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Abstract. This paper describes a parallel genetic algorithm developed for the solution of the
set partitioning problem—a difficult combinatorial optimization problem used by many airlines
as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island
model where multiple independent subpopulations each run a steady-state genetic algorithm on
their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests
on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1
parallel computer. We found that performance, as measured by the quality of the solution found
and the iteration on which it was found, improved as additional subpopulations were added to
the computation. With larger numbers of subpopulations the genetic algorithm was regularly
able to find the optimal solution to problems having up to a few thousand integer variables, In
two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749
integer variables, respectively. A notable limitation we found was the difficulty solving problems
with many constraints.
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1 Introduction

The past several years have seen an increasing number of reports of the successful application
of genetic algorithms for solving optimization problems. During the same time period, parallel
computers have matured to the point where, at the high end, they are challenging the role of
traditional vector supercomputers as the fastest computers in the world. On a different front,
motivated primarily by significant economic considerations, but also by advances in computing
and operations research technology, many major airlines have been exploring alternative methods
for deciding how flight crews (pilots and flight attendants) should be assigned in order to satisfy
flight schedules and minimize the associated crew costs. Our objective in this work was to unify
these factors by developing a parallel genetic algorithm and applying it to the solution of the
set partitioning problem—a difficult combinatorial optimization problem used by many airlines
as a mathematical model for assigning flight crews to flights.

There were a number of motivations for developing a parallel genetic algorithm for the set par-
titioning problem (SPP). First is the particularly challenging nature of the SPP. The challenges
include the NP-completeness of finding feasible solutions, and the enormous size of problems of
current industrial interest. Second, because of its use as a model for crew scheduling by most
major airlines, there is great practical value in developing a successful algorithm. Third, genetic
algorithms can provide flexibility in handling variations of the SPP model that may be useful.
The evaluation function can be easily modified to handle constraints such as cumulative flight
time, mandatory rest periods, or limits on the amount of work allocated to a particular base not
explicitly part of the SPP model. Fourth, genetic algorithms contain a population of possible
solutions. As noted by Arabeyre et al. [3], “The knowledge of a family of good solutions is far
more important than obtaining an isolated optimum.” Finally, we believe genetic algorithms
have great potential for scaling to take advantage of the larger and larger numbers of processors
increasingly available on parallel computers.

The rest of this paper is laid out as follows. In Section 2 we describe the set partitioning
problem. We give a mathematical statement of the problem, discuss its application to airline
crew scheduling, and review previous solution approaches. Section 3 describes the sequential
genetic algorithm on top of which the parallel genetic algorithm was built. Section 4 describes
the parallel genetic algorithm. Section 5 presents the parallel experiments we performed and
discusses the results. Finally, Section 6 contains concluding remarks and suggests areas for
further research.

2 The Set Partitioning Problem

The set partitioning problem (SPP) may be stated mathematically as

n
Minimize z = Y | ¢;z; (1)

i=1
subject to
n
Za,-j:z:j=1 for i=1,...,m (2)
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gi=0orl for j=1,...,n, (3)

where g;; is binary for all ¢ and 7, and ¢; > 0. The goal is to determine values for the binary
variables z; that minimize the objective function z.

The following notation is common in the literature [12, 21] and motivates the name “set
partitioning problem.” Let I = {1,...,m} be a set of row indices, J = {1,...,n} a set of
column indices, and P = {Py,..., P}, where P; = {i € I|a;; = 1}, j € J. P; is the set of row
indices that have a one in the jth column. |P;| is the cardinality of P;. A set J* C J is called a
partition if

¥ UPj=I (4)
jeJ*
j:kGJ':jiékinﬂPk=®' (5)

Associated with any partition J* is a cost given by 2 jete ¢j. The objective of the SPP is to
find the partition with minimal cost.

The following additional notation will be used in Sections 3.2 and 3.3. R; = {j € J la;; = 1}
is the (fixed) set of columns that intersect row 4, while r; = {j € Rilz; = 1} is the (changing)
set of columns that intersect row ¢ included in the current solution. Aj, is the change in the
evaluation function (see Section 3.2) as a result of setting z; to one. A; is the change in the
evaluation function when complementing z;. Aj; and A; measure both the cost coefficient, ¢;,
and the impact on constraint feasibility (see Section 3.2.)

The best-known application of the SPP is airline crew scheduling. In this formulation each
row (i = 1,...,m) represents a flight leg (a takeoff and landing) that must be flown. The
columns (j = 1,...,n) represent legal round-trip rotations (pairings) that an airline crew might
fly. Associated with each assignment of a crew to a particular flight leg is a cost, ¢;. The matrix
elements a;; are defined by

- 1 if flight leg ¢ is on rotation j (6)
¥ 7] 0 otherwise.

Airline crew scheduling is a very visible and economically significant problem. Estimates of
over 2 billion dollars a year for pilot and flight attendant expenses have been reported [1, 5].
Even a small improvement over existing solutions can have a large economic benefit.

At one time, solutions to the SPP were generated manually. However, airline crew scheduling
problems have grown significantly in size and complexity. In 1981 problems with 400 rows and
30,000 columns were described as “very large” [22]. Today, problems with hundreds of thousands
of columns are “very large,” and one benchmark problem has been generated with 837 rows and
12,753,313 columns [6].

Because of the widespread use of the SPP (and often the difficulty of its solution), a number of
algorithms have been developed. These can be classified into two types: approximate algorithms
which try to find “good” solutions quickly, and exact algorithms which attempt to solve the SPP
to optimality. Here we mention some of the more recent methods. See Balas and Padberg [4]
for a survey of older methods.
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An important approximate approach (as well as the starting point for most exact approaches)
is to solve the linear programming (LP) relaxation of the SPP. In the LP relaxation, the inte-
grality restriction on z; is relaxed, but the lower and upper bounds of zero and one are kept. A
number of authors [5, 13, 22] have noted that for “small” SPP problems the solution to the LP
relaxation either is all integer, in which case it is also the optimal integer solution, or has only
a few fractional values that are easily resolved. However, in recent years it has been noted that
as SPP problems grow in size, fractional solutions occur more frequently, and simply rounding
or performing a “small” branch-and-bound tree search may not be effective {2, 5, 13].

Branch-’and-bound may be viewed as an exact approach if the algorithm runs until an integer
solution (if one exists) is proven optimal, or as an approximate approach if the algorithm is
terminated “early” with a “good” integer solution. Various bounding strategies have been used,
including linear programming and Lagrangian relaxation. Fischer and Kedia [11] use continuous
analogs of the greedy and 3 — opt methods to provide improved lower bounds. Of recent interest
is the work of Eckstein [10], who has developed a general-purpose mixed-integer programming
system for use on the CM-5 parallel computer and applied it to, among other problems, set
partitioning. The most successful approach appears to be the work of Hoffman and Padberg.
They present an exact approach based on the use of branch-and-cut—a branch-and-bound-like
scheme with additional preprocessing and constraint generation at each node in the search tree.
They report optimal solutions for a large set of real-world SPP problems [16].

3 The Sequential Genetic Algorithm

In this section we describe the sequential GA we used as the basis for the parallel genetic
algorithm. The choice of algorithm, the selection of parameter settings, and the development
of a local search heuristic to use with the sequential GA were the result of significant research
and experimentation. Here, we summarize the sequential algorithm. The interested reader is
referred to [18, 19] for additional details.

3.1 Problem Representation

A solution to the SPP problem is given by specifying values for the binary decision variables z;.
The value of one (zero) indicates that column 7 is included (not included) in the solution. This
solution may be represented by a binary vector x™ with the interpretation that z; is one (zero)
if bit j is one (zero) in the binary vector.

Representing an SPP solution in a GA is straightforward and natural. A bit in a GA string
is associated with each column j. The bit is one if column j is included in the solution, and
zero otherwise. To make efficient use of memory, we had each bit in a computer word represent
a column. Because most computers today are byte addressable, this approach improves storage
efficiency by at least a factor of eight compared with integer or character implementations. It
does, however, require the development of specialized functions to set, unset, and toggle a bit
and to test whether a bit is set.

*We use x interchangeably as the solution to the SPP problem or as a bitstring in the GA population as in,
for example, Figure 2.
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3.2 Evaluation Function

The evaluation function measures “how good” a solution to the SPP problem a string is. This
function needs to take into account not just the cost of the columns included in the solution (the
SPP objective function value) but also the degree of (in)feasibility of a string. However, the GA
operators often produce infeasible solutions. In fact, since just finding a feasible solution to the
SPP is NP-complete [23], it may be that many or most strings in the population are infeasible.

We used for our evaluation function

i ¢z + i Ai®i(x), (7)

j=1 i=1

k4

where
&i(x) = 1 if constraint ¢ is infeasible,
BT 0 otherwise.

The first term is the SPP objective function, and the second term is the penalty function. The
penalty function indicates whether a constraint is infeasible, but does not measure the magnitude
of the irifeasibility. The term J; is a scalar weight that penalizes constraint ’s infeasibility.

Choosing a suitable value for ); is a difficult problem. A good choice for ); should reflect
not just the “costs” associated with making constraint ¢ feasible, but also the impact on other
constraints (in)feasibility. In [25] Richardson et al. studied the choice of ); for the set covering
problem (SCP). In the SCP, the equality in Equation (2) is replaced by a > constraint. Unlike
the SPP, however, the SCP is not a highly constrained problem. In the SCP, constraint ¢ is
infeasible only if |r;| = 0; however, it is easily made feasible by (even randomly) selecting an
zj,J € R; to set to one. On the other hand, such an approach will not work with |~ =0
for the SPP, since any z;,7 € R; set to one, while it will satisfy constraint , may introduce
infeasibilities into other currently feasible constraints. Similarly, if we try to make a constraint
with [r;] > 1 feasible by setting all but one of the z;,j € r; to zero, we may undercover other
currently feasible constraints.

We know of no method to calculate an optimal value for A;. Therefore, we made the empirical
choice of A; = mja.X{lej € R;}. This choice is similar to the “P2” penalty in [25], where it
provided an upper bound on the cost to satisfy the violated constraints of the SCP. In the case
of the SPP, however, the choice of A; provides no such bound, and it is possible the GA may
find infeasible solutions more attractive than feasible ones (for several problems discussed in the
next section this situation did happen.)

3.3 The ROW Heuristic

Our early experience with a generational replacement genetic algorithm [18], as well as subse-
quent experience with a steady-state genetic algorithm [19], was that both had trouble finding
optimal (often even feasible) solutions. This result led us to develop a local search heuristic
to hybridize with the GA to assist in finding feasible, or near-feasible, strings to apply the GA
operators to.
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foreach niters
¢ = chose.row( random_or_maz )
improve (1, |r;|, best_or_first)
endfor

Figure 1: ROW Heuristic

The heuristic we developed is called ROW (since it takes a row-oriented view of the problem).
The basic outline is given in Figure 1. ROW works as follows. For some number of iterations
(the parameter niters), one of the m rows of the problem is selected by choose_row (either
randomly or according to the largest infeasibility). For any row there are three possibilities:
|ril = 0, [ri] = 1, and |ry] > 1. The action of improve in these cases varies and also varies
according to whether we are using a best-improving or first-improving strategy. In the case of a
best-improving strategy we apply one of the following rules.

1. |r;] = 0: For each j € R; calculate Aj,. Set to one the column that minimizes A,

2. |ri] = 1: Let k be the unique column in r;. Calculate A, the change in the evaluation
function when z «— 0 and z; — 1,5 € R;. If A;- < 0 for at least one j, set zx «— 0 and
z « 1, for A} < A%, V5.

3. |ril > 1: For each j € r; calculate AY, the change in the evaluation function when z; «
0,Vk € 14,k # 7. Set z — 0,Vk € 1,k # j, where AY < AY,VE.

The first-improving version of ROW differs from the best-improving version in the following
ways. If [r;] = 0, we select a random column.j € R; and set zj— 1. Hlr] =1, weset 2z « 0
and z; « 1 as soon as we find any A% < 0,7 € R;. Finally, if |r;] > 1, we randomly select a
column & € r;, leave z; = 1, and set all other z; = 0,7 € 7;. In the cases where |r;] = 0 and
|r;] > 1, since we have no guarantee we will find a “first-improving” solution, but know that we
must modify the current solution to get feasible, we make a random move that makes constraint
¢ feasible, without measuring all the implications (cost component and (in)feasibility of other
constraints).

For the results presented in this paper we used the following settings for ROW. The number of
iterations of ROW that were applied to try to improve a string was one. Choosing the constraint
to apply ROW to was done randomly. A first-improving selection strategy was used.

3.4 Hybrid Steady-State Genetic Algorithm

After much experimentation [18, 19] we settled on an algorithm that hybridized the ROW heuris-
tic with a steady-state genetic algorithm (SSGA). We call the hybrid algorithm SSGAROW.
Figure 2 presents the specific implementation we used.

P(t) is the population of strings at generation! t. Each generation one new string is inserted

'We use generation and iteration interchangeably.
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t—20
initialize P(?)
evaluate P(t)
foreach generation
ROW (xrandom € P(t))
select(xy,xz) from P(t)
if( < p. ) then
Xnew = crossover(Xj,Xsz)
- else
Xnew = mutate(xy, Xz)
endif
delete (Xuorst € P(2))
while (%p., € P(t))
mutate(Xpeyw)
P(t+1) « P(t) UXpew
evaluate P(¢+ 1)
te—t+1
endfor

Figure 2: Hybrid Steady-State Genetic Algorithm

into the population. The first step is to pick a random string, X,andom, and apply the ROW
heuristic to it. Next, two parent strings, x; and X, are selected by holding two binary tourna-
ments, and a random number, r € [0, 1], is generated. If r is less than the crossover probability
of 0.6, we create two new offspring via uniform crossover with parameter 0.7 [27], and randomly
select one of them, Xpcy, to insert in the population. Otherwise, we randomly select one of
the two parent strings, make a copy of it, and apply mutation to complement bits in the copy
with probability 1/n. In either case, the new string is tested to see whether it duplicates a
string already in the population. If it does, it undergoes (possibly additional) mutation until
it is unique. The least-fit string in the population, Xyors¢, is deleted, Xpey is inserted, and the
population is reevaluated.

4 The Parallel Genetic Algorithm

The parallel genetic algorithm we used is based on an island model. In population genetics an
island model is one where separate and isolated subpopulations evolve independently and in par-
allel. The island model genetic algorithm (IMGA) is analogous to the island model of population
genetics. A GA population is divided into several subpopulations, each of which is randomly
initialized and runs an independent sequential GA on its own subpopulation. Occasionally, fit
strings migrate between subpopulations.

The migration of strings between subpopulations is a key feature of the IMGA. First, it
allows the distribution and sharing of above average schemata via the strings that migrate.

ety



This increases the overall selective pressure since additional reproductive trials are allocated to
those strings that are fit enough to migrate [29]. At the same time, the introduction of migrant
strings into the local population helps to maintain genetic diversity, since the migrant string
arrives from a different subpopulation which has evolved independently.

An IMGA is characterized by several choices: the type of sequential GA run on each sub-
population, how many strings to migrate and how often to migrate them, how to choose the
string(s) to migrate and the string(s) to replace, and the logical topology the subpopulations
are arranged in. The choice of “communication” parameters in the IMGA echoes the competing
themes of selective pressure and population diversity in sequential GAs. Frequently migrating
many fit strings and deleting the least fit strings increase the selective pressure, but decrease
the population diversity. The choice of logical topology and neighbors to communicate with will
affect how “fast” fit strings may migrate among subpopulations.

We fixed the number of strings to migrate to one. There were two reasons for this choice.
First, it seemed intuitively appealing in conjunction with a SSGA; integrating a single arriving
migrant string is similar to how the SSGA integrates its own newly created offspring. The
primary differences are that the migrant string arrives from a different subpopulation and is
presumably of above-average fitness. The second reason was simply to cut down on the size of the
parameter space being explored and to focus on choices for the other parameters. For a similar
reason, we also chose to fix the logical topology of the subpopulations to a two-dimensional
toroidal mesh. Each processor exchanged strings with its four neighbors, alternating between
them each migration generation (i.e., north, east, west, south, north, ...). The sequential GA
run on each subpopulation was SSGAROW.

To determine suitable values for the other communication parameters, we performed a limited
set of experiments, described in [19]. To summarize, the best string in a subpopulation was
selected to migrate to a neighboring subpopulation every 1,000 iterations. The string to delete
was selected by holding a probabilistic binary tournament (with parameter 0.4).

The IMGA we used is shown in Figure 3. The difference between Figure 3 and Figure 2 is
the addition of the if block to determine whether a string is to be migrated this iteration. I so,
the neighboring subpopulation to migrate the string to is determined, and the string to migrate,
Xmigrate, 15 selected and sent to the meighbor. A migrant string, X,ecy, is then received from a
neighboring population, and the string to delete, Xyeiet. is determined and replaced by X;ecy.

5 Parallel Experiments

Our hypothesis was that a parallel genetic algorithm could be developed that would solve real-
world set partitioning problems and, further, that the effectiveness of the parallel GA would
improve as the number of subpopulations increased. To test this, we implemented the algorithm
described in Sections 3 and 4 and tested it on a parallel computer on a set of real-world SPP
problems.
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t+0
initialize P(t)
evaluate P(?)
foreach generation
ROW (xrandom €P (t))
selact(xy,x2) from P(2)
if{ r < p.) then
Xnew = crossover(xi,Xz)
else
Xnew = mMutate(xy,Xsz)
endif
delete (Xyorst € P(%))
while (x,.,, € P(t))
mutate(Xnew)
P(t+1) « P(t) UXpew
if ( migration generation) then
to = neighbor(myid, gen)
Xmigrate = String tomigrate(P(t+1))
send_string(f0, Xmigrate)
Xrecy = recvstring ()
Xdelete = string_to_delete(P(t+1))
replace_string(Xdelete; Xrecv, P(¢ + 1))
endif
evaluate(FP;4;)
t—1t+1
endfor

Figure 3: Island Model Genetic Algorithm
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5.1 Computational Environment

The parallel computer we used for our experiments was an IBM SP1 with 128 nodes, each
of which consisted of an IBM RS/6000 Model 370 workstation processor, 128 MB of memory,
and a 1 GB disk. Each node ran its own copy of the AIX operating system. The SP1 uses a
high-performance switch for connecting the nodes. The SP1 supports the distributed-memory
programming model.

Our code was written in C and used the Chameleon [15] message-passing library. Chameleon
is designed o provide a portable, high-performance message-passing system. Chameleon rums
on top of many other message-passing systems, both vendor-specific and third party, allowing
widespread portability. In our case Chameleon ran on top of IBM’s EUI-H message-passing
software.

Random number generation was done using an implementation of the universal random num-
ber generator proposed by Marsaglia, Zaman, and Tseng [20], and translated to C from James’
version [17]. Each time a parallel run was made, all subpopulations were randomly seeded. This
was done by having one processor get and broadcast to all the other processors the microsecond
portion of the value returned by the Unix gettimeofday system call. Each processor then added
its processor id to this value and used the resulting unique value as its random number seed.
For the random number generator in [20] each unique seed gives rise to an independent sequence
of random numbers of size = 1030 [17].

Each test problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations. Each
subpopulation was of size 100. As additional subpopulations were added to the computation,
the total number of strings in the global population increased. Our assumption was that even
though we were doubling the computational effort required whenever we added subpopulations,
by mapping each subpopulation to an SP1 processor, the total elapsed time would remain
relatively constant (except for the parallel computing overheads associated with string migration,
which we felt would be relatively small). A run was terminated either when the optimal solution
was.found? or when all subpopulations had performed 100,000 iterations.

5.2 'Test Problems

To test the parallel genetic algorithm, we selected a subset of forty problems from the test set
used by Hoffman and Padberg [16]. The test problems are given in Table 1, where they have
been sorted according to increasing numbers of columns. The columns in this table are the test
problem name, the number of rows and columas in the problem, the number of nonzeros in the
A matrix, the optimal objective function value for the LP relaxation, and the objective function
value of the optimal integer solution.

Table 2 gives attributes of the solution to the LP relaxation and results from solving the
integer programming problem with the 1p_solved program. The columns in this table are the
name of the test problem, the number of simplex iterations required by lp_solve to solve the

!For these tests, the value of the (known) optimal solution was stored in the program which tested the best
feasible solution found each iteration against the optimal solution and stopped if they were the same.

SWe note that as a public-domain program lp_solve should not be used as the standard by which to Jjudge
the effectiveness of linear and integer programming solution methodology. Our interest here was in being able to
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Table 1: Parallel Test Problems

Problem No. No. No. LP IP

Name Rows Cols Nonzeros Optimal Optimal
nw4i 17 197 740 10972.5 11307
nw32 19 294 1357  14570.0 14877
nw40 19 404 2069 10658.3 10809
nw08 24 434 2332  35894.0 35894
nwis 31 467 2830 67743.0 67743
nw21 25 577 3591 7380.0 7408
nw22 23 619 3399 6942.0 6984
nwi2 27 626 3380 14118.0 14118
nw39 25 677 4494 9868.5 10080
nw20 22 685 3722  16626.0 16812
nw23 19 711 3350 12317.0 12534
nw37 19 770 3778 9961.5 10068
nw26 23 771 4215 6743.0 6796
nwi0 24 853 4336  68271.0 68271
nw34 20 899 5045 10453.5 10488
nw43 18 1072 4859 8897.0 8904
nw42 23 1079 6533 7485.0 7656
nw28 18 1210 8553 8169.0 8298
nw25 20 1217 7341 5852.0 5960
nw38 23 1220 9071 5552.0 5558
nw27 22 1355 9395 9877.0 9933
nw24 19 1366 8617 5843.0 6314
nw35 23 1709 10494 7206.0 7216
nw36 20 1783 13160 7260.0 7314
nw29 18 2540 14193 4185.3 4274
nw30 26 2653 20436 3726.8 3942
nw31 26 2662 19977 7980.0 8038
nwi9 40 2879 25193 10898.0 10898
nw33 23 3068 21704 6484.0 6678
nw09 40 3103 20111  67760.0 67760
nw07 36 5172 41187 5476.0 5476
nw06 50 6774 61555 7640.0 7810
aa04 426 7195 52121  25877.6 26402
k101 55 7479 56242 1084.0 1086
aa0s 801 8308 65953  53735.9 53839
nwil 39 8820 57250 116254.5 116256
aa01 823 8904 72965  55535.4 56138
nwis 124 10757 91028 338864.3 340160
k102 71 36699 212536 215.3 219
nw03 59 43749 363939  24447.0 24492
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LP relaxation plus the additional simplex iterations required to solve LP subproblems in the
branch-and-bound tree, the number of variables in the solution to the LP relaxation that were
not zero, the number of the nonzero variables in the solution to the LP relaxation that were one
(rather than having a fractional value), and the number of nodes searched by 1p_solve in its
branch-and-bound tree search before an optimal solution was found.

The optimal integer solution was found by 1p_solve for all but the following problems: aa04,
k101, aa05, aa01, nw18, and k102, as indicated in Table 2 by the “>” sign in front of the number
of simplex iterations and number of IP nodes for these problems. For aa04 and aal1, 1p_solve
terminateq before finding the solution to the LP relaxation. For aa05, k101, and k102, 1p_solve
found the solution to the LP relaxation but terminated before finding any integer solution. A
nonoptimal integer solution was found by 1p_solve for nw18 before it terminated. Termination
occurred either because the program aborted or because a user-specified resource limit was
reached.

Many of these problems are “long and skinny”; that is, they have few rows relative to the
number of columns (it is common in the airline industry to generate subproblems of the complete
problem that contain only a subset of the flight legs the airlines are interested in, solve the
subproblems, and try to create a solution to the complete problem by piecing together the
subproblems). Of these test problems, all but two of the first thirty have fewer than 3,000
columns (nw33 and nw09 have 3,068 and 3,103 columns, respectively). The last ten problems are
significantly larger, not just because there are more columns, but also because there are more
constraints.

For 1p_solve many of the smaller problems are fairly easy, with the integer optimal solution
being found after only a small branch-and-bound tree search. There are, however, some ex-
ceptions where a large tree search is required (nw23, nw28, nw36, nw29, nw30). These problems
loosely correlate with a higher number of fractional values in the LP relaxation than many of
the smaller problems, although this correlation does not always hold true (e.g., nw28 with few
fractional values requires a “large” tree search, while nw33 with “many” fractional values does
not). For the larger problems 1p_solve results are mixed. On the nw problems (nw07, nw06,
nw1l, nwi8, and nw03) the results are quite good, with integer optimal solutions found for all but
nwil8. Again, the size of the branch-and-bound tree searched seems to correlate loosely with the
degree of fractionality of the solution to the LP relaxation. On the k1 and aa models, 1p_solve
has considerably more difficulty and does not find any integer solutions.

5.3 Experimental Results

The results of our experiments are summarized in Tables 3-6. Table 3 shows the percent from
optimality of the best solution found in any of the subpopulations as a function of the number of
subpopulations. An entry of “O” in the table indicates the optimal solution was found. An entry
of “X” in the table means no integer feasible solution was found by any of the subpopulations.
A numerical entry is the percent from the optimal solution of the best feasible solution found
by any subpopulation after the 100,000-iteration limit was reached. A blank entry means that
the test was not made (usually because of a resource limit or an abort). The solution values

characterize the solution difficulty of the test problems and to make a “ballpark” comparison against traditional
operations research methodology. For this purpose we believe 1p_solve was adequate.
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Table 2:_Solution Characteristics of the Parallel Test Problems

Problem LP LP LP IP
Name Iters Nonzeros Ones Nodes
nw4i 174 7 3 9
nw32 174 10 4 9
nw40 279 9 0 7
nw08 31 12 12 1
nwis 43 7 7 1
nw2i 109 10 3 3
nw22 65 11 2 3
nwi2 35 15 15 1
nw39 131 6 3 5
nw20 1240 18 0 15
nw23 3050 13 3 57
nw37 132 6 2 3
nw26 341 9 2 11
nwio 44 13 13 1
" nw34 115 7 2 3
nw43 142 9 2 3
nw42 274 8 1 9
nw28 1008 5 2 39
nw25 237 10 1 5
nw38 277 8 2 7
nw27 118 6 3 3
ny24 302 10 4 9
nw35 102 8 4 3
nw36 74589 7 1 789
nw29 5137 13 0 87
nw30 2036 10 0 45
nw31 573 7 2 7
vawi9 120 7 7 1
nw33 202 9 1 3
nw09 146 16 16 1
nwo7 60 6 6 1
nw06 58176 18 2 151
aa04 >7428 234 5 >1
k101 >26104 68 0 >37
aa05 >6330 202 53 >4
nwil 200 21 17 3
aa01 >23326 321 17 >1
nwis8 >162947 68 27 >62
k102 >188116 91 1 >3
nw03 4123 17 6 3
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themselves are given in Table 4. Table 5 contains the first iteration on which some subpopulation
found a feasible solution. Table 6 is similar except that it contains the first iteration on which
some subpopulation found an optimal solution. In Table 6 an entry of “F” means a nonoptimal
integer feasible solution was found.

Entries in the tables marked with a superscript ¢ did not complete. If an entry is given, it is
from a partially completed run. We give the specific results here. Since output statistics were
reported only every 1,000 iterations, that is the resolution with which results are reported in
Table 5. nw10 aborted at 37,000 iterations when run using 128 subpopulations. nwi2 aborted at
11,000 itegptions when run using 128 subpopulations. nw09 aborted at 63,000 iterations when run
using 64 subpopulations. k101 aborted at 76,000 iterations when run using 128 subpopulations.
k102 aborted at 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations when
run using 16 subpopulations. nw03 aborted at 24,000 iterations when run using 1 subpopulation,
at 50,000 iterations when run using 2 subpopulations, and at 24,000 iterations when run using
4 subpopulations.

One way of looking at Table 3 is to consider it as consisting of four parts (recall that the rows of
the table are sorted by increasing numbers of columns in the test problems). The first two parts
are defined by the rows between and including nw41 and nw06 (the first thirty two problems).
We can think of dividing this rectangle into two triangular parts by drawing a diagonal line
from the upper left part of the table (nw41 with one subpopulation) to the bottom right (nwo6
with 128 subpopulations). Most of the results in the “upper triangle” are “0,” indicating that
an optimal solution was found. For these problems the hybrid SSGAROW algorithm was able
to find the optimal solution to all but one problem. For approximately two-thirds of these
problems only four subpopulations were necessary before the optimal solution was found. For
the other one-third of the problems, additional subpopulations are necessary in order to find
the optimal solution. For numerical entries in the “lower triangle,” we observe that in general
the best solution found improved as additional subpopulations participate, even if the optimal
solution was not reached. Using 64 subpopulations, the optimal solution was found for 30 of the
first 32 test problems. nw06, with 6,774 columns, was the largest problem for which we found
an optimal solution.

The next two parts of Table 3 are defined by rows aa04 to nw18 (k101 is similar to k102 and
nw03 in that increasingly better integer feasible solutions were found as additional subpopulations
were added, and so we “logically” group k101 with k102 and nw03) and by the last two problems
k102 and nw03. The first of these, aa04 through nw18, define the group of problems we were not
able to solve. For these problems we were unable to find any integer feasible solutions. (One
obvious point to note from Table 1 is the large number of constraints in aa01, aa04, aa05, and
nw18 (we will return to nwi18 in a moment). We note from Table 2 that these problems have
relatively high numbers of fractional values in the solution to the LP relaxation and that they
were difficult for 1p_solve also.)

For these problems, Table 7 summarizes the average number of infeasible constraints across
all strings in all subpopulations as a function of the number of subpopulations. One trend is the
general decrease in the average number of infeasible constraints as additional subpopulations are
added. For the aa problems the incremental improvement, however, appears to be decreasing.

For nwii and nw18 (and also nw10 for which no feasible solution was found), the GA was able
to find infeasible strings with higher fitness than feasible ones and had concentrated its search
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Table 3: Percent from Optimality vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nwél 0] 0 0 0 0] 0) 0 0]
nw32 0.0006 O 0.0006 0 0 0] 0] 0
nw40 0] O 0.0036 0] 0] 0 0] 0]
nw08 X 0.0219 0 0] 0 o) 0) 0
nwis* 0] 0 O 0.0001 4.4285 o) 0 8]
nw2l 0.0037 0.0037 0 0 0 0] 0) 0
nw22 0.0735 0.0455 0.0252 0 0 0] 0] 0
nwi2 0.1375 0.0912 0.0332 0.0218 0.0094 o) O 0.0246°
nw39 0.0425 0 0 0 0 0] 0] 0]
nw20 0.0091 o) (o) 0 0] 0] o) 0]
nw23 0] 0 0] O 0.0006 0 0 (0]
nw37 O 0.0163 0] 0 0] o) 0 0]
nw26 0.0011 o) 0] 0] 0] 0 0] o)
nwio X X X X X X X Xe
nw34 0.0203 0.0214 0] 0] 6] 0 10) (6]
nw43 0.0831 0.0626 0.0350 0] 0] 0] o) o)
nw42 0.2727 0.0229 0 0] o) 0] 0] 0]
nw28 0.0469 o) 0 0 0 0 0] o)
nw25 0.1040 0.1137 0 0 0 0 0 0
nw38 0.0323 0] . 0 0] 0 0] 0] 0
nw27 0.0818  0.0567 O 0.0039 o . 0] 0] 0]
nw24 0.0826 0.0215 O 0.0015 0.0038 0 0 0]
nw35 0.0770 O 0.0171 0 0 0] 0 0
nw36 0.0038 0.0010 0.0194 0.0010 0.0019 0 0 0
nw29 0.0580 0 O 0.0116 0 0] 0 0
nw30 0.1116 0 0] o) 0 0) 0] 0]
nw31  0.0069 0.0069 0 0] 0] 0 0] 0]
nwi9g 0.1559 0.1332 0.0715 0.0880 0.0148 0 0 0
nw33 0.0128 0 0 0 0 0] 0 0
nw09 0.0398 X 0.0363 0.0231 0.0155 0.0151 0.154° 0
nw07 0.3089 0] 0] 0 0 0 0 0]
nw06 2.0755 0.2532 O 0.1779 0.0448 0.0291 ¢ 0]
aa04 X X X X X

k101 0.0524 0.0359 0.0368 0.0303 0.0239 0.0184 0.0082 0.0092¢
aa0s X X X X

nwil X X X X X X X X
aa01 X X X X X X

nwis X X X X X X X X
k102 0.1004* 0.1004 0.0502 0.0593 0.0593° 0.0410 0.0045
nw03 0.2732 0.1125% 0.1371°¢ 0.0481

¢ See text for discussion.
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Table 4: Best Solution Found vs. No. Subpopulations

Problem Number of Subpopulations
Name 1 2 4 8 16 32 64 128
nw4i 11307 11307 11307 11307 11307 11307 11307 11307
nw32 14886 14877 14886 14877 14877 14877 14877 14877
nw40 10809 10809 10848 10809 10809 10809 10809 10809
nw08 X 36682 35894 35894 35894 35894 35894 35894
nwis 67743 67743 67743 67755 67746 67743 67743 67743
nw21 7436 7436 7408 7408 7408 7408 7408 7408
nw22 7498 7302 7160 6984 6984 6984 6984 6984
nwi2 16060 15406 14588 14426 14252 14118 14118 14466°
nw39 10509 10080 10080 10080 10080 10080 10080 10080
nw20 16965 16812 16812 16812 16812 16812 16812 16812
nw23 12534 12534 12534 12534 12542 12534 12534 12534
nw37 10068 10233 10068 10068 10068 10068 10068 10068
nw26 6804 6796 6796 6796 6796 6796 6796 6796
nwio X X X X X X X X
nw34 10701 10713 10488 10488 10488 10488 10488 10488
nw43 9644 9462 9216 8904 8904 8904 8904 8904
nw42 9744 7832 7656 7656 7656 7656 7656 7656
nw28 8688 8298 82908 8298 8298 8298 8298 8298
nw25 6580 6638 5960 5960 5960 5960 5960 5960
nw38 5738 5558 5558 - 5558 5558 5558 5558 5558
nw27 10746 10497 9933 9972 9933 9933 9933 9933
nw24 6836 6450 6314 6324 6338 6314 6314 6314
nw35 7772 7216 7340 7216 7216 7216 7216 7216
nw36 7342 7322 7456 7322 7328 7314 7314 7314
nw29 4522 4274 4274 4324 4274 4274 4274 4274
nw30 4382 3942 3942 3942 3942 3942 3942 3942
nw31 8094 8094 8038 8038 8038 8038 8038 8038
nwi9 12598 12350 11678 11858 11060 10898 10898 10898
nw33 6764 6678 6678 6678 6678 6678 6678 6678
nw09 70462 X 70222 69332 68816 68784 68804° 67760
nw07 7168 5476 5476 5476 5476 5476 5476 5476
nwo6 24020 9788 7810 9200 8160 8038 7810 7810
. aa04 X X X X X
k101 1143 1125 1126 1119 1112 1106 1095 1096¢
aals X X X X
nwil X X X X X X X X
aa01 X X X X X X
nwis8 X X X X X X X X
k102 241 241 230 232  232¢ 228 220
nw03 31185 27249* 27852° 25671

2 See text for discussion.
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Table 5: First Feasible Iteration vs. No. Subpopulations

Problem Number of Subpopulations
Name 1 2 4 8 16 32 64 128
nw4i 676 299 393 353 233 127 310 89
nw32 185 590 520 562 415 373 257 145
nw40 376 710 434 384 204 223 211 275
nw08 X 5893 33876 8067 6669 8393 6167 4819
fwis 2031 1233 1019 1228 766 767 501 624
nw2i 786 813 618 584 654 627 471 392
nw22 860 597 540 504 466 426 143 235 -
nwi2 3308 2007 2379 2586 1615 1963 1847 2000°
nw39 1017 755 923 516 530 347 447 325
nw20 1128 895 912 893 380 619 316 324
nw23 2291 2089 1686 1498 525 1178 1249 956
nw37 734 384 620 544 196 502 361 165
nw26 1055 978 971 881 760 331 423 474
nwio X X X X X X X X®
nw34 1336 672 865 505 354 436 462 295
nw43 1036 989 1025 736 636 675 320 437
nw42 1178 936 774 540 460 500 323 361
nw28 784 372 494 71 289 199 228 13
nw25 474 731 788 221 328 315 356 369
nw38 875 1040 873 662 693 418 311 398
nw27 874 726 516 658 - 313 540 437 403
nw24 1020 772 898 763 749 670 456 507
nw35 1505 1263 1084 926 721 893 812 634
nw36 696 625 493 400 390 361 286 104
w29 1070 604 441 556 424 558 342 294
nw30 500 622 584 649 481 498 377 356
nw31 1447 1118 1029 675 358 369 580 236
nwi9 1656 807 933 1020 857 812 602 616
nw33 986 550 815 645 538 493 296 281
nw09 20787 - X 18414 11324 11593 11737 8000° 9025
nw07 1132 1278 589 1307 928 777 636 677
nw06 7472 10036 5658 3920 2846 3440 1788 2385
aa04 X X X X X
k101 3095 5146 3641 4836 3324 3299 3573 4000°
aa05 X X X X
nwil X X X X X X X X
aa01 X X X X X X
nwi8 X X X X X X X X
klo02 6000 4436 6626 4721 4000¢ 4840 4521
nw03 10563 9000 7000° 3944

¢ See text for discussion.
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Table 6: First Optimal Iteration vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nw4i 3845 1451 551 623 758 402 398 362
nw32 F 1450 F 3910 2740 2697 2054 1006
nw40 540 1597 F 1658 2268 958 979 696
nw08 X F 34564 8955 14760 10676 8992 10631
mwis 4593 17157 5560 F F 929 692 1321
nw2i F F 7875 3929 4251 1818 1868 2514
nw22 F F F 29230 3370 3037 2229 1820
nwi2 F F F F F 62976 34464 Fe
nw39 F 2345 3738 1079 1396 900 1232 913
nw20 F 2420 3018 5279 27568 2295 2282 1654
nw23 ~ 2591 6566 3437 3452 F 1723 2125 1477
nw37 75737 - F 1410 1386 1443 1370 835 779
nw26é F 84765 52415 24497 13491 1660 1512 2820
nwi0 X X X X X X X X
nw34 F F 2443 1142 1422 1110 1417 843
nw43 F F F 11004 3237 21069 4696 3296
nw42 F F 2702 3348 1070 1223 1187 724
nw28 F 903 1897 1232 776 718 371 191
nw25 F F 2634 70642 4351 5331 1024 1896
nw38 F 68564 27383. 1431 1177 1093 603 514
nw27 F F 610 F 2569 1669 3233 2135
nw24 F F 908 F F 11912 2873 4798
nw35 F 3659 F 3182 1876 1224 1158 634
nw36 F F F F F 3367 2739 4200
nw29 F 17212 5085 F 17146 1368 2243 795
nw30 F 3058 1777 1154 1650 846 866 949
nw31 F F 1646 3085 1287 1890 1682 732
nwi9 F F F F F 79125 27882 37768
nw33 F 1670 1659 7946 1994 2210 829 873
nw09 F X F F F F F* 71198
nwo7 F 29033 7459 4020 4831 1874 2543 1935
nw06 F F 51502 F F F 48215 19165
aa04 X X X X X

k101 F F F F F F F Fe
aa0s X X X X

nwil X X X X X X X X
aal1 X X X X X X

nwis X X X X X X X X
k102 Fe F F F Fe F F
nw03 F Fe Fe F

@ See text for discussion.
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on those strings. For these problems the best (infeasible) string had an evaluation function value
approximately half that of the optimal integer solution. In this case the GA has little chance
of ever finding a feasible solution. This is, of course, simply the GA exploiting the fact that for
these problems the penalty term used in the evaluation function is not strong enough. For the
three aa problems this is not the case. On average, near the end of a run an (infeasible) solution
has an evaluation function value approximately twice that of the optimal integer solution.

The last two problems, k102 and nw03, have many columns and an increasing number of
constraints. However, the GA was able to find integer feasible solutions on all runs we tried
and a very‘good one for k102 with 128 subpopulations. The trend here is similar to all but the
infeasible problems. We conjecture that with “enough” subpopulations the GA would compute
optimal solutions to these problems also. We caution, however, that this is speculation.

Table 7: No. of Infeasible Constraints vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64
nwil 1.6 1.7 27 21 21 24 24
nwis 177 124 14.5 152 145 14.1 142
aal4 26.3 22.9 25,5 17.9 16.3

aa05 95.0f 845 622 56.2

aall 70.1 66.0 75.2 70.0 53.0 54.6

Table 5 shows the first iteration when a feasible solution was found by one of the subpopula-
tions. If we recall that the migration frequency is set to 1,000, we see that even on one processor,
over one-fourth of the problems find feasible solutions before any migration takes place. The
number of problems for which this occurs grows as subpopulations are added. With 128 subpop-
ulations, 27 problems have feasible solutions before the first migration occurs. The ones that do
not are the problems where the penalty term was not strong enough, no feasible solution was
ever found, or they are the largest problems we tried. The implication is that the ROW heuris-
tic does a good job of decreasing the infeasibilities; and by simply running enough copies of a
sequential GA, the likelihood of one of them “getting lucky” increases. The excessive iterations
nwo8 takes to get feasible is, again, due to the fact that the penalty term is not strong enough.
In this case, however, the penalty is “almost strong enough”; hence, less fit feasible solutions
eventually are found “in the neighborhood” of the best (infeasible) strings in the population. A
similar problem occurred with nw09.

Table 6 is similar to Table 5; here it is the iteration when an optimal solution was found by
one of the subpopulations that is shown. Again, we see a general trend of the first optimal iter-
ation’s occurring earlier as we increase the number of subpopulations. With one subpopulation
an optimal solution was found for only one problem (nw40) before migration occurred. With
128 subpopulations the optimal solution was found for 13 problems before migration occurred.
Several problems show significant decrease in the iteration count as the number of subpopula-
tions increases. As an example, by the time 128 subpopulations are being used to solve nw37,
nw38, and nw29, which initially take tens of thousands of iterations to find the optimal solution,
the optimal solution has been found before any string migration has occurred.
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Table 8: Comparison of Solution Time

Problem lp_solve HP SSGAROW
Name Result Secs.” Result Secs.? Result  Secs.b Nprocs

nwéi 0 1 0 0.1 0] 4 4
nw32 0] 2 0] 0.2 o) 8 2
nw40 0] 3 0 0.2 0 1 1
nw08 0] 2 0 0.1 0 135 8
nwis 0] 3 o) 0.1 0 14 1
nw2i 0] 1 0 0.3 0] 43 32
nw22 o) 1 0] 0.3 0] 65 64
nwi2 ¢ 1 0 0.1 0 1188 64
nw39 0 1 0] 0.2 0 16 8
nw20 0] 1 0] 0.6 0] 17 2
nw23 0 6 0 0.3 0 9 1
nw37 0 1 0 0.2 0] 16 4
nw26 0] 2 0] 0.3 0] 41 32
nwi0 0] 1 0 0.1 X >431 1
nw34 ¢ 2 0 0.3 0 18 8
nw43 0] 2 0 04 0 73 16
nw42 0 3 0] 1.0 0 23 16
nw28 0] 6 0 0.4 0 8 2
nw25 0] 3 0] 0.6 0 36 64
nw38 0 4 0 1.4 0 23 128
nw27 8) 3 0 0.3 0 7 4
nw24 0] 4 0] 0.6 ) 12 4
nw35 0] 4 0 0.5 0 33 128
nw36 (6] 237 0] 3.7 0 128 64
nw29 0 29 0] 1.0 0 49 128
nw30 0) 20 0 0.8 0 33 8
nw31 0 10 o) 14 0 34 4
nwi9 0] 9 0] 0.5 0 1727 64
nw33 0 26 0 1.5 0 25 2
nw09 6] 8 0] 0.5 0 5442 128
nw07 0 16 0] 0.7 0] 129 32
nw06 0 589 0 104 0 2544 128
aal4 X >3600 O 139337 X >1848 1
k101 X >1000 0] 354 .0092 >11532 128
aa0s X >1200 0 215.3 X >3014 2
nwil 0 27 0 2.1 X  >2548 1
aa0l X >600 0 14441 X >2126 1
nwis8 0110 >3600 0] 62.5 X >2916 1
k102 X >3600 0 1344  .0045 >43907 128
nw03 .0 375 0 24.0 .0481 >64994 128

e A At 5 — - —

b See text for discussion.
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Table 8 compares the solution value found (the subcolumn Result) and time in CPU seconds
(the subcolumn Secs.) of 1p_solve, the work of Hoffman and Padberg [16] (the column HP), and
our work (the column SSGAROW). The subcolumn Result contains a “O” if the optimal solution
was found, a numerical entry which is the percentage from optimality of the best suboptimal
integer feasible solution found, or an “X” if no feasible solution was found.

The timings for 1p_solve were made on an IBM R5/6000 Model 590 workstation using the
Unix time command, which had a resolution of one second. These times include the time to
convert from the standard MPS format used in linear programming to 1p_solve’s input format.
The timings for Hoffman and Padberg’s work are from Tables 3 and 8 in [16]. These runs were
made on an IBM RS/6000 Model 550 workstation. The results for SSGAROW are the CPU
time charged to processor zero in a run that used the number of processors given in the Nprocs
column. This is the best solution time achieved where an optimal solution was found. If the
entry is numerical, it is the percentage from optimality of the best solution found and the number
of processors used for that run. If no feasible solution was found, it is the time and number of
processors used. When either 1p_solve or SSGAROW did not find the optimal solution, the
time is prefaced with a >.

We offer the comparative results in Table 8 with the following caveats. All the timings were
done using a heavily instrumented, unoptimized version of our program that performed many
global operations to collect statistics for reporting. A number of possible areas for performance
improvement exist. Additionally, as noted above, the timings in Table 8 are all from different
model IBM RS/6000 workstation processors. As such, the reader should adjust them accordingly
(depending on the benchmark used, the Model 590 is between a factor of 1.67 and 5.02 times
faster than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model
550). Nevertheless, we include Table 8 in the interest of providing some “ballpark” timings to
complement the algorithmic behavior.

For many of the first thirty-two problems, where all three algorithms found optimal solutions
for all problems (except SSGAROW on nw10), we observe that the branch-and-cut solution
times are approximately an order of magnitude faster than the branch-and-bound times, and
the branch-and-bound times are themselves an order of magnitude faster than SSGAROW. For
problems where the penalty term was “not strong enough” but the optimal solution was still
found (nw08, nwi2, nw09), SSGAROW performs poorly. In two other cases (nwi9, nw06) the
search simply takes a long time, the problems have larger numbers of columns (2,879 and 6,774,
respectively), and the complexity of the steps in the algorithm that involve n become quite
noticeable. There are also some smaller problems for which, if we adjust the times according to
the performance differences due to the hardware, SSGAROW seems competitive with branch-
and-bound as implemented by 1p_solve.

On the larger problems we observe that branch-and-cut solved all problems to optimality,
in most cases quite quickly. Both lp_solve and SSGAROW had trouble with the aa prob-
lems; neither found a feasible solution to any of the three problems. For the two k1 problems,
SSGAROW was able to find good integer feasible solutions while 1p_solve did not find any fea-
sible solutions. Although SSGAROW?’s k1 computations take much more time than is allotted
to 1p_solve, we note from Table 5 that it was able to find other feasible solutions much earlier
in its search. For the larger nw problems, 1p_solve did much better than SSGAROW, proving
two optimal (nw11, nw03) and finding a good integer feasible solution to the other. SSGAROW
has “penalty troubles” with two of these and takes a long time on nw03 to compute an integer
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feasible, but suboptimal solution.

We stress that the times given in Table 8 are not just when the optimal solution was found
using either the branch-and-bound or branch-and-cut algorithms, but when it was proven to be
optimal. In the case of SSGAROW we have “cheated” in the sense that for the test problems
the optimal solution values are known and we took advantage of that knowledge to specify our
stopping criteria. This was advantageous in two ways. First, we knew when to stop (or when to
keep going). Second, we knew when a solution was optimal, even though SSGAROW inherently
provides no such mathemaitical tools to determine this. For use in a “production” environment
the optimgl solutions are typically not known, and an alternative stopping rule would need to
be implemented. Conversely, however, we believe that if we had implemented a stopping rule,
then in the case of many of the problems we would have given up the search earlier when it
“became clear” that progress was not being made.

From Table 8 we note that the branch-and-cut work of Hoffman and Padberg clearly provides
the best results in all cases. Comparing SSGAROW with 1p_solve, we see that neither can
solve the aa problems: 1p.solve does better than SSGAROW on most (but not all) of the nw
problems, and SSGAROW does better than 1p_solve on the two k1 problems. John Gregory
has suggested [14] that the nw models, while “real world,” are not indicative of the SPP problems
most airlines would like to be able to solve, in that they are relatively easy to solve with little
branching and that more difficult models may be in production use now, being “solved” by
heuristics rather than by exact methods.

In conclusion, it is clear that the branch-and-cut approach of Hoffman and Padberg is superior
to both lp.solve and SSGAROW in all cases. With respect to genetic algorithms this is
not surprising; several leading GA researchers have pointed out that GAs are general-purpose
tools that will usually be outperformed when specialized algorithms for a problem exist [8, 9].
Comparing SSGAROW with the branch-and-bound approach as implemented by 1p_solve, we
find that 1p_solve fares better for many but not all of the test problems. However, the expected
scalability we believe SSGAROW will exhibit on larger numbers of processors and the more
difficult models that may be in production usage suggest that the parallel genetic algorithm
approach may still be worthy of additional research.

In closing this section, we offer the following caution about the results we have presented.
Each result is stochastic; that is, it depends on the particular random number seed used to
initialize the starting populations. Ideally, we would like to be able to present the results as
averages for each entry obtained over a large number of samples. However, at the time we did
this work, computer time on the IBM SP1 was at a premium, and we were faced with the choice
of either running a large number of repeated trials on a restricted set of test problems (which
itself would raise the issue of which particular test problems to use) or running only a single test
at each data point (test problem and number of subpopulations), but sampling over a larger set
of test problems. We believe the latter approach is more useful.

6 Conclusions and Future Work

The SPP is a difficult problem for a genetic algorithm. The primary reason is that the SPP
is highly constrained and a GA has difficulties finding feasible solutions. This is true for both
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the generational replacement GA and the steady-state GA. A hybrid algorithm combining the
steady-state GA with the SPP-specific ROW heuristic was more effective than either algorithm
by itself and was able to find feasible (and sometimes optimal) solutions to the smaller SPP test
problems.

The ROW heuristic is parameterized according to how much effort it should spend trying to
improve a solution. In general, the most successful approach was to “work quicker, not harder”
and to make random choices whenever possible. The ROW heuristic is effective at making
local improvements, particularly with respect to infeasibilities, and the SSGA propagates these
improvements to other strings thus having a global effect.

Using the hybrid SSGAROW algorithm in an island model was an effective approach for
solving real-world SPP problems of up to a few thousand integer variables. For all but one
of the thirty-two small and medium-sized test problems the optimal solution was found. For
several larger problems, good integer feasible solutions were found. We found two limitations,
however. First, for several problems the penalty term was not strong enough. The GA exploited
this by concentrating its search on infeasible strings that had (in some cases significantly) better
evaluations than a feasible string would have had. For these problems, either no feasible solution
was ever found or the number of iterations and additional subpopulations required to find the
optimal solution was much larger than for similar problems for which the penalty term worked
well. A second limitation was the fact that three problems had many constraints. For these
problems, even though the penalty term seemed adequate, SSGAROW was never able to find a
feasible solution.

Adding additional subpopulations (which increase the global population size) was beneficial.
When an optimal solution was found, it was usually found on an earlier iteration. In cases where
the optimal solution was not found, but a feasible one was (i.e., on the largest test problems),
the quality of the feasible solution improved as additional subpopulations were added to the
computation. Also notable was the fact that, as additional subpopulations were added, the
number of problems for which the optimal solution was found before the first migration occurred
continued to increase.

We compared SSGAROW with implementations of branch-and-cut and branch-and-bound
algorithms, looking at the quality of the solutions found and the time taken. Branch-and-cut
was clearly superior to both SSGAROW and branch-and-bound, finding optimal solutions to
all test problems in less time. Both SSGAROW and branch-and-bound found optimal solutions
to the small and medium-sized test problems. On larger problems the results were mixed, with
both branch-and-bound and SSGAROW doing better than each other on different problems.
The branch-and-bound results seem to correlate with how close to integer feasible the solution
to the linear programming relaxation was. In many cases branch-and-bound took less time, but
we note that the implementation of SSGAROW used was heavily instrumented.

Most of the progress made by SSGAROW occurs early in the search. Profiles of many runs
show that the best solution found rarely changes after about 10,000 iterations. This observation
seems to hold true irrespective of the number of subpopulations. More subpopulations lead to
a more effective early search, but do not help beyond that. We believe that both an adaptive
mutation rate and further work on the ROW heuristic can help.

Currently, the mutation rate is fixed at the reciprocal of the string length, a well-known choice
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from the GA literature where it plays the role of restoring lost bit values, but does not itself act
as a search operator. One possibility is to use an adaptive mutation rate that changes based on
the value of some GA statistic such as population diversity or the Hamming distance between
two parent strings [30]. Several researchers [7, 28] make the case for a high mutation rate when
mutation is separated from crossover, as it is in our implementation.

We found that the random choice of columns to add or delete to the current solution that
the ROW heuristic made when constraints were infeasible helped the GA sample new areas of
the search space. However, when all constraints are feasible, ROW no longer introduces any
randomnegls. This is because when all constraints are feasible, all of the alternative moves ROW
considers degrade the current solution. Therefore, no move is made, and ROW remains trapped
in a local optimum. We believe some type of simulated annealing-like move in this case would
help sustain the search.

One limitation of the SSGAROW algorithm was its inability to find feasible solutions for six
problems. For three of those, and several others for which optimal solutions were found but with
degraded performance, the penalty function was not strong enough. A number of possibilities
exist for additional research in this area, including stronger penalty terms (e.g., quadratic), the
ranking approach of Powell and Skolnick [24], or the dynamic penalty of Smith and Tate [26] for
which we had mixed results [19]. However, for the aa problems, we are less optimistic. Table 7
appears to indicate diminishing returns with respect to the reduction in infeasibilities in these
problems as additional subpopulations are added to the computation. Much further work on
penalties remains to be done.
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