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DEGENERACIES OF VIBRATION-ROTATION LEVELS 

IN CERTAIN OCTAHEDRAL MOLECULES

by

C. D. Cantrell

ABSTRACT

The degeneracies of the vibration-rotation levels 
of octahedral ABe molecules are calculated for the case 
in which the B nuclei are identical fermions of spin 1/2.

I. INTRODUCTION
The intensity of an absorption line in a molec­

ular spectrum is proportional to the product of an 
absorption cross section, the Boltzmann factor 
exp(-E/kT), and the degeneracy of the lower molecu­
lar energy level. The statistical weight of a mo­
lecular level is also proportional to the product 
of exp(-E/kT) and the degeneracy. In this report, 
the degeneracy will be calculated for the class of 
molecules which have the composition AB6, where the 
six B atoms are arranged at the vertices of an octa­
hedron, with A at the center. It is assumed that 
the B nuclei are identical, and have spin 1/2.
There are no restrictions on the spin of the A nu­
cleus.

The degeneracies calculated here are expected 
to be useful in two ways.

(a) In identifying experimentally observed 
molecular transitions by comparing the observed and 
calculated relative intensities.

(b) In calculating an improved molecular par 
tition function.

In the Born-Oppenheimer approximation, the mo­
lecular wave function is written as a product of 
functions depending separately on electronic, vibra­
tional, rotational, and nuclear-spin coordinates

^ = *eWs • (1)

One might suppose that for a spherical-top molecule 
the degeneracy of a given level would be

W = WFWV (2J + l)2 (2Sb + 1) (2Sa + 1) , (2)

where and W,, are the electronic and vibrational 
E V

degeneracies, J is the rotational angular momentum 
of the molecule, S is the total nuclear spin of the 
B nuclei, and SA is the spin of the A nucleus.
Since the interaction between the nuclear spins and 
the rest of the world is weak, one might suppose 
that the factor (2Sg + 1) (2SA + 1) would be the 
same for all levels, and could be dropped from Eq.
(2) for the purpose of calculating relative degener­
acies .

However, the Pauli exclusion principle requires 
that the total molecular wave function be antisym­
metric (change sign) when the labels on any pair of 
identical nuclei are interchanged. The separate 
functions 4V. iji , ip , are all functions of the spaceL V K
coordinates of the B nuclei. Thus interchanging the
labels on two identical nuclei will, in general,
change if) , ip. , and iJj into different functions of h V K
the electronic, vibrational, and rotational coordi­
nates, respectively. The same interchange will, in 
general, convert into a different function of the
nuclear spin coordinates (i.e., of the Z-components 
of the nuclear spins).

The requirement that the total wave function 
be antisymmetric under interchange of the labels on
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any pair of identical nuclei implies two changes in 
our ideas of the molecular wave function.

(a) The wave function is a sum (linear combi­
nation) of products such as Eq. (1), with coeffi­
cients chosen so that the total wave function sat­
isfies the Pauli principle.

(b) The degeneracy of each energy level is not 
given by Eq. (2). Instead, the degeneracy is equal 
to the number of different linear combinations re­
ferred to in (a) (corresponding to one particular 
energy level of the molecule).

The energy levels will be assumed here to be 
completely determined by the rotational quantum num­
ber J and the type of the irreducible representation 
of the molecular point group to which the vibronic 
(vibrational and electronic) wave function belongs. 
For a spherical top the rotational energy is (in 
first approximation) independent of K and M. How­
ever, there are additional (Coriolis) terms in the 
rotational Hamiltonian which couple the rotational 
angular momentum J with either the angular momentum 
of a degenerate vibrational state, or the electronic 
angular momentum, or both. This coupling leads to 
further splitting of the vibration-rotation energy 
levels, and hence a partial lifting of the degener­
acy calculated here. tictfOveT, this calculation is 
still useful, because 4*

(a) The first-order Coriolis splitting does 
not affect the Q-branch transition frequencies for 
transitions from the ground state.1 Hence the the­
oretical Q-branch line intensities are proportional 
to the degeneracies in Table I. (There are other 
proportionality constants which depend on J, aris-

2ing from the rotational matrix elements.)
(b) The results obtained here include the 

case in which the second-order Coriolis splitting 
(which can affect the Q-branch frequencies) is sig­
nificant. This will be shown in detail in another 
report.

For convenience, the degeneracies (the final 
result of the calculation) are shown in Table I.
The angular momentum is written modulo 12; that is,
J = 12 p + k, where p is 0 or any positive integer, 
and k=0, 1, 2, ..., 11. This is simply a compact 
way of presenting the results of any value of J.
A numerical table presenting the same information 
for a useful range of J values would be much more 
lengthy.

II. THE OCTAHEDRAL GROUP3

The rotational symmetry operations of a regular 
octahedron are depicted in Fig. 1. There are five 
classes, hence five irreducible representations, the 
characters of which are given in Table III. Each 
symmetry operation corresponds to a permutation of 
the nuclear labels. The correlation between rota­
tions and nuclear-label permutations is given in 
Table II, which may be verified by inspecting 

Fig. 1.
Since each of the six B nuclei has spin 1/2, 

hence, two possible eigenvalues of S.,, there are 
26 = 64 different spin vectors of the form |

— m- >. The symmetry operations, which induce 
permutations of the nuclear labels, also induce per­
mutations of the vectors | m^m^ --  m^ >. For exam­
ple (12 I 2) (3) (3) transforms | m^m^jm^ > 
into | m2mjm3m2m1m| >. Thus each symmetry operation 
corresponds to a 64 x 64 permutation matrix acting 
on the vectors | m^ — m3 >" "1'lie sel" matrices 
defined in this way is a reducible representation 
fg of the group 0. Whenever a vector | m^ -- m^ >

Fig. 1. Symmetries of a regular octahedron.
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is left unchanged by a permutation P, there is a 1 
on the main diagonal of the permutation matrix 
TgCP). Thus the character of TgCP) is equal to the
number of vectors | m -- m= > which are left un-

* 3 CfPl
changed by P. This number is equal to 2 , where
C(P) is the number of cycles in P. The spin charac­
ters xs are given in Table IV.

The character table for 0, together with the 
group-theoretical orthogonality relations, enables 
one to express the spin representation Fg as a sum 
of irreducible representations of 0 (Table IV).

The Pauli exclusion principle requires that the 
total molecular wave function be unchanged by a per­
mutation P which consists of an even number of inter­
changes of pairs of nuclear labels, and change sign 
under an odd number. Table II shows that the only 
rotations which induce permutations with an odd num­
ber of pair interchanges are 6C2 and hCt,, since a 
cyclic permutation of n objects (e.g., (1212)) can 
be expressed as a product of n-1 pair interchanges 
(e.g., (12) (11) (12)). Therefore the total molecu­
lar wave function must belong to a representation of 
0 (under the operations of nuclear-label permuta­
tions) which is one-dimensional; is -1 on 6C2 and 
6Ci,; and is +1 on all other elements of the group. 
There is one such representation, A2 (Table III).

We can now state the algorithm for calculating 
the rotational degeneracies.*^ If the spin, rota­

tional, and vibrational wave functions belong to the 
(reducible) representations P , P , and P., of 0, 
then the total wave function must be one of the 
linear combinations of the functions transforming 
according to Pg x PR x Pv which belongs to the rep­
resentation A2. The number of such linear combina­
tions - in other words, the number of times the rep­
resentation A2 occurs in the reduction of Pc x rD 
x Pv is the rotational degeneracy, taking the 
Pauli principle into account, but barring Coriolis 
interactions. Coriolis interactions will cause 
some of the levels (corresponding to irreducible
representations of 0) which belong to P x P to be

R V
separated (split) in energy. This will be discussed 
in detail in another report.

It would be reasonable to ask at this point why 
it is possible to calculate the degeneracies using 
only the group 0, instead of 0^. The group 0^ is 
the full octahedral symmetry group, including the

inversion; 0 is the subgroup of 0^ which consists of 
proper rotations. 0 is the direct product of 0 

with l, the group consisting of the identity E and 
the inversion I. Consequently the representations 
of 0^ are the direct product of the representations 
of 0 and l. The two representations of l arc both 
one-dimensional; one is the identity representation 
(1 for both E and I), and the other is +1 for E and 
-1 for I. It is conventional to call the former the 
g (gerade) representation and the latter the u 
(ungerade) representation. The g and u representa­
tions correspond to even and odd parity under inver­
sion, respectively.

The representations P^ ^ of 0^ therefore carry 
two labels: one (j) indicating a representation of 
0, the other (p) indicating g or u. The direct 
product of three such representations will be

P. x P. x P.ll.Pl J2.P2 J3P3

(P. X P. X P. ) X P X P X PJl 12 13 Pi P2 P 3
(3)

= (P. x P. X P. ) X (g or u) , 11 I2 J 3

where the last line indicates that the direct prod­
uct of three irreducible representations of 1 sim­
ply g or u, which are one-dimensional. The weight 
of a given irreducible representation of 0^ in Eq. 

(3) is equal to the weight of the corresponding re­
presentation of 0 in the reduction of P.^ x P. x 
Pj . Nothing except additional labor would be 
gained by calculating the degeneracies using 0^ in­
stead of 0.

III. CHARACTERS OF THE ROTATIONAL WAVE FUNCTIONS
The rotational wave function for the sym­

metric top is essentially the Wigner D-matrix (ro­
tation matrix) (12) where 12 stands for theMR f t\
three Euler angles. The D — matrices are the 
matrices which describe the transformation of wave 
functions of angular momentum J under the rotation 
with Euler angles 12. Under a rotation about the 
molecular Z-axis through an angle <t>

Dm m - eik^ (12)

and
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YJKM e VJKM •

Since the trace (character) of a matrix is invar­
iant under a similarity transformation, the char­
acter of a matrix describing the transformation of 
the symmetric-top functions 'I'jjjj among themselves 
(for a given J) under rotation through an angle 4> 
is

L = (2J + 1) sin (J + 1/2) (j)
sin 1/2 <(> (4)

Since the trigonometric functions in Eq. (4) are 
periodic in J with period 2n/<b, and since <(> = it, 
2t\/Z, and ir/2 all occur in 0, the set of rotational 
characters [Eq. (4)] for all in 0 is periodic in 
J with a period equal to the least common multiple 
of 2, 3, and 4 - i.e., 12. Thus it is convenient 
to express J modulo 12, as J = 12p + k (where p and 
k are integers, p 0 and 0 ^ k ^ 11). The char­
acters [Eq. (4)] are presented in Table V in a form 
convenient for calculation. The reduction of the 
rotational representations corresponding to angu­
lar momentum J into irreducible representations of 
the group 0 are given in Table VI.

IV. CALCULATION OF THE ROTATIONAL DEGENERACIES 
The number of times a given irreducible re­

presentation of 0 occurs in the reduction of
F x F x F can now be calculated (for each F )

V K o V
from the known Fg (Table IV) and F^ (Table VI),

using the multiplication table for irreducible re­
presentations of 0 (Table VII). The latter table 
can be calculated quickly from the character table 
of 0 (Table III). The rotational degeneracy is 
equal to the weight of in the reduction of Fy x 
Fr x Fgj this is given in Tables VIII through XII 
and is summarized in Table I.
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TABLE I

ROTATIONAL DEGENERACIES FOR 

AB6 MOLECULES, WHERE SPIN (B) = 1/2

Vv Ai A2 E F i F2

J = 12p 64p + 2 64p + 10 128p + 8 192p + 6 192p + 6

J = 12p + 1 64p + 6 64P + 6 128p + 12 192p + 22 192p + 36

J = 12P + 2 64p + 14 64p + 14 128p + 32 192p + 42 192p + 34

J = 12p + 3 64p + 22 64p + 14 128p + 32 192p + 58 192p + 58

J = 12p + 4 64p + 22 64p + 30 128p + 52 192p + 70 192p + 70

J = 12p + 5 64p + 26 64p + 26 128p + 56 192p + 86 192p + 94

J = 12p + 6 64p + 38 64p + 38 128p + 72 192p + 96 192p + 68

J = 12? + 7 64p + 42 64p + 34 128p + 76 192p + 122 192p + 122

J = 12p + 8 64p + 42 64p + 50 128p + 96 192p + 134 192p + 134

J = 12p + 9 64p + 50 64p + 50 128p + 96 192p + 150 192p + 158

J = 12? + 10 64p + 58 64p + 58 128p + 116 192p + 170 192p + 162

J = 12p + 11 64p + 62 64p + 54 128p + 120 192p + 186 192p + 186

NOTES: 1. The integer p 0, 1, 2, ... .

2. Multiply all weights by (2J + 1).

TABLE II

CORRELATION BETWEEN ROTATIONS 

AND NUCLEAR-LABEL PERMUTATIONS

Class

E

6Ci, 

3Cii2 

8C 3 

6C2

Example of 
Label Permutation

(1) (2) (3) (I) (2) (3)

(1212) (3) (3)

(IT) (22) (3) (3)

(132) (213)

(12) ("12) (33)

Spin Character 
X.a

26 = 64 

23 = 8 

24 = 16

22 = 4

23 = 8
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TABLE III

CHARACTER TABLE OF 0

Class 6C4 3C4 8C3 6C2

Representation Ai 

A2 

E 

Fi 

F2

1

-1

0

1

-1

1

1

2

-1

-1

1

-1

0

-1

1

TABLE IV

SPIN CHARACTERS OF 0 

FOR SIX SPIN-1/2 NUCLEI

Class E 6C4 3Ci,* 2 8C3 6C2

X 64 8 16 4 8s

F = 10A + 2A + 8E + 6F + 6F s 1 2 1 2

TABLE V

CHARACTERS OF THE ROTATIONAL FUNCTIONS

Class E 6C4 3C4 8C3 6C2

24p + 2k ♦ 1 y]2 cos j (l-2k) (-l)k ^ sin (1-k) (-D

NOTES: 1. The angular momentum J = 12p + k.

2. Multiply all characters by (2J + 1)



TABLE VI

SYMMETRY OF THE 

ROTATIONAL FUNCTIONS

J = 12p 

J = 12p + I 

J = 12p + 2 

J = 12p + 3 

J = I2p + 4 

J = 12p + S 

J = 12p + 6 

J = 12p + 7 

J = 12p + 8 

J = 12p + 9 

J = 12p + 10 

J = 12p + 11

(2J + 1)[(P + ^Aj + pA2 + 2pE + 

(2J + 1) [pA^ + pA. + 2pE + (3p + 

(2J + l)[pA1 + pA2 + (2p + 1)E + 

(2J + 1) [pAx + (p + 1)A2 + 2pE + 

(2J + 1)[(P + 1)A1 + pA2 + (2p + 

(2J + IJtpAj^ + pA2 + (2p + 1)E + 

(2J + l)[(p + 1)A1 + (p + 1)A2 + 

(2J + 1) [pA1 + (p + 1)A2 + (2p + 

(2J + 1H(P + 1)A1 + pA2 + 2(p + 

(2J + l)[(p + 1)A1 + (p + 1)A2 + 

(2J + l)[(p + 1)A1 + (p + 1)A2 + 

(2J + l)[pA1 + (p + 1)A2 + 2 (p +

3pF1 ■► 3pF2]

1)F1 ■- 3pF2]

3pF1 ■ (3p + i)F2 ]

(3p + 1)?! + (3p +
1)E + (3p + 1^F1 + (3p + Df2]

(3p + 2)F1 * (3p + i)f2]
+PH
CNJ 1)E + (3p + 1)F1 + (3p + 2)F2

1)E + (3p + 2)F1 + (3p + 2)F2]

1) E + (3p + 2)F1 + (3p + 2)F2]

(2p + 1)E + 3(p + 1)F1 + (3p + 2)F2

+PH 
'-
'

CM 1)E + (3p + 2)F1 + 3(p + 1)F2

1)E + 3(p + 1)F1 + 3 (p + Df2]

NOTE: The integer p=0, 1, 2, ... .

TABLE VII

MULTIPLICATION TABLE FOR 

REPRESENTATIONS OF 0

E

Ft

Ax + A2 + E 

Fl + F2

F1 + F2

F + F 
1 2

A + E

+ F1 + F2 

A2 + E

+ F1 + F2

2
F, + F.

A2 + E

+ F1 + F2 

Aj + E

+ F1 + F2
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TABLE VIII

ROTATIONAL DEGENERACIES FOR Ai VIBRATIONS

: 10Ai 2A2 8E 6F i 6F2

J = 12p lOp 2(p + 1) 16p 18p 18p

J = 12p + 1 lOp 2p 16p 18p 6(3p + 1)

J = 12p + 2 lOp 2p 8(2p + 1) 6(3p + 1) 18p

J = 12p + 3 10(p + 1) 2p 16p 6(3p + 1) 6(3p + 1)

J = 12p + 4 lOp 2(p + 1) 8(2p + 1) 6(3p + 1) 6(3p + 1)

J = 12p + 5 lOp 2p 8 (2p + 1) 6(3p + 1) 6(3p + 2)

J = 12p + 6 10(p + 1) 2(p + 1) 8 (2p + 1) 6(3p + 2) 6 (3p + 1)

J = 12p + 7 10(p + 1) 2p 8(2p + 1) 6(3p + 2) 6(3p + 2)

J = 12p + 8 lOp 2(p + 1) 16 (p + 1) 6(3p + 2) 6(3p + 2D

J = 12p + 9 10(p + 1) 2 (p + 1) 8(2p + 1) 6(3p + 2) 6(3p + 3)

J = 12p + 10 10(p + 1) 2(p + 1) 16 (p + 1) 18(p + 1) 6(3p + 2)

J = 12p + 11 10(p + 1) 2p 16(p + 1) 18(p + 1) 18(p + ID

NOTE: The integer p = o, 1, 2, ... .

TABLE IX

ROTATIONAL DEGENERACIES FOR A2 VIBRATIONS

: 10Ai 2A2 8E 6Fi 6F2

J = 12p 10(p + 1) 2p 16p 18p 18p

J = 12p + 1 lOp 2p 16p 6(3p + 1) 18p

J = 12p + 2 lOp 2p 8(2p + 1) 18p 6(3p + ID

J = 12p + 3 lOp 2(p + 1) 16p 6(3p + 1) 6(3p + I)

J = 12p + 4 10(p + 1) 2p 8(2p + 1) 6(3p + 1) 6(3p + ID

J = 12p + 5 lOp 2? 8(2p + 1) 6(3p + 2) 6(3p + ID

J = 12p + 6 10(P + 1) 2(p + 1) 8(2p + 1) 6(3p + 1) 6(3p + 2)

J = 12p + 7 lOp 2(p + 1) 8(2p + 1) 6(3p + 2) 6(3p + 2D

J = 12p + 8 10(p + 1) 2p 8(2p + 2) 6(3p + 2) 6(3p + 2D

J = 12p + 9 10(P + 1) 2 (p + 1) 8(2p + 1) 18(p + 1) 6(3p + 2)

J = 12p + 10 10(p + 1) 2(p + 1) 16 (p + 1) 6(3p + 2) 18 (p + ID

J = 12p + 11 lOp 2(p + 1) 16(p + 1) 18(p + 1) 18(p + ID

NOTE: The integer p = 0, 1, 2, ... .
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TABLE X

ROTATIONAL DEGENERACIES FOR E VIBRATIONS

*s : 10Ai 2A2 8E 6F i 6F2

J = 12p 20p 4P 8 (4p + 1) 36p 36p

J = 12p + 1 2 Op 4p 32p 6(6p + 1) 6(6p + 1)

J = 12p + 2 10 (2p + 1) 2(2p + 1) 8(4p + 1) 6(6p + 1) 6(6p + 1)

J = 12p + 3 2 Op 4p 8(4p + 1) 12(3p + 1) 12(3p + 1)

J = 12p + 4 10(2p + 1) 2(2p + 1) 16(2p + 1) 12(3p + 1) 12 (3p + 1)

J = I2p + 5 10(2p + 1) 2(2p + 1) 8(4p + 1) 18 (2p + 1) 18(2p + 1)

J = 12p + 6 10(2p + 1) 2(2p + 1) 8 (4p + 3) 18(2p + 1) 18(2p + 1)

J = 12p + 7 10 (2p + 1) 2(2p + 1) 16(2p + 1) 12(3p + 2) 12(3p + 2)

J = 12p + 8 20 (p + 1) 4(p + 1) 8 (4p + 3) 12(3p + 2) 12(3p + 2)

J = 12p + 9 10(2p + 1) 2 (2p + 1) 8(4p + 3) 6(6p + 5) 6(6p + 5)

J = 12p + 10 20(p + 1) 4(P + 1) 32(p + 1) 6(6p + 5) 6(6p + 5)

J = 12p + 11 20(p + 1) 4 (P + 1) 8 (4p + 3) 36 (p + 1) 36(p + 1)

NOTE: The integer p = 0, 1, 2, ... .

TABLE XI

ROTATIONAL DEGENERACIES FOR Fi VIBRATIONS

: 10Ai 2A2 8E 6F i 6F2

J = 12p 3 Op 6p 48p 54p 6(9p + 1)

J = 12p + 1 3 Op 2(3p + 1) 8(6p + 1) 6(9p + 1) 6(9p + 1)

J = 12p + 2 10(3p + 1) 6P 8(6p + 1) 6(9p + 2) 6(9p + 2)

J = 12p + 3 10 (3p + 1) 2(3p + 1) 16(3p + 1) 18 (3p + 1) 6(9p + 2)

J = 12p + 4 10 (3p + 1) 2(3p + 1) 16(3p + 1) 18 (3p + 1) 6(9p + 4)

J = 12p + 5 10 (3p + 1) 2 (3p + 2) 24(2p + 1) 6(9p + 4) 6(9p + 4)

J = 12p + 6 10(3p + 2) 2(3p + 1) 24(2p + 1) 6(9p + 5) 6 (9p + 5)

J = 12p + 7 10(3p + 2) 2(3p + 2) 16(3p + 2) 18(3p + 2) 6 (9p + 5)

J = 12p + 8 10(3p + 2) 2(3p + 2) 16(3p + 2) 18(3p + 2) 6(9p + 7)

J = 12p + 9 10(3p + 2) 6(p + 1) 8(6p + 5) 6(9p + 7) 6(9p + 7)

J = 12p + 10 30 (p + 1) 2(3p + 2) 8 (6p + 5) 6 (9p + 8) 6 (9p + 8)

J = 12p + 11 30 (p + 1) 6 Cp + 1) 48 (p + 1) 54 (p + 1) 6(9P + 8)

NOTE: The integer p = 0, 1, 2, ... .
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TABLE XII
ROTATIONAL DEGENERACIES FOR F2 VIBRATIONS

'"s : 10Ai 2Az 8E 6Fi 6F2

J = 12p 3 Op 6p 48p 6(9p + 1) 54p

J = 12p + 1 10(3p + 1) 6p 8(6p + 1) 6(9p + 2) 6(9p + 1)

J = 12p + 2 3 Op 2 (3p + 1) 8(6p + 1) 6(9p + 2) 6(9p + 2)

J = 12p + 3 10 (3p + 1) 2 (3p + 1) 16(3p + 1) 6(9p + 2) 18(3p + 1)

J = 12p + 4 10(3p + 1) 2 (3p + 1) 16 (3p + 1) 6(9p + 4) 18(3p + 1)

J = 12p + 5 10 (3p + 2) 2(3p + 1) 24 (2p + 1) 6(9p + 4) 6(9p + 4)

J = 12p + 6 10(3p + 1) 2 (3p + 2) 24(2p + 1) 6(9p + 5) 6(9p + 5)

J = 12p + 7 10 (3p + 2) 2(3p + 2) 16(3p + 2) 6(9p + 5) 18(3p + 2)

J = 12p + 8 10 (3p + 2) 2 (3p + 2) 16 (3p + 2) 6(9p + 7) 18(3p + 2)

J = 12p + 9 30 (p + 1) 2 (3p + 2) 8(6p + 5) 6 (9p + 7) 6 (9p + 7)

J = 12p + 10 10(3p + 2) 6(p + 1) 8 (6p + 5) 6 (9p + 8) 6(9p + 8)

J = 12p + 11 30 (p + 1) 6(p + 1) 48(p + 1] 6(9p + 8) 54(p + 1)

NOTE: The integer p=0, 1, 2, ... .

EE:236(110)
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