we wish to sort the set {hx=(e1),...,hx+(en)} where K* is not known. However, for
any K we can decide whether K* < K or K* > K by one MST computation: We compute an MST with
respect to edge weights given by hx and compare its weight to (1 + v) K. If the weight is bounded from
above by (1 +) K, then we know that K < K*. Otherwise, we can conclude that K* > K.

Using the idea from above in conjunction with a standard sequential sorting algorithm, we could find
the ordering of the edges at K* by O(m log m) minimum spanning tree computations. However, using the
elegant technique of Megiddo [30], we can speed up the algorithm substantially.

8.2 Speeding Up the Algorithm

The crucial trick is to use an adaption of a sequentialized parallel sorting algorithm such as Cole’s
scheme [7]. Recall that a comparison essentially consists of a MST computation, so comparisons are ex-
pensive. Using the parallel sorting scheme, we basically accept a greater total number of comparisons, but
we can use the parallelism to group the independent comparisons made in one stage of the parallel machine
and then answer all of them together efficiently. .

Cole’s algorithm uses m processors to sort an array of m elements in parallel time O(log m). The
algorithm is simulated serially, employing one “processor” at a time, according to some fixed permutation,
letting each perform one step in each cycle. When two values hx-(e) and hx# (e') have to be compared,
we compute the critical values where the ordering changes. The crucial observation is that the intersection

points can be computed independently, meaning that each of the “processors” does not need any knowledge
about the critical points computed by the other ones. A

After the first of the O(log m) stages, we are given at most 2m critical values of K, say K; < K, <

.- < K, with r < 2P. For convenience set K¢ := —oo and K, := +oo. Using binary search, we find

an interval [K;, K;;,], where K™* must be contained.

This is done in the following way: Start with low := —oo and high := +o0. Then compute the median
M := K|(y41)/2) of the K; in O(r) time. We then decide whether K™ < M by computing a MST T with
edge weights given by has. If hp(T) < (1 +)M, then we know that K* < M. Otherwise, K* > M.
In the first case, we set high := M and remove all values K; with K; > M from our set of critical values.
Similarly, in the second case we set low := M and remove the values smaller than the median M. Clearly,
this can be done in O(r) time. Since M was the median of the K; the number of critical values decreases
by a factor of one half. : '

Then, the total time effort Time(r) for the binary search satisfies the recurrence:

Time(r) = Time(r/2) + Tmst + O(r),

where Tyst is the time needed for one MST computation. The solution of the recurrence is Time(r) =
O(r + Tustlogr). Since r € O(m), this shows that we obtain the interval [K;, K;1] containing K* by
O(log m) MST computations plus an overhead of O(m) elementary operations.

Notice that by construction the interval [K;, K] does not contain any critical points in the interior. If
K; = K;y;, then we know that K* = K; = K;;,. This way we have determined K*. In this case we
can compute the order of all edges with respect to kg« in O(m log m) time and stop the modified sorting
algorithm. Lemma 8.2 then enables us to compute a reduction with the properties (i) and (ii) stated there.

Otherwise, the interior of [K;, K ;1] is nonempty. We compute a minimum spanning tree T’ with respect
to hg; and test whether hk, (T) < (147) K. If this is the case, then K* < K;, which implies that K* = K;
since we know that K* € [K;, K;41]. Again, the adopted sorting procedure can stop after having computed
the ordering of all edges with respect to hg-.

It remains the case that K; < K* < K;;;. In this case it is easy to see that the ordering of the edges
from the first round with respect to their hz-«-weights coincides with the ordering with respect the weights
given by h,, where 7 € (K, K;11) is any interior point of the interval [K;, K;4].

Thus, at the end of the the first round, our algorithm has either found K™ and thus the ordering of all
edges in the graph with respect to their - -weights, or we can answer the comparisons from the first round
using the ordering of the edges with respect to h...

The above process is repeated O(log m) times, once for each parallel step of the parallel sorting ma-
chine. Since in each of the O(log m) rounds we answer all comparisons of the parallel sorting scheme,
upon termination we have found the ordering of the edges with respect to the hx«-weights. We then use
Lemma 8.2 to compute a reduction strategy r.

The time needed for the algorithm above can be estimated as follows: There are O(log m) cycles alto-
gether. In each round we evalnate O(m) intersection points. Also, we need O(log m) minimum spanning
tree computations plus the overhead of O(m). This results in an overall time of O(m log m+ Tistlog® m),
where Tyst = O(n + mlog #(m, n)) is the time needed for computing a minimum spanning tree. This
gives us the following theorem:

Theorem 8.3 For any fixed v > 0 the algorithm presented above is a (1 +1/7,1 +—y)-approximation
algorithm for (Edge-cost Total-weight, Spannlng Tree). The running time of the algorithm is
O(nlog? n + mlog? nlog B(n, m)). O

Acknowledgements: We thank Cindy Phillips and Emanuel Knill for several useful conversations regarding
network improvement problems., -

References

[1] S. Amborg, J. Lagergren and D. Seese, “Easy Problems for Tree-Decomposable Graphs”, J. Algo-
rithms, Vol. 12, 1991, pp. 308-340.

[2] S. Amnborg, B. Courcelle, A. Proskurowski and D. Seese, “An Algebraic Theory of Graph Problems”,
J. ACM, Vol. 12, 1993, pp. 308-340.

[3] O. Berman, “Improving The Location of Minisum Facilities Through Network Modification,” Annals
of Operations Research, 40(1992), pp. 1-16.

[4] M.W. Bern, E.L. Lawler and A L. Wong, “Linear-Time Computation of Optimal Subgraphs of De-
composable Graphs”, Journal of Algorithms, 8, 1987, pp. 216-235.

[5]1 H.L. Bodlaender, “Dynamic programming algorithms on graphs with bounded treewidth”, Proceedings
of the 15th International Colloquium on Automata, Languages and Programmmg, Springer-Verlag,
LNCS 317, 1988, pp. 105-119

[6] J.P. Cohoon and L. J. Randall, “Critical Net Routing,” IEEE Intern. Conf. on Computer Design, 1991,
pp. 174-177.

[71 R. Cole, “Parallel Merge Sort”, SIAM J. Computing, 17(4), August 1988, pp. 770-785.

[8] J. Cong, A. B. Kahng, G. Robins, M. Sarafzadeh and C. K. Wong, “Provably Good Performance Driven
Global Routing,” IEEE Transactions on Computer Aided Design, 11(6), 1992, pp. 739-752.

[91 P. Crescenzi and V. Kann, “A compendium of NP optimization problems,” Manuscript, (1995).

[10] W. Cunningham, “Optimal Attack and Reinforcement of a Network,” J. ACM, 32(3), 1985, pp. 549-
561.

[11] U. Feige, “A threshold of In » for approximating set cover,” To appear in the Proceedings of the 28th
Annual ACM Symposium on the Theory of Computation (1996).

[12] G.N. Frederickson and R. Solis-Oba, “Increasing the Weight of Minimum Spanning Trees”, Proceed-
ings of the Sixth Annual ACM-SIAM SODA’ 96, March 1996.

[13] H. N. Gabow, Z. Galil, T. H. Spencer and R. E. Tarjan, “Efficient Algorithms for Finding Minimum
Spanning Trees in Undirected and Directed Graphs,” Combinatorica, 6 (1986), pp. 109-122.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

[15] M. X. Goemans and D. P. Williamson, “A general approximation technique for constrained forest prob-
lems”, In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’92)
(January 1992), pp. 307-316.

[16] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D .P. Williamson, “Improved
approximation algorithms for network design problems”, In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’94) (January 1994), pp. 223-232.

[17] R. Hassin, “Approximation schemes for the restricted shortest path problem” Mathematics of Opera-
tions Research 17, 1 (1992), 36-42.

Fa
[18] Dorit S. Hochbaum and David B. Shmoys, “A unified approach to approximation algorithms for
bottleneck problems”, Journal of the ACM, 33(3):533-550, July 1986.

11

[19] D.S. Johnson, “Approximation algorithms for combinatorial problems”, J. Comput. System Sci. 9,
1974, 256-278.

[20] B. Kadaba and J. Jaffe, “Routing to Multiple Destinations in Computer Networks,” IEEE Trans. on
Communication, Vol. COM-31, Mar. 1983, pp. 343-351.

[21] P. Klein, and R. Ravi, “A nearly best-possible approximation for node-weighted Steiner trees,” Pro-
ceedings of the third MPS conference on Integer Programming and Combinatorial Optimization
(1993), pp. 323-332.

[22] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Multicasting for Multimedia Applications,” Proc.
of IEEE INFOCOM ’92, May 1992.

[23] V. P. Kompella, J. C. Pasquale and G. C. Polyzos, “Two Distributed Algorithms for the Constrained
Steiner Tree Problem,” Technical Report CAL-1005-92, Computer Systems Laboratory, University of
California, San Diego, Oct. 1992.

[24] V.P.Kompella, J. C. Pasquale and G. C. Polyzos, “Multicast Routing for Multimedia Commumcauon >
IEEE/ACM Transactions on Networking, 1993, pp. 286-292.

[25] S. O. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister, “Modifying Net-
works to Obtain Low Cost Trees,” to appear Proc. Workshop on Graph Theoretic Concepts in Computer
Science (WG’ 96) June 1996.

[26] D. Karger and S. Plotkin, “Adding Multiple Cost Constraints to Combinatorial Optimization Problems,
with Applications to Multicommodity Flows,” Proc. 27th Annual ACM Symp. on Theory of Computing
(STOC’95), May 1995, pp. 18-25.

[27] ET. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommod-
ity Flow Problems with Application to Approximation Algorithms”, Proceedings of the 29th Annual
IEEE Conference on Foundations of Computer Science, 1998, pp. 422-431

[28] C. Lund and M. Yannakakis, “On the Hardness of Approximating Minimization Problems,” Proc.,
25th Annual ACM Symp. on Theory of Computing (STOC’93), May 1993, pp. 288-293.

[29] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz and H. B. Hunt III, “Bicrite-
ria network design problems”, In Proceedings of the 22nd International Colloquium on Automata,
Languages and Programming (ICALP’95) (1995), vol. 944 of Lecture Notes in Computer Science,
pp. 487-498. '

[30] N. Megiddo “Applying parallel computation algorithms in the design of serial algonthms” Journal of
the ACM 30, 4 (October 1983), 852-865.

[31] D. Paik and S. Sahni, “Network Upgrading Problems,” Networks, Vol. 26, 1995, pp. 45-58.

[32] C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM STOC’93, May 1993, pp.
288-293.

[33]1 E Preparata, “New parallel-sorting schemes”, IEEE Transactions on Computing C-27 (1978), 669—
673.

[34] N. Robertson and P. Seymour, “Graph Minors IV, Treewidth and Well-Quasi-Ordering”, J. Combin.
Theory Ser. B, 48, 1990, pp. 227-254.

«*

[35] J. Valdes, R.E. Tarjan and E.L. Lawler, “The Recognition of Series-Parallel Digraphs”, SIAM Journal
on Computing, 11, 1982, pp. 1-12

12

[36] A. Warburton, “Approximation of pareto optima in multiple-objective shortest path problems”. Oper-
ations Research 35 (1992), 70-79.

[37] Q. Zhu, M. Parsa and W. Dai, “An Iterative Approach for Delay Bounded Minimum Steiner Tree
Construction,” Technical Report UCSC-CRL-94-39, University of California, Santa Cruz, Oct 1994.

13

Appendix

A Proofs for the Edge Improvement
A.l Proof of Lemma 8.1:
The proof uses the following two results:

Lemma A.1 ([25]) Define F on Ry by F(K) := ¥5T¢(x) Then F is monotonically nonincreasing
onRyo.

Corollary A.2 ([25]) f MST¢g(kk') < (14 v)K' for some K’ > 0, then MST¢(hx) < (14 v)K for
alK > K'

In view of Lemma A.1 and Corollary A.2 it suffices to show that MSTg(hz) < (1 + K), where
K= OPT/~. Let r* be an optimal feasible reduction and let 7* be a minimum spanning tree in G with
respect to the weight function £ — r*. Let OPT := (£ — r*)(T™) be its total weight in the graph with the
edge lengths resulting from the optimal reduction r*.

For each edge e € T™ we can estimate the weight k. (e) in the following way

hi(e) (e(e) — b4 2ocle) (t)) < fe) = r*(e) + —g—c(e)r*(e). (10)

— min
tE[0,£(€) —£min(€)]

Summing up the inequalities in (10) over all e € T, we obtain:

Ry (T™) gopT+%B=0PT+I"f. (11)

We have seen that the weight of T* under % is no more than OPT + K. Consequently, the minimum
spanning tree with respect to h z has hz-weightat most OPT+ K = yK + K = (1-++)- K. This completes
the proof. O

A.2 Proof of Lemma 8.2:

Given the ordering of the edges according to their weights, we can use the minimum spanning tree
algorithm of Gabow et. al. [13] to compute a minimum spanning tree with respect to the hx«-weights,
without actually knowing these weights. The ordering suffices for this purpose. The algorithm given in [13]
runs in time O(n + mlog B(m, n))

Let T be a minimum spanning tree with respect to hx+. We define a reduction r on T in the following
way:

r(e) = 0 if K* > B/c(e),
" | l(e) = Lmin(e) if K* < B/c(e).
By construction of the reduction r it then follows that

higs(T) = Z L(e) —r(e) +

eeT
Since hgs < (14 v)K* and K* < OPT/ this yields:
(£—r)(T) < (1+7)K* < (1+7)OPT/y = (1+1/7)OPT.

K* ‘
S (r(e) > (¢~ r)(T).

Es

14

The cost .1 r(e)c(e) of the reduction r can be estimated as follows. We have that

= > eler(e) < UORIG 2 e(@)r(e) = hie(T) < (147K
ec ec >0

Dividing the last chain of inequalities by %‘ yields that) . r(e)e(e) < (14 7)B.

We have just shown that there is a reduction r on the particular tree T which involves a budget of at
most (1 +) B and which reduces the weight of T to at most (1 4+ 1/v)OPT. In fact, if we knew K* we
could construct the reduction r from above in time O(n) once we know the tree T.

But by the assumption of the lemma, we only have knowledge only about the ordering of the edges and
not about K™ or hx«. Nevertheless, this is not grave. It is easy to see [25] that, given a tree and a budget,
Wwe can construct an optimal reduction on this tree for that budget in O(n) time by a Greedy-type algorithm
that repeatedly reduces the length of the cheapest edge until the budget is exhausted. Thus, if we compute
such a reduction r’ on our tree T with the budget set to (1 +) B, the length of T under £ — ' will be at
most (¢ — r)(T'), which we have shown to be bounded from above by (1 + 1/~)OPT. o

B Fully Polynomial-Time Approximation Schemes

The basic technique underlying our algorithm for the diameter case is approximate binary search using
rounding and scaling, a method similar to that used by Hassin [17] and Warburton [36].

As in the previous subsection, let G be a treewidth-bounded graph. Let B be a bound on the cost of
the nodes to be upgraded. Let ¢ be an accuracy parameter. Without loss of generality we assume that %
is an integer. Let Alg(G, £, cost, C') be a pseudopolynomial time algorithm for (Total-weight, Node-cost,
Spanning Tree) on treewidth-bounded graphs, i.e. Alg(G, £, cost, C) outputs a tree of upgraded length no
more than C' and minimizes the cost of the upgrading setS. Let the running time of Alg be ?(n, C) for some

polynomial p. For carrying out our approximate binary search we need a testing procedure Test which is
shown in Figure 2.

Procedure Test(A):

Input: G - weewidth bounded graph, C - bound on length of the upgraded tree, M - testing parameter,
Alg - a pseudopolynomial time algorithm for (Total-weight, Node-cost, Spanning Tree) on treewidth-
bounded graphs, € - an accuracy parameter.

1 Let [W(‘n—_l;j denote the cost function obtained by setting the cost of edge e to Lﬁ%;)fnJ-

2 If there exists a C in [0, 2=1] such that Alg(G, L‘Ame-T)J , cost, C') produces a spanning tree with
total upgraded length at most C' then output LOW otherwise output HIGH.

Output: HIGH/LOW.

Figure 2: Test Procedure.

Claim B.1 summarizes the property of Procedure Test(A). Finally, Algorithm FPAS-Upgrade shown
in Figure 3, which uses Test, describes the overall strategy to compute near optimal solution. In the sequel

we denote by OPT the optimal upgraded length of a mininum spanning tree T after upgrading a vertex set
of cost at most B.

Claim B.1 If OPT < M then Procedure Test(M) outputs LOW. If OPT > M (1 + €) then the result
of Test(M) is HIGH. '

®Note that (Total-weight, Node-cost, Spanning Tree) is symmetric to the problem (Node;cost. Total-weight, Spanning
Tree).

15

Algorithm FPAS-Upgrade
Input: G - treewidth-bounded graph, B - bound on the node upgrading cost, Alg- a pseudopolynomial
time algorithm for (Total-weight, Node-cost, Spanmng Tree) on treewidth-bounded graphs, € - an
accuracy parameter.
1 Let Cp; be an upper bound on the total weight of an MST after upgrading a node set of cost no
more than B. Let LB = 0 and UB = Cj,;.
while UB > 2LB do

Let M = (LB+UB)/2.

if Test(M) returns HIGH then set LB = M else set UB = M(1 +¢).
Run Alg(G, [WJ cost, C) for all C in [0, 2(2=1)] and among all the trees with total up-
grading cost at most B the tree with the lowest total weight (in the upgraded network).
Output: A spanning tree with total upgrading cost at most B and with total weight at most (1 4 ¢) times
that of the optimally upgraded minimum spanning tree.

h H W N

Figure 3: Approximation scheme on treewidth-bounded graphs.

Lemma B.2 Algorithm FPAS-Upgrade o"utputs a spanning tree with total node weight at most B
and with total length in the upgraded network of at (1 4-) OPT.

Proof: It follows easily from Claim B.1 that the loop in Step 2 of Algorithm FPAS-Upgrade executes
O(log Cy;) times before exiting with LB < OPT < UB < 2LB.
Since

£(e) (e) OPT . n—1
2 B! S 2 B/ S TBejm o) S)

eeT* eeT*

we get that Step 5 of Algorithm FPAS-Upgrade definitely outputs a spanning tree. Let T be the tree output.
Then we have that the length #'(e) of T' in the upgraded network is given by

' n— £(e) n— Yet(e)
;Z(e) < LBe/(1)§LB Tin = <LB5/(1) (;‘LLBe/(n— 1! +1).

Here 7., ke € {1,1/0,1/0%}, and reflects the way each edge has been upgraded in the heuristic and an
optimal solution respectively. But since Step 5 of Algorithm FPAS-Upgrade outputs the spanning tree
with minimum length we have that

762(6) Iﬁ?ee(e
z:I'LB&:/(n 1)‘I - Z |'LBe:/(n)'|

eeT c€T*
Therefore §
£(e)
¢(T) < LBe/(n — Bl | 4eLB< o0 PT < :
(T) e/(n—1) ;,I'LBE/)J—i—s eEZT‘n (e) + €OPT < (1+¢)OPT
This proves the claim.
0
As mentioned before, similar theorems hold for the other problems in Table 1 and all these results extend
directly to Steiner trees. ’

16

te)=4/e

Figure 4: Reduction from Set Cover for the hardness of (Bottleneck, Node-cost, Spanning Tree).

C Hardness Results

C.1 Hardness of Bottleneck Tree Upgrading Problems

Theorem C.1 (Bottleneck, Node-cost, Spanning Tree) is NP-hard for any fixed speedup factor 0 <
¢ < 1 and bound § > 0 on the bottleneck delay of the tree even for bipartite graphs and even if
cost(v) =1forallv e V.

Proof: We show that Set Cover ([SP5] in [14]) reduces to (Bottleneck, Node-cost, Spanning Tree)
in polynomial time. An instance of Set Cover consists of a set of ground elements {q1,.-.,qn}, 2
collection Qy, . .. , @, of subsets of Q and an integer K. The question is whether one can pick at most K
sets such that their union equals Q.

Given an instance of Set Cover, we first construct the natural bipartite graph, one side of the partition
for set nodes Q;, j = 1,...,m, and the other for element nodes g,1=1,...,n. We insert an edge
{@Qj, ¢:} iff ¢; € Q;. We now add one more node R (the “root”) and connect R to all the set nodes.

In the remainder of this proof, we do not distinguish between a node and the set or element that it
represents. Note that the resulting graph is a bipartite (with R and the element nodes on one side and the set
nodes on the other side). An example of the graph constructed is shown in Figure 4.

For each edge of the form (R, Q;), the delay is &, while each edge the form (Qi, g;) has delay 6/ (in
Figure 4 each of the dotted lines has delay & and the solid lines have each delay é/p). We set the bound on
the bottleneck delay parameter to §. '

We now claim that there is an upgrading set of size K resulting in a bottleneck spanning tree of bottle-
neck delay at most é for the instance of (Bottleneck, Node-cost, Spanning Tree) just constructed if and
only if the Set Cover instance has a cover of size at most K.

First assume that we can cover the elements in Q by at most K sets. Without loss of generality assume
that the set cover consists of exactly K sets, which are Q1 ... ,Qk. We then upgrade the corresponding set
nodes. Consider the resulting graph. For each element node ¢; there is now an edge of delay & connecting q;
to some set node S(g;) from Q,,...,Qx (If ¢; appears in two or more sets whose corresponding nodes are
upgraded, then choose one such set node arbitrarily). Then the set {(r, Qi) :i=1,..., m}u{(g; S(g)) :
J=1,...,n} is the edge set of a spanning tree of G, where none of the edges has weight more than §.

Now assume conversely that there is an upgrading set of size at most K for the instance of (Bottleneck,
Node-cost, Spanning Tree) constructed above. Let V' C V, [V’| < K be aset of nodes that are upgraded
and let T = (V, Et) be a spanning tree in the resulting graph of bottleneck cost at most §.

17

We now transform the tree T into a tree 7" of at most the same bottleneck cost such that each set node
Q; is adjacent to R in T"'. To this end, do the following for each setnode @, 5 = 1, ... ,m: If(R,Q;) €T,
then continue with the next Set node. Otherwise, since 7" is connected, there must be a path P from Q; to
R in T. By the bipartiteness of G, the first two edges in this path are of the from (Q;, ¢;) and (g;, Q;) for
some element node ¢; and some other set node Q. Adding the edge (R, Q;) to T will induce a simple
cycle in T' containing the edges in P and (R, Q;). Thus if we remove (Q;, ¢;) from T the resulting graph
will again be a spanning tree of G.

Observe that the bottleneck cost of the tree does not increase during the procedure from above, since
each edge (R, Q;) inserted has already delay 4 in the original graph.

Now, consider the set V/ of upgraded nodes. If R € V', we can safely remove from V'’ without affecting
the bottleneck cost of our spanning tree 7". For each element node ¢; € V', we have at least one set node
S(Q;) adjacent to ¢; in T'. We replace ¢; by S(g) in V' and, continuing this, obtain a set V* of at most K
set nodes, which are upgraded.

We will now argue that the set nodes from V* form a set cover. To this end, consider an arbitrary element
node ¢;. if ¢; € V', i.e. ¢; was one of the upgraded element nodes, then we have added some set node S(g;)
to V' that is adjacent to ¢; in G. Thus, S(g¢;) € V" contains ¢; and, consequently, g; is covered by the set
in V. In the other case, ¢; ¢ V'. The tree T’ contains at least one edge (Q;, ¢;) of delay at most 6. But,
since ¢; was not upgraded, the only possibility of (Q;, ¢;) having delay ¢ is that Q); had been upgraded, i.e.
Q; € V. Since we have not removed any set node from V" in the transition to V", it follows that @; € V"
and thus, again, g; is covered by the sets in V"' o

Note that the reduction in the proof of Theorem C.1 preserves approximations. Any set cover of size K
becomes an upgrading set of size K and any upgrading set of size K becomes a cover of size at most K.
Combining this approximation preserving transformation with the nonapproximability results of Feige [11]
about the the optimization version of Set Cover we get the following theorem.

Theorem C.2 Unless NP C DTIME(r!°s!°8"), there can be no polynomial time approximation algo-
rithm for (Bottleneck, Node-cost, Spanning Tree) with a performance of (¢, 8) forany fixedo < Inn
and 3 < 1/, where 0 < p < 1 is the speedup factor occuring in the instance.

C.2 Hardness of Diameter Upgrading Problems

Theorem C.3 (Node-cost, Diameter, Spanning Tree) is NP-hard even for bipartite graphs and even
if cost(v) = 1forallve V. '

Proof: Again, we use a reduction from Set Cover. Without loss of generality we will assume for the rest
of the proof K < = and that there is no single set Q) ; covering all the elements.

Given any instance of Set Cover, we first construct the natural bipartite graph. We also add the “root”
R and make it adjacent to all the set nodes. Now we add “enforcer” nodes f; , one for each element node g;,
where f; is adjacent exactly to ¢; in the graph. An example of the graph constructed can be seen in Figure 5.
The edges incident with R have delay 1, all the other edges have delay equal to 8. We now set § := 13 and
the number of nodes to be upgraded to K + n, where = is the number of elements.

Assume that there is a set cover of size at most K. Then we upgrade the corresponding set nodes and,
moreover, upgrade also all element nodes. The result is a feasible upgrading set. Since we have upgraded
all the element nodes and the nodes corresponding to a set cover, for each element node ¢; we have an edge
(gi, S(g:)) in the resulting graph of delay equal to 2. We let the tree T' consist of all these edges (g;, S(g:))
plus the edges from {(R,Q;) : 5 =1,...,m}U{(g;, fi) : ¢ = 1,...,n}. Itis easy to see that T has a
diameter of at most 13.

Now, suppose conversely that there is a feasible upgrade set V' in G resulting in a diameter spanning
tree T’ of diameter at most 13. ‘

First, we claim that in this case for each element node g; either this node or the “enforcer node” f; must
have been updated. Assume the contrary. In this case, each edge of the form (¢;, Q) € T has length at least

18

q1 [+27%

£le)=8

®]
fl fn

Figure 5: Reduction from Set Cover for the Hardness of (Node-cost, Diameter, Spanning Tree).

4. Any path from f; to another enforcer node f; must contain at least two edges (¢;,Q), (¢;, Q) and the
edges (gi, fi) and (g;, f;). It is thus of length at least4 4+ 2 4 8 + 2 = 16 > 13, which is a contradiction.

We have seen that V” contains already at least » nodes from the set {¢;, fi : 1 = 1,...,n}. Thus,
V' can have at most K set nodes that are upgraded. Consequently, if for each element node g;, the tree T
contains an edge (g;, S(g;)) of length 2, then the set nodes s(g:),i=1,...,n are a set cover of size at most
K.

Now for: =1,...,n we do the following. If T contains an edge (¢:,Q;) of length 2, we continue with
the next element node. Otherwise all edges in T connecting g; to a set node have length at least 4.

If ¢; has not been upgraded, we know that f; € V’. We remove f; from V"’ and replace it by ¢;. Clearly,
the diameter of 7' does not increase during this process. If ¢; has been upgraded, but f; has not been
upgraded, then we also step to the next element node. In the last case, both fi and g; belong to the set V',
Then, none of the set nodes adjacent to ¢; in T has been upgraded. We pick an arbitrary set node @; such
that (Q;, ¢;) € T and upgrade Q;, removing f; from V'. We claim that the diameter of the tree T does not
increase in this step. In fact, assume P were a path of length greater than 13 in the tree with the new edge
weights. Then it follows that ¢; is adjacent to at least two set nodes in 7' (see Figure 6).

Moreover, the last edge of P must be (g;, fi), since otherwise P would already have been a path of
length at least 13 in T before the operation. Now, if we consider the path P/, where we replace (g;, fi) by
(¢:,Q"), we see that P’ is a path of the same length as P but this time in the tree T before the operation.
This contradicts that the diameter of T is no more than 13,

Now consider the result of the process. After the iteration, all the element nodes belong to V’. Either
now each element is connected to a set node via an edge of length at most 2 in 7', in which case we have
found a set cover. Otherwise, there is an element node ¢ for which still each edge connecting it to a set node
is of delay 4 (The edges can not have delay 8, since ¢; € V'). We now prove that this case can not happen,
which then will complete the proof.

Assume that there is an element node ¢ such that any edge connecting it“to a set node in the tree T
(which is of diameter at most 13 as we recall), has length 4.

19

....

Q ¢ o

: 4
N ip 42
® q
214
f @

Figure 6: The diameter of T' does not increase.

Q
4
4
q * 7
4 € {2,4}
i e

Figure 7: First case in the proof of Theorem C.3.

Choose an arbitrary elementnode ¢’ # ¢. In the first case (see Figure 7), there is a set node () adjacent to
both ¢ and ¢’ in 7'. The length of the (unique) pathin 7" from f to f’ isthen atleast4+4+4+2 = 14 > 13,
contradicting the assumption that 7" is of diameter at most 13.

In the second case, no set node is adjacent to both both ¢ and ¢’ in T'. The path from f to f' in T then
consists of the edge (f, ¢) an edge (¢, @) (of length 4), a path P from Q to another set node Q’, and the
edges (Q’',¢') and (¢, f') (see Figure 8). Since Q is nor upgraded (otherwise the edge (Q, ¢) would have

>3
Q ¢ o ¢
4 € {2,4}
4 € {2,4}
f @ ® 7

Figure 8: Second case in the proof of Theorem C.3.

20

length 2), the length of the path P is at least 1 + 1 = 2 (a shortest path in the graph G after the update

always consists of the edges (Q, R) and (R, Q')). Summing up, we obtain that the distance between f and

f'inTisatleast4 44+ 3+ 2+2 = 2’ > 13. This completes the proof. |
- ¢From the results from Theorem C.3 we can immediately conclude:

Theorem C.4 Unless P = NP, for any fixed ¢ > 0 there can be no polynomial time approximation
algorithm for (Node-cost, Diameter, Spanning Tree) with a performance guarantee of (1, %%. —€).

C3 'Hardness Results for Treewidth Bounded Graphs

We first recall the definition of the Partition problem [14]. As an instance of the Partition problem we
are given a multiset of (not necessarily distinct) positive integers {ay, ... , a,} and the question is whether
there exists a subset C {1,...,n} such that 3",y a; = S/2, where S := 3_7%, a; denotes the sum of all
elements in A. Partition is well known to be NP-complete (cf. [14]).

Theorem C.5 (Node-cost, Diameter, Spanning Tree) and (Node-cost, Total-weight, Spanning Tree)
are NP-hard even when restricted to simple trees with maximum node degree no more than 2.

Proof: We use a reduction from the Partition problem. Given an instance of Partition, we construct a
tree with G with 3n vertices, @;, y; and z;, ¢ = 1,...,n. and 3n — 1 edges. The edges in the tree are
(%3, 4i)» (¥i» 2i), (20, i) for 1 < ¢ < m (excluding the edge (2y, Zn41)). We now specify the necessary
parameters. The upgrade factor is any number 0 < ¢ < 1. The weights on the nodes yi is a;, while the
nodes «; and z; have all weight S := Y a;. The cost of the edges (z;,y;) and (y;, z;) is is a;/2. All
edges (zi, z;11) have cost . The simple tree constructed this way is shown in Figure 9.

T n Z T2 Y2 23 Zn

a1/2 01/2 [(12/2 a2/2

Figure 9: Chain used in the hardness proof on trees.

Now we claim that G has a spanning tree with diamater (total cost) no more than S(1+0)+(n—1)e
under the constraint that the total cost of the nodes in the improvement set is not more than S /2, if and only
if A can be partitioned into two sets of equal weight. Observe that the diameter and total cost of the original
treeequal 353 a; +(n— 1)e =S+ (n—1)e '

In fact, if I is an index set such that };; a; = S/2, we the vertices y; with ¢ € I form an upgrading
set of cost 5/2. Upgrading these vertices will decrease the length of the corresponding edges (z;, y;) and
(Yi, z:) to ga;/2. Thus, after upgrading the vertices y; with ¢ € I, this will result in a diameter (total cost)
of Yigrai + e Xierait = S/2+05/2+ (n— Ve = $(1+ o) + (n — 1)e.

Conversely, if we have an upgrading set of cost at most S /2, this set can contain only vertices y; by the
choice of the weights on the nodes z; and z;. Let I be the set of indices such that y; belongs to the upgrading
set. Again, upgrading a vertex y; with : € I decreases the weight of the edges (7, ¥;) and (y;, 2;) to za; /2.
Thus, after upgrading the vertices y; the tree has diameter (total cost) 2igr i+ 0Yecr0i+ (n—1)e =
S+ (e—1) Y ;crai + (n — 1)e, which is at most %(1 + 0) + (n — 1) by assumption. Simple algebra now
shows that ;¢ a; > S/2. Since the total cost of the vertices y; with i € T is exactly) ;. a; which is at
most .S/2, this shows that ;. a; = 5/2. o

21

