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CRITICAL ENERGY FOR SHOCK INITIATION 

O F  

FUZE TRAIN EXPLOSIVES 

F. E. Walker, R .  J. Wasley, L. G. Green, and E. J. Nidick, Jr. 

Lawrence Livermore Laboratory, Universi ty  of  Ca l i fo rn ia  

Livermore , Cal i forn ia  94550 

A B S T R A C T  

Results of shock i n i t i < z t i o n  experiments conducted f o r  t e t r y l  and 

A-5 are presented,  along with some d a t a  on t h e  shock i n i t i a t i o n  of o ther  

explosives.  The experiments wlere conducted using a gun system. An equation 

which has  been usefu l  i n  corre . la t ing these  shock da ta  i s  given. Some appl i -  

ca t ions  of t h e  c r i t i c a l  energy concept ( represented by t h e  above equat ion) ,  t o  

explosive t r a i n  designs f o r  NASA space systems a re  included. The concept's useful- 

ness t o  DOD ordnance agencies now replacing t e t r y l  i n  fuze t r a i n s  with A-5 i s  

a l so  ind ica ted .  

INTRODUCTION 

One of t h e  more demanding requirements placed upon t h e  designer c f  

fuze t r a i n s  i s  t h e  demonstration of t h e  r e l i a b i l i t y  and t h e  s a f e t y  of  

t h e  device he has designed. H i s to r i ca l ly ,  t h e  design of  fuzes  using ex- 

p los ive  and pyrotechnic t r a i n s  w a s  more an a r t  than a sc ience ,  and t h e  

successful  designer required much experience. A statement from a recent  

publ?cation emphasizes t h i s  po in t :  "The only pos i t i ve  method t o  determine 

whether a pyrotechnic device will funct ion s a t i s f a c t o r i l y  i s  t o  t e s t  f i r e  

it. 

1 

The high r e l i a b i l i t y  and confidence l e v e l  customarily imposed would 

r equ i r e  very l a r g e  numbers of devices t o  be f i r e d  i n  order  t o  f u l f i l l  t he  
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requirements. 

requi res  t h e  t es t  f i r i n g  of 2996 devices without a failure. 

t h i s  demonstrated r e l i a b i l i t y  general ly  proves t o  be prohib i t ive ."  

For example, a 0.999 r e l i a b i l i t y  at a 95% confidence level.  

The cos t  of 

I n  t h e  p a s t ,  t h e  "margins of sa fe ty"  f o r  the inadvertent  f i r i n g  cif 

a fuze t r a i n  and a l so  f o r  t h e  performance r e l i a b i l i t y  could only be crudely 

estimated. 

which seemed t o  i n d i c a t e  t h a t  t h e  shock i n i t i a t i o n  of an acceptor charge 

by an explosive donor w a s  a funct ion of only t h e  peak shock pressure a t t a i n e d  

by t h e  donor. 

workers i n  t h e  f i e l d  of high explosives have accepted t h e  idea  of a "c r i tLca l  

There has been a l a r g e  body of da ta  published on explosives 

Such da ta  a re  s t i l l  being generated. However, a number of' 

z energy fluence" o r  a "P t" requirement f o r  shock i n i t i a t i o n  which appeam 

t o  be more 

p los ive  t r a i n s  i n  a study for NASA, and some information from t h i s  work 

This i d e a  has been t e s t e d  f o r  appl ica t ion  t o  fuze ex- 
I 

4 

w i l l  be presented i n  t h e  discussion which follows. 

This c r i t i c a l  energy concept i s  based on a number of experimental. 

observations showing t h a t  a s t rong  co r re l a t ion  e x i s t s  between t h e  shock 

i n i t i a t i o n  of a n  explosive and a s p e c i f i c  quant i ty  of energy t ransmit ted 

t o  t h e  explosive by a shock wa.ve. 

of 1.65 g cm-3 requi res  %34 c a l  cm 

For example, pressed TNT w i t h  a densit,y 

for i n i t i a t i o n . 2  This quant i ty  of -2 

energy could be obtained from 9 45 kbar shock maintained f o r  0.5 p e c ,  a 

20 kbar shock f o r  1.0 psec, or a 12  kbar shock f o r  1 .5  psec. 

The u t i l i t y  of t h i s  concept t o  t h e  fuze t r a i n  designer i s  t h a t  he 

can s e l e c t  explosives f o r  h i s  donor o r  acceptor charge designs with prevxously 

determined c r i t i c a l  energy values t o  s a t i s f y  t h e  sa fe ty  requirements of h i s  

system. The energy output of t he  donors can be determined from t h e i r  
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pressure-time h i s t o r i e s  when f i r e d  i n  t h e  appropriate design geometry. Since 

t h e  acceptor charges can then be se lec ted  by t h e i r  previously determined 

c r i t i c a l  energy values,  t h e  "siefety margins" f o r  both performance and oper- 

a t i o n a l  s a f e t y  can be evaluated. 

As DOD ordnance agencies a r e  now replacing t e t r y l  i n  fuze t r a i n s  

and i n  o ther  appl icat ions with an RDX-based explosive designated as A - 5 ,  

it would be very h e l p f u l  t o  t h e  ordnance designers involved i n  t h i s  replace- 

ment process i f  they were given an equation and c r i t i c a l  i n i t i a t i o n  energy 

values f o r  these  two explosives t h a t  could be used t o  compare and predic t  

t h e  performance of these  (and o t h e r )  explosives i n  fuze t r a i n s .  

' RESULTS AND DISCUSSION 

The c r i t i c a l  energy coiicept evolved from t h e  c o r r e l a t i o n  of f l y e r  

p l a t e  energy with i n i t i a t i o n  o:r non-ini t ia t ion of t h e  acceptor explosive i n  

a l a r g e  number of experiments on pressed TNT and two plastic-bonded ex- 

p l o s i v e s ,  PBX-9404 and LX-04 (see  Figure 1) .2 

c r i t i c a l  energy of a s p e c i f i c  explosive can be calculated i s  derived from 

conservation of momentum princ:iples .2 

The equation by which the  

This equation i s  

n 

tPC 
= pU (41.84) 

S 
Eq. 1 

where t i s  t h e  shock width i n  l lsec,  P i s  t h e  average shock pressure i n  kbar,  

p i s  t h e  i n i t i a l  densi ty  of t h e  t e s t  explosive i n  g ~ m - ~ ,  U i s  t h e  shock 

v e l o c i t y  i n  t h e  t e s t  explosive a t  t h e  pressure F i n  cm psec 

i s  t h e  constant t h a t  gives t h e  c r i t i c a l  energy E i n  c a l  cm . 

S 
-1 

-2 

, and 41.84 

C 

The values needed f o r  the equation can be obtained with f l y i n g  p l a t e  

experiments i n  a gun. A rough estimate of t h e  c r i t i c a l  energy of a new 
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explosive can be made from d a t a  obtained i n  a gap t e s t  o r  a wedge t e s t .  

The gun experiments a r e  then designed t o  give f l y e r  p l a t e  energies  i n  t h e  

range of t h e  est imate .  The shock width i s  determined by t h e  p l a t e  th ickness ,  

and t h e  pressure i n  t h e  t es t  explosive i s  determined by t h e  ma te r i a l  and 

ve loc i ty  of t h e  flyer. 

obtained from the gun experiments. 

The Hugoniot d a t a  f o r  t h e  U values can a l s o  be 
S 

The dens i ty ,  which i s  the only o ther  

independent va r i ab le ,  can be measured. 

I n  t h e  gun experiments discussed below, t h e  brass  f l y e r  p l a t e  i s  

very t h i n ,  compared with t h e  thickness  of t h e  explosive sample; it i s  a k o  

considerably more dense. When these  conditions e x i s t ,  t h e  shock pulse  t h a t  a c t s  

on t h e  sample unloads i n  a step-wise fashion;  it does not possess p rec i se ly  t h e  

assumed rec tangular  form. Although t h i s  pulse  i s  somewhat l e s s  e f f i c i e n t  i n  

i n i t i a t i n g  t h e  r eac t ion  i n  t h e  explosive than a rectangularly-shaped pulse  of 

t h e  same energy, t h i s  e f f e c t  i s  r e l a t i v e l y  small  i n  t h e  geometry of t h i s  experi-  

ment.5 I n  Table 1 we show the t o t a l  ca lcu la ted  k i n e t i c  energy of t h e  f l y e r s  

i n  each experiment, bu t  cons is ten t  w i t h  t h e  previous s ta tement ,  w e  have 

assumed t h a t  t h e  c r i t i c a l  energy of i n i t i z t i o n  t o  be about 

the  f l y e r  p l a t e  energy. 

90 percent 01’ 

When a pressure t ransducer  i s  used i n  fu tu re  

experiments which w i l l  show t h e  a c t u a l  pulse  shape, a more p rec i se  value 

f o r  t h e  energy de l ivered  t o  t h e  explosive i n  each experiment can be obtained. 

I n  add i t ion ,  a more p rec i se  value f o r  t h e  c r i t i c a l  energy can then be 

determined. 

We have used t h e  gun method t o  determine t h e  c r i t i c a l  energy of 

t e t r y l  and i t s  new replacement f o r  DoD fuze t r a i n  designs,  A-5 (RDX:Stearic 

Acid; 98.5:1.5). 

with t e t r y l  and A-5. 

Table 1 contains a summary of da ta  from gun experiments 

We had estimated t h a t  the c r i t i c a l  energy f o r  each of 
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-2 these  explosives should be about 10 c a l  cm , and t h e  gun experiments w e r e  

designed accordingly.  A brass  flyer p l a t e  0.0273 cm t h i ck  w a s  used i n  

each of t h e  experiments summarized i n  Table 1. 

Table 1. Data From G u n  I n i t i a t i o n  
Experiments With T e t r y l  and A-5 
-- 

Flyer  
P l a t e  

Velocity 
-1 Explosive (cm psec 

T e t r y l  .063 
T e t r y l  .067 
T e t r y l  .071 

A-5 .072- 

A- 5 .072+ 

A-5 .054 

Flyer  
P l a t e  

Pressure Energy I n i t i a t i o n  
(kbar )  ( c a l  cm-2) (yes/no) -- 
29.2 10.9 Marginal 

29.8 12.5 Yes 

33.8 13-9  Yes 

23.5 8.1 No 

33.9 14.4 Marginal 

34.1 14.5 Yes 

Estimated 
C r i t i c a l  
Energy 

( c d  

9.8 
11.2 

12.5 
>8.1 
13.0 

13.0 

A-5 .072+ 34.4 14.6 Yes 13.1 

~ ~~~ 

As shown i n  Table 1, t h e  c r i t i c a l  energy f o r  t h e  i n i t i a t i o n  of t e t r y l  

-2 i s  approximately 11 c a l  cm 

c a l  cm-2. 

and o t h e r  designs m u s t  be a l i t t l e  s t ronger  o r  be he ld  f o r  a l i t t l e  longer 

dura t ion  t o  give t h e  same margin of  r e l i a b i l i t y .  

, and t h e  value f o r  A-5 i s  approximately 13 

Therefore,  t h e  i n i t i a t i n g  forces  f o r  A-5 i n  the  new fuze t r a i n  

On t h e  o the r  hand, A-5 

should provide about a 20% improvement i n  sa fe ty  margin w i t h  r e l a t i o n  t o  i t s  

shock s e n s i t i v i t y  as compared t o  te t ryl .  

A schematic representa t ion  of t h e  experimental design of t h e  acceptor 

explosive t a r g e t  f o r  t h e  gun s tud ie s  i s  given i n  Figure 2. This t i e r e d  

d isk  i s  instrumented with ve loc i ty  p ins  so as t o  provide t h e  time of t r a v e l  

of t h e  inc ident  shock f r o n t  across each of t h e  th ree  0.635 cm t iers and t h e  
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f i n a l  0.318 cm t i e r .  

would have been required f o r  t h e  shock t o  t r a n s i t  the  same dis tance  a t  t h e  

nominal detonat ion ve loc i ty ,  and t h e  d i f fe rence  (designated as t h e  excess 

t r a n s i t  t i m e )  i s  obtained. 

This t i m e  of t r a v e l  i s  compared with t h e  t i m e  t h a t  

The pa t t e rns  of t hese  excess transit t i m e s  ( x s t t )  i n  t h e  gun shots  

provide some understanding of -the i n i t i a t i o n  process i n  t e t ry l  a t  r e l a t i v e l y  

l o w  i n i t i a t i n g  pressures .  I n  -these experiments, t h e  i n i t i a l  shock ve loc i ty ,  

as determined by t h e  Hugoniot r e l a t ionsh ips  of the  f l y e r  p l a t e  and the 

explosive,  i s  low compared t o  t h e  s teady-state  detonation ve loc i ty .  If 

t h e r e  were no r eac t ion  i n  t h e  acceptor explosive,  t he  inc ident  shock would 

gradual ly  degrade i n  ve loc i ty  and t h e  x s t t  (as defined above) increase  

continuously w i t h  sample thickness .  I f ,  in s t ead ,  t h e  shock pressure i s  

r e l a t i v e l y  h igh ,  chemical r eac t ion  would begin a t  o r  near t h e  shock f r o n t ,  

causing t h e  shock t o  acce le ra t e  and t h e  x s t t  t o  decrease. 

would become constant i f  fu l l  detonation ve loc i ty  were achieved. Now 

consider Table 2 ,  where t o t a l  x s t t ' s  at various thicknesses  of t e t r y l  f r o m  

The x s t t  

t h e  experiments i n  Table 1 a r e  given. The 29.2 kbar experiment shows an 

increase  i n  x s t t  between t h e  6.35 mm,12.70 mm, and 19.05 mm s t a t i o n s  but  

a decrease between t h e  19.05 mm and t h e  22.225 mm s t a t i o n s .  This implies 

t h a t  a "super detonation",  possibly analagous t o  t h a t  reported f o r  l iqu id  

explosives by Campbell, e t  a1 , occurs i n  t h e  buildup t o  detonation of 6 

t e t ry l  under these  conditions.  However, a simple ca lcu la t ion  y i e l d s  a 

value f o r  t h i s  "super detonation" t h a t  i s  unbelievable (95 mm psec- l ) .  

It seems more reasonable t o  explain t h e  da t a  from t h i s  experiment i n  

another way. For example, at 29.2 kbar ,  t h e  energy of t h e  i n i t i a t i n g  pulse 
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. .. 

/ \  w a s  very near  t o  t h e  c r i t i c a l  energy. Thus, very s m a l l  d i f fe rences  i n  

t h e  explosive dens i ty  could m u s e  a r e l a t i v e l y  l a rge  e f f e c t  i n  t h e  t i m e  

of detonat ion buildup. 

detonated a l i t t l e  sooner than t h e  res t ,  r e s u l t i n g  i n  apparent "super 

It i s  poss ib le  t h a t  t h e  center  20 mm of t h e  sample 

detonation" . 
The higher  pressure shots  also exh ib i t  decreases i n  x s t t ' s  t h a t  

could be in t e rp re t ed  as "super detonation",  but  now t h e  magnitudes a re  

wi th in  t h e  range of p o s s i b i l i t y  f o r  true "super detonation". This p a t t e r n  

has been seen i n  o ther  t e t r y l  i n i t i a t i o n  experiments of t h e  same kind not 

repor ted  here.  
7 

Lindstrom reported apparent "super detonation" i n  wedge 

experiments on t e t r y l  t h a t  were due t o  the r e f l e c t i v e  covering he used on 

t h e  wedge. I n  t h e  absence of a covering, he could see no 'Isuper detonation".  

Thus, it i s  not c l e a r  at t h i s  time whether or  not t h e  "super detonation' '  

observed i n  t e t r y l  i s  r e a l .  Density gradient  arguments could be used t o  

s a y  t h a t  it i s  no t ,  s ince  samples were pressed t o  s i z e  and possibly could. 

have a x i a l  dens i ty  grad ien ts .  However, S t i r p e  e t  al have observed over- 

shoot i n  t h e  buildup t o  detonation i n  1.72 gm cm-3 dens i ty  PETN from 

i n i t i a t i n g  shocks i n  t h e  10  t o  39 kbar range, so t h e  p o s s i b i l i t y  e x i s t s ,  

8 

at least ,  f o r  the same phenomena t o  be occuring i n  te t ryl .  A more detail.ed 

ana lys i s  of the te t ryl  overshoot w i l l  be presented at a la te r  date. 

Table 2. Excess Trans i t  Times i n  t h e  
T e t r y l  Experiments 

Pres sure 
Transmitted Flyer P l a t e  Tota l  Excess Trans i t  T i m e  a t  Various Thicknes'ses 
i n t o  T e t r y l  Thickness 6.350 mm 12.700 mm 19.050 mm 22.225 mm 

(kbar)  (cm) - ( i m c  1 (wet 1 (wet 1 ( w e e  1 
29.2 .0273 1.12 3.08 3.74 3.35 
29.8 .0273 1.08 1.50 1.25 1.14 
33.8 .0273 1.07 0.89 0.85 0.84 
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4 As previously mentioned, a study w a s  made under a NASA contract  

t o  tes t  t h e  appl ica t ion  of t he  c r i t i c a l  energy concept t o  fuze t r a i n  design. 

The va r i ab le s  considered i n  t h i s  work f o r  t h e  donor w e r e  the  explosive 

diameter and quan t i ty ,  t h e  c losure  material, and t h e  gaseous and closure 

fragment energies .  For t h e  acceptor u n i t ,  t h e  var iab les  were t h e  explosive 

s e n s i t i v i t y  and p a r t i c l e  s i z e  (as r e l a t e d  t o  t h e  c r i t i c a l  energy) ,  t h e  

c losure  ma te r i a l  and th ickness ,  t h e  explosive confinement, and t h e  air gap 

from t h e  donor (see Fig. 3). .A l a rge  number of donor-acceptor systems 

were examined i n  t h i s  s tudy,  m d  two of t h e  general  conclusions obtained 

are as follows : 

1. V a r i a b i l i t y  i n  debonation t r a n s f e r  w a s  caused by d i f fe rences  

i n  donor output ;  acceptor s e n s i t i v i t y  may be considered essen- 
I 
! tially constant .  

2. The p r i n c i p l e  of dletonation t r a n s f e r  based on c r i t i c a l  energy 

proved v a l i d  f o r  miniature  donors and various closure mater ie l s .  

One o ther  observation made by t h e  inves t iga to r  i n  t h e  NASA study i s  

t h a t  t h e  pressure  i n  kbar f o r  i n i t i a t i o n  obtained i n  t h e  Naval Ordnance 

Laboratory (NOL)  Small Scale  Gap Test (SSGT) roughly approximates t h e  

c r i t i c a l  energy i n  c a l  cm f o r  a number of explosives.  This i s  a f o r t u i t o u s  -2 

and poss ib ly  misleading observat ion,  but  it may be use fu l  t o  t h e  designer .  

Nominal c r i t i c a l  energy values and t h e  results from t h e  NOL SSGT f o r  some 

se l ec t ed  explosives are given i n  Table 3. 

-8- 



, \  Table 3. , C r i t i c a l  Energy Values and Results 
From NOL SSGT For Some Selected Explosives 

Density C r i t i c a l  Energy NOL SSGT 
Exp 10s i ve (g cm-3) ( c d  cm-2) (kbar )  

Lead Azide 4.93 3 x 

T e t r y l  ' L l l  

d 

PETN 1.00 3 d  

RDX 

PBX-940 4 1.840 12  a 

A-5 Q13 

11 

13 

"S-I1 

LX-Ob 

ms-I 
TNT 

TNT 

'DATB 

TATB 

-- 
1.860 26 a 

1.555 <34 

1.645 34 a 

1.620 32 

1.676 39 
1.762 72-88 

15  
25 

25 

29 
-- 

39-45 
74 

a Reference 2 

Reference 4 

Reference 9 

The value given i s  based on a minimal amount of da ta ,  and it should 
be considered as t e n t a t i v e .  

C 

Not e : 

HNS - Hexanitrosti lbene 
DATE! - Diaminotrinitrobenzene 
TATB - Triaminotrinitrobenzene 

- 
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CONCLUSIONS 

The c r i t i c a l  energy evaluat ion idea  appears t o  provide a use fu l  

concept f o r  t h e  designer of fuze explosive t r a i n s .  

t e s t e d  with s a t i s f a c t o r y  r e s u l t s  f o r  a number of fuze o r  detonat ion-transfer  

systems. 

This concept has been 

The c r i t i c a l  energy f o r  t he  i n i t i a t i o n  of t e t r y l  i s  l L l l  c a l  cm-* 

2 and f o r  A-5 i s  Q13 c a l  cm . Thus, on t h e  bas i s  of t he  c r i t i c a l  energy 

concept, the  A-5 should be an acceptable a l t e r n a t e  fuze t r a i n  explosive.  
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Fig. 1. Critical Energy Plots for PBX-9404, 
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Fig. 2. Acceptor ExpILosive Target Schematic for Gun Studies. 
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