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My activity as a B. Matthias Fellow in LANL includes

(a) scientific discussions with LANL personnel

(b) giving seminars in various divisions and groups of LANL

(c) research project with Dr. R. Schwarz at CMS on intermetallic hydrides.

(a) Scientific discussions: .

Daily discussions with R. Schwarz on the thermodynamics of coherent open systems.
Dr. A. Saxena, on modeling the martensitic transformations, March 4
Dr. H. Frost, on mechano-optical effect, March 18
Dr. L. Bulaevsky, on the possibility of strain-induced in stability of the Abrikosov lattice in
superconductors, March 23
Dr. H. Frost, on Mechano-optical effect, April 4
Dr. R. Blumenfeld, on the strain effects in the tranéformations, April 8
Dr. A. Saxena, on modeling the martensitic transformations, April 11
Dr. A. Bishop, using the field methods for modeling the shape memory effect, on April 19
Dr. L. Bulaevsky, on the possibility of strain-induced in stability of the Abrikosov lattice in
superconductors, May 23
Dr. L. Bulaevsky, on the possibility of strain-induced in stability of the Abrikosov lattice in
‘superconductors, June 15 .

(b) Seminars

1. Coherent Transformations in Ordering and Decomposing Systems - CMS Seminar
( April 8, 1994)

2. Computer Modeling the Structure Transformations - Theory Seminar , T-11,
(April 18, 1994)

3. Theory of Pattern Formation in Coherent Transformations- Seminar at the Center of Nonlinear
Studies, (July 5, 1994)

Mig 2o, o4

= —— - - - — e
»

NS



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately

,owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily ‘constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

& e



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




(c) Research project:

THERMODYNAMICS OF COHERENT OPEN SYSTEMS WITH APPLICATIONS TO
HYDRIDES: THE PHYSICAL ORIGIN OF HYSTERESIS IN ABSORPTION-DESORPTION
ISOTHERMS

The investigators: Armen Khachaturyan and Ricardo Schwarz

The purpose of this project is to resolve an important problem related to a behavior of metal
hydrides, viz. a physical origin of a strong hysteresis on the pressure-composition isotherms ( the
plateau pressure during hydrogen absorption is usually several times higher than that during the
reverse desorption process). This research which has been started as studying although important
but specific problem is ended up by resolving the much more general problem of the behavior of
open coherent systems and by formulating the basic concepts of the thermodynamics of an
elastically coherent two-phase open system consisting of an interstitial solid solution in the
equilibrium with a gas reservoir of solute atoms.

It has been shown that the coherency strain qualitatively changes the character of the
transformation from what is expected from conventional thermodynamics for incoherent systems.
In particular, the phase rule becomes inapplicable and the 'plateau’ on the pressure-composition
isotherm does not correspond to a coexisting two-phase state anymore. The coherency strain
introduces a non-surmountable macroscopic energy barrier between the transforming phases which
prevents the coexistence of the phases and results in a reversible hysteresis in the pressure-
- composition isotherm. The proposed theory is particularly applicable to metal- hydrogen systems.

We demonstrate, for the first time, that the conventional Gibbs thermodynamics of open
elastically coherent systems is "unstable" with respect to even an infinitesimal coherency strain.
The coherency strain qualitatively changes the character of the transformation from what is
expected from conventional thermodynamics for incoherent systems. Particularly, it blocks the
phase transition from the metastable to the stable phase by producing a non-surmountable
macroscopic energy barrier between them. This makes the Gibbs phase rules inapplicable (two-
phase equilibrium provés to be impossible) and results in a thermodynamically reversible
hysteresis on the absorption-desorption isotherms. The latter conclusion has enabled us to explain
the hysteresis in hydrides, the phenomenon which cannot be explained in terms of the conventional
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thermodynamics, as well as to suggest a simple equation for the ratio of the plateau pressures at
the absorption and desorption processes.

A key for understanding a non--Gibbsian behavior of coberent interstitial open systems is a
role of the coherency strain in the thermodynamics of the phase transformation. Particularly, the
strain results in the quadratic dependence of the strain energy on the volume fractions of the
coexisting phases and, thus, eliminates the additivity of the thermodynamics. An additivity of the
free energies, which is a central part of the Gibbsian thermodynamics, is associated with a usual
linear dependence of the free energy on the volume fractions.

The applicability of the proposed theory is far exceeds the particular case of hydrides
discussed in this work. With minor modifications, it actually would be also valid for the
equilibrium between a decomposing coherent solid solution and melt as well as for the equilibrium
between solid reservoir of solute which is in an incoherent contact with the coherent decomposing
solid solution.

There are certain indications that the ideas following from this research could be,
particularly applied to the problem of imbrittlement of intermetallics.

The results of this work are summarized in manuscripts:

1. The completed manuscript of our paper "On thermodynamics of Open Two-Phase Systems with
Coherent Interfaces: Application to Metal-Hydrogen System" written together with Dr. R. Schwarz
and submitted to Physical Review Letters. A copy of this paper is attached.

2. Non-finished work with Dr. R. Schwarz "The Structure and Thermodynamics of Ordered
Phases in LaNis-Based Hydrides". After a completion, it is intended to be submitted to Physical
Review B ' ' '

I are going to continue our collaboration with Dr. Schwarz.

®Page 3

v

o P e,
RS



Submitted to Physical Review Letters, July 15, 1994

On the Thermodynamics of Open Two-Phase Systems with Coherent Interfaces:
Application to Metal-Hydrogen Systems.

R. B. Schwarz and A. G. Khachaturyan

Center for Materials Science
Los Alamos National Laboratory
Los Alamos, NM 87545

1 Department of Materials Science and Engineering
Rutgers University -
P.O. Box 909, Piscataway, NJ 08855-0909

The thermodynamié theory for the decomposition of a ‘coherent’ two-phase open system
consisting of an interstitial solid solution in equilibrium with a gas reservoir of solute atoms
is developed. It is shown that the coherency strain qualitatively changes the character of the
transformation from what is expected from conventional thermodynamics for incoherent
systems. In particular, the phase rule becomes inapplicable and the ‘plateau’ on the pressure-
composition isotherm does not correspond to a coexisting two-phase state anymore. The
coherency strain introduces a non-surmountable macroscopic energy barrier between the
transforming phases which prevents the coexistence of the phases and results in a reversible
hysteresis in the pressure-composition isotherm. The proposed theory is particularly
applicable to metal- hydrogen systems.

PACS: 64.60.-i, 64.70.Kb, 81.30.-t

It is well known that in two-phase systems with coherent interfaces the transformation-
induced strain has a profound effect on the phase transformation thermodynamics, sometimes
qualitatively changing its character [1,2]. The elastic strain generated by the interfaces is infinitely
long-ranged and thus the strain-induced interaction between the coexisting coherent phases is
infinite-ranged as well. This has two nontrivial implications. The first is that the elastic energy
contribution to the total free energy of the coherent system is non-additive, i.e., it does not meet
the major requirement of the Gibbs thermodynamics. Instead, the total free energy of the coherent
system depends non linearly on the volume fractions of the coexisting phases [3]. As a result, the
volume fractions of the coexisting coherent phases become internal thermodynamic parameters
which are determined from a minimum free energy condition. The second implication is that, in

Page 1




the most general case, the strain energy depends also on the spatial pattern (microstructure)
formed by the coherent domains of the coexisting phases and, therefore, the microstructure also
becomes a self-adjisting internal thermodynamic parameter [3] . For such a system, the
conventional common tangent construction of the additive Gibbs thermodynamics used to find the
equilibrium compositions of the coexisting phases ceases to be valid.

The effect of the coherency strain on the thermodynamics of a closed two-phase system
with conserved number of atoms has been investigated by Roytburd [1] and Cahn and Larche [2].
These works considered the replacive transformation (decomposition) in an elastically isotropic
system producing a two-phase coherent mixture. It was assumed that the crystal lattice parameters
of the two phases are different but do not depend on the compositions of these phases. It was
shown that for such systems the coherent equilibrium cannot be described by a common tangent
rule and that sometimes it even fails to obey the Gibbs phase rule. These results give an important
illustration of the above mentioned fact that in systems with coherent interfaces, the strain energy
can make the thermodynamics qualitatively different from the conventional Gibbs thermodynamics.
However, the model assumed in [1,2] seems to have a limited application. It is inapplicable to
most systems decomposing by replacive transformations where the crystal lattice parameters of the
coexisting phases are mainly determined by the composition (for example, the y - ¥ transformation
in Ni-Al). Furthermore, it has been shown by Lee [4] that in the case where the crystal lattice
parameters follow the Vegard law, all the unusual effects expected in coherent thermodynamics
[2,3] vanish. These effects can be expected, however, in systems where the misfitting crystal
lattice parameters either do not depend on the phase compositions at all, like in the Roytburd and
the Cahn and Larche models, or show a very strong deviation from the Vegard law. The lack of
such systems seems to be a reason why there is still no reliable experimental confirmation of the
strain effects predicted in [1,2]. -

It will be shown in this Letter that the situation is different for open systems where the solid
solution is in a dynamic equilibrium with a reservoir of solute atoms. We demonstrate that unlike
the case of replacive transformations in coherent solid solutions with conserved number of atoms,
the strain energy has always a drastic effect on the thermodynamic behavior of an open coherent
system. These effects should be expected even for an infinitesimal strain energy contribution to the
system's free energy. Technologically important examples of such open systems are hydrides in
equilibrium with a hydxogen gas reservoir at fixed pressure p and temperature T. Particularly, we
demonstrate that for these systems the coherency strain completely eliminates the two phase
equilibrium and produces a large thermodynamically reversible hysteresis effect.
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Typically, the decomposition of an interstitial solid solution based on a metal or
intermetallic matrix results in a formation of two phases characterized by different concentrations of
interstitial solute atoms. One phase may be disordered and the other ordered, or both may be
ordered. According to classical thermodynamics, such a two-phase system is in thermodynamic
equilibrium with the gas of interstitial atoms if the chemical potentials jLy and g of an interstitial
atom the o and B solid phases are equal to the chemical potential jig(p,T) of an atom in the gas
phase: Mo(co) = Mplcp) = Ke(p,T), where c and cp are concentrations of interstitial atoms in the
o and P phases. As long as the concentration of interstitial atoms in the solid is within the two-
phase field of the phase diagram, the pressure required to transform the o phase to the 3 phase is
constant. This, in turn, results in a plateau on the pressure-composition isotherm within the two-
phase composition range. ~Measuring the concentration range of the plateau at different
temperatures is the main method for the experimental determination of the isobaric temperature-
composition, or T-c diagrams of interstitial solutions such as hydrides. It will be shown below
that even a small strain introduced by the interstitial atoms drastically changes this picture.

It was shown by Eshelby [5] that the strain energy of a homogeneous elastically isotropic
solid solution, where solute atoms are dilatation point defects, is configurationally independent
because the strain-induced interaction between the point defects, depending on their mutual
position, is zero (Crum's theorem). The Eshelby model, assuming solute atoms to be misfitting
elastic spheres coherently imbedded into the parent phase matrix of the volume V, results in the
following equation for the strain energy:

Eel=NvoG—11-+—9-e§E(1-E) (1)
-0

1)

where N is the total number of equivalent lattice sites (in the case of an interstitial solution N is the

total number of interstitial sites), vo = \ﬁ,, G is the shear modulus, ¢ is the Poisson ratio, £, = %
is the concentration dependence of the crystal lattice parameter, c = % , and Nj is the total

number of interstitial solutes in the system. In Eq. (1), the term proportional to ¢ 2 characterizes
the configurationally independent strain-induced interaction which arises through the image forces
associated with the free surface of the system. It should be noted that the energy (1) depends on
the total number of atoms (through c ) rather than on;the local concentrations. Therefore, any
regrouping these atoms over the crystal lattice, ﬁarticularly the one that transforms the
homogeneous solid solution of the composition ¢ into a two-phase coherent mixture of o and f3
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phases, does not change the total strain energy. It is the same for the homogeneous solid solution
as for the two-phase coherent mixture formed by the decomposition of this solution.

With Eq. (1), the Helmholtz free energies (per a lattice site) of the o. and B phases in their
single phase states, including the strain energy contributions, can be presented as

Fofc) = falc) +Ac (1-c¢) (2a)
and
Fp(c) = fp(o) + Ac (1-¢) (2b)
where
A=y, G122 &2 : 3)
1-0 °

We assume that the interstitials do not affect significantly the elastic properties of the matrix and
thus A has the same value in both phases. Because the elastic energy of the two-phase coherent
system is also described by eq.(1), it can be rewritten in terms of compositions of the phases cq
and cg and the volume fraction o of the B phase (more precisely, @ is the relative fraction of the
interstitial sites occupied by the B phase). Because the three values, cq , C and , are related by

the atom conservation equation for interstitial atoms:
acg+(l-@)cog = C, . ©)

the strain energy of the coherent two-phase mixture can be presented as

Eel =NAT (C(X9 Cﬂ,(D) [1 -c (Ca, CB,(D) ] (5)

where .
€ (co cB,m) =acg +(1-0)cy : 6)

In the closed systém, the parameters cg, cg and @ are not independent since they are related

by the atom conservation condition in Eq. (4). This, however, is not the case for the open system
where the variables cq, cp and @ are independent internal degrees of freedom. Their equilibrium

values are determined by a minimum free energy condition.

The free energy of the open two-phase system with variable number of interstitial atoms is
the sum of the additive "chemical" part of the free energies, N(1-0) fy(cy) and N fB(cB) for the

o and B phases, respectively, and the strain energy in Eq. (5). The free energy per a lattice site is
thus
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flegep®) = 0 f3(cp) + (1 - ®) fylcg) +AT (cor p®) [1- (s cp@) ] ™

Below, without a loss of generality, it is assumed that cg > cg. In an open system which is in
dynamic equilibrium with a reservoir of interstitial atoms, the compositions c, and Cps as well as

the volume fraction ® of the B phase, are all independent variables (internal thermodynamic

parameters) which can be found by minimizing the Gibbs free energy

g(ca,cB,O)) = fB(CB) +(1- ) fylca) +A TCas cB,co) (1- (cas, cB,m)) -1 <€ (co cB,m)

®)
obtained by adding the term -[L € (Co, cp,®) to Eq. (7). The parameter | is a Lagrange multiplier
which in equilibrium equals the chemical potential of interstitial atoms in the gas phase, [Lg(p,T).
Using Eq. (6), Eq. (8) can be rewritten to show that the specific free energy g(ca,cﬁ,(o) has a
quadratic dependence on the volume fraction @:

8(Copp®) = do(Ca) +01(Coscp) @ - $2(Concp) ©2 ©
where
¢0(c(1) = a(ca) + Aca (1 - ca) -p ca (loa)
fa(ca) - £,
d1(cacp) = (e~ o) [ ‘-”(ccﬁg - :‘f“’ +A(1-2c0) 4] (10b)
2(cocp) = Alcp - c? >0 (10c)

The quadratic form (9) describes three possible dependencies of g on ®, shown schematically in
Fig.1 by curves a , b and ¢. The curves a and ¢ have'only one minimum which means that only
one stable phase can exist: the o phase for the curve a and the B phase for the curve c. Curve b
has two minima, at ® = 0 and at ® = 1, separated by the maximum at ©® = ©*. For the particular
curve b shown, the P phase is stable whereas the o phase is metastable. The situation depicted by
curve b is the most interesting because the phase transition from the metastable o to the stable B
phase turns out to be impossible. Indeed, the o0 — B transformation requires the formation of the
two-phase state with the volume fraction ©* of the B phase. This, in turn, requires the
spontaneous increase in the volume-dependent free energy by the magnitude Vg(ca,cB, ®*). Such
an increase is forbidden by the second principle of thé”:thermodynamics. The present situation is
quite different from that of the phase transformations in the absence of coherent interfaces and
macroscopic strains, where the transformation barriers are microscopic (the formation of critical
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nuclei) and, as such, can be overcome by thermal fluctuations. Therefore, it follows from the ®
dependence of g(cwcﬁ,a)) in Eq. (9), as illustrated by Fig.1, that two-phase equilibrium in a
coherent open system is impossible. This also means that the phase rule becomes inapplicable to
coherent open systems.

Since the free energy barrier between the o and  phase is not surmountable by thermal
fluctuations, the o.— P transformation does not starts as long as ¢1(CoCB,) > 0in(9). Asp
increases, ¢1(ca,cp,) decreases and the o phase looses its stability when ¢1(co.Cp) vanishes (=0
ceases to be a minimum of g(ca,cB,oa) ). Then, it follows from the definition (10b) and the

condition ¢1(co,cp) = O that

[ fB(CB) - fa(ca)

g +A(1-2c,) - folc)] = 0 ’ (12)

It is taken into consideration in Eq. (12) that p = po(cey) for the single-phase state of the initial o
phase. The chemical potential of the o phase follows from Eq. (2a):

dF of
HolCo) = _aTa |c=ca=';f|c=ca+A(l - 2¢0) (13)

Using Eq. (13) to eliminate plo(Cq) from Eq. (12) we obtain the o-phase instability condition in

terms of the concentrations only (no strain effects are involved). It reads,

fg(cg) - fo(Cy) i afa(ca) _
Cp - Ca dcg,

0 (14)

Figure 2a shows the free energies of the o and P phases inéluding the strain contribution (heavy
traces) and without the strain contributions (thin traces). From this figure it is clear that Eq.(14)
cannot be satisfied if co < c:: because then the left side of Eq. (14) is positive. With increasing

co» Eq. (14) becomes satisfied when cq in Fig.2a reaches the point c:: where the tangent to the
curve f,(c) touches for first time the curve fB(c). Therefore, the stability limit of the o phase, ¢,

= c:: , is actually determined by the conventional common tangent construction applied to the free
energy curves f (c) and fB(c) in Fig.2a. In addition to c::, this graphical construction also
determines the other critical parameters of the transformation: the concentration cgt of the B phase

formed at the-beginning of the o. — B transformation and the critical chemical potential ;,l(x(c:;t ),
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which equals the slope of the tangent line to the curve Fy(c) at the concentration ¢ = c: . The gas

pressure pj needed to-trigger the o—> B transition is determined by
of
- sty _ Yo S
Be(PLT) = Haley) = 21 | pme TAM-2) (15)

which follows from Eq. (13). The composition cls; of the B phase, formed at the beginning of the
o— B transformation, is not in equilibrium with the external gas reservoir at the pressure p; since
uB(c < p,g(pl 1) = ua(cSt) Indeed, Fig.2a shows that the slopes of the tangent lines at points
O and 0 giving the values of ua(c“) 1e(p1,T) and uB(c ) are different. - Because ;LB(cB )
< ua(c“), to establish equlhbnum the B phase has to absorb interstitial atoms from the gas phase
until its composition reaches cB , where p.B(cB) Ke(p1,T) = p.a(cSt) The composition c (the
point O, in Fig.2a) is defined by the condition that the slope of the FB(C) curve at cg equals the
slope of F(c) at the composition cf: (the point Oy in Fig.2a). Therefore, the absorption isotherm
should have a plateau at the pressure p; within the composition range cfxt <c< cE (Fig.2b).

The same line of reasoning gives the graphic algorithm for the desorption isotherm , also
illustrated by Fig.2. With decreasing Cg» the B — o transformation starts at ¢ = cf; . The

desorption plateau pressure p; is determined from the equation

of
He(p2,T) = lJ'B(cﬁ ) = _ﬁl 5’5'

st
=cf s +A(1 -ZCB ) (16)

C=Cp

where FB(C) is given by Eq. (2b). Eq.(16) determines the pressure p2 for the reverse f — o
transformation. However, the o. phase formed as a result of this transformation has the

composition cSt and thus is not equilibrium with the gas phase since at this composition ua(cs‘)

> We(p2,T) = B(cﬁ ) (see Fig.2a). The o phase has to desorb interstitial atoms, reducing its
composition from cSt to cf until pg(cq) reaches the equilibrium value, Mo c )= |,|,B(cSt ) =

Hg(p2,T). Therefore, the desorption isotherm has a plateau at the pressure pz within the

concentration range Cfx <c < c‘f‘; , as shown in Fig.2b.

As follows from the above graphic consideration, the absorption—desorption curves have
considerable hysteresis, Hg(p1.T) - Hg(p2,T) = ua(cSt) ug(c ) The origin of this hysteresis is
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—B] _ . which

o | fy|
% ek ™ oo

the coherent strain. From Egs. (15) and (16), using the equality 3

follows from Fig.2a, we obtain the simple expression
He@LT) - Hg(pT) = 2A (e - €3)) (17
The chemical potential of interstitial atoms in a diatomic gas is

— o, 1 _P_
He(p,T)= li(T)g +35 kT In Po(D)

where po(T) and u(T)(g’ are the pressure and chemical potential in the standard state. With it and

Eq.(3) we obtain a simple equation for the g% ratio characterizing the thermodynamic hysteresis:

1+0 2
4 v, G - eo.(c?-cg)

The predictions for phase transitions in an open two-phase system with coherent interfaces,
derived here, explain certain aspects of the behavior of metal hydrides whose physical origin is
still a subject of debates. In particular, they explain the large reversible hysteresis on the pressure-
composition isotherms observed in most metal-hydrogen systems, where the plateau pressure
during hydrogen absorption is higher than during the reverse desorption process. A general
review of this phenomenon was given in [6]. )

The hysteresis phenomenon in metal hydrides is quite reproducible and separate from the
irreversible "activation process" whereby repetitive hydrogenation/dehydrogenation cycles are
necessary to activate the alloy into accepting large amount of hydrogen reversibly. During this
activation, the hydride decomposes irreversibly into a finely divided powder. Once the activation
has been completed, the hysteresis effect is quite reproducible. One of the existing models for the
hysteresis [6] postulates that the hysteresis is due to the cyclic plastic deformation involving the
repeated generation and annihilation of dislocations.i Dislocation plasticity certainly plays an
important role in the activation process. It is, however, unlikely that the plasticity alone is
responsible for the highly reversible hysteresis phenomenon: this would require the reversible
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generation and annihilation of the dislocations at the density necessary to accommodate a plastic
strain of the order of 15 %.

Another expl.anation is based on the idea that hydrogen-induced strains are somehow
responsible for the hysteresis in hydrides [7]. However, this work only considers the strain
energy stored in the local strain field around interstitial point defects. It ignores the macroscopic
non-additive volume-dependent strain energy caused by the crystal lattice mismatch between the
coherent phases. Besides, as has been noted in [8], a pure elastic strain, by its definition, does
not dissipate energy because the stress and strain are always in phase and thus cannot explain the
hysteresis loop representing an energy dissipation.

In the present theory, the hysteresis in the pressure-composition diagram of metal-
hydrogen systems, and its reproducible character during cycling, follows directly from the
thermodynamics for an open two-phase coherent system. The main effect of the strain energy
contribution to the free energy is to block the transformation by creating a non-surmountable
macroscopic/ barrier between the initial and final phases. With an increasing applied gas pressure,
the transformation barrier eventually vanishes enabling the transformation. The resulting abrupt

change in sample volume (proportional to CE - c‘:) is out of the phase with the applied gas

pressure. This necessarily results in energy dissipation and hysteresis. The shape of the p-c
hysteresis loop is determined by the system thermodynamics and is thus constant during
successive cyclic transformations. ‘
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Figure Captions

Fig. 1 Schematic plot of the dependence of the free energy of the two-phase system on the volume
fraction © of the solute-rich phase. For curve a, only the o phase is stable. For curve b, the

metastable o. phase is separated from the stable [} phase by a macroscopic energy barrier. For
curve ¢, only the B phase is stable.

Fig. 2a. Schematic free energy curves as a function of composition of interstitial atoms for the
homogeneous o and P phases of a two-phase system with coherent interfaces. The thin lines

show the Helmholtz free energies, fo(c) and fp(c), without the strain contribution from the

interfaces. The bold lines represent the free energies F(c) and FB(C) which include the interstitial-

induced strain energy; compositions cf; and cEt are determined by the common tangent to the fo(c)

and fg(c) curves. The composition cg (point O7) is determined by the condition that the tangent to
the curve FB(C) is parallel to the tangent to the curve F(c) at the composition cf; (point O1).
Correspondingly, the composition cfx is determined by the condition that the tangent to the curve

F(c) (point O; ) is parallel to the tangent to curve Fﬁ(c) at the composition cEt (point O;).

Fig. 2b. Chemical potential of the interstitial hydrogen atoms in the gas phase (proportional to the
gas pressure) as function of the composition of interstitials in the two-phase solid. The hysteresis
is obtained through the absorption-desorption circuit shown by the arrows.
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