

~~SECRET~~

ORNL
MASTER COPY
(1D)

ORNL-1941
Chemistry-Separation Processes
for Plutonium and Uranium

Low
P

AEC RESEARCH AND DEVELOPMENT REPORT
(12A)

TP
WZ
SEP 13 1971

ORNL METAL RECOVERY PLANT
PROCESSING CLEMENTINE REACTOR
FUEL ELEMENTS: TERMINAL REPORT

J. L. Matherne
CLASSIFICATION CANCELLED

DATE 8/9/79 (REDACTED)
DOE/CR Letter 9/8/79
REDACTED

DECLASSIFICATION OFFICER
OAK RIDGE NATIONAL LABORATORY
AUTHORITY DELEGATED BY ERDA 8-15-77

OAK RIDGE NATIONAL LABORATORY
OPERATED BY
CARBIDE AND CARBON CHEMICALS COMPANY
A DIVISION OF UNION CARBIDE AND CARBON CORPORATION

UCC

POST OFFICE BOX P
OAK RIDGE, TENNESSEE

RESTRICTED DATA

This document contains Restricted Data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited.

~~SECRET~~

~~SECRET~~

~~CONFIDENTIAL~~

ORNL-1941

Contract No. W-7405-eng-26

This document consists of
21 pages. No. 1 of 189
copies, Series A.

ORNL METAL RECOVERY PLANT
PROCESSING CLEMENTINE REACTOR
FUEL ELEMENTS: TERMINAL REPORT

by

J. L. Matherne

Work done by

R. E. Brooksbank
D. O. Campbell
J. M. Chandler
C. D. Hylton

R. E. Leuze
W. H. Lewis
J. L. Matherne
W. R. Whitson

DATE ISSUED

AUG 23 1955

~~RESTRICTED DATA~~

"This document contains restricted data as
defined in the Atomic Energy Act of 1954.
Its transmittal or the disclosure of its
contents in any manner to an unauthorized
person is prohibited."

OAK RIDGE NATIONAL LABORATORY
Operated by
CARBIDE AND CARBON CHEMICALS COMPANY
A Division of Union Carbide and Carbon Corporation
Post Office Box P
OAK RIDGE, TENNESSEE

~~SECRET~~

~~CONFIDENTIAL~~

INTERNAL DISTRIBUTION

1. C. E. Center
2. Biology Library
3. Health Physics Library
- 4-5. Central Research Library
6. Reactor Experimental
Engineering Library
- 7-11. Laboratory Records Department
12. Laboratory Records, ORNL R.C.
13. C. E. Larson
14. L. B. Emlet (K-25)
15. J. P. Murray (Y-12)
16. A. M. Weinberg
17. E. H. Taylor
18. E. D. Shipley
- 19-20. F. L. Culler
21. F. C. VonderLage
22. W. H. Jordan
23. J. A. Swartout
24. C. P. Keim
25. J. H. Frye, Jr.
26. S. C. Lind
27. A. H. Snell
28. A. Hollaender
29. M. T. Kelley
30. K. Z. Morgan
31. T. A. Lincoln
32. R. S. Livingston
33. A. S. Householder
34. C. S. Harrill
35. C. E. Winters
36. D. W. Cardwell
37. E. M. King
38. W. K. Eister
39. F. R. Bruce
40. D. E. Ferguson
41. H. K. Jackson
42. H. E. Goeller
43. D. D. Cowen
44. R. A. Charpie
45. J. A. Lane
46. M. J. Skinner
47. R. E. Blanco
48. G. E. Boyd
49. W. E. Unger
50. R. J. Klotzbach
51. R. E. Brooksbank
52. W. A. Jenkins
53. W. H. Lewis
54. J. L. Matherne
55. G. S. Sadowski
56. W. R. Whitson
- 57-58. ORNL Document Reference
Library, Y-12 Branch

EXTERNAL DISTRIBUTION

59. Alco Products
- 60-65. Argonne National Laboratory
66. Armed Forces Special Weapons Project (Sandia)
67. Armed Forces Special Weapons Project, Washington
- 68-70. Atomic Energy Commission, Washington
71. Bettis Plant (WAPD)
- 72-74. Brookhaven National Laboratory
75. Bureau of Ships
76. Carbide and Carbon Chemicals Company (C-31 Plant)
- 77-79. Carbide and Carbon Chemicals Company (K-25 Plant)
80. Chicago Patent Group
- 81-82. Dow Chemical Company (Rocky Flats) (1 copy to I. B. Venable)
- 83-86. duPont Company, Augusta
87. duPont Company, Wilmington

- 88-98. General Electric Company, Richland (1 copy ea. to V. R. Cooper, O. F. Hill, and F. W. Woodfield)
99. Goodyear Atomic Corporation
100. Hanford Operations Office
101. Iowa State College
- 102-104. Knolls Atomic Power Laboratory
- 105-106. Los Alamos Scientific Laboratory
107. Massachusetts Institute of Technology (Benedict)
108. Mound Laboratory
109. Naval Research Laboratory
110. New York Operations Office
- 111-112. North American Aviation, Inc.
113. Patent Branch, Washington
- 114-118. Phillips Petroleum Company (NRTS) (1 copy to D. G. Reid)
- 119-120. University of California Radiation Laboratory, Berkeley
- 121-122. University of California Radiation Laboratory, Livermore
123. Vitro Engineering Division
- 124-188. Technical Information Service, Oak Ridge (1 copy to E. E. Sinclair)
189. Division of Research and Medicine, AEC, ORO

~~CONFIDENTIAL~~

CONTENTS

	<u>Page</u>
0.0 ABSTRACT	1
1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 DESCRIPTION OF THE PROCESS	2
3.1 History and Description of Clementine Fuel Elements	2
3.2 Chemical and Equipment Flowsheets	3
4.0 PLUTONIUM CYCLE	8
4.1 Plutonium Recovery and Material Balance	8
4.2 Dissolution	9
4.3 Feed Adjustment	10
4.4 Extraction Cycle	10
4.5 Flowing Stream and Composite Losses of Plutonium	10
4.6 Plutonium Fission Product Decontamination	11
4.7 Plutonium Product Analyses	11
5.0 AMERICIUM CYCLE	12
5.1 Americium Recovery and Material Balance	12
5.2 Feed Preparation	13
5.3 Americium Losses	13
6.0 PROGRAM COSTS	13
6.1 Total Cost	13
6.2 Operating Cost	14
6.3 Postoperating Cost	14
7.0 REFERENCES	15
8.0 APPENDIX	16

~~RESTRICTED DATA~~

"This document contains restricted data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited."

~~SECRET~~

-1-

~~CONFIDENTIAL~~

0.0 ABSTRACT

This report presents data obtained from processing 33 Clementine Reactor fuel elements in the ORNL Metal Recovery Plant to recover approximately 15 kg of plutonium and 0.16 g of americium.

1.0 SUMMARY

The Los Alamos Clementine Reactor fuel elements were processed in the Metal Recovery Plant to recover a total of 14,622 g of plutonium and 0.16 g of americium. A total of 14,716 g of plutonium was shown by analysis to be contained in the ORNL dissolver solutions; Los Alamos S.F. data had indicated the amount to be 15,005.5 g.

The plutonium was recovered by dissolving the fuel elements, separating the plutonium from americium by a modified Purex solvent extraction cycle, and isolating the plutonium on a resin bed. Americium was recovered by neutralizing the aqueous waste stream from the plutonium extraction column, separating the americium from ionic contaminants by solvent extraction and isolating the americium on a resin bed.

The plutonium product from solvent extraction was concentrated tenfold by sorption on Dowex 50 resin followed by batch elution with 6.0 M nitric acid. The product solution from the resin column, containing an average of 51 g of plutonium per liter, was shipped to the Rocky Flats site for further processing.

The gross beta and gamma fission product decontamination factors from plutonium were 250 and 175, respectively. The relatively low decontamination factors were due to a low concentration of fission products in feed solution. All plutonium recovered from the Clementine fuel met fission product specifications for recovered plutonium.

A total of 0.15 g of americium was recovered.

The total cost of recovering Clementine Reactor fuel was \$56,834, or \$3.88 per gram of plutonium recovered.

~~CONFIDENTIAL~~

~~SECRET~~

2.0 INTRODUCTION

The Los Alamos Fast Breeder (Clementine) Reactor used plutonium fuel elements. After it had operated from late 1947 to early 1953, one of the fuel elements ruptured, contaminating the coolant and other fuel rods, and the reactor was shut down. The Atomic Energy Commission requested that the ORNL Metal Recovery Plant recover the plutonium and associated americium from the 33 elements. These elements were nickel-coated, gallium-alloyed plutonium rods encased in mild steel cans. The rods had been fabricated from 200 Mwd/ton and 400 Mwd/ton plutonium and had been irradiated 4 Mwd in the Clementine reactor.

This material was processed in the ORNL Metal Recovery Plant from September 15 to October 15, 1954. The objective of this program was to recover the plutonium and americium sufficiently pure and concentrated for further processing at the Rocky Flats site and the University of California Radiation Laboratory, respectively.

3.0 DESCRIPTION OF THE PROCESS

3.1 History and Description of Clementine Fuel Elements

The Clementine fuel elements consisted of gallium-alloyed plutonium slugs; each slug was approximately 0.64 in. in diameter and 5.5 in. long, weighed approximately 455 g, and was coated with a 0.003-in. layer of nickel. The nickel-coated plutonium rod, along with a 0.345-in.-thick 0.647-in.-dia (about 30 g) normal uranium wafer, was enclosed in a mild steel can. No bonding material was used in the fabrication of these pieces. Information received from Los Alamos⁽¹⁾ indicated that 6 kg of the fuel elements had been fabricated from 200 Mwd/ton plutonium while the remaining 9 kg had been made from 400 Mwd/ton material.

The rods were irradiated for a total of 4 Mwd in the Clementine reactor, which was operated at an average power level of 20 kw, from late 1947 until January, 1953. Based on the radiation history of the plutonium, it was estimated that approximately 3 g of americium was associated with the 9 kg of 400 Mwd/ton plutonium.

3.2 Chemical and Equipment Flowsheets

The chemical flowsheet⁽²⁾⁽³⁾⁽⁴⁾ (Figs. 3-1 and 3-2) was designed to recover the plutonium and americium from the Clementine fuel elements at a purity and concentration acceptable to Rocky Flats and Livermore, respectively. The major items of process equipment and the flow of process solutions are shown schematically in Figs. 3-3 and 3-4.

Processing consisted in dissolution of the fuel elements; one solvent extraction cycle for plutonium separation, decontamination, and isolation; and neutralization of the aqueous waste stream from the plutonium extraction cycle followed by a solvent extraction cycle for americium separation and isolation.

A fuel element was removed from the shielded shipping container to a small lead pig and placed in the dissolver dry box. The slug was then transferred to a small stainless steel basket, which was secured to the dissolver hatch with a stainless steel chain, and lowered into the dissolver. Fifty gallons of 13 M nitric acid and sufficient concentrated hydrofluoric acid to obtain 0.05 M HF were added to the dissolver, and the solution was refluxed at maximum temperature (approximately 125°C) for 12 hours. After refluxing, the dissolver solution was allowed to cool, was steam-jetted to one of two feed tanks (A-6 or A-8), and sufficient 2 M aluminum nitrate was added to the solution to give an extraction feed solution which was 1.3 M in aluminum nitrate and 4.0 M in nitric acid. Aluminum nitrate was required to promote the extraction of americium.

The adjusted feed solution was pumped to the plutonium extraction column (IA) in which the feed solution flowed countercurrently to a stream of solvent (tributyl phosphate in Amsco diluent). The plutonium was extracted by the solvent. The plutonium-bearing solvent, after being scrubbed with dilute nitric acid, cascaded into the stripping column (IB) in which the plutonium was stripped by an aqueous solution of hydroxylamine sulfate. The plutonium-bearing aqueous stream (IBP) from the IB column cascaded through the IBP surge pot and sand filter and then through one of three resin columns, operated in parallel, where the plutonium was sorbed on Dowex 50 resin. When one resin column was loaded with approximately 500 g of plutonium, another column was put on stream, and the plutonium was eluted from the loaded unit with a mixture of nitric acid and sulfamic acid.

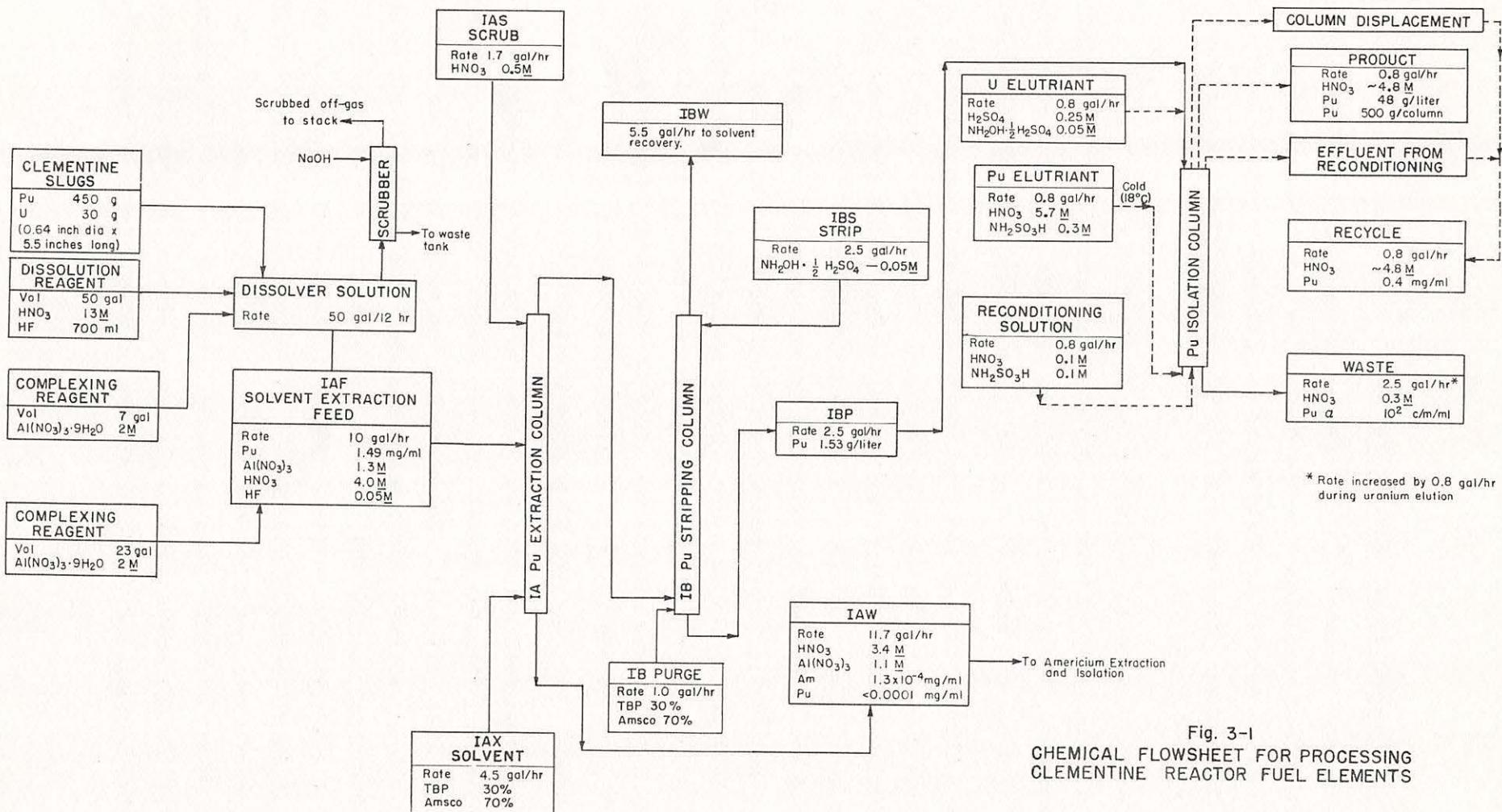
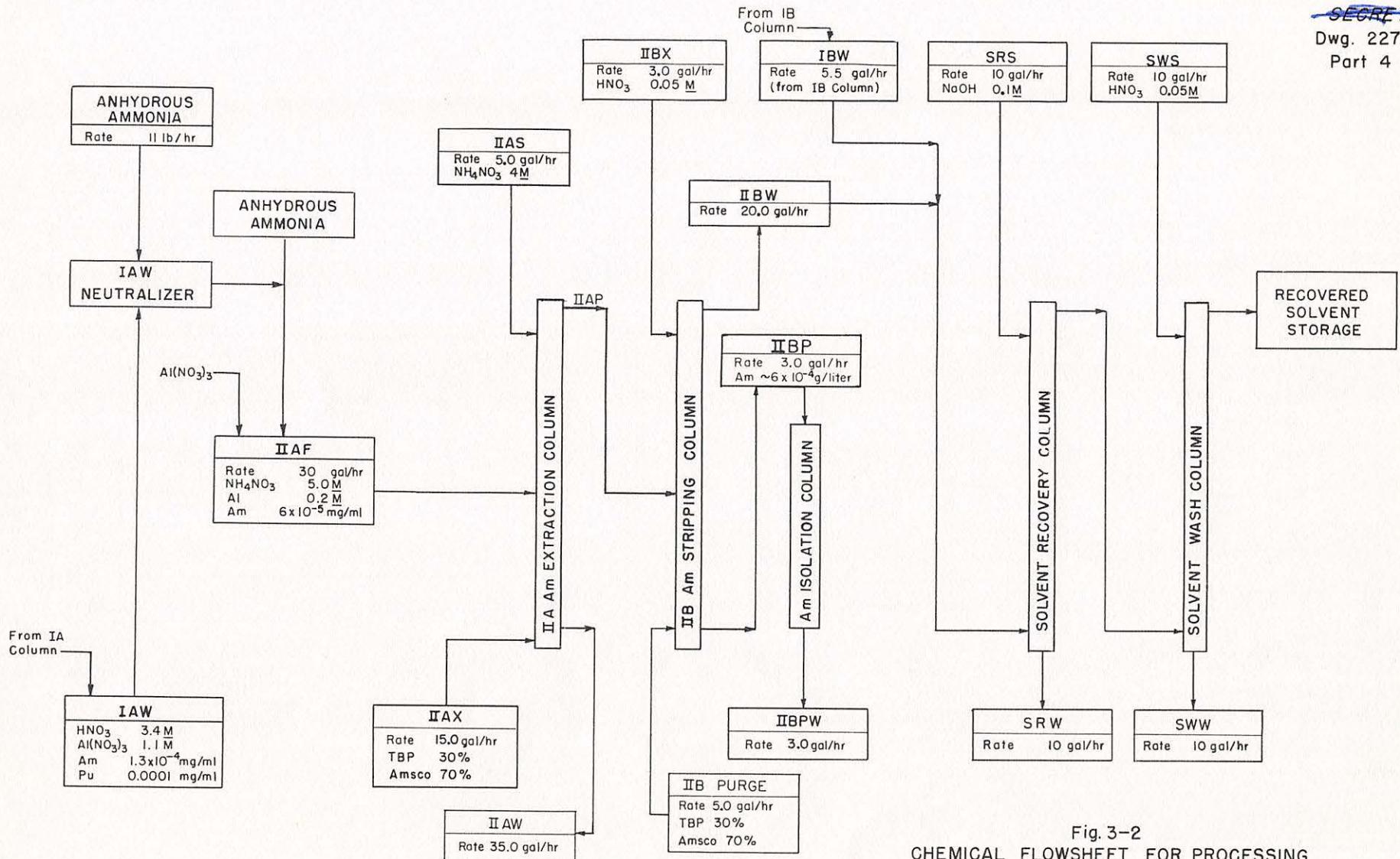
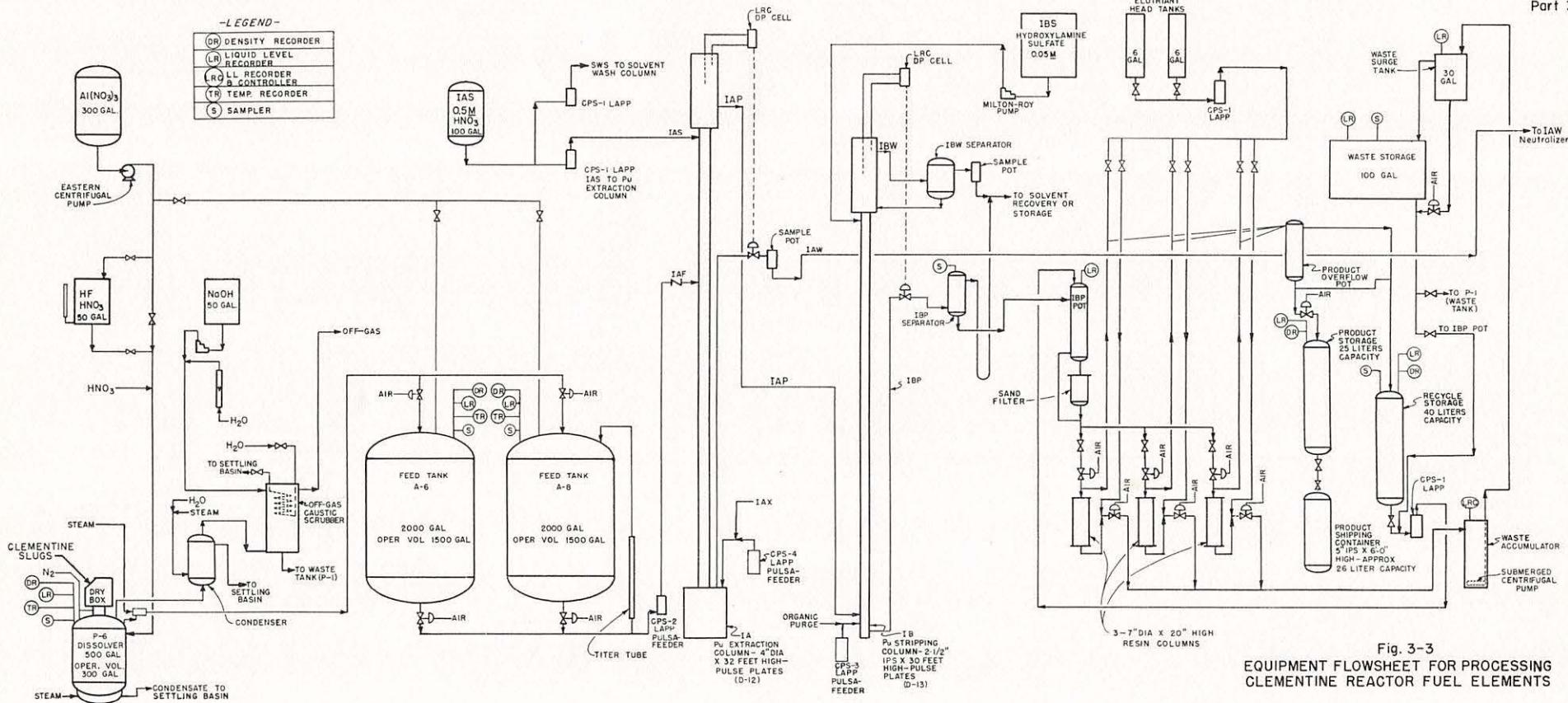




Fig. 3-1
CHEMICAL FLOWSHEET FOR PROCESSING
CLEMENTINE REACTOR FUEL ELEMENTS

Fig. 3-3
EQUIPMENT FLOWSHEET FOR PROCESSING
CLEMENTINE REACTOR FUEL ELEMENTS

~~SECRET~~
wg. 22754 c
Part 4

Dwg. 22754 c
Part 4

-LEGEND-

- DR DENSITY RECORDER
- LR LIQUID LEVEL RECORDER
- LRC LL RECORDER & CONTROLLER
- TR TEMP. RECORDER
- S SAMPLER

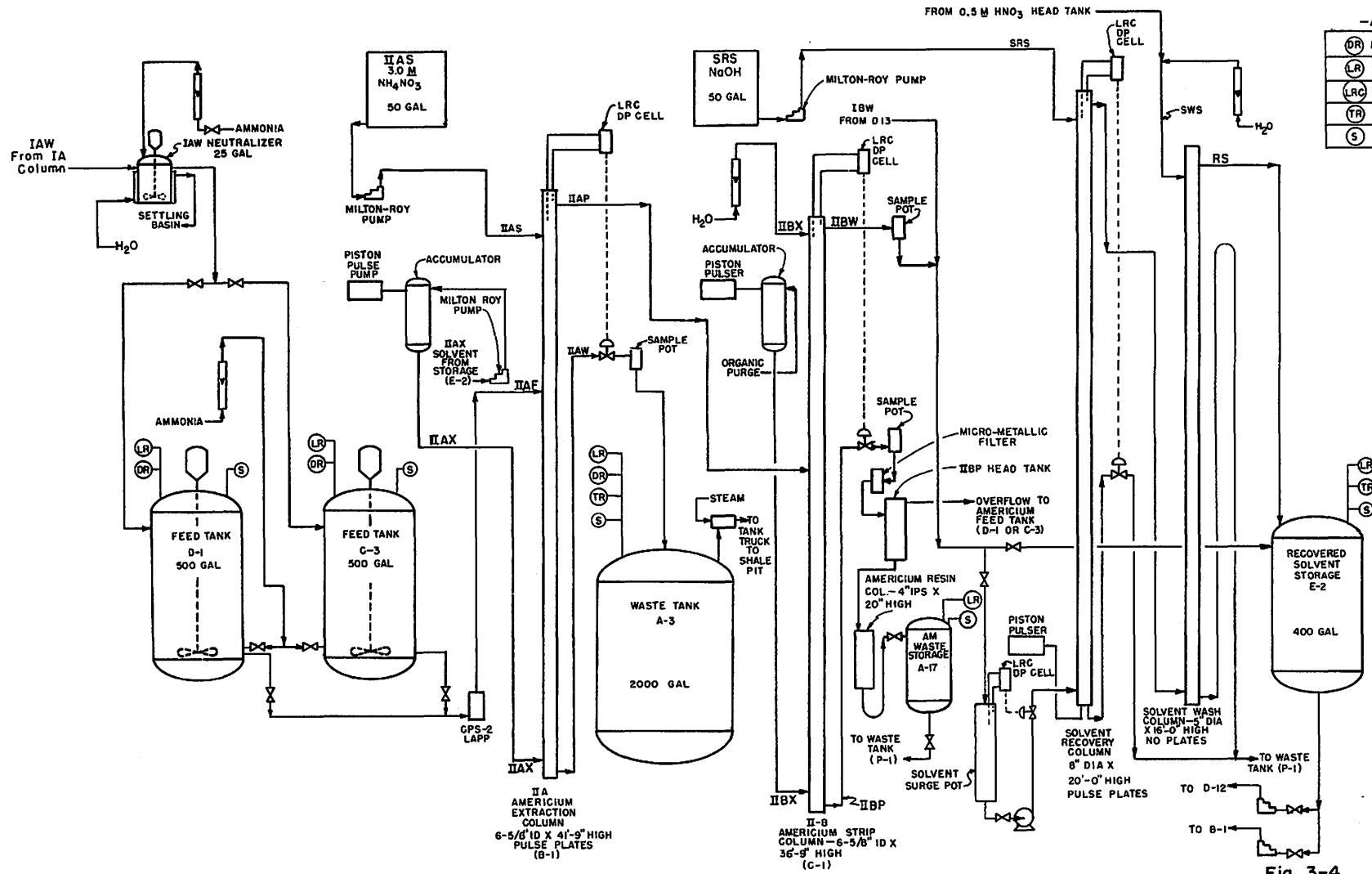


Fig. 3-4
**EQUIPMENT FLOWSHEET FOR PROCESSING
CLEMENTINE REACTOR FUEL ELEMENTS**

Prior to elution of the plutonium, the uranium that was retained on the resin was removed from the column with sulfuric acid solution. The $\text{Pu}(\text{NO}_3)_3$ product solution was transferred to shipping containers and shipped to the Rocky Flats site.

The americium was recovered from the aqueous stream from the plutonium extraction column (IA). This was neutralized (pH 2) with anhydrous ammonia, 90 per cent of the neutralization being accomplished continuously in the neutralizer and the remainder in one of two feed tanks (C-3 or D-1). The neutralized solution was pumped to the americium extraction column (IIA) in which the americium was extracted by a stream of solvent (TBP-Amsco). The americium-bearing solvent, after being scrubbed with ammonium nitrate solution, overflowed into the IIB stripping column. The americium was stripped from the solvent with dilute nitric acid. The acidic americium solution (IIBP) flowed to the IIBP surge tank, from which it was pumped through a Micro Metallic filter to a resin column for sorption of the americium on Dowex 50 resin. The americium was eluted from the loaded resin column with ammonium acetate -- acetic acid solution.

The solvent was continuously contacted with sodium hydroxide solution and then washed with acid prior to being reused.

The principal process waste, aqueous waste from the americium extraction column was collected in a storage tank (A-3) and disposed of in the ORNL shale pit. Other process wastes, principally from the resin columns and solvent treatment, were combined in a tank (P-1) and jetted to the tank farm (tank W-5 or W-6).

4.0 PLUTONIUM CYCLE

4.1 Plutonium Recovery and Material Balance

Analyses of dissolver solutions indicated that the 33 Clementine reactor fuel elements contained a total of 14,716.06 g of plutonium, or 98 per cent of the 15,005.52 g shown on the S.F. transfer document from Los Alamos. A total of 14,622.54 g of plutonium was recovered as product, representing a recovery of 99.4 per cent, based on dissolver analysis.

4.2 Dissolution

Results of the first slug dissolving (solution analysis and visual inspection at 4-hr intervals) indicated that the slug would completely dissolve in 12 hr (Fig. 4-1). The majority of subsequent dissolutions were complete in 12 hr, although, 16 to 20 hr of boiling was required for complete dissolution in a few instances.

The detailed dissolving data are presented in Table 8-1.

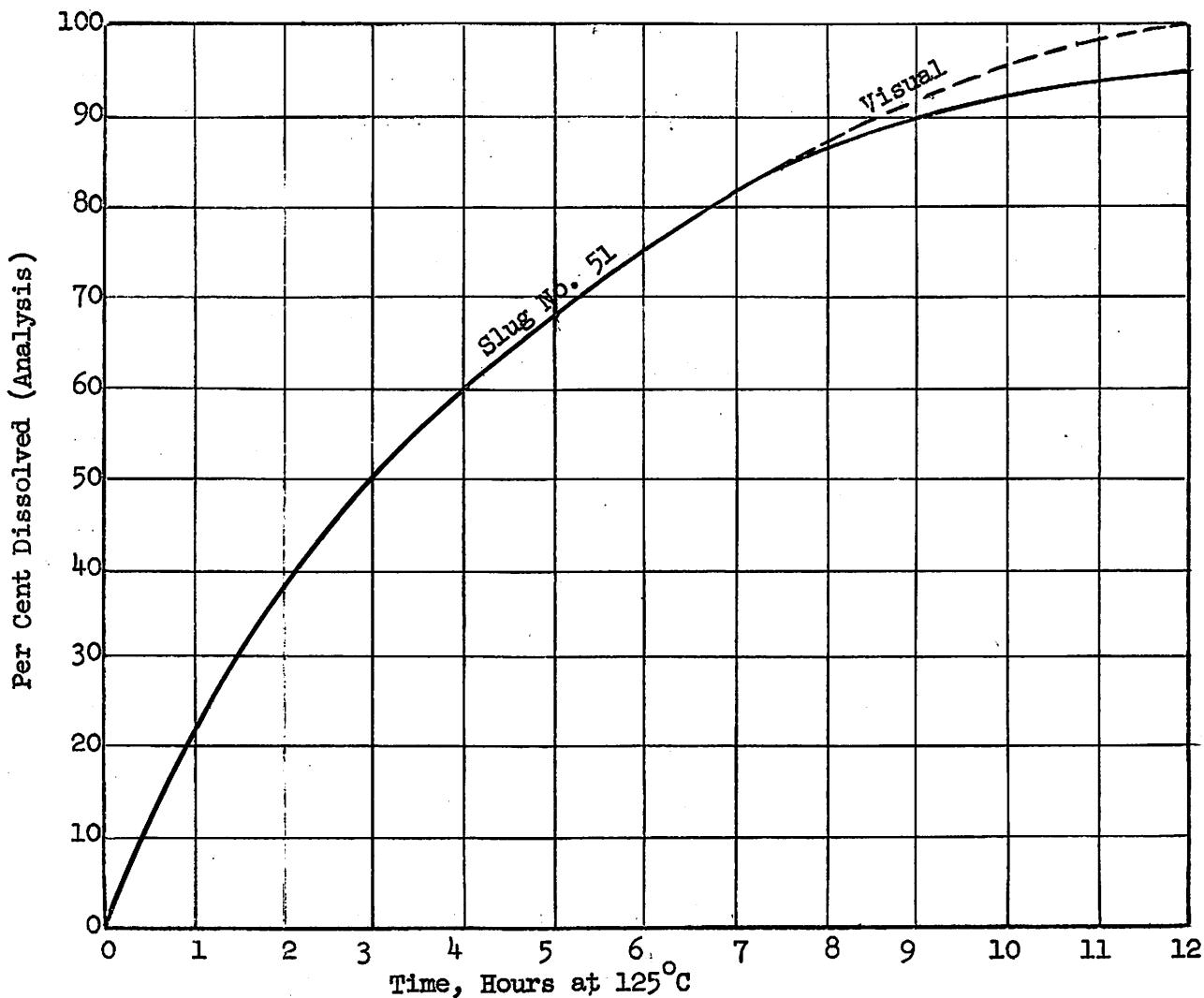


Fig. 4-1

Amount of Clementine Slug Dissolved
in 13 M Nitric Acid (125°C) as a
Function of Time

4.3 Feed Adjustment

Laboratory studies indicated that the concentration of ammonium nitrate in the feed solution to the americium extraction column would be insufficient to salt the americium into the solvent. Therefore, sufficient 2.0 M aluminum nitrate solution was added to the dissolver to make the feed solution 1.3 M in aluminum nitrate and approximately 4.0 M in nitric acid. (The salt solution was added to the dissolver because it was easier to add it to this tank than to the americium cycle feed tank).

4.4 Extraction Cycle

The Metal Recovery Plant extraction columns operated at an on-stream efficiency of 88 per cent. An average of 578 g of plutonium was processed per operating day.

4.5 Flowing Stream and Composite Losses of Plutonium

The plutonium loss from the first cycle was 0.14 per cent, based on analyses of flowing stream samples taken at 12-hr intervals. The plutonium loss for the whole program was 91.4 g, or 0.63 per cent, based on samples taken from waste tanks (P-1 and A-3) in which all process waste streams were collected. Individual stream losses are presented in Table 4-1.

Table 4-1

First Cycle Plutonium Losses

Stream	Loss, % of IAF Pu
IAW	0.003
IBW	0.135
IBPW	0.001
Total	0.139
Composite	0.625

4.6 Plutonium Fission Product Decontamination

Radiochemical analyses of feed and product solutions indicate that the plutonium gross beta and gamma decontamination factors were 250 and 175, respectively. These relatively low factors were due to low fission product activity in the feed solution. All plutonium recovered met fission product specifications for highly purified plutonium.

The individual fission product decontamination factors are shown in Table 4-2.

Table 4-2
Plutonium Fission Product Decontamination Factors

Constituent	Feed Analyses,		Product Analyses,		Decontamination Factor
	cts/min/ml	cts/min/mg Pu	cts/min/ml	cts/min/mg Pu	
Gross β	9.65×10^5	1.22×10^6	2.40×10^5	4.89×10^3	250
Ru β	4.44×10^5	5.57×10^5	5.79×10^4	1.18×10^3	470
Zr β	3.2×10^3	4.06×10^3	226	5	800
Nb β	1.58×10^3	2.0×10^3	484	10	200
Ce β	2.6×10^5	3.3×10^5	4.24×10^4	861	400
TRE β	3.7×10^5	4.69×10^5	5.06×10^4	1.03×10^3	450
Zr β	3.2×10^3	4.06×10^3	---	---	---
Gross γ	404 mv/ml	511 mv/ml Pu	145 mv/ml	295 mv/ml Pu	175

4.7 Plutonium Product Analyses

The plutonium product from elution of the resin columns had an average plutonium concentration of 50.84 g per liter, an average nitric acid concentration of 4.23 M, and an average uranium content of 0.73 per cent of the plutonium content. The specific activity of the plutonium product averaged 7.49×10^7 alpha counts/min per milligram of plutonium, calculated from the ratio of the gross alpha concentration (counts/min/ml) to the plutonium concentration (mg/ml) as determined by the potentiometric method of analysis. Analyses of the individual product solutions are presented in Table 8-2, Appendix.

At the request of the AEC, the plutonium product from the 200 Mwd/ton material was kept separate from the 400 Mwd/ton material for separate processing by Rocky Flats. The contents of nine containers were analyzed for plutonium isotopic content (see Table 4-3).

Table 4-3
Isotopic Analysis of the Plutonium Contained in
Nine Shipping Containers

Container No. PP-	Plutonium Isotopic Content, wt %			Approximate Irradiation Level, Mwd/ton
	239	240	241	
101	98.09 \pm 0.05	1.84 \pm 0.04	0.07 \pm 0.02	Mixed (200 + 600) ^a
102	98.48 \pm 0.05	1.48 \pm 0.05	0.04 \pm 0.01	200
103	98.59 \pm 0.06	1.40 \pm 0.06	0.01 \pm 0.005	200
104	98.55 \pm 0.05	1.44 \pm 0.04	0.02 \pm 0.01	200
105	98.60 \pm 0.04	1.38 \pm 0.03	0.022 \pm 0.014	200
106	98.45 \pm 0.07	1.51 \pm 0.05	0.033 \pm 0.018	200
107	98.06 \pm 0.18	1.91 \pm 0.18	0.026 \pm 0.014	400
108	97.86 \pm 0.04	2.08 \pm 0.03	0.06 \pm 0.01	400
109	97.91 \pm 0.02	2.04 \pm 0.04	0.053 \pm 0.014	400

(a) The first resin column loaded with clementine plutonium had a heel of 600 Mwd/ton material from the previous Hanford Metallurgical Waste Program. (2)

5.0 AMERICIUM CYCLE

5.1 Americium Recovery and Material Balance

The feed to the americium extraction column contained 2.505 g of americium and since 0.94 g was lost to the waste streams, 62.4 per cent of the americium should have been recovered. However, elution of the americium resin column at the end of the program yielded only 0.155 g of americium. Analysis of the eluted resin indicated that the resin retained 0.138 g. These values gave an exceedingly poor over-all material balance of 49.6 per cent. The samples of waste solutions,

particularly the IIAW samples, contained a great deal of precipitated salts, making it difficult to obtain a representative sample and to pipet an aliquot for analysis. The poor quality of the samples is probably the reason for the low material balance.

5.2 Feed Preparation

The americium recovery cycle was not operated when fuel elements containing 200 Mwd/ton plutonium were processed. The aqueous waste stream from the plutonium extraction column was neutralized with ammonia and sent directly to the waste storage tank (W-6). When 400 Mwd/ton material was processed, americium was recovered.

5.3 Americium Losses

The americium loss for the program was 37.6 per cent, based on analyses of collected waste solution. Individual stream losses are presented in Table 5-1.

Table 5-1
Americium Cycle Losses

Stream	Loss, % of IIWF Am
IIAW	14.8
IIBW	15.51
IIBPW	7.3
Total	37.6

6.0 PROGRAM COSTS

6.1 Total Cost

The total cost of the Clementine program was \$56,834 (Table 6-1). A total of 14.7 kg of plutonium was recovered at a unit cost of \$3.88 per gram.

6.2 Operating Cost

The Clementine program lasted from September 15 to October 15, 1954, and during this period, the operating cost was \$42,608.

6.3 Postoperating Cost

The Metal Recovery Plant was shut down from October 15 to December 15, 1954 to convert the plant from plutonium recovery to irradiated uranium slug processing. The \$77,958 cost for this period was prorated to the Hanford Metallurgical Waste and the Clementine Programs in proportion to the amount of plutonium processed in each program (67 kg during the Hanford program and 15 kg during the Clementine program). The Clementine program was charged \$14,226 for postoperating costs.

Table 6-1
Summary of Metal Recovery Plant Costs for the Clementine Program

Type of Expense	Operating Cost		Program Cost		
	Subtotal \$	% of Operating Cost	Total Cost, \$	% of Total	Plutonium Cost, \$/g
Operating Costs			42,608	75.0	2.91
Pilot plant labor	9,062	21.3			0.62
Analytical services	6,122	14.4			0.42
Chemicals and supplies	6,909	16.2			0.47
Protective clothing	975	2.3			0.07
Engineering and maintenance	1,049	2.5			0.07
Miscellaneous charges	362	0.8			0.02
Worked materials	4,674	11.0			0.32
Expense allocation	9,476	22.2			0.65
Health Physics	1,870	4.4			0.13
Research Director's Dept. charges	1,000	2.3			0.07
Division Director charges	1,109	2.6			0.07
Postoperating Cost			14,226	25.0	0.97
Total			56,834	100.0	3.88

7.0 REFERENCES

1. J. H. Hall letter to W. H. Lewis, TAD-1673 (Feb. 23, 1954).
2. R. E. Brooksbank, J. L. Matherne, W. R. Whitson, "Terminal Report on the Recovery of Plutonium and Americium from Hanford Metallurgical Waste in the ORNL Metal Recovery Plant," ORNL-1850 (Feb. 16, 1955).
3. D. C. Overholt, F. W. Foster, D. A. Orth, "An Ion Exchange Process for Plutonium Isolation and Purification" ORNL-1357 (Sept. 16, 1952).
4. R. H. Rainey, "Development of the Amex Process for Americium Recovery," ORNL-1697 (May 7, 1954).

8.0 APPENDIX

The dissolver data and the plutonium product analyses are summarized in Tables 8-1 and 8-2.

Table 8-1
Summary of Dissolver Data

Dissolving No.	Dissolver Data			Total Plutonium, g	
	Volume, liters	Plutonium α Activity, cts/min/ml	Specific α Activity, cts/min/mg	ORNL Analysis	Los Alamos S. F. Data
1	175	1.77×10^8	7.62×10^9	406.50	457.90
2	176	1.59×10^8	7.62×10^9	367.24	456.16
3	171	2.24×10^8	7.45×10^9	514.15	454.50
4	170	1.89×10^8	7.45×10^9	431.28	455.81
5	150	2.19×10^8	7.49×10^9	438.59	457.30
6	169	2.05×10^8	7.49×10^9	462.55	458.70
7	161	2.08×10^8	7.17×10^9	467.06	457.00
8	159	2.04×10^8	7.17×10^9	452.38	454.19
9	193	1.93×10^8	7.17×10^9	519.51	449.20
10	184	1.80×10^8	7.57×10^9	437.52	455.60
11	186	1.74×10^8	7.57×10^9	427.53	456.96
12	179	1.87×10^8	7.63×10^9	438.70	454.00
13	175	1.82×10^8	7.67×10^9	415.25	453.00
14	177	1.83×10^8	7.67×10^9	422.31	453.20
15	176	1.88×10^8	7.67×10^9	431.40	454.30
16	188	1.84×10^8	7.67×10^9	451.00	453.40
17	137	2.38×10^8	7.67×10^9	425.11	445.30
18	192	1.92×10^8	7.53×10^9	489.56	452.10
19	167	1.92×10^8	7.53×10^9	425.82	456.76
20	360	1.91×10^8	7.56×10^9	909.52	910.55
21	351	1.92×10^8	7.53×10^9	894.98	910.22
22	360	1.81×10^8	7.59×10^9	858.50	910.00
23	361	1.93×10^8	7.56×10^9	921.60	900.43
24	362	1.90×10^8	7.60×10^9	905.00	910.71
25	350	1.81×10^8	7.63×10^9	830.28	914.09
26	357	2.05×10^8	7.57×10^9	966.78	914.14
Heel	189	2.33×10^6	7.41×10^9	5.94	----
Total				14,716.06	15,005.52

Table 8-2
Summary of Plutonium Product Analyses

Product Container No.	Pu Conc, g/l	Total Pu, g	H ⁺ , N	Gross α , cts/min/ml	Specific α , Activity, cts/min/mg	U, g	U in Pu, %
N-47	49.18	881.50	4.10	3.75×10^9	7.62×10^7	2.474	0.28
N-23	51.81	900.46	4.40	3.86×10^9	7.45×10^7	3.580	0.40
N-20	54.72	957.11	4.20	4.10×10^9	7.49×10^7	7.294	0.76
N-9	67.60	1,237.82	4.20	4.85×10^9	7.17×10^7	3.003	0.24
N-19	48.32	851.50	3.60	3.66×10^9	7.57×10^7	7.014	0.82
N-29	42.45	753.19	3.20	3.24×10^9	7.63×10^7	5.678	0.75
N-21	56.46	1,004.99	3.80	4.33×10^9	7.67×10^7	7.049	0.70
N-46	50.34	913.42	4.10	3.86×10^9	7.67×10^7	8.111	0.89
N-31	56.59	990.44	4.60	4.26×10^9	7.53×10^7	9.241	0.93
N-38	52.75	913.68	4.50	3.99×10^9	7.56×10^7	5.456	0.60
N-30	47.04	831.53	4.60	3.54×10^9	7.53×10^7	6.169	0.74
N-40	59.81	1,115.93	4.00	4.54×10^9	7.59×10^7	10.337	0.93
N-24	50.63	867.14	4.10	3.83×10^9	7.56×10^7	4.624	0.53
N-15	42.65	777.25	4.20	3.24×10^9	7.60×10^7	2.570	0.33
N-17	50.49	916.90	4.05	3.85×10^9	7.63×10^7	1.780	0.19
N-25	32.62	604.71	4.70	2.47×10^9	7.57×10^7	6.803	1.12
N-32	3.28	67.93	5.50	2.18×10^8	6.65×10^7	9.506	14.00
N-48	9.30	181.09	4.30	6.89×10^8	7.41×10^7	5.647	3.12