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I. Introduction

The following is a report on the orbit studies and design work connected
with orbits which have been done for a 50 Mev electron FFAG accelerator
which is being constructed by the MURA group. It was felt worthwhile to
report on this work to ensure that data pertinent to the accelerator would be
collected for ready reference and to give for didactic purposes some back-

ground for the choice of parameters.

II. Motivation of the Design

The primary purpose of the accelerator is the study of large circulating
currents and methods of beam handling with these currents. At the time
design studies were begun, the spiral sector FFAG model was not yet operat-
ing, and it was felt that the problems of radial sector machines (particularly
the non-linear restoring forces) were perhaps more tractable. The use of
radial sectors has made possible a further development of the accelerator. By
designing the machine with positive and negative field magnets of equal length
(called historically a Mark Ia), it is possible by changing the relative excitation
of the magnets to make the machine an Ohkawa two-way beam accelerator. 1
Thus experiments can be performed to detect particle collisions and test the
principle of colliding beams. 2 The use of Mark Ja rather than Mark Ib (equal
magnitudes of fields along the equilibrium orbit in positive and negative magnets)
causes the circumference factor to be larger by about one; the circumference

factor of the accelerator tuned to the two-way beam position is larger than the

optimum Mark Ia by about two.
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The desire for high beam intensities influences the design. Experience
with the existing radial sector electron modeIl3 has shown that a generous
vertical aperture is necessary to produce high intensities, It is clearly not
sufficient, since a large aperture is wasted when the stability limit of vertical
oscillations due to non-linear forces is small. One attempts to design for a
large vertical stability limit and a correspondingly large vertical aperture,
leaving some space for the effects of misalignmentis.,

In addition, rf. acceleration must be used to produce large circulating
currents by stacking. Straight sections of minimum length of the order of
8 cm are needed to accommodate rf. cavities. Further, the range of frequency

modulation required decreases as the radial aperture decreases, or as

B
{—.B Jr

increases, so that it is desirable to have as high a k as possible.

1II. Choice of Energy

In a stacked beam, intensity is limited by gas scattering, which decreases
with increasing energy. Enoch4 has estimated the lifetime of an electron beam
against gas scattering. From his results the lifetime is of the order of several
seconds at 50 Mev electron energy at a residual gas pressure of 1.4 x 10=6 mm Hg.
This will give time for many rf. passes to add particles to the stacked beam.

While it would be of great interest for the structure of elementary particles to
measure electron-electron scattering at higher energies (of order 200 Mev in each

beam), such an accelerator would necessitate a much greater investment in time,

-3-
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space and money. At 50 Mev, with a circumference factor of 6 and a maximum
field of about 5000 gausses, the outer radius of the accelerator is approximately

200 cm, which will fit reasonably into existing laboratory space.

IV, Computer Methods

The MURA IBM 704 high-speed digital computer has been used extensively#*
in the design calculations. The methods used are described below.

The "Forocyl" program solves by iteration the magnetostatic problem of
the potentials and fields due to given pole and current geometries, inserted as
boundary values. Because it was desired to consider various relative positive
and negative magnet excitations, the program was used in a particular way.
The positive pole was given a potential different from zero and the negative
pole was held fixed at zero potential (i.e., not energized). Suppose that this
problem gives a median-plane field B;) ( B+ Py =0 ) whose Fourier

expansion at a given radius is (with a particular choice of the zero of 8)

() —~ i:) Ctsﬂ{\le
B BF . 9 -

Since the negative and positive poles are of equal length, the geometry has
period 777/V . Then the problem with the negative pole energized and the

positive pole at zero has a Fourier expansion

Bg{z) . B, ngi\n cmaNB ‘Bozndw cosnN(e+TY/N )

"g5" cesnNe . (2)

= ___Bo ‘Z_M(—l

*It has been estimated that approximately 600 hours of computer time have been
used in this design work. —4-
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The problem with the positive and negative poles having relative excitation 4 b

has a Fourier expansion n (2)) ¢, Ne
L e TN Yt
3 (=}

= o+

) ' (o W
= Bo én g:‘ (&—(-I)Ml:) ».LNNG. 3)

a+b

With this device it is not necessary to do more than one lengthy Forocyl
problem in order to treat various excitations of the same geometry.

The Fourier coefficients of (3) could be used in the "Well- Tempered Five"
dynamical program, 6 which generates the fields affecting particle motion at
each integration step from the median-plane fields by Powell's expansion.

However, the "Formesh'" dynamical program, 8

which uses the fields given at
points of a mesh (as in Forocyl) has the advantage of greater speed, as well as
several useful auxiliary programs, such as "Forfixpoin‘c"9 and the several
bump programs. e A field mesh can be made from the Fourier coefficients of

11 which generates the fields as in "Well-

(3) by the "Tempermesh' program,
Tempered Five' and stores them at mesh points,

The normalization of the Fourier coefficients must be considered further.
For radial sector machines, the maximum field on a circle is large compared
to the average field and the "scalloping' of the equilibrium orbit makes large
contributions to the average field on the equilibrium orbit. This moves the

equilibrium orbit to a smaller average radius. The computer programs use

variables scaled with respect to a reference radius which is frequently tco

e
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large for radial sector machines. Then the interesting dynamical region is
far to the left of the origin of the phase plane for radial motion, so that it is
easy to exceed scaling limits for the variables. However, this dynamical
region can be moved arbitrarily along the x-axis by proper normalization of
the Fourier coefficients. The radial equation of motion in the median plane
can be written in cylindrical coordinates as

[— Y'"& ’/j i Y e - d({) ? 3\/\ s Ne 9
¥ SN (v*+ ¥7) 7> ’ (4)

g |

where V‘ =d%6 and
A = €T Bo/cp : (5)

p is the total particle momentum and the field in the median plane is

B,.=Beg=¢

3
Blie ok JeosnNe . (6
B3 o Ba(%o) 2“%

& defines the circle (of radius ro) about which the motion is expanded. 12

k k+1

X varies as r Thus

Since for a given B, r and 6, B, varies as rg , x

Ao and &*; (of the same sign) corresponding to circles of radius ro and

r, respectively are related by

/

i
Kifeky = <rl/f(>) A
(7)

The computer programs use < = 1 throughout, but because < appears

in the equations of motion multiplying the field, one can insert & j" rather
-
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than g, in "Tempermesh' and thus expand about the circle of radius correspond-
ing to &« . In practice, initial values of X were found from analytical theorle
and improved from the computer results, using (7).
The circumference factor C can also be calculated by using <« . Itis
defined as W //)w;w :
(8)

where /ﬂmw is the minumum radius of curvature of a particle of momentum P

and VYe is the radius of its equilibrium orbit at the azimuth where 0. L e

¥
Now
Prvin
- r‘e 50/0(@ BWM‘__.K_;,
so that
c — “’e gmax. /50 9

(9)

where Ae is that value of X such that o = y:‘l . In the radial sector

machines considered in the present work, the minimum of 2 will occur at
the center of a positive magnet, which is taken as © = 0. Then

Qb TR Th (10)

V. Choice of N, k and Geometry

The number of sectors N and k are related choices. In order to have
Cx < 7 it is necessary that « Yz < N . From the smooth approxima-

tion
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VA el

X
so that X 2
y -
7 (11)
For the present machine k should be as large as is practical, which puts a
lower bound on N. However, as N increases, the straight section length
available at a given radius decreases. Some exploration was done, beginning
with N = 20, It was found that the working points for all two-way machines
with N = 20 are slightly below the serious essential coupling resonance

Cy #3203 = 27 . (As shown by Ohkawa, 13

all working points for two-way
machines lie essentially in hyperbolae which are functions only of N.) Working
points for N = 18 were slightly above this resonance, so that it seemed desirable
to go lower. However, N = 14 gave values of k for stable motion ( < 6 )
which were held to be too small by those concerned with rf. systems. N =16
seemed to offer a reasonable compromise among all these factors.

To find a reasonable geometry and k, various Forocyl problems and
dynamics from them were computed. These exploratory problems did not include
the effects of finite cross-sectional area of the backwinding return currents.

It was desired to find working points for both one-way and two-way operation
(with the same geometry and k) which were not too close to misalignment
resonances known to be harmful and which had large stability limits against

essential non-linear resonances, No systematic investigation was undertaken,

because reasonable working points were found with little difficulty.

-
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A geometry giving good results is shown in Fig. 1. This diagram shows
pole configurations at a particular radius (the pole shapes being assumed to
scale with radius). Half of the positive pole is shown at each edge, with the
negative pole in the center, so that 8 = 0 at the center of the positive magnet.
The dimensions are shown in the mesh units (i, j) used in Forocyl. The
variables

o5 e /\/9/0177’

e N3 Laarr (12)

are used in Forocyl for radial sector machines. The total number of mesh units
horizontally is a. Then

¢ = &3

G & (13)

(where the unit mesh is a square) are the mesh coordinates. The boundary values
are shown on the diagram. The backwinding return currents are of zero cross-
sectional area and are located at the points where the potential changes discon-
tinuously. The quantity () calculated by Forocyl is related to the magneto-

static potential 1? by b+t

/S.D - (r/},o) = (14)

Values of © (phase change per sector), "V = No-/a‘lﬁ“ (number of waves
per revolution) and stability limits for radial (x) and vertical (z) oscillations
are shown in Table I for different values of the relative excitation of the two

-
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magnets of Fig. 1, given as g /.ﬂ,,+ e 1 . All of these meshes
have k = 9.3. The stability limits shown are those without misalignments. They
are given in terms of X = r/n, 2 l and &’l = 7 /Y‘o and are simply half the
horizontal distance across the phase region of stability. The vertical stability

limit is measured with a radial motion of small amplitude.

TABLE 1

Results of Exploratory Problems

" Radial Vertica
I.D. Mesh No. # i Ox - Stability Stability
Symbol il - 37'2 V2 ’\}} Limit Limit
2 42 | 0.5 0.7956  0.6653 6.364 5.322 0.019 0.014
]
¢! 46 | 0.55  0.6015 0.4311 4.812 3.449 0.027 0.022
4
¢ 47 | 0.58  0.5454 0.3143 4.363 2.514 0.038 0.024
e"” 48 | 0.60  0.5197  0.2375 4.158 1,900 0,027 0,025

The stability limits are measured at 8 = 0 (center of positive magnet). Since
this is a defocusing magnet for vertical motion, the maximum vertical amplitude
is greater than the figure given by a factor which varies from about 2 for €
{(due to its high 5} ) to about 1.3 for €

€ is a two-way machine, since ), = (2, . Its stability limits are
smaller than those for one-way machines (due to the very high ¢ ’s ), but are
comparable with those of other two-way machines with N = 16. In addition, €

is well situated with regard to misalignment recsonances and thus appecars to offer

#*The mesh numbers are given for convenient reference by the authors and may
be regarded by the reader as cabalistic symbols.

=18=
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an interesting design choice,

It is not necessary to choose a unique one-way operating point, since the
accelerator can be tuned at will. It can be seen from Table I that reasonable
operating points exist. The point e’ appears to be the best choice from the
standpoint of stability limits. Its horizontal stability limit is approximately
the maximum ito be expected with L i R T am/ 3 . Its vertical
stability limit is about 3/5 of the magnet aperture (y = 0,039) at 8 = 0, so
that with a "beat factor' of at least 1. 3 it clearly uses practically all of the
available vacuum tank aperture. The vertical stability limit might well in-
crease with decreasing 05 , but the useful phase space area will not be
larger. €" does not at first sight appear to be well situated with regard
to misalignment resonances, since ’\f} is close to 2.5, but it should be
remembered that half-integral resonances are very narrow, S and that the
inclusion of backwinding return current effects can be expected to move ’1)';

from this resonance,

VI. Misalignment Studies

One of the most important criteria in the choice of a design and operating
point of an FFAG accelerator is its response to misalignments. If the stability
limits of Table [ become very small with only moderate misalignments, it be-
comes exceedingly difficult, if not impossible to achieve high beam intensities.
The digital computer can be used to investigate these effects by means of trans-

formations which simulate misaligned portions ofthe accelerator,

3%
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The meshes discussed above were used to study the effects of misalignments.

10 which makes a transforma-

The major effort used the "Fumblebumps'' program,
tion of the coordinates by amounts VAV 25 G/bz S Ay and A/’y after %
integration steps. After 771/ steps a second such transformation (usually the
inverse of the first) is made. Both transformations repeat every 0)? 2 steps and
both are expressed as power series in the variables with arbitrary coefficients.
Radial or vertical displacements and twists about any except the 6-axis* of any
group of magnets can be simulated by these tfransformations. It might be noted
thatthis also changes k and produces equivalent non-linear bumps.

In Table II stability limits are shown for € and for a point § (Mesh 40)
which differs from &€ only in having k = 9.0, Point & has 7/, = 6. 208,

V3 =5.404. Apoint ¥ with k=9.7 (Mesh 37, Vi =6.576, 1 =5.216)
was investigated, but is not shown because its stability limits were extremely
small. In each case the radial and vertical stability limits are shown. The
bump size given is entered in the Formesh program scaled by ¥~ =150 cm

(so that the data correspond to a larger bump at larger radii), and one sector

out of 16 is displaced or twisted. Runs of length 15 revolutions were used.

*This restriction occurs because A ¥ and A/5:y do not depend on ;" and /57
and Aé{ and 2 }5; do not depend on % and ]ﬁx

-] Ze



Stability Limiis with Misalignments for Two-Way Machines

TABLE 11

MURA-373

S e
Radial Vertical Radial Vertical
Stability Stability Stability Stability
Limit Limit Limit Limit
Unperturbed 0.017 0.016 0.019 0.014
Ay =1mm 0.017 0,012 0.011 0.012
Ay =2mm 0.017 0.012 0.011 0.009
A x = 1lmm 0.004 0.009 0.013 0.012
Ax =2mm =0 =0 0.007 0.009
x twist (1mm) 0.004 0.010 0.012 0.012
y twist (Imm) 0.015 0.012 0.011 0.012

The data show that

5 is very sensitive to radial displacements or twists,

probably because it is closer than € to the integral resonance Vy = 6

The one-way machines

Table III gives the results for these Meshes.

e’

w " s
and €" were investigated in the same way.

-13-
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TABLE III
Stability Limits with Misalignments for One-Way Machines
6!/ e il
Radial Vertical Radial Vertical
Stability Stability Stability Stability
Limit Limit Limit Limit

Unperturbed 0.038 0.024 0.027 0.025
Ay =1mm 0.038 0.020 0.021 0.025
Ay =2mm 0,037 0.020 0.015 0.025
Ax =1mm 0,037 0.020 0.021 0.025
x twist (1mm) 0.041 0.020 0.026 0.020
y twist (Imm)  0.036 0.020 0.020 0.020

e’ is less favorable than € g , mainly in its radial stability limits,
probably because it is closer to the integral resonance VJ, = 4

It thus appears that both two-way and one-way machines have stability
limits with displacements or twists of the order of a millimeter which will
not inhibit beam intensity to any great degree. An equivalent field inhomogeneity
would be of order 1%.

The "Mumblebumps" programlo was also used to test the sensitivity of
two-way machines to errors in azimuthally averaged field ( ;o of Eq. (6)).
This program allows the introduction of a second field mesh after a’? IN
integration steps; after 07?0“,’_" d)')m more steps the program returns to the
normal mesh. It was found with Mesh 42 that the radial stability limit is
reduced essentially to zero if the second mesh, which is used for one sector

out of 16, has j o 2 Ong'/ . Closer investigation showed that this is due

Yl
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to the large tuning effects of ;o ; the introduction of even this small ?o
had moved the radial frequency across the integral resonance '\);, = 6. It was
found further that small amounts of k tuning, which is to be incorporated in
the accelerator, would compensate this tuning effect completely.

It may be argued that the effects of misalignments have not been tested
on the final meshes with currents. However, analytical work has shown that
response to misalignments depends mainly on the differences of the tune
( AJ. x and /V3 ) from resonant values, so that currents should introduce
no difficulty if the tune is not close to some harmful line.

We conclude that misalignments present no serious difficulties for the
operation of the accelerator if the tolerance on misalignments is held below
a millimeter.

This report does not cover the results of the investigation of the dynamical
effects of the radial field ripple due to the embedding of the pole-face Backa
winding currents in slots cut azimuthally in the poles. These effects, which

appear to be very small, are reported separately. 15

VI1I, Final Meshes with Currents

In order to avoid extremely large pole-face backwinding return currents,
which would reduce greatly the straight section length available for rf. devices,
it is planned that the outermost part (roughly 15 ¢m) of the field variation will
be made with non-scaling poles, the design of which is discussed in Sec. VIII.
Preliminary calculations of currents in the scaling region by R. O. Haxby
showed that the return bundle of pole-face windings will have cross-sectional

-15-
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area of approximately 80 cmz at 190 cm, the end of the scaling region, where
it is greatest. A geometry as shown in Fig. 2 was devised to accommodate
this area. The inclusion of currents in the Forocy! program is discussed by

16

Laslett. Table I'V shows the betatron oscillation frequencies obtained at

different operating points with this geometry and k = 9. 3.

TABLE 1V
Betatron Frequencies of Operating Points with Currents
Mesh No. ?2._%’_'?'1:. %Z —,;‘/-:-,7 Vy VJ
T T 0.79499 0.66763 6.3599 5.3410
e | 1an 0.55 0.59278 0.41620 4.7422 3.3296
€' ! 145 0.58 0.53550 0.29049 4.2840 2.3239

For a field varying as rk,, the size of the backwinding return bundle does
not scale, which introduces a change of frequency with radius. To find the
magnitude of this effect, Forocyl meshes were run with the current bundle
shrunk to zero cross-sectional area and located at point A of Fig. 2, which
gives an overestimate of the effect at injection, since there must be some
windings at radii smaller than the injection radius in order that the field be
good at that radius. Only points € and e were tested in this way; the
effect for e (or any other point between € and € § ) obviously lies between
those for € and e’ . For a two-way operating point, such a Forocyl
(Mesh 87) gives

'\rz = 6. 360
Yy

i

5. 342,

-16-
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I
which are indistinguishable from & with currents. For € , such a Forocyl
(Mesh 88) gives

Vi =4.315
V; = 2.400.
J
Thus AV'ZS 0,04 and Av.;. € o. 08, so that the tune change is small
compared to the distance between resonances.
Data pertinent to the fields and orbits in the scaling regionat € , € and

i & 3 .
€ are collected in the appendix.

VIII. Design of the Non-Scaling Pole

For a given Forocyl, curves of constant (L may be calculated by the
Equicyl program. 17 Some are shown in Fig. 3. The gap height as a function
of radius can be calculated as follows. At a given 8,

L= 2 (3/r)

or

3/r = F (<2) .
is a function of (L which can be evaluated numerically from Equicyl or
Forocyl data. If it is assumed that the permeability of the iron is infinite,
then the iron surface is an equipotential ( ’@ = const,). If the gap as a
function of radius is given by 2

V/ +/
S o

J 'rﬁ/ip/ ") 4 (16)
and if the pole shape at any radius is chosen to be the Equicy! curve which
has the 7 of (16) at that radius, then the field scales with radius, i.e., it
has the form (6) with constant k and ;,,, "

=17~
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A pole following the exact contours of Fig. 3 would be difficult to machine.
It is therefore interesting toc consider whether some simpler surface gives a
good approximation to the field. To do this problem with any accuracy, a finer
mesh than that used for the scaling region ( a = 50) must be used. Because of
program limitations, there is then not enough memory space for the currents
of Sec. VII. The image calculations of We‘m}oer'gl8 show that the potential
varies very nearly linearly as one proceeds around the periphery of a current.
This procedure was checked, with resulting “VJ 's and fixed point X)( (position

of the equilibrium orbit at 8 = 0) shown in Table V.

TABLE V
Check of Interpolation Method in Forocyl
Z; Jy 1}3
€ with Currents | -0.0100604 6. 3601 5. 3867
¢ Interpolated -0.0100528 6, 3601 5. 3850
€"with Currents | -0,00111303 4.3539 2.5170
¢"mterpolated -0.00127324 4.3569  2.5232

(These results are for a different geometry than the meshes
of Sec. VII and therefore should not be compared invidiously
with Sec. VIIL.)
The radius of the fixed point is Yo ( [+ X; ) at @ = 0, so that the
differences in xf should be compared to unity., It can be seen from Table V

that the differences in dynamics are extremely small. Therefore the inter-

polation method was used throughou! to investigate pole-shape effects,

=18~
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It was found that poles of very simple cross-sectional aspect give very
close fits to the frequencies for the two-way machine. It is safe to assume
that all of the dynamics agrees well, since non-linear effects depend most
strongly on linear frequency.

All of the pole shapes can be characterized by the parameters shown in
Fig. 4. Only half a pole is shown, since each pole is symmetric about its
midpoint and since positive and negative poles are alike, Boundary values
are interpolated around the current bundle from (l‘b’ 21) to (27, 36), then across
the straight section. Since the equipotential surfaces are not the same for
different magnet excitations, there will be some change of frequency with radius
in a one-way machine. Table VI shows frequencies for € and e resulting

from various configurations.

TABLE VI
Linear Frequencies of Non-Scaling Poles N

Mesh No. | Jo ig Ip Ib b ; V; :{j—”;“‘i"“’q};

69 8 21 27 14 6. 360 5.399 4, 365 2,550

102 8 16 26 13 6. 360 5,325 4,375 2. 537

127 8 17 27 13 6. 360 5, 348 4.369 2,534

103 10 15 25 15 6.360 5.319

104 10 15 23 14 6.360 5,308

105 10 17 25 14 6.360 5, 347

106 10 16 26 15 6.360 5.338 4,343 2,462

121 12 16 26 17  6.360 5, 345 4,312 2,392

128 12 16 22 15 6.360 5,322 4,326 2,418

137 12 17 23 15 6. 360 5. 339 4,316 2.411
Scaling 6.360 5. 341 4,284 2,323

- 1 9“
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The variation among the fixed points for all these meshes is small com-
pared to unity, so that the scaling of momentum with radius is assured.

It can be seen that the shape of the non-scaling pole makes little difference
in the two-way case. Even the small variation of /\Jj can be minimized by
a proper choice of shape. The shapes have been chosen so the vertical side
of the non-scaling pole ((ib, jb) to (ib, 21) in Fig. 4)is a single plane, as is the
slanting piece ((ij, j;) to (i, j,)) for simplicity in machining. The boundary
between these planes is a straight line which has been chosen as horizontal
(parallel to the median plane). This uses Mesh 137 at j = 12, Mesh 106 at j = 10
and Mesh 127 at j = 8. In this case the change of frequency AV < 0,01 in
each dimension, which is quite negligible.

If the pole is constructed in this way, the frequency changes of one-way
machines are much more serious. At €' 5 A“J‘; ~ 0.2 waves and

AVy = 0.1 waves. There are in addition some non-scaling terms

(derivatives of Fourier coefficients with respect to radius) which affect the
frequencies. These terms vanish with the correct non-scaling pole, because
there the Fourier coefficients are essentially independent of radius.

This difficulty can be minimized by cutting wedges from the vertical side
pieces of the non-scaling poles of the negative magnets. These pieces are of
course to be restored for two-way operation. The wedges change iptoiy =& iy

on both sides of the negative magnet of each sector (they also change j;, to

e -_.il AN ib’ since the angle &4 }U between iz and i) has been chosen such

that 7ev &Y \.,JZ ).

=20~
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"
Table VII shows the effects of various cuts on the frequencies of &

TABLE VII
Effect of Cuts from Non-Scaling Poles

Mesh No. | Parent Mesh Jo Ay Vy ’\j;

143 (74 102 8 4 4,241 2,186
122 102 5 . 4.306  2.368 |
113 106 i 4 4,201 1.922 |
(
124 106 10 7 4,274 2.299 j
s Gk BT U 1 v 408 " 230 ]

If an amount A i) = 2.484 is cut from Mesh 102, there is no change of
J at € " at this radius. A\ ib should decrease with radius, as can be
seen from the j = 10, 12 data. Calculation shows that if A l,, increases
uniformly from zero at the beginning of the non-scaling pole the change of
frequencies is less than 0.02 in both dimensions. The non-scaling terms are
extremely small since j'” is now essentially independent of r.

Since the pole as designed does not follow exactly the equipotential surfaces,
the gap height as a function of radius must be modified from that given by (16).
L)L is an odd function of 3/~ , so that L

3 5
W3 e a.,(ﬁ/r) r as(g/r)'/‘q’ﬁ'(g/r‘) aftys b (17)

ag gives at most a 1% correction, while ag is quite negligible. To give a field
in the median plane which varies exactly as rk, a, must be normalized to the
same value for all radii (since the median plane field is completely determined
by a, ). Values of ag normalized toa, = 5.16142 (from the scaling case)

for various meshes are shown in Table VIII.
=24
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TABLE VIII
Cubic Coefficient of Potential Expansion for Various Meshes
Mesh 1 - ag
Scaling (144) 15 44. 395
102 8 68. 791
127 8 70. 564
103 é 10 54,484
104 | 10 55,907
105 ; 10 64.161
| 106 10 61.065
g 121 12 57.088
‘ 128 12 49, 304
| sy 12 54,513

The scaling mesh was used to find an approximate j (V) . Then this

j (v) was used together with appropriate meshes (128, 104, 127) to give
ag (x), which was approximated by a power series
—a,= Co f SER T

(18)

The values

C, = 44.395
C, = 448.795
C, =-994, 726

were found. Then ag was calculated for various radii from (18). The inverted

power series of (17)
=22-



where
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Sy = bl b 405
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4 (19)

(20}

was then used to find j (r) . Side and plan views of the magnets are shown

in Figs. 5 and 6.

Various meshes were computed to test such effects as the rounding of

sharp corners to avoid saturation difficulties (Mesh 111), where the effect

is found to be very small if the radius of curvature of the rounding is of

order one mesh unit (with a = 150) and the effect of the relative shrinkage

of the current bundle in the non-scaling region, since it is constant in size

while all other dimensions scale. Mesh 126 had the current bundle shrunk

by one mesh unit, but was otherwise identical to Mesh 102.

results were essentially indistinguishable from those of 102.

g, o
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Appendix

Field and Orbit Parameters

N =16

k= 9.3

Geometry as shown in Fig. 2

TABLE IX

Fourier Coefficients of the Median Plane Fields

, e = q.tennNE
B, - - Balth) Zudt
€ ' ¢"
g0 0 0.5 0. 66 ;
| g 9. 635 6.278238 5. 179546 %
i g5 0 0.107099 0.14137 |
é g3 -0.594694  -0.387507  -0.319693 |
% g4 | 0 -0.026192  -0.034574 |
t t
| g5 |  -0.197399 -0.128627  -0.106117
i |
g ? 0 0.000036 0.000048
| g7 i ~0.055093  0.035899 0.029617
| gg | 0 0.001397 0.001844
g 0.004461  0.002907 0.002398
£10 0 -0, 000191 ~0.000252
€11 ~0.004062 ~0.002647  -0.002184

i
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TABLE X

Field Magnitudes and Circumference Factors

Call: o4, the value of < used in computer calculations.

«, the value of « for which the maximum radius of the
equilibrium orbit equals r o

*2 the value of ¢ for which the average radius of the
equilibrium orbit equals T,

Bmax/Bo is the ratio of peak field to the B of (6).
C= & Bmax/Bo is the circumference factor

The quantity ey - /cp is calculated for the maximum radius of the

max

equilibrium orbit, i.e., x, 1is used.

| %P ol S

iz & e’
oo 9.635 0.5 0.66
% 18.70417 0. 50391 0.67494

;

| *a 16.56152 0.404773 0.558952 |

Bmax/Bo '0.923549  12.7608 8.41213

C 8.0387 6.4303 5. 6777

rOBmaX(gauss—cm

wev— 12,6796, 10%

2.1434.10% 1.8926.10% |

-



TABLE X1

Fourier Coefficients of the Equilibrium Orbits

=
==, xmcrsw/\/

/

"

€ 3 €
g X -0.0377277  -0.0207403 -0.0163002
| Xq 0.0271438 0.0210308 0.0180896
X5 0.0011012 0.0007277 0.0005889
X3 -0.0003571 -0.0002158  -0.0001657
X4 -0.0000621 -0.0000343  -0.0000266
E X5 -0.0000167  -0.0000151 -0.00001375
x¢ | 0.0000011 0 -0.0000002
Xn é 0.0000043 0.0000030 0.0000024
X ; 9.635 0.5 0. 66 |

Note: These change with o< according to the relation

/

x,,,/-f "gwo /xﬂ %~ ,,Sﬁ‘ = /a//a(// *'/‘

-
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TABLE XII

Coefficients of the Linear Transformation Matrix

MURA-373

?/eu??,v) Lo 07 oty Sm T B i o 70
/M ) _ X o Gorw O3-S O 57‘25 e
/3
€ e’ e’
Los 0% -0,799660  -0.287383  -0.111300 !
Siw Cy 0.600453 0.957816 0.993787 '
bre (Max.) 0.97374 0. 53325 0.47021 | "ar®/ e
P (Min) 0.050826 0.11629 0.14364 |2t V%772 ey
yy——

B (57 SecT) 0. 35059 0.26895 0.27087 | M § ((Zj//))
i (+) at V¥er = £ (Med.1) |
067-2(57'5“‘") +2.81782 +1.3783 +1.1186 Epee A .3—, ( Med, ,)
Ces 63 -0. 502633 0.260225 0.611698
e O3 0. 864500 0.965548 0.791091
f3 (Mox) 0. 41585 0. 46265 o.uvztg. | o0/ 200
o 0.086259 0.19365 0. 30353 il i)
t o 1
By (stSeer) | 4 26161 0.34063 0.46747 i ;ii((f;'cif))(
Az (5T Sect.) g F1.3887 +1.1070 ¥1.2246 ’(:)J afm'f” j;%ﬁtﬁ

In addition to the flutter tuning by which ¢’ and €”

are reached from €

it is planned to provide k tuning, so that radial and vertical betatron oscillation

frequencies can be changed independently. Table XIII shows the effect of small

"
changes of k at € and €

These meshes do not include currents, so

should be compared with 42 and 47.

P Lo
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TABLE XIIl

Effect of Change of k on Frequencies

Mesh No., k Va ’V;
89 9.393 6.418 5.290
¢ 90 9. 486 6.464 5,266
91 9.579 6.514 5.242
92 9. 765 6.639 5.195
93 9.393 4,398 2.490
¢ 94 9. 486 4.422 2.470 ;
95 9.579 4. 447 2. 449
96 i 9.765 4. 497 2. 407 1

These results and the flutter tuning can be represented at € by

AV o g5 e L BE
'\/; »’g}‘—‘/ —— ¢ Im )
9_}.7’ 5 : 5—"*'1'"()-2 ~o~0.5 L%k
! 5 —asTay %
'
At ¢ , the results can be represented by
Gbe oo SN0 o G
Vy B ~Z 7:::‘,_
A o giligte f S ek
cut =y £

=2 R
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