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DEGENERACIES OF VIBRATION-ROTATION LEVELS

IN CERTAIN OCTAHEDRAL MOLECULES

by

C. D. Cantrell

ABSTRACT

The degeneracies of the vibration-rotation levels
of octahedral ABe molecules are calculated for the case
in which the B nuclei are identical fermions of spin 1/2.

T. INTRODUCTION One might suppose that for a spherical-top molecule
The intensity of an absorption line in a molec- the degeneracy of a given level would be

ular spectrum is proportional to the product of an
W = WEWV (2J + 1)2 (2SB + 1) (2Sa + 1) | (2)
absorption cross section, the Boltzmann factor

exp(-E/kT), and the degeneracy of the lower molecu- where and W,, are the electronic and vibrational
E \Y

lar energy level. The statistical weight of a mo- degeneracies, J 1is the rotational angular momentum

lecular level is also proportional to the product of the molecule, S 1is the total nuclear spin of the

of exp(-E/kT) and the degeneracy. In this report, B nuclei, and SA is the spin of the A nucleus.

the degeneracy will Dbe calculated for the class of Since the interaction between the nuclear spins and

molecules which have the composition AB6, where the the rest of the world is weak, one might suppose

six B atoms are arranged at the vertices of an octa- that the factor (2Sg + 1] (2SA + 1] would be the

hedron, with A at the center. It 1is assumed that same for all levels, and could be dropped from Eq

the B nuclei are identical, and have spin 1/2. (2) for the purpose of calculating relative degener-

There are no restrictions on the spin of the A nu- acies

cleus. . . . . .
However, the Pauli exclusion principle requires

The degeneracies calculated here are expected that the total molecular wave function be antisym-

to be useful in two ways. metric (change sign) when the labels on any pair of

(@) In identifying experimentally observed identical nuclei are interchanged. The separate

molecular transitions by comparing the observed and functions 4v. ji ip are all functions of the space
L v’ K’

calculated relative intensities. coordinates of the B nuclei. Thus interchanging the

(b) In calculating an improved molecular par labels on two identical nuclei will, in general,

tition function.

change i mv, and r% into different functions of

n
In the Born-Oppenheimer approximation, the mo- the electronic, vibrational, and rotational coordi-
lecular wave function is written as a product of nates, respectively. The same interchange will, in

functions depending separately on electronic, vibra- general, convert into a different function of the

tional, rotational, and nuclear-spin coordinates . .
! ’ 13 nuclear spin coordinates (i.e., of the Z-components

of the nuclear spins
N = FEONT s (1) )
The requirement that the total wave function

be antisymmetric under interchange of the labels on



any pair of identical nuclei implies two changes in
our ideas of the molecular wave function.

(a) The wave function is a sum (linear combi-
nation) of products such as Eq. (1), with coeffi-
cients chosen so that the total wave function sat-
isfies the Pauli principle.

(b) The degeneracy of each energy level 1is not
given by Eq. (2). Instead, the degeneracy is equal
to the number of different linear combinations re-
ferred to in (a) (corresponding to one particular
energy level of the molecule).

The energy levels will be assumed here to be
completely determined by the rotational quantum num-
ber J and the type of the irreducible representation
of the molecular point group to which the vibronic
(vibrational and electronic) wave function belongs.
For a spherical top the rotational energy is (in
first approximation)

independent of K and M. How-

ever, there are additional (Coriolis) terms in the
rotational Hamiltonian which couple the rotational
angular momentum J with either the angular momentum
of a degenerate vibrational state, or the electronic

angular momentum, or both. This coupling leads to
further splitting of the vibration-rotation energy
levels, and hence a partial lifting of the degener-
acy calculated here. tictfOveT, this calculation is
still useful, Dbecause 4%

(a) The first-order Coriolis splitting does

not affect the Q-branch transition frequencies for

transitions from the ground state.! Hence the the-

oretical Q-branch line intensities are proportional
to the degeneracies in Table I. (There are other
proportionality constants which depend on J, aris-
ing from the rotational matrix elements.)

(b) The results obtained here include the
case in which the second-order Coriolis splitting
(which can affect the Q-branch frequencies) 1is sig-
nificant. This will be shown in detail in another
report

For convenience, the degeneracies (the final
result of the calculation) are shown in Table I
The angular momentum is written modulo 12; that is,
J = 12 p + k, where p is 0 or any positive integer,
and k=0, 1, 2, ..., 1l1. This is simply a compact
way of presenting the results of any value of J.

A numerical table presenting the same information
for a useful range of J values would be much more

lengthy.

II. THE OCTAHEDRAL GROUP3

The rotational symmetry operations of a regular
octahedron are depicted in Fig. 1. There are five
classes, hence five irreducible representations, the
characters of which are given in Table III. Each
symmetry operation corresponds to a permutation of
the nuclear labels. The correlation between rota-
tions and nuclear-label permutations is given in
Table II, which may be verified by inspecting
Fig. 1.

Since each of the six B nuclei has spin 1/2,

hence, two possible eigenvalues of S.,, there are
26 = 64 different spin vectors of the form
—— m- >. The symmetry operations, which induce

permutations of the nuclear labels, also induce per-
mutations of the vectors

ple (12 1 2) (3) (3)

m*m® — m" >. For exam-

transforms m”-~m”™Jjm” >
into m2mjm3m2mim| >. Thus each symmetry operation
corresponds to a 64 x 64 permutation matrix acting

on the vectors m* —— m3 >" ''lie sel" matrices
defined in this way is a reducible representation

fg of the group 0. Whenever a vector m® — m" >

Fig. 1. Symmetries of a regular octahedron.



is left unchanged by a permutation P, there is a 1!

on the main diagonal of the permutation matrix

TgCP) . Thus the character of TgCP) 1is equal to the

number of vectors m — m= > which are left un-
* 3 CfP1

changed by P. This number is equal to 2 , where

C(P) 1is the number of cycles in P. The spin charac-
ters xs are given in Table IV.

The character table for 0, together with the
group-theoretical orthogonality relations, enables
one to express the spin representation Fg as a sum
of irreducible representations of 0 (Table 1IV).

The Pauli exclusion principle requires that the
total molecular wave function be unchanged by a per-
mutation P which consists of an even number of inter-
changes of pairs of nuclear labels, and change sign
under an odd number. Table II shows that the only
rotations which induce permutations with an odd num-
ber of pair interchanges are 6C2 and hCt,, since a

cyclic permutation of n objects (e.g., (1212)) can
be expressed as a product of n-1 pair interchanges

(e.g., (12) (11) (12)). Therefore the total molecu-

lar wave function must belong to a representation of
0 (under the operations of nuclear-label permuta-

tions) which is one-dimensional; is -1 on 6C2 and
6Ci,; and is +1 on all other elements of the group.

There is one such representation, A2 (Table III).

We can now state the algorithm for calculating

the rotational degeneracies.*” If the spin, rota-

tional, and vibrational wave functions belong to the

(reducible) representations P , P , and P., of O,
then the total wave function must be one of the
linear combinations of the functions transforming
according to Pg x PR x Pv which belongs to the rep-
resentation A2. The number of such linear combina-
tions - in other words, the number of times the rep-
resentation A2 occurs in the reduction of Pc x rD

X Pv

is the rotational degeneracy, taking the

Pauli principle into account, but barring Coriolis
interactions. Coriolis interactions will cause
some of the levels (corresponding to irreducible
representations of 0) which belong to PR X PV to be
separated (split) in energy. This will be discussed
in detail in another report.

It would be reasonable to ask at this point why
it is possible to calculate the degeneracies using
instead of 0.

only the group 0, The group 0" 1is

the full octahedral symmetry group, including the

inversion; 0 is the subgroup of 0" which consists of

proper rotations. O is the direct product of 0

with 1, the group consisting of the identity E and

the inversion I. Consequently the representations

of 0" are the direct product of the representations
of 0 and 1. The two representations of 1 arc both
one-dimensional; one is the identity representation

(1 for both E and I), and the other is +1 for E and

-1 for I. It is conventional to call the former the
g (gerade) representation and the latter the u
(ungerade) representation. The g and u representa-

tions correspond to even and odd parity under inver-

sion, respectively.
The representations P* "~ of 0" therefore carry
two labels: one (j) indicating a representation of

0, the other (p) indicating g or u. The direct

product of three such representations will be

P. x P. P.
11.P1 J2.P2 J3P3
(P. X P. X P. ) X P X P X P (3)
Jl 12 13 Pi P2 P3
= (P. x P. X P. ] X (g or u) .
11 12 73 g

where the last line indicates that the direct prod-
uct of three irreducible representations of 1 sim-
which are one-dimensional.

ply g or u, The weight

of a given irreducible representation of 0% in Eq.
(3) is equal to the weight of the corresponding re-
presentation of O in the reduction of P." x P. X
Pj . Nothing except additional labor would be
gained by calculating the degeneracies using 0" in-

stead of O.

III. CHARACTERS OF THE ROTATIONAL WAVE FUNCTIONS
The rotational wave function for the sym-
metric top 1is essentially the Wigner D-matrix (ro-
tation matrix) (12) whe§%1ﬂ stands for the
three Euler angles. The D — matrices are the
matrices which describe the transformation of wave
functions of angular momentum J under the rotation
with Euler angles 12. Under a rotation about the

molecular Z-axis through an angle ¢
pbm m - eik="~ (12

and



YJKM e VJIKM

Since the trace (character) of a matrix is invar-
iant under a similarity transformation, the char-
acter of a matrix describing the transformation of
the symmetric-top functions 'I'jjjj among themselves

(for a given J) under rotation through an angle ¥

is
L : sin (3 + 1/2) |
(20 + 1) sin 1/2 ¢ )
Since the trigonometric functions in Eq. (4) are
periodic in J with period 2n/<b, and since () = 11,

21VZ, and ir/2 all occur in O, the set of rotational
characters [Eq. (4)] for all in 0 is periodic in
J with a period equal to the least common multiple
of 2, 3, and 4 - i.e., 12. Thus it is convenient

to express J modulo 12, as J = 12p + k (where p and
k are integers, p 0 and 0 ~ k ~ 11). The char-

acters [Eq. (4)] are presented in Table V in a form
convenient for calculation. The reduction of the
rotational representations corresponding to angu-
lar momentum J into irreducible representations of

the group 0 are given in Table VI.

IV. CALCULATION OF THE ROTATIONAL DEGENERACIES
The number of times a given irreducible re-

presentation of 0 occurs in the reduction of

F x F x FO can now be calculated (for each FV)

\% K
from the known Fg (Table IV) and F* (Table VI),

using the multiplication table for irreducible re-
presentations of 0 (Table VII). The latter table
can be calculated quickly from the character table
of 0 (Table III). The rotational degeneracy is
equal to the weight of in the reduction of Fy x
FrR x Fgj this is given in Tables VIII through XII

and is summarized in Table I.
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V'~
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 122
J = 12p
J = 12p
J = 12?2
J = 12p
NOTES:

1.

2.

Al

64p *
64p *
64p +
64p +
64p *
64p +
64p +
64p +
64p +
64p +

64p *

The integer p

14

22

22

26

38

42

42

50

58

62

o,

TABLE I

ROTATIONAL DEGENERACIES FOR

AB6 MOLECULES,

Al

64p +

64p *

64p *
64p +
64p +
64p +
64p +
64p +
64p +
64p +

64p +

1, 2

Multiply all weights by (20 + 1).

Class

601,
3cii2
8C3

6C2

10

14

14

30

26

38

34

50

50

58

54

WHERE SPIN

128p
128p
128p
128p
128p
128p
128p
128p
128p
128p
128p

128p

TABLE II

(B) = 1/2

+ 120

CORRELATION BETWEEN ROTATIONS

AND NUCLEAR-LABEL PERMUTATIONS

Example of
Label Permutation

Mm@ @ M @ ©

(1212) (3) (3)

am 22 @) O

(132) (213)

(12) ("2)

(33)

Fi
192p + 6
192p + 22
192p + 42
192p + 58
192p + 70
192p + 86
192p + 96
192p + 122
192p + 134
192p + 150
192p + 170
192p + 186

Spin Character

26

23

24

22

23

X.

a

64

E2

192p +
192p +
192p +
192p +
192p +
192p +
192p +
192p +
192p +
192p +
192p +

192p +

36

34

58

70

94

68

122

162

186



TABLE III

CHARACTER TABLE OF 0

Class 6C4 3C4 8C3
Representation Ai 1 1
A2 -1 1
E 0 2
Fi 1 -1
F2 -1 -1
TABLE IV

SPIN CHARACTERS OF 0

FOR SIX SPIN-1/2 NUCLEI

Class E 6C4 3C, ¥ 8C3

F = 10A 2A_ + 8E + OF + BF
s 17 1 "0

TABLE V

CHARACTERS OF THE ROTATIONAL FUNCTIONS
Class E 6C4 3ct 8C3

N sin

24p + 2k ¢ 1 yJ2 cos _f (1-2k) (=1 k

NOTES: 1. The angular momentum J = 12p + k.

2. Multiply all characters by (27 + 1)

6C2

(1-k)

6C2

6C2



TABLE VI

SYMMETRY OF THE

ROTATIONAL FUNCTIONS

J = 12p (20 + 1)[(P + "AJ + pA2 + 2pE + 3pFl B 3pF2]

J = 12p + 1 (20 + 1) [pA* + pA. + 2pE + (3p + 1)Fl F 3pF2]

J = 12p + 2 (23 + 1) [pAl + pA2 + (2p + 1)E + 3pFl I (3p + i)F2]

J = 12p + 3 (23 + 1) [pAx + (p + 1)A2 + 2pE + (3p + 1)2! + (3p +

J = I2p + 4 (20 + 1)[(P + 1)A1 + pA2 + (2p + 1)E + (3p + 1°Fl + (3p + DF2]

J = 12p + S (20 + IJtpAj® + pA2 + (2p + 1)E + (3p + 2)F1 * (3p + 1)F2]

J = 12p + 6 20+ D+ DAL + (p + A2 + g + 1)E + (3p + 1)FL + (3p + 2)F2
J = 12p + 1 (20 + 1) [pAl + (p + 1)A2 + (2p + 1)E + (3p + 2)Fl + (3p + 2)F2]

J = 12p + 8 (20 + 1H(P + 1)A1 + pA2 + 2(p + 1)E + (3p + 2)F1 + (3p + 2)F2]

J = 12p + 9 (20 + L)[(p + DA + (o + 1)A2 + (2p + 1)E + 3(p + 1)Fl + (3p + 2)F2
J = 12p + 10 (20 + 1)[(p + HAl + (p + 1)A2 + g + 1)E + (3p + 2)F1 + 3(p + 1)F2
J = 12p + 11 (20 + L) [pAl + (p+ 1)A2 + 2(p + 1)E + 3(p + 1)Fl + 3 (p + DF2]

NOTE : The integer p=0, 1, 2, ...

TABLE VII
MULTIPLICATION TABLE FOR

REPRESENTATIONS OF 0

2
E Ax + A2 + E FotE, F, + F.
E1 Fl + F2 A + E A2 + E
+ F1 + F2 + F1 + F2
F1 + F2 A2 + E AJ + E



J = 12p

J = 12p + 1
J = 12p + 2
J = 12p + 3
J = 12p + 4
J = 12p + 5
J = 12p + 6
J = 12p + 17
J = 12p + 8
J = 12p + 9
J = 12p + 10

J = 12p + 11

NOTE: The integer p =

J = 12p
J = 12p + 1
J = 12p + 2
J = 12p + 3
J = 12p + 4
J = 12p + 5
J = 12p + 6
J = 12p + 17
J = 12p + 8
J = 12p + 9
J = 12p + 10

J = 12p + 11

NOTE: The integer p =

10A1

10p
10p
10p
10(p +
10p
10p
10(p +
10(p +
10p
10(p +
10(p +

10(p +

10A1

10(p +
10p
10p
10p
10(p +
10p
10(P +

10p

10p

o, 1,

1)

1)

2,

TABLE VIII

ROTATIONAL DEGENERACIES FOR Ai VIBRATIONS

2A2 8E 6F 1 6F72
2(p + 1) 16p 18p 18p
2p 16p 18p 6(3p +
2p 8(2p + 1) 6(3p + 1) 18p
2p 16p 6(3p + 1) 6 (3p +
2(p + 1) 8(2p + 1) 6(3p + 1) 6(3p +
2p 8 (2p + 1) 6(3p + 1) 6(3p +
2 + 1) 8 (2p + 1) 6(3p + 2) 6 (3p +
2p 8(2p + 1) 6(3p + 2) 6(3p +
2(p + 1) 16 (p + 1) 6(3p + 2) 6(3p +
2(p + 1) 8(2p + 1) 6(3p + 2) 6(3p +
2 + 1) 16 (p + 1) 18(p + 1) 6(3p +
2p 16(p + 1) 18(p + 1) 18(p +

TABLE IX

ROTATIONAL DEGENERACIES FOR A2 VIBRATIONS

2R2 8E 6F1i 6F2
2p 16p 18p 18p
2p 16p 6(3p + 1) 18p
2p 8((2p + 1) 18p 6(3p +
2p + 1) l6p 6(3p + 1) 6(3p +
2p 8(2p + 1) 6(3p + 1) 6(3p +
27 8(2p + 1) 6(3p + 2) 6(3p +
2@ + 1) 8(2p + 1) 6(3p + 1) 6(3p +
2p + 1) 8(2p + 1) 6(3p + 2) 6(3p +
2p 8(2p + 2 6(3p + 2) 6 (3p +
2@ + 1 8(2p + 1) 18(p + 1) 6(3p +
2p + 1) 16 (p + 1) 6(3p + 2) 18 (p +
2 + 1) 16(p + 1) 18( + 1) 18(p +

2)

ID

ID



*s

J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = I2p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
NOTE:

J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
J = 12p
NOTE:

10

11

The integer p

10

11

10A1

20p

20p

10 (2p + 1)
20p

10(2p + 1)
10(2p + 1)
10(2p + 1)
10 2p + 1)
20 (p + 1)

10(2p + 1)
20(p + 1)

20(p + 1)

ROTATIONAL DEGENERACIES FOR Fi

1021

30p

30p

10(3p + 1)
10 (3p + 1)
10 (3p + 1)
10 (3p + 1)
10(3p + 2)
10(3p + 2)
10(3p + 2)
10(3p + 2)
30 (p + 1)

30 (p + 1)

The integer p = 0, 1, 2

TABLE X

ROTATIONAL DEGENERACIES FOR E VIBRATIONS

2A2

4(p + 1)
2(2p + 1)
4P + 1)

4(p + 1)

TABLE XI

2R2

2(3p + 2)
6(p + 1)
2(3p + 2)

6Cp + 1

8E

8 (4p + 1)
32p

8 (4p + 1)
8(4p + 1)
16(2p + 1)
8(4p + 1)
8 (dp + 3)
16(2p + 1)
8 (dp + 3)
8(dp + 3)
32(p + 1)

8 (4p + 3)

VIBRATIONS

8E

48p

8(6p + 1)
8(6p + 1)
16(3p + 1)
16(3p + 1)
24(2p + 1)

24(2p + 1)

16(3p + 2)
8(6p + 5)
8 (6p + 5)

48 (p + 1)

6F 1

36p

6(6p + 1)
6(6p + 1)
12(3p + 1)
12(3p + 1)
18 (2p + 1)
18(2p + 1)
12(3p + 2)
12(3p + 2)
6(6p + 5)
6(6p + 5)

36 (p + 1)

6F i

54p
6(9p + 1)
6(9 + 2)
18 (3p + 1)
18 (3p + 1)
6(9p + 4)
6 (9% + 5)
18(3p + 2)
18(3p + 2)
6(%p + 7)
6 (9p + 8)

54 (p + 1)

6F2

36p
6 (6p +

6(6p +

1)

1)

12(3p + 1)

12 (3p
18 (2p
18 (2p
12 (3p
12(3p
6 (6p +
6 (6p +

36(p +

5)

5)

1)



g

12p
12p
12p
12p
12p
12p
12p
12p
12p
12p
12p

12p

NOTE:

EE:236(110)

10

TABLE XII

ROTATIONAL DEGENERACIES FOR F2 VIBRATIONS

10A1 2Az 8E 6Fi
30p 6p 48p 6(%9p +
10(3p + 1) 6p 8(6p + 1) 6(%9 +
30p 2 (3p + 1) 8(6p + 1) 6(9p +
10 (3p 1) 2 (3p + 1) 16(3p + 1) 6(9p +
10(3p + 1) 2 (3p + 1) 16 (3p + 1) 6(9p +
10 (3p 2) 2(3p + 1) 24 (2p + 1) 6(9p +
10(3p + 1) 2 (3p + 2 24(2p + 1) 6(9p +
10 (3p 2) 2(3p + 2 16(3p + 2) 6(9p +
10 (3p + 2) 2 (3p t+ 2) 16 (3p + 2) 6(9p +
30 (p + 1) 2(3p + 2) 8(6p + 5) 6 (9p +
10(3p + 2) 6@ + 1) 8 (6p + 5) 6 (9p +
30(p + 1) 6 + 1) 48(p + 1] 6(% +

The integer p=0, 1,

8)

8)

6F2

54p

6(% + 1)
6(9p + 2)
18(3p + 1)
18(3p + 1)
6(9p + 4)
6(9% + 5)
18(3p + 2)
18(3p + 2)
6 (9 + 7)
6(9p + 8)

54(p + 1)



