ANL/RA/C P--F1 L8 CONF-94ra 48 - -4

Paper to be presented at a Seminar on 3D Deterministic Radiation Transport Computer Programs

Features, Applications and Perspectivess, OECD Chateau de la Muette, Paris XVI,
December 2-3, 1996.

TR ey
[y Py Y
- =] L

i
/
ey

EEcg g 535

BaE

Three-Dimensional Transport with Variational Nodal Methods 0 S T /
E. E. Lewis
Department of Mechanical Engineering
Northwestern University
Evanston, IL 60208, USA
and
G. Palmiotti, H. S. Khalil, K. Laurin-Kovitz, T. Fanning, U. R. Hanebutte
Reactor Analysis Division

Argonne National Laboratory
Argonne, IL 60439

The submitted manuscript has been created by the
University of Chicago as Operator of Argonne
National Laboratory (“Argonne™) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the
Government.

DIGTRIBUTION OF THIS DOCUMENT IS UNLIMITED
, I~

**Work supported by the U.S. Department of Energy, Nuclear Energy Programs under
Contract W-31-109-ENG-38.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




- THREE-DIMENSIONAL TRANSPORT
WITH VARIATIONAL NODAL METHODS

E. E. Lewis,)G. Palmiotti,5) H. Khalil’K. Laurin-Kovitz,b)
T. Fanningb) & U. R. Hanebutteb)

2) Department of Mechanical Engineering
Northwestern University
Evanstion, IL 60208, USA

b) Reactor Analysis Division
Argonne National Laboratory
Argonne, IL 60439, USA

Abstract

The development of the variational nodal method contained in the three-dimensional
transport code VARIANT is reviewed. This Argonne National Laboratory code treats two- and
three- dimensional multigroup problems with anisotropic scattering in hexagonal and Cartesian
geometries. The methodology couples hybrid finite elements in space, which enforce nodal
balance, with spherical harmonics expansions in angle. The resulting response matrix equations are
solved by red-black or four-color iterations. Several enhancements to VARIANT are discussed:
The simplified spherical harmonics option provides near spherical harmonic accuracy for many
problems at a fraction of the cost.. Adjoint and perturbation calculations are performed without the
physical- and mathematical adjoint dichotomy appearing in other nodal methods. Heterogeneous
node methods extend the problem classes to which the method may be applied. . Computational
strategies and trade-off's are discussed and possible future research directions are outlined.

Introduction

The Ansatz of the Variational Nodal Method is a variational formulation of the even-parity
form of the transport equation in which odd-parity Lagrange multipliers at the interfaces enforce
nodal balance.l Classic Ritz procedures, with spherical harmonics in angle and complete spatial
polynomials within the nodes and along the interfaces, are employed to obtain discretized within-
group equations in the form of hybrid finite elements. The physical properties of these equations
are then utilized to recast them as the response matrices upon which the solution algorithms are
based. Thus the method may be considered a synthesis of finite element, nodal and response
matrix methods.2 The within-group equations are combined in a conventional multigroup
formalism from which both eigenvalue and fixed-source calculations can be performed.3 In what
follows we trace the evolution of the method, summarize current capabilities, and discuss possible
future directions.




Physics Capabilities

Following formulation in a number of stand-alone test codes, the method was first
implemented in a production environment to perform multigroup P and P3 calculations in two-
and three-dimensional Cartesian and hexagonal geometries.3 Since that time the variational nodal
method has been generalized and features added to increase the utility of the method over wider
classes of problems. The first major addition was the inclusion of within-group and group-to-
group anisotropic scattering.4 A second was the formulation of Rumyantsev interface conditions.
These allow rigorous treatment of arbitrary odd-order spherical harmonic approximations in the
angular variables.”

The Argonne National Laboratory code, VARIANT6 (VARIational Anisotropic Neutron
Transport) is presently available with anisotropic scattering in the P1, P3 and P5 approximations.
In VARIANT the spatial neutron distribution within the nodes may be treated by complete
quadratic through fourth-order (Cartesian) or sixth order (hexagonal) polynomials with, flat, linear
or quadratic interface conditions, with the ratio of the two constrained by matrix rank conditions.
VARIANT thus offers the unique feature amongst nodal transport codes in that the approximations
can be refined systematically both with p and h refinement in space ( by proceeding to higher
order polynomials or to smaller mesh spacing, respectively) and in angle by employing
successively higher-order spherical harmonic expansions.

Simplified Spherical Harmonics

The versatility of the variational nodal method has been increased substantially with the
realization that the Simplified Spherical Harmonics equations can be cast in variational nodal
form.7 This has lead to the implementation of SP3 and SP5 approximations in VARIANT,
utilizing the same spatial approximations as are available for the standard spherical harmonics
approximation. Moreover the inclusion of anisotropic scattering in the simplified spherical
harmonics approximation has been straight forward.

The time savings achieved in replacing PN with SPN approximations is dramatic. This is
apparent if one considers that in a three dimensional calculation there are N(N+1)/2 angular trial
functions per interface in a PN response matrix, but only (N+1)/2 in a SPN approximation.
Comparisons of CPU times and eigenvalues for the Hex-Z Takeda Benchmark #48 are given in
Table I, where linear interface conditions are employed. In addition, while PN approximations
require that linear or quadratic interface conditions be employed to obtain reasonable truncation
errors, the SPN method may employ flat interface conditions, which results in a reduction in the
response matrix dimension by a factor of two.

For most of the problems which we have encountered, eigenvalue and flux approximations
for companion PN and SPN approximations are in close agreement. For example, as shown in
Fig. 1 for a deep penetration problem, the SPN results closely mimic the PN results, again at a
small fraction of the cost. Some exceptions do occur in the flux distributions, particularly near
voided channels where very skewed angular distribution may appear.

The inclusion of SPN along with PN approximations in VARIANT utilizing the same
hierarchical spatial approximations allows close comparisons of the effects of spatial and angular
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truncation. Eigenvalue errors are plotted in Fig. 2 for the "rods in" Takeda Benchmark #2.8 Very
similar characteristics also have been observed in two- and three-dimensional problems and in both
Cartesian and hexagonal geometries. In all cases the net eigenvalue error is the difference between a
positive contribution from spatial truncation and a negative contribution from the finite angular
expansion. The eigenvalue decreases in going from flat to linear to quadric spatial interface
approximation while holding the angular approximation constant. Likewise, in all cases the
eigenvalue increases as the order of the PN or SPN approximation is increased while retaining the
same spatial approximation.

The SPN approximations do not converge to the reference eigenvalue with increased order.
Rather, a residual remains as a result of the incomplete set of angular trial functions that
constitutes the simplified spherical harmonics. As a result of the partial cancellation that occurs
between spatial and angular truncation errors, however, it is sometimes possible to obtain
eigenvalues which decrease in accuracy even though the spatial or the angular approximations has
been improved. This phenomena was first observed by Wagner in interface current nodal transport
approximations.? Note also the large spatial truncation errors for the flat interface PN calculations
that grow with the order N. In contrast, the spatial truncation error for the SPN calculation is
roughly independent of the order N.

Perturbation Theory

A second recent development is the formulation of the adjoint variational nodal method
coupled with the capability for performing both first order and exact perturbation calculations in all
geometries and with all angular approximations. 10 Forward and adjoint capabilities are
incorporated into VARIANT such that the outputs can be electronically transferred to a perturbation
post-processor where the perturbation calculations are performed.

Perturbation calculations utilizing the variational nodal method offer a distinct advantage
over other nodal methods, where adjoint formulations exist only in the diffusion approximation.
In conventional nodal methods, the physical adjoint, obtained by discretizing the adjoint equation,
is not the same as the mathematical adjoint, obtained by transposing the coefficient matrix that
results from discretizing the forward equation. Since these methods employ computational
algorithms that are based on the physical adjoint, but the perturbation calculations require the
mathematical adjoint, similarity transforms or related techniques are required to relate the two.
With the variational nodal method this complication is obviated, since the physical and the
mathematical adjoints are identical.

The VARIANT post-processor is being modified to treat SPN as well as PN
approximations, thus allowing comparisons to be made. In Figs. 3 and 4 are shown results for
perturbations applied to the Takeda Benchmarks #1 and #4.8 For the Takeda Benchmark #1, the
standard rods-in problem is used as a base state. The applied perturbation consists of increasing
the thermal capture cross section of the control rod material. A more severe test is the Takeda
Benchmark #4, in which the base state is the standard rods-out problem. Initially the control rod
channel contains sodium. The perturbation consists of sodium voiding of the channel.

In both problems the SP3 approximation produces improved eigenvalues compz}red to
diffusion theory. However, the corresponding improvement in the change in reactivity estimated
by the SP3 perturbation theory is highly problem dependent. In the Takeda Benchmark #1, SP3




estimates are nearly identical to the P3 approximation. For the Takeda Benchmark #4, SP3
theory fails to greatly improve the estimated change in reactivity because full P3 expansions are
required to accurately model the flux distribution about the small nearly-voided control rod
channel. In contrast, it is found in some problems that the diffusion theory perturbation results

give reasonable eigenvalue changes even though the accurate prediction of & requires a higher-
order angular approximation.

Heterogeneous Nodes

Presently, VARIANT does not explicitly accommodate heterogeneous nodes. Rather node-
averaged cross sections must be employed to obtain homogeneous nodes. For control rod
channels and other strong heterogeneous structures, however, this is a weakness. It is being

removed through the explicit formulation of heterogeneous nodes.11 Through the use of numerical
integration techniques, cross sections are represented explicitly, allowing both circular and
rectangular intranode heterogeneities to be treated. In these two geometries heterogeneous
methods are applied respectively to the estimation of fast reactor control rod worths and to the pin
power distributions in light water reactor assemblies fueled with mixed uranium/plutonium oxides.

Computational Considerations

Throughout much of its development, the primary motivation for the variational nodal
method has been in expanding the classes of physical problems that could be treated, rather than in
minimizing the computing time required to perform a particular calculation. Thus far, algorithmic
improvements has been a secondary consideration. However, they may be a particularly fruitful
area for future investigation. Moreover, since VARIANT utilizes a general matrix formulation for
all geometries and levels of approximations, it may be advantageous to develop modified versions
of the code which are tuned to treat narrower problem classes more effectively. For example, if
only diffusion solutions are of interest, a great deal of the code overhead required for the
manipulation of the larger transport response matrices could be eliminated.

The variational nodal method was first developed on scalar, main-frame computers. At that
time the primary algorithmic innovations was the partitioning of the response matrix into diffusion

and transport-like contributions in order to accelerate the red-black or four-color iterations.3 With
the availability of the Cray - XMP at Argonne National Laboratory the algorithms were vectorized
to take advantage of substantial speed-ups obtainable with the large transport arrays. In recent
years, however, work stations with rapidly improving capability have become the predominant
platform upon which VARIANT is employed. The vector coding, however, has not been
eliminated. As a result, workstations of similar capability run VARIANT at speeds which vary by
as much as a factor of two, depending on how well their architecture is able to take advantage of
vectorization. '

With larger problems, particularly for highly heterogeneous cores where many distinct
node types are required, memory to store the response matrices may become a significant
limitation. The response matrices, however are quite sparse, and include a substantial number of
symmetries. Thus in VARIANT a packing algorithm is available to conserve memory by storing
only the unique response matrix elements. In its present form, each matrix must be unpacked at
the time of use, thus causing a memory - CPU time tradeoff to occur. Recoding in a scalar form
to allow the matrix multiplications to be performed directly with the packed elements should
substantially improve this tradeoff.




Parallel computation seems attractive for response matrix algorithms for at least two reasons.
First, the spatial domains corresponding to one or more red-black node pairs can be assigned to each
processor, thus allowing a high degree of parallelism to be exercised in the iterative solution. Second,
memory limitations can be alleviated by distributing the response matrix construction and storage
amongst the processors and their associated memories. The potential for parallelization of response

matrix algorithms, such as those employed in VARIANT, is discussed in detail in a companion paper.12

Discussion

Future directions in the development of variational nodal methods naturally divide into
expanding the capabilities to handle a wider range of physical problems, and to decreasing the
computational effort required to obtain solutions. One may look toward present finite element
capabilities in other engineering fields to identify attractive areas for development. These would include
extension to r-z or other curvilinear coordinate systems, the development of arbitrary triangular node
capabilities, and the formulation of space-angle adaptive grid methods. In improving the computational
algorithms, methods are needed which reduce computational effort on engineering workstations as well
as those that take advantage of the advancing capabilities of parallel computing.

Acknowledgment: This work was performed in part under U. S. department of Energy contract W-31-
109-ENG-38 at Argonne National Laboratory

References

1. 1. Dilber and E. E. Lewis, "Variational Nodal Methods for Neutron Transport,” Nucl. Sci. Eng.,
91, 132 (1985)

2. E. E. Lewis and I. Dilber, "Finite Element, Nodal and Response Matrix Methods: A Variational
Synthesis for Neutron Transport," Prog. Nucl. Energy 18, 63 (1986)

3. C. B. Carrico, E. E. Lewis and G. Palmiotti, "Three-Dimensional Variational Nodal Transport
Methods for Cartesian, Triangular and Hexagonal Criticality Calculations,” Nucl. Sci. Eng. 111,
168 (1992)

4, G. Palmiotti, C. B. Carrico and E. E. Lewis, "Variational Nodal Transport Methods with

Anisotropic Scattering," Nucl. Sci. Eng. 1185, 233 (1993)

5. E. E. Lewis, C.B. Carrico, and G. Palmiotti, "Variational Nodal Formulation of the Spherical
Harmonics Equations,” Nucl. Sci. Eng. 122, 194 (1996)

6. G. Palmiotti, E. E. Lewis and C. B. Carrico, "VARIANT: VARIational Anisotropic Nodal
Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation,” ANL-95/40,
Argonne National Laboratory, 1995.

7. E. E. Lewis and G. Palmiotti, "Simplified Spherical Harmonics in the Variational Nodal Method,"
to appear in Nucl. Sci. Eng.




10.

11.

12.

T. Takeda and H. Ikeda, “3-D Neutron Transport Benchmarks, “ NEACLP-1-300,
OECD/NEA, March 1991

M. R. Wagner, "A Nodal Discrete Ordinate Method for the Numerical Solution of he
Multidimensional Transport Equation," Proc. Topl. Mtg. Computational Methods in
Nuclear Engineering, Williamsburg, Virginia, April 23-25, 1979, Vol. 2, p4-117 Am.
Nucl. Soc. (1979)

K. F. Laurin-Kovitz and E. E. Lewis, "Variational Nodal Transport Perturbation Theory,"
Nucl. Sci. Eng. 123, 369 (1996)

T. H. Fanning and G. Palmiotti, "Heterogeheous Treatment in the Variational Nodal
Method," Proc. Int. Conf. on Mathematics and Computations, Reactor Physics, and
Enviromental Analyses, Portland, Oregon, April 30- May 4, 1995

U.R. Hanébutte, M. Tatsumi, E. E. Lewis, G. Palmiotti and Khalil, Response Matrix
Transport Calculations on Parallel Computers,” these proceedings

Table 1: PN and SPN CPU Time and Accuracy Comparisons

method k CPU
P1(l) 1.1727 1.23 min.
P3(l) 1.2035 25.8 min.
P5(1) 1.2052 217 min.
SP3(f) 1.2029 0.78 min.
SP3(l) 1.1991 2.98 min.
SP5(f) 1.2038 1.96 min.
SP5(l) 1.2000 5.87 min.
Monte Carlo 1.2041+0.0005 3 days




Fig. 1: Comparison of PN and SPN Flux Distributions
for a Deep Penetration Problem
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Fig. 2 PN and SPN Eigenvalue Errors for Different Spatial Interface Approximations
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