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ABSTRACT 

An analys is was ca r r i ed out to simulate the t he rma l behavior 

of a SNAP-8 type reac to r system during reen t ry into the ea r th ' s 

a tmosphere . The objective of this analysis was to de te rmine 

whether sufficient ablation will occur to r e l ease the reac to r co re 

at an alti tude that will insure complete burnup of the fuel e lements 

in the upper a tmosphere . 

F r o m the r e su l t s of this analys is , it is concluded that the 

SNAP-8 reac to r v e s s e l will not ablate to a sufficient extent, for 

probable modes of r een t ry , to r e l e a s e the fuel e lements at a l t i ­

tudes n e c e s s a r y to obtain complete fuel ablation. 
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I. INTRODUCTION 

An a n a l y s i s w a s c a r r i e d out to s i m u l a t e the t h e r m a l b e h a v i o r of a S N A P - 8 

type r e a c t o r s y s t e m d u r i n g r e e n t r y to the e a r t h ' s a t m o s p h e r e . The ob jec t ive 

of t h i s a n a l y s i s w a s to d e t e r m i n e w h e t h e r suff ic ient a b l a t i o n wi l l o c c u r to r e l e a s e 

t h e r e a c t o r c o r e at an a l t i t ude t h a t wi l l i n s u r e c o m p l e t e b u r n u p of t h e fuel e l e ­

m e n t s in the u p p e r a t m o s p h e r e . T h i s w o r k w a s c o n d u c t e d a s a p o r t i o n of the 

o v e r a l l A e r o s p a c e N u c l e a r Safety P r o g r a m . 

The g e n e r a l s e q u e n c e of e v e n t s wh ich t h e s y s t e m m u s t u n d e r g o i s t he m e l t i n g 

off o r r e m o v a l of the u p p e r h e a d p o r t i o n of the r e a c t o r s y s t e m , b r e a k u p of the 

r e a c t o r c o r e by m e l t i n g open the v e s s e l w a l l o r m e l t i n g off the g r i d p l a t e , a b l a ­

t ion and b r e a k u p of the fuel e l e m e n t s , b u r n u p of fuel e l e m e n t s , and d i s p e r s a l of 

the r e m a i n i n g fine p a r t i c l e s in to the u p p e r a t m o s p h e r e . The s u c c e s s f u l c o m p l e ­

t ion of t h i s s e q u e n c e of e v e n t s i s dependen t upon r e a c t o r c o r e r e l e a s e f rom the 

r e e n t e r i n g s y s t e m . Of p a r t i c u l a r i n t e r e s t i s t h e a e r o d y n a m i c hea t ing g e n e r a t e d 

by the r e e n t e r i n g body and i t s t h e r m a l effect upon r e a c t o r top head and v e s s e l 

w a l l . 

In t h i s r e p o r t , t he t e r m " top h e a d , " o r u p p e r h e a d , d e n o t e s the upper lid of 

t h e r e a c t o r c o r e and the f o r w a r d NaK p ip ing . T h e t e r m " r e a c t o r c o r e " d e n o t e s 

the b u n d l e of 211 fuel e l e m e n t s , t he i n t e r n a l r e f l e c t o r s , and the two g r i d p l a t e s . 

The " v e s s e l w a l l " i s t he SS-316 v e s s e l w h i c h h o u s e s t h e r e a c t o r c o r e c o m p o n e n t s . 

The a n a l y s i s p r e s e n t e d in t h i s r e p o r t c o n c e r n s the hea t i ng and s u b s e q u e n t 

r e m o v a l of t h e r e a c t o r ' s top h e a t and v e s s e l w a l l d u r i n g two m o d e s of r e e n t r y . 

D u r i n g the f i r s t m o d e of r e e n t r y i n v e s t i g a t e d , the r e a c t o r s y s t e m w a s a s s u m e d 

to be f a s t e n e d to the n e u t r o n shadow s h i e ld a s s e m b l y , and to be spinning about 

i t s a x i s . T h r e e c a s e s w e r e i n v e s t i g a t e d for t h i s m o d e ; 0 ° , 3 0 ° , and 70° a n g l e s 

of a t t a c k . The "ang le of a t t a c k " i s t he ang le f o r m e d by t h e l ine of flight and the 

l o n g i t u d i n a l a x i s of the s y s t e m . Al though t h e ang le of a t t a c k does not s tay c o n ­

s t an t d u r i n g r e e n t r y , t h e t h r e e c a s e s i n v e s t i g a t e d w e r e b a s e d on the a s s u m p t i o n 

of c o n s t a n t a n g l e s of a t t a c k so a s to d e t e r m i n e t h e r e l a t i v e effect o n t h e r m a l 

b e h a v i o r . 

U n d e r the s econd m o d e of r e e n t r y , t he r e a c t o r w a s a s s u m e d to be r e l e a s e d 

f r o m t h e sh i e ld at an a l t i t ude of 400 ,000 ft fo l lowed by r a n d o m tunnbling into the 

e a r t h ' s a t m o s p h e r e . 
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The most probable mode of r e a c t o r breakup is not ce r ta in . In this ana lys i s , 

the assumption was made that as the system r e e n t e r s , di rect aerodynamics 

heating occurs on the upper head and v e s s e l wall , the only port ion actually ex­

posed to the flow s t r e a m . During the f i rs t phase of the flight, heating of the 

in ternal port ions of the sys tem takes place only indirect ly; that i s , by in ternal 

conduction and radiat ion. Eventually, sufficient heating will have occur red to 

naelt-through port ions of the top head or vesse l wall , exposing the in te rna l core 

components to d i rec t ae rodynamics heating. 

The actual mode of reac to r sys tem breakup and core component r e l ea se is 

not immediate ly evident. It would occur ei ther as a resu l t of melting away of 

the top head, or ablation of the v e s s e l wall surrounding the fuel e lements . 

Resul t s of this analysis indicate that the mode of reen t ry and the angle of attack 

largely de termine which of the two portions actually me l t s away on the reenter ing 

sys tem. 
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II. REFERENCE REENTRY TRAJECTORY 

The RESTORE (Reentering SNAP Tra jec to ry on an Oblate Rotating Earth) 

computer p r o g r a m was used to calculate the t r a jec to ry of the reenter ing sys tem. 

The t ra jec to ry depends on the body's bal l is t ic coefficient, as well as on i ts 

ini t ial velocity, position, and orientat ion. In order to de te rmine these a e r o ­

dynamic coefficients, an approximation of the r e a c t o r - s h i e l d assembly geometry 

was made , and is shown in F igure 1. The drag coefficient acting on a body of 

the configuration as shown in f igure, was de te rmined by the NEWTON Code. 

The NEWTON Code is a computer p r o g r a m formulated to evaluate the force and 

moment coefficients on ax i symmet r i c bodies in hypersonic flow based on 

NEWTONIAN flow theory. The re su l t s of the NEWTON Code calculations a r e 

shown in F igure 2. It is evident that for a wide range of angles of attack (0° to 

90°) The drag coefficient va r i e s only slightly (C = 1.00 ± 0.04), from which it 
2 

follows that the bal l is t ic coefficient (W/C A Ibm/ft ) also va r i e s only about 

4%. 

This just if ies using the same reen t ry t r a j ec to ry for all angles of at tack 

between head-on (a = 0°) and s ide-on (o: = 90°) orientat ion. Accordingly, the 

,D = 9.42 in. 

Rfj - 4.71 m 

-35.28 m. 

(REACTOR) 

-27,15 in. 

D = 48.54 in. 

•1.46 in. 

(SHIELD) 

W = 1974 lb 
m 

Aref = 12.851 ft' 

1-17-67 UNC 

12.45 

7700-2535 

F i g u r e 1. Assumed Reentry Geometry of 
Reactor-Shie ld Assembly 
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F i g u r e 2. Drag Coeff ic ient vs Angle of 
At tack fo r R e f e r e n c e G e o m e t r y 

of R e e n t r y V e h i c l e 

b a l l i s t i c coef f ic ien t v a l u e of W/C_^A = 1.53 I b m / f t w a s u s e d t h r o u g h o u t the 

f i r s t m o d e of r e e n t r y c a s e s . 

A v a r i a b l e C^^A coef f ic ien t w a s u s e d in t h e R E S T O R E c a l c u l a t i o n to d e t e r m i n e 

t h e t r a j e c t o r y of the s y s t e m d u r i n g t h e s e c o n d m o d e of r e e n t r y . T h e w e i g h t , W, 

of the s y s t e m w a s t a k e n t o b e the we igh t of the NaK void S N A P - 8 r e a c t o r w i t h ­

out t h e n e u t r o n shadow s h i e l d . D u r i n g t h i s t r a j e c t o r y c a l c u l a t i o n t h e r e a c t o r 

w a s a s s u m e d to be d e t a c h e d f r o m the sh ie ld at 400,000 ft. 

Among the t r a j e c t o r y p a r a m e t e r s d e t e r m i n e d by the R E S T O R E Code a r e the 

a l t i t u d e , v e l o c i t y , f l ight a n g l e , l o n g i t u d e , l a t i t u d e , a z i m u t h , and r a n g e a s a 

funct ion of t i m e . As a s ide c a l c u l a t i o n , the code a l s o c o m p u t e s the n o m i n a l 

r e f e r e n c e h e a t i n g , q r, w h i c h i s : 

B t u 

r e f r.Z 
sec -ft 

8 6 5 
t3.15 

YsL^oy 

as g iven by D e t r a and Hida lgo ( s e e R e f e r e n c e 1) a s t h e s t a g n a t i o n poin t hea t ing 

on a s p h e r e with a 1-ft r a d i u s . (V i s the r e f e r e n c e v e l o c i t y of 1 0 , 0 0 0 f t / s e c 

a n d p „ , is the a i r d e n s i t y at s e a l eve l . ) 
o L 
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The r e su l t s of the RESTORE Code calculat ions a r e shown for the reference 

t r a j ec to r i e s in F igures 3 and 4. The solid t r a c e s in F igure 3 indicate the s y s ­

t e m ' s altitude and re ference heating ra te vs t ime , with the reac tor attached to 

the neutron shadow shield. The dashed t r a c e s in F igure 3 show the altitude and 

re ference heating ra te vs t ime for the SNAP-8 r eac to r re leased from the shadow 

shield at 400,000 ft under the second mode of r e e n t r y considered. F igure 4 gives 

the re fe rence heating vs alt i tude for the r e a c t o r - s h i e l d sys tem during reen t ry 

(solid t r ace ) , and the r e a c t o r - r a n d o m tumbling case (dashed t r ace ) . 

The actual aerodynamic heating on any point on the reen te r ing sys tem is 

given by the express ion: 

^ Btu , » 
N sec ^ref 

o ^local ( radius = R) 

J stag ( radius = R) 
sphere 

> , "̂ 

(HWCR) A 
N' 

The hot-wall cor rec t ion factor , (HWCR), has been neglected in the calculations 

repor ted here in , as it is consistently close to unity. The heat-loading factor, 

(p, is made up of the size cor rec t ion factor , ^R /R, and the location factor, 

q, i /q + 1, • The local heat- loading fac to r s , <p, as applied to the given 
iocaJ. stag spnere 

calcula t ions , were acquired from the aeroheating tes t conducted at Cornell 

Aeronaut ical Labora to r i e s and the RADE t e s t s . These exper iments a re d iscussed 

in the appendices of this r epor t . The local heat- loading fac to r s , (p, as applied 

to the t h e r m a l model p resen ted in this r epor t , a r e d i scussed in detail in Sec­

tion V. 
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III. GEOMETRIC AND THERMAL PROPERTIES OF SNAP SYSTEM 

T h e g e o m e t r i c c o n f i g u r a t i o n and d i m e n s i o n s of t h e S N A P - 8 r e a c t o r c o r e , 

v e s s e l , and top h e a d w e r e s i m u l a t e d by the a n a l y t i c a l m o d e l . In d e s c r i b i n g the 

g e o m e t r y of t h e c o r e for t r a j e c t o r y and t h e r m a l c a l c u l a t i o n s , d e s i g n p a r a m e t e r s 

w e r e fo l lowed, though s o m e a p p r o x i m a t i o n s w e r e a s s u m e d for connputa t iona l 

s i m p l i c i t y . Only ax ia l and r a d i a l v a r i a t i o n s of g e o m e t r i c p a r a m e t e r s w e r e 

t a k e n in to a c c o u n t . No c i r c u m f e r e n t i a l v a r i a b l e w a s c o n s i d e r e d . T h u s , in the 

n o d a l d iv i s i on u s e d in the t h e r m a l m o d e l , t he g r i d p l a t e and fuel e l e m e n t s w e r e 

h a n d l e d a s annu l i . The g r i d p l a t e and fuel e l e m e n t s w e r e t r e a t e d a s n ine c o n ­

c e n t r i c r e g i o n s , one c e n t r a l c i r c l e , and we igh t ed s u c c e s s i v e r i n g s . See S e c ­

t ion IV on the noda l m o d e l for d e t a i l s of s y s t e m g e o m e t r y . 

The r e a c t o r s y s t e m i s c o m p o s e d p r i m a r i l y of Type 316 s t a i n l e s s s t e e l , 

u r a n i u m - z i r c o n i u r a h y d r i d e fuel m a t e r i a l , and l e s s e r q u a n t i t i e s of b e r y l l i u m 

and H a s t e l l o y C and H a s t e l l o y N. The m a t e r i a l p r o p e r t i e s u s e d in the t h e r m a l 

a n a l y s i s a r e g iven in T a b l e 1. T h e r m a l p r o p e r t i e s for b e r y l l i u m and H a s t e l l o y 

a r e not l i s t e d . T h e s e m a t e r i a l s o c c u r i n such s m a l l p o r t i o n s in t h e r e a c t o r 

t ha t t h e y w e r e not c o n s i d e r e d s e p a r a t e l y . The b e r y l l i u m w a s l u m p e d w i th the 

fuel , and the H a s t e l l o y wi th the s t a i n l e s s s t e e l . 

T h e r m a l p r o p e r t i e s of the s t a i n l e s s s t e e l and fuel m a t e r i a l s w e r e a s s u n a e d 

to be c o n s t a n t . 
T A B L E 1 

T H E R M O P H Y S I C A L P R O P E R T I E S 
O F M A T E R I A L S 

s ta inless Steel — 316 

Thermal Conductivxty, K, ~ 4 7 x lO '* ^^ 
'' * m - F - sec 

Density, p , = 0 286 ^ ^ 
m 

Thermal Capacity, C , = 0 18 rr jr=; 
'̂  " p ' Ibm- F 

Thermal Emissivi ty, c , = 0 7 

Fuel Material 

4 Btu in-° F - s e c 

Ibm 

Thermal Conductivity, K, = 5 0 x 1 0 

Density, p , = 0 22 
m" 

Thermal Capacity, C = 0 2 ,-; --= 
"̂  P l b m - ° F 

Thermal Emissivity, e, = 0 4 

N A A - S R - 1 2 3 5 5 
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IV. ANALYTICAL MODEL OF SNAP-8 REACTOR 

In order to invest igate the the rma l behavior of the reenter ing reac to r system, 

an analytical raodel was developed to r ep re sen t the constituent port ions of the 

sys tem. This analyt ical model was devised for use with the "The rma l Analyzer 

P r o g r a m " (TAP), computer code. 

The TAP Code c a r r i e s out the solution of t rans ien t or s teady-s ta te p roblems 

in heat t r ans fe r where the sys tem to be analyzed is descr ibed by means of a set 

of conductances, capaci tances , etc , in the manner of the e lec t r i ca l the rmal 

analog. 

The modes and paths of heat t ransfer on the model w e r e r ep resen ted by 

( thermal) r e s i s t o r s set up to r ep re sen t radiat ion heat t r ans fe r as well as con­

duction. S t ruc tura l r a e m b e r s ( thermal capacity) were represen ted by nodes and 

capac i to r s . This analyt ical model permi t ted detailed simulation of the SNAP~8 

r eac to r . 

The top head port ion of the analytical model r ep re sen t s the upper lid, or 

upper head of the r eac to r ves se l , and a portion of the NaK outlet pipe extending 

above the v e s s e l . The portion of the SNAP-8 system simulated by the top head 

portion of the analytical model was assumed to be at the front during r een t ry for 

the ca se s cons idered . The upper head encloses the r eac to r co re within the v e s ­

sel , a n d m u s t b e removed before the reac tor upper grid plate can be exposed to 

d i rec t aerodynamic heating. 

F igure 5 shows the node division, radiation heat exchange pa ths , and conduc­

tance network for the top head portion of the analytical model . 

The reac to r core and v e s s e l portion of the analytical model r e p r e s e n t s the 

r eac to r fuel e lements , in terna l beryl l ium re f l ec to r s , the grid plates and the 

reac to r vesse l . The analytical model r e p r e s e n t s the total length of the r eac to r 

but i s m o r e detailed ( smal l e r nodal sections) in the forward portion of the r e a c ­

tor co re . The t e m p e r a t u r e information of most in te res t and significance occurs 

near the front (or top) of the reac tor core . F igure 6 i l l u s t r a t e s the r eac to r core 

and vesse l port ion of the analytical model . 
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TAP models s imi la r to the one used in this analysis were used to calculate 

the exper imenta l t empe ra tu r e response of the RADE ablation models during the 

RADE exper iment . (See Appendix B). Good cor re la t ion was obtained between 

the analytical calculat ions and the RADE exper imenta l r e su l t s . In this way, the 

RADE exper iment demonst ra ted the accuracy of the analytical techniques used 

to predict the preablat ion t he rma l behavior of the SNAP-8 r eac to r upon reent ry 

to the ea r th ' s a tmosphere . 

In devising the r eac to r core and vesse l portion of the analytical model , longi­

tudinal and rad ia l var ia t ions of t empera tu re were taken into account, but c i r ­

cumferent ial var ia t ions were neglected. Thus , an annular model of the core 

and vesse l was set up. The upper grid plate was divided into nine radia l por ­

t ions , a cen t ra l section with a 0.28-in. r ad ius , and eight concentr ic annuli with 

A R ' s (AR = 0.52075 in.) to the outer radius of the grid p la te , 4.446 in. 

The actual SNAP-8 upper grid plate has holes dr i l led through it in an axial 

d i rect ion. The p resence of these holes was not d i rec t ly accounted for inse t t ing 

up the nodal model . In determining the capaci tances and conductances of the 

grid plate nodal network, the grid plate was t rea ted as a solid pla te , and the 

following co r r ec t i ons were made . The nodal m a s s e s and axial conductances 

were co r r ec t ed by the factor , 

g ro s s volume volume of / ^ 
p _ K ' of grid plate holes , _ A void \ _ Q 703 
o" K g ros s volume \ fraction/ 

0 0 r - J 1 * \ / 

of grid plate 

The radia l conductances were co r rec t ed by the factor , 

1 - void fraction _ „ /,^ 
K ) J. , , , void fraction o/radial 1 + = 

This express ion for the l a te ra l t he rma l conductivity in a perfora ted solid is 
2 

given by Jakob. 

The fuel e lements w e r e a lso t r ea ted as annuli. The fuel e lements a r e placed 

in the core roughly in the pa t tern of concentr ic r ings . Therefore , the fuel was 
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r e p r e s e n t e d by n ine c o n c e n t r i c r e g i o n s in t h e a n a l y t i c a l m o d e l . T h e c e n t e r 

r e g i o n r e p r e s e n t s t h e c e n t e r fuel e l e m e n t , and the o t h e r e ight r e p r e s e n t s u c ­

ceed ing r i n g s of fuel e l e m e n t s , wi th the o u t e r r i ng inc lud ing the i n t e r n a l b e r y l ­

l i u m r e f l e c t o r . 

V o l u m e s and c r o s s - s e c t i o n a l a r e a s of n o d e s r e p r e s e n t i n g the fuel e l e m e n t s 

w e r e b a s e d on the n u m b e r of fuel e l e m e n t s l o c a t e d in e a c h r i n g , a s T a b l e 2 s h o w s . 

R a d i a l hea t t r a n s f e r b e t w e e n fuel e l e -

T A B L E 2 

F U E L E L E M E N T S IN NODAL RINGS 

m e n t r i n g s w a s a s s u m e d to be by r a d i ­

a t ion only . 

R a d i a t i o n hea t r e j e c t i o n f r o m the 

s u r f a c e of the r e a c t o r s y s t e m to ou t e r 

s p a c e (at T - - 4 6 0 ° F ) w a s wi th a 
s p a c e 

s u r f a c e e m i s s i v i t y , e = 0 .7 , and uni ty 

v iew f a c t o r . A e r o d y n a m i c hea t i ng w a s 

app l i ed to the s u r f a c e n o d e s . 

No p r o v i s i o n w a s m a d e in t h e t h e r m a l 

nnodel to hand le the m e l t i n g p h e n o m e n o n . 

T h e m o d e l w a s s e t up so t h a t the n o d e s 

con t inued to i n c r e a s e in t e m p e r a t u r e 

u n t i l a t e m p e r a t u r e of 2 8 0 0 ° F w a s 

r e a c h e d . At t h i s t e m p e r a t u r e , a g iven 

node i s no l o n g e r i t e r a t e d by t h e c o m ­

p u t e r code . In a s s e s s i n g the c o m p u t e r 

ou tpu t , a t e m p e r a t u r e of 2 8 0 0 ° F i s t a k e n a s s ignifying m e l t i n g . S t a i n l e s s s t e e l 

h a s a m e l t i n g t e m p e r a t u r e of a p p r o x i m a t e l y 2 6 0 0 ° F . In t ak ing 2 8 0 0 ° F a s the 

m e l t i n g t e m p e r a t u r e , a A T of 200° F above the m e l t i n g t e m p e r a t u r e of the s t a i n ­

l e s s s t e e l h a s b e e n a l l owed to a c c o u n t for t h e l a ten t hea t . The l a t e n t hea t of the 

m e t a l c o m p a r e d to the spec i f i c hea t i s qui te h igh, such tha t a A T of 500 to 

1000°F i s r e q u i r e d to a p p r o x i m a t e t h e en tha lpy of the l a t e n t h e a t of fus ion . On 

t h e o t h e r hand , m e l t i n g of the s t a i n l e s s s t e e l m a y have to o c c u r only p a r t i a l l y 

to w e a k e n the m a t e r i a l so m u c h t h a t i t no longm- can hold t o g e t h e r . 

When the " m e l t i n g t e m p e r a t u r e " of an a l loy i s r e a c h e d , m e l t i n g s t a r t s in the 

g r a i n b o u n d a r i e s , s i n c e t h e lower me l t i ng c o n s t i t u e n t s t end to c o l l e c t t h e r e . 

Ring No. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

No. of Elements 

1 

6 

12 

18 

24 

30 

36 

42 

48=;< 

Vesse l wall 

-^'Includes 42 fuel e l e m e n t s p lus 6 
" e q u i v a l e n t " r e f l e c t o r r o d s . 

N A A - S R - 1 2 3 5 5 
20 



The r e s u l t i s t h a t a n a l loy wi l l l o s e a l l i t s s t r e n g t h m u c h m o r e qu ick ly t h a n a 

p u r e s u b s t a n c e w h e n m e l t i n g s t a r t s , b e c a u s e i t t e n d s to b r e a k u p a long the 

g r a i n b o u n d a r i e s . T h i s wou ld i n d i c a t e t h a t , in o r d e r to d e s t r o y a p o r t i o n of the 

r e a c t o r , i t m a y not be n e c e s s a r y t o supply the e n t i r e " l a t e n t h e a t " to m e l t i t 

away but m e r e l y a r e l a t i v e l y s m a l l a m o u n t of h e a t to i n i t i a t e the m e l t i n g at the 

g r a i n b o u n d a r i e s . 

When the s t a i n l e s s s t e e l i s in a h e a t e d and Nveakened cond i t ion , p o r t i o n s of 

the t op head o r v e s s e l w a l l m a y b r e a k away o r be t o r n off by a e r o d y n a m i c s h e a r 

s t r e s s e s o r b e a r i n g s t r e s s e s of t h e c o r e c o m p o n e n t s on the r e a c t o r v e s s e l . 

N A A - S R - 1 2 3 5 5 
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V. AERODYNAMIC HEAT LOADING 

The basic aerodynamic heating relationship used in making the calculations 

reported herein was the Detra-Hidalgo correlation; 

/ Btu \ 
Irefl f.2} 

\sec-ft / 

qgg = 865 

sphere 
stag 
point 

R c 
R 

stag H 
wall 

H T=540°Ry 

(1) 

which is presented in Reference 2. Equation 1 is for the stagnation point heating 

on a sphere of radius, R, and velocity, V, in flight through air of density, p. 

The terms R . p„^ , and V are reference parameters. The reference radius, o' "^SL' o ^ ' 
R , is 12 in. , the reference velocity, V , is 10,000 ft/sec; and the reference o' -' ' o' ' ^ 
air density, p^^ , is that of standard air at sea level, 0.07647 Ibm/ft . 

The final term of the Detra-Hidalgo expression is called the "hot-wall cor-

rection factor, and accounts for the fact that the higher the temperature of a 

surface, the less heat will flow to it from the heat source. Inthe work presented 

in this report, the hot-wall correction has been neglected. Trajectory calcu­

lations indicated that until the very final stages of the flight, the stagnation 

enthalpy is so high as to make the hot-wall correction very close to unity. 

The size correction factor, '\fR /R, is the ratio stagnation point heating on a 

sphere of radius R to the stagnation point heating on a sphere with a radius of 12 in. (R ). 

The aerodynamic heating on the surface of the reentering body under the first 

mode of reentry is expressed by 

^local 
stag line 

\sec/ ^sph phere stag 
point R = 12 

^sphere stag 
point R=R 

sphere stag 
point R = 12 

local 
(various shapes) 

(R=R) 

sphere stag 
point R=R 

N 
(2) 

<P 
'•^local (R=R) 

sphere stag 
point(R = 12)> 
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w h e r e 

^sphere s t ag ^ r e f 
point R = 12 

3.15 
R e f e r e n c e 

he a t ing 

^ s p h e r e s tag) 
point R=R 

^ s p h e r e s t ag 
point R = 12 

Size 
= c o r r e c t i o n 

f a c t o r 

a n d 

" l o c a l 
( v a r i o u s s h a p e s ) 

R=R 

^ s p h e r e s t ag 
poin t R=R 

L o c a l h e a t i n g f a c t o r 
for g e o m e t r y in q u e s t i o n , 
to b e e x p e r i m e n t a l l y 

= d e t e r m i n e d and c o r r e c t e d 
for m o d e of r e e n t r y 

and A i s the noda l s u r f a c e a r e a in ft . 

The l o c a l hea t ing f a c t o r s on the S N A P - 8 s y s t e m for the t h r e e a n g l e s of a t t a c k 

c o n s i d e r e d u n d e r the f i r s t m o d e of r e e n t r y w e r e t a k e n f r o m t h e r e s u l t s of the 

A e r o h e a t i n g T e s t s conduc ted at the C o r n e l l A e r o n a u t i c a l L a b o r a t o r y ( s e e A p ­

pend ix B) , and the R A D E E x p e r i m e n t ( s e e Append ix A). The v a l u e s of (q, , / 

q 1 , • 4. n T,) a long the s t a g n a t i o n hea t i ng l ine of the S N A P - 8 r e a c t o r 
^ s p h e r e s t ag point R=R ' ^ ° * 
w e r e f u r t h e r c o r r e c t e d to a c c o u n t for s y s t e m r o t a t i o n for the 30 and 70° ang l e -o f -
a t t a c k c a s e s . To a v e r a g e the hea t input a r o u n d the s u r f a c e of the r o t a t i n g s y s t e m 

3 
the s t a g n a t i o n - l i n e h e a t r a t e s w e r e m u l t i p l i e d by 0.36 = q / q , , ^ •,• )• 

' ^ a v e r a g e l o c a l s tag l ine 

T o o b t a i n t h e a v e r a g e l o c a l h e a t input to a g iven n o d e on t h e r e a c t o r u n d e r 

t h e s e c o n d m o d e of r e e n t r y the q, , v a l u e s g iven by Equa t ion 2 w e r e m u l t i -
i o c a i ^ 

p l i ed by 0.28 - q /q . . ^ , . T-, T-, • The 0.28 f ac to r c o r r e c t e d the 
^ ' ^ a v e r a g e l o c a l s tag l ine R=R 
hea t input r a t e s to a c c o u n t for r a n d o m t u m b l i n g of t h e s y s t e m du r ing r e e n t r y . 

The v a l u e s of the e x p e r i m e n t a l l y d e t e r m i n e d and r o t a t i o n - c o r r e c t e d l o c a l 

hea t ing f a c t o r s , q, , , . . . „ „ / q , ^ . , „ ^ , u s e d in 
'^ ' l o c a l ( v a r i o u s shapes ) R = R ^ s p h e r e s t ag point R=R ' 
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the 0° , 30°, and 70° angle of attack cases under the f i rs t mode of r een t ry a re 

given in Table 3. Nodal number s in Table 3 re fer to the locations on the ana­

lytical model (see F igu re s 5 and 6), to which the corresponding heat factors 

were applied. These factors were obtained from the Cornel l Aeroheating ex­

per iment and are explained in the resu l t s section of Appendix B. 

TABLE 3 

EXPERIMENTALLY DETERMINED AND ROTATIONAL-CORRECTED 
LOCAL HEATING FACTORS USED IN THE 0°, 30°, AND 70° 

ANGLE OF ATTACK CASES UNDER THE 
FIRST MODE OF REENTRY 

Node 

4 1 

101 

102 

103 

104 

105 

106 

107 

108 

219 

229 

239 

249 

259 

269 

279 

289 

299 

309 

319 

329 

339 

349 

359 

369 

0° 
E x p e r i m e n t 

^ l / % t a g 

0.982 

1.110 

1.240 

1.220 

1.20 

0.765 

0.125 

0.80 

0.80 

0.085 

0.084 

0.083 

0.083 

0.0805 

0.078 

0.073 

0.066 

0.055 

0.047 

0.047 

0.0475 

0.0455 

0.0415 

0.0380 

0.0380 

30° 
Expe r imen t 

^ l / ' l s t ag 

0.763 

0.832 

0.860 

0.645 

0.536 

0.485 

0.405 

0.350 

0.305 

0.267 

0.262 

0.255 

0.255 

0.240 

0.227 

0.231 

0.238 

0.246 

0.255 

0.363 

0.418 

0.375 

0.255 

0.223 

0.223 

C o r r e c t e d 
for 

Rota t ion 

0.273 

0.298 

0.308 

0.231 

0.192 

0.174 

0.145 

0.125 

0.109 

0.096 

0.094 

0.091 

0.091 

0.086 

0.081 

0.083 

0.085 

0.088 

0.091 

0.129 

0.150 

0.134 

0.091 

0.080 

0.080 

70° 
Exper imen t 

^ l /* ls tag 

0.980 

0.780 

0.630 

0.680 

0.710 

0.722 

0.742 

0.755 

0.768 

0.753 

0.742 

0.726 

0.726 

0.683 

0.652 

0.638 

0.610 

0.575 

0.548 

0.603 

0.634 

0.663 

0.768 

0.845 

0.845 

C o r r e c t e d 
for 

Rotat ion 

0.351 

0.279 

0.226 

0.243 

0.254 

0.258 

0.266 

0.270 

0.275 

0.270 

0.266 

0.260 

0.260 

0.244 

0.233 

0.228 

0.218 

0.206 

0.196 

0.216 

0.227 

0.237 

0.275 

0.303 

0.303 
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VI. RESULTS 

A. CASES WITH R E A C T O R A T T A C H E D T O SHADOW SHIELD 

T h r e e a n g l e s - o f - a t t a c k w e r e c o n s i d e r e d u n d e r t h i s m o d e of r e e n t r y : 0 ° , 3 0 ° , 

and 7 0 ° . I n i t i a l cond i t i ons of t h e s e c a l c u l a t i o n s , at the s t a r t of r e e n t r y , w e r e 

a s fo l lows ; t i m e = 0 s e c , a l t i t ude = 400 ,000 ft, and t e m p e r a t u r e = 0 ° F . D u r i n g 

t h e s e c a l c u l a t i o n s , it w a s a s s u m e d tha t the r e e n t e r i n g s y s t e m w a s spinning about 

i t s a x i s so t h a t t h e r e w a s no c i r c u m f e r e n t i a l v a r i a t i o n of a e r o d y n a r a i c hea t l o a d i n g . 

1. 0° A n g l e - o f - A t t a c k C a s e 

T e m p e r a t u r e s of r e p r e s e n t a t i v e p o r t i o n s of the S N A P - 8 s y s t e m a r e shown 

a s func t ions of t i m e in F i g u r e 7 , for the 0° a n g l e - o f - a t t a c k c a s e . The l o c a t i o n s 

of t h e r e s p e c t i v e n o d e s p lo t t ed in F i g u r e 7 a r e shown in F i g u r e s 5 and 6. The 

n u m b e r d e s i g n a t i o n and a p p r o x i m a t e l oca t ion of the nodal t e m p e r a t u r e s shown 

in F i g u r e 7 a r e a s foUow^s. 

Node No . L o c a t i o n 

1 T o p - c e n t e r , l ead ing edge of NaK out le t p ipe 

5 B o t t o m - c e n t e r , t r a i l i n g edge of NaK ou t le t pipe 

17 ^^56° c e n t e r , l e ad ing edge of NaK ou t le t p ipe 

21 ' ^56° c e n t e r , t r a i l i n g edge of NaK ou t le t p ipe 

41 B a s e of NaK ou t le t p ipe 

104 Top p o r t i o n of u p p e r h e a d 

106 Side p o r t i o n of u p p e r h e a d 

219 Top of v e s s e l w a l l ad j acen t to u p p e r g r i d p la te 

220 C e n t e r of u p p e r g r i d p l a t e 

300 C e n t e r fuel e l e m e n t ha l fway b e t w e e n g r i d p l a t e s 

309 Middle of v e s s e l w a l l 

359 B a s e of r e a c t o r v e s s e l ad j acen t to shadow sh ie ld 

In i t i a l a b l a t i o n of the f o r w a r d p o r t i o n of the NaK o u t - l e t p ipe o c c u r r e d at 

1245 s e c , 311,000 ft a l t i t u d e . The l ead ing edge of the NaK ou t le t p ipe i s fully 

a b l a t e d by 167 0 s e c , 276,000 ft a l t i t u d e . The b a s e of the NaK out le t p ipe (Node 41) 

a b l a t e s at 1880 s e c , 234,000 ft. When t h e b a s e of the NaK ou t l e t pipe m e l t s 
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t h r o u g h and f a l l s off, t he r e m a i n i n g , t r a i l i n g edge p o r t i o n of the NaK pipe g o e s 

wi th i t . I n i t i a l a b l a t i o n of the top head t a k e s p l a c e a t Node 104 at 1900 s e c , 

226,000 ft a l t i t u d e . By t h e t i m e of p e a k h e a t i n g , 2020 s e c . 151,000 ft a l t i t u d e , 

t h e u p p e r p o r t i o n of the top h e a d h a s a b l a t e d . At t h i s tin^ie, the v e r t i c a l p o r t i o n s 

of t h e t op h e a d (Nodes 106 to 108) have not a b l a t e d and a r e at t e m p e r a t u r e s of 

2120 to 1 5 9 0 ° F , r e s p e c t i v e l y . The r e a c t o r v e s s e l w a l l v a r i e s in t e m p e r a t u r e 

f r o m 1520° F oppos i t e the u p p e r g r i d p l a t e to 260° F at t h e b a s e of the r e a c t o r . 

I n t e r n a l fuel t e m p e r a t u r e s r e m a i n qu i te low, 10 to 450° F , depend ing upon l o ­

ca t i on . The o u t s i d e r i n g of fuel e l e m e n t s v a r i e s in t e m p e r a t u r e f r o m 450° F 

u n d e r the u p p e r g r i d p l a t e , and 106° F hal fway b e t w e e n g r i d p l a t e s , to 38 ° F 

next to the lower g r i d p l a t e . The c e n t e r fuel e l e m e n t i s 250° F u n d e r the u p p e r 

g r i d p l a t e , 1 8 ° F halfway b e t w e e n g r i d p l a t e s , and ' ^ 2 ° F next to the lower g r i d 

p l a t e . Upper g r i d p l a t e t e m p e r a t u r e s a r e in t h e 300 to 8 0 0 ° F r a n g e . 

R a d i a l t e m p e r a t u r e p r o f i l e s for v a r i o u s a x i a l p o s i t i o n s in the r e a c t o r c o r e , 

at t he t i m e and a l t i t ude of p e a k h e a t i n g , a r e shown in F i g u r e 8. The t e m p e r a ­

t u r e p r o f i l e s i l l u s t r a t e d in F i g u r e 8 a r e n o r m a l i z e d to the ou t s i de r a d i u s of the 

S N A P - 8 r e a c t o r v e s s e l . T h e s e t e m p e r a t u r e p r o f i l e s show t h e in f luence of t h e 

t h r e e m o d e s of hea t t r a n s f e r in to the r e a c t o r c o r e : (1) r a d i a t i o n hea t t r a n s f e r 

f r o m t h e h e a t e d v e s s e l w a l l to t h e ou te r r i n g s of fuel e l e m e n t s ; (2) r a d i a t i o n 

h e a t t r a n s f e r f r o m the r e a c t o r ' s top h e a d to t h e u p p e r g r i d p l a t e ; and (3) a x i a l 

c o n d u c t i v e h e a t t r a n s f e r f r o m t h e u p p e r g r i d p l a t e to t h e fuel e l e m e n t s . The 

s h a r p i n c r e a s e in t e m p e r a t u r e in the ou t e r two r i n g s of fuel and the v e s s e l w a l l 

i s c a u s e d by t h e f i r s t m o d e of h e a t t r a n s f e r . The d e c r e a s e in t e m p e r a t u r e t o w a r d 

the r e a c t o r c e n t e r l ine naay be exp la ined by F i g u r e 5. The c e n t e r p o r t i o n of 

the u p p e r g r i d p l a t e r e c e i v e s no r a d i a n t hea t t r a n s f e r f r o m t h e t op head . T h i s 

p o r t i o n of the r e a c t o r c o r e i s d i r e c t l y be low t h e NaK ou t l e t p ipe and t h e r e f o r e 

w a s not c o n n e c t e d to t h e t op h e a d by r a d i a n t h e a t t r a n s f e r p a t h s in the a n a ­

l y t i c a l m o d e l . T h i s t e m p e r a t u r e d e c r e a s e m a y be o v e r e m p h a s i z e d in the a n a ­

l y t i c a l m o d e l a s c o m p a r e d to t ha t in t h e a c t u a l c a s e . T h e r e a c t o r p o r t i o n of 

t h e u p p e r g r i d p l a t e w i l l a c t u a l l y r e c e i v e r a d i a n t hea t f r o m t h o s e p o r t i o n s of 

the t op h e a d tha t a r e not d i r e c t l y o v e r h e a d . T h e u n i f o r m d e c r e a s e in t e m p e r a ­

t u r e at p r o g r e s s i v e p o s i t i o n s in to the r e a c t o r c o r e and the d a m p i n g out of the 

unun i fo r in t e m p e r a t u r e d i s t r i b u t i o n ev iden t at the t op s u r f a c e of the u p p e r g r i d 

p l a t e i s c a u s e d by t h e t h i r d m o d e of h e a t t r a n s f e r m e n t i o n e d above . 
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2. 30° Angle-of-Attack Case 

To shorten the computer t ime requi red for each calculation, the NaK outlet 

pipe port ion of the analytical model was omitted from the 30 and 70° angle-of-

at tack c a s e s . F r o m the r e su l t s of the 0° angle-of-a t tack case , it was felt that 

the NaK outlet pipe will initially ablate for each angle-of-at tack considered. 

The complete removal of the NaK outlet pipe and the opening of the reac tor co re 

to d i rec t aerodynamic heating a r e both dependent upon ablation of the top head 

portion of the SNAP-8 sys tem. This aspect of the reen t ry disintegrat ion s e ­

quence can be accura te ly investigated with the NaK outlet pipe deleted from the 

analyt ical model . The t e m p e r a t u r e s of the same port ions (excluding those on 

the NaK outlet pipe) of the SNAP-8 r eac to r as shown in F igure 7 a r e given for 

the 30°F angle-of-a t tack case in F igure 9. By plotting the t empera tu re s of the 

sanne port ions of the r eac to r for each reen t ry case , a ba s i s of compar ison is 

formed to de te rmine the re la t ive affect of increas ing angle-of-at tack. 

The base of the NaK outlet pipe (Node 41) initially ablates at 1940 sec , 

209,000 ft al t i tude. Initial ablation of the r e a c t o r ' s top head occurs at Node 104 

at 2000 sec , 169,000 ft al t i tude. The top head continues to ablate and is com­

pletely melted by t ime and altitude of peak heating, 2020 sec , 151,000 ft. At 

this t ime , the vesse l wall adjacent to the upper grid plate (Node 219) i s 2 2 5 5 ° F . 

The cen t ra l port ion of the ves se l wall (Node 309) is ' ^2040°F , and the base of 

the r eac to r v e s s e l (Node 359) is 1390°F. 

The in ter ior t e m p e r a t u r e s of the r eac to r core a r e s imi la r to those which 

occu r r ed during the 0° angle-of-a t tack ca se . Radial t empe ra tu r e prof i les , 

taken at the same axial posit ions as for the 0° case , a r e given in Figure 10. 

As shown in F igure 10, the v e s s e l wall and outer ring of fuel ele"ments attain a 

much higher t empe ra tu r e during the 30° angle-of-a t tack case than that reached 

during head-on reen t ry . This may be at t r ibuted to the inc reased aerodynamic 

heat loading on the r e a c t o r ' s vesse l as the angle-of-at tack i n c r e a s e s . 

Also evident in F igure 10 is the fact that the cen t ra l and lower port ions of 

the v e s s e l reach higher t e m p e r a t u r e s than the upper regions of the reac tor 

ve s se l . During the Cornel l aeroheating exper iment it was found that the neutron 

shadow^ shield c r ea t e s a Shockwave that in te rac t s with the shock pat tern p r o ­

duced by the r e a c t o r ' s top head to inc rease the aerodynamic heat loading to the 
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cent ra l portion of the v e s s e l . F igure B-4 shows the extent of i nc reased heat 

loading on the lower regions of the vesse l wall re lat ive to that on the upper 

portion of the r eac to r . 

3. 70° Angle-of-Attack Case 

Initial ablation takes place at the base of the NaK outlet pipe (Node 41) at 

1900 sec , 226,000 ft al t i tude. See F igure 11 for the t e m p e r a t u r e vs t ime t r a c e s 

for var ious portions of the r eac to r during reen t ry . The top head portion of the 

r eac to r s t a r t s to ablate at Node 106 at 1920 sec , 218,000 ft al t i tude. At this 

t ime and al t i tude, the unmelted upper port ion of the top head (Nodes 101 to 105) 

will be d ispersed from the reac tor sys tem. The ver t i ca l section of the top 

head (Nodes 106-108) continues to ablate until Node 219 reaches i ts melt ing 

t empe ra tu r e at 1975 sec , '^ 188,000 ft alt i tude. During the next 25 sec of t r a ­

jec tory t ime , both the upper and lower (Node 359) portions of the r e a c t o r ' s 

ve s se l ablate and a re d i spe rsed . As seen in Figure 11, the cen t ra l region of 

the ves se l wall i s at a lower t e m p e r a t u r e due to less aerodynamic heat-loading 

to that portion of the r eac to r ves se l . The ves se l wall has completely d i spersed 

by 2000 sec and an altitude of 194,600 ft. At this t ime and altitude the core 

bundle, including gr id p la tes , i s completely free of the neutron shadow shield 

and exposed to d i rec t aerodynamic heating. 

The radial t e m p e r a t u r e profi les for the 70° angle-of-a t tack r een t ry case a r e 

given in F igure 12. These t e m p e r a t u r e profiles a re quite s imi la r to those of 

the 30° angle-of-at tack c a s e , with the exception that the ves se l wall general ly 

at tains melting t e m p e r a t u r e . As in the 30° case , the lower port ions of the 

ves se l wall a r e at a higher t e m p e r a t u r e than the cen t ra l regions at the t ime 

and altitude of peak aerodynamic heating. 

F r o m F igu re s 7, 9, and 11, it can be seen that the angle-of-at tack has con­

s iderable effect on the t ime of upper head mel t - th rough . The r e a c t o r ' s top 

head was said to be breached when ei ther Node 104 or 106 (whichever was 

hotter) reached a t e m p e r a t u r e of 2800° F . Figure 9 shows the a = 30° case 

taking a longer t ime for mel t - through of the upper head than either the a = 0° 

or a = 70° c a s e s . This can be explained by considering Table 3 and F igures 5 

and 13. F igure 13 shows the t ime to achieve mel t - through of the r e a c t o r ' s top 

head as a function of angle of attack. 
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Node 104 i s so situated that the aerodynamic heating is g rea te s t the re when 
o 

sys tem orientat ion is head-on, and the heating falls off as a *-30 . On the 

other hand. Node 106 is on the side, so that it r ece ives its g rea t e s t heating 

during s ide-on reen t ry ; and the heating falls off as a »-0°. As a resu l t , 

during r een t ry . Node 104 achieves mel t - th rough f i rs t for a = 0° and 3 0°, while 

Node 106 me l t s through f i rs t when a = 70°. By extrapolating the r e su l t s given 

in Figure 13, it can be seen that Nodes 104 and 106 would ablate simultaneously 

for an angle-of-a t tack of ^^33°. 

B. CASE WITH REACTOR DETACHED FROM THE NEUTRON SHADOW SHIELD 
AND RANDOM TUMBLING INTO THE EARTH'S ATMOSPHERE 

A second mode of r een t ry was cons idered during which the reac to r was 

assumed to be r e l eased from the neutron shadow shield at 400,000 ft, then 

random-tumbling into the ea r th ' s a tmosphere . It was hoped that this mode of 

r een t ry would enhance ablation and d i s pe r s a l of r eac to r components at high 

a l t i tudes . 
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A RESTORE Code calculat ion was made to de te rmine the reference t r a ­

jec tory and heating ra t e s of the SNAP-8 reac to r under the second mode of r e ­

entry. The resu l t s of this calculation a r e show^n as the dashed t r a c e s in F i g ­

u r e s 3 and 4, where they a re compared to the same p a r a m e t e r s of the r e a c t o r -

shield sys tem during the f irs t mode of r een t ry . In Figure 3 it can be seenthat 

at any given t ime pr ior to peak heating the random tumbling r e a c t o r has reached 

a lower altitude and is subjected to a g rea te r q . than the r eac to r - sh ie ld s y s ­

tem during the f i rs t mode of reen t ry . F rom this it might be assumed that the 

second mode of r e en t ry would be m o r e beneficial to reac to r dis integrat ion than 

the f i r s t mode of r een t ry . However, when the "effective" aerodynamic heat 

loading to any given location on the reac to r during the two modes of reen t ry is 

compared as a function of alt i tude, it can be seen that the system rece ives far 

less heat input under the second mode of reen t ry . The reference heat r a t e , 

q r, is l e s s , as a function of alt i tude, during the second mode of r een t ry , as 

shown in F igure 4. In addition, the aerodynamic heat- loading cor rec t ion factor 

to account for mode of r een t ry is less for the random tumbling c a s e than for 

the rotating r eac to r - sh i e ld sys tem, as d i scussed in Section V. Therefore , the local 

heat input r a t e s to the rotating r eac to r - sh i e ld sys tem a r e : 0.36 (q, , T )> 
local stag line 

where the q, ., ,. is given by Equation 2; and the q ,, which is given 
local stag line re i 

by the solid t r a c e in F igure 4. Similar ly , the local heat input r a t e s to the 
random-tumbling reac tor a r e : 0.28 (q^ , ^ ,. ), where the q, , ^ ,. 

'̂  local stag line ' ^local stag line 

is given by Equation 2; and the q r, which is given by the dashed t r a c e in 

F igure 4. 

F r o m this it may be concluded that the random tumbling mode of r een t ry 

does not enhance r eac to r dis integrat ion, and that the r eac to r has a higher 

probabili ty of ablation when attached to the neutron shadow shield during r e ­

entry. For this reason , a calculation was not made using the TAP-3 analyt­

ica l model of the SNAP-8 r eac to r . 
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VII. CONCLUSIONS 

F r o m the r e su l t s of this ana lys is , it is concluded that the SNAP-8 reac to r 

v e s s e l will not ablate to a sufficient extent, for probable modes of r een t ry , to 

r e l e a s e the fuel e lements at alt i tudes neces sa ry to obtain complete fuel ablation. 
4 

An e a r l i e r study showed that the SNAP-lOA, z i r con ium-uran ium-hydr ide 

fuel e lements would have to be re leased from the reac to r core by -^ 250,000 ft 

in o rde r to fully ablate upon reen t ry . Based upon this work, it has been ca l ­

culated that the SNAP-8 fuel element , composed of the same fuel m a t e r i a l but 

of sma l l e r dimension, must be re leased by '~2 10,000 ft to fully ablate . 

By compar ing the amount of heat radia ted per unit a r e a from the s ta in less 

s teel v e s s e l at melt ing t e m p e r a t u r e with the amount of heat available for the 

given t r a j ec to ry , it was found that the vesse l could reach melting t e m p e r a t u r e 

at an alt i tude of 292,000 ft, neglecting heat capacity effects. Taking the melt ing 

t e m p e r a t u r e of SS 3 16 as 2600° F and its t he rma l emiss iv i ty as 0.7, the r eac to r 

v e s s e l will r ad ia te 29.2 Btu/ft -sec to space. This quantity of heat is available 

during the t r a jec to ry after the r eac to r has reached an alt i tude of 292,000 ft. 

Taking the mel t ing t empera tu re of SS 316 as 2800°F, the r eac to r v e s s e l will 
2 

rad ia te 37.4 Btu/ft sec . The t ra jec tory re ference heat r a t e equals this quantity 
at 283,000 ft. 

The detai led t h e r m a l study, descr ibed here in , was under taken to de te rmine 

the actual t h e r m a l response of the v e s s e l to the r een t ry environment . This 

study showed that ini t ial ablation of the r e a c t o r ' s top head does not occur until 

a l t i tudes of 234,000 and 209,000 ft for the 0° and 30° angle-of-a t tack c a s e s , 

respec t ive ly , which were investigated under the f i r s t mode of r een t ry . During 

both of these c a s e s , the r eac to r vesse l was intact and at t e m p e r a t u r e s well 

below melting at t ime and alti tude of peak heating. The altitude of peak heating, 

151,000 ft, is far below the min imum requi red r e l ea se altitude to obtain fuel 

element ablation. 

Even for the highly improbable 70° angle-of-a t tack r een t ry c a s e , the vesse l 

wall did not fully ablate until an alti tude of 194,600 ft had been reached. This 

altitude is a lso below the min imum fuel e lement r e l e a s e al t i tude. 
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It is evident that some v e s s e l ablation will occur during r een t ry , par t i cu la r ly 

in the NaK outlet pipe and top head port ion of the r eac to r . Even though this i n i ­

t ia l ablation occurs at re lat ively high a l t i tudes , the vesse l wall will not ablate 

until al t i tudes well below the minimum fuel element r e l ea se al t i tude. For this 

reason , it is further concluded that por t ions of the SNAP-8 fuel e lements will 

survive r een t ry . 
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APPENDIX A 

REACTOR ABLATION DISINTEGRATION EXPERIMENT 

A. INTRODUCTION 

The Reactor Ablation Dis integrat ion Exper iment (RADE) was conducted to 

m e a s u r e the aerodynamic heat flux to the complicated geometry of SNAP r e a c ­

to r s and to demons t ra te the capability and accuracy of the analytical techniques 

used in the r eac to r dis integrat ion analysis . 

Half-scale models of the SNAP-lOA (RADE-A) and SNAP-8 (RADE-B) nu­

c lear r eac to r configurations were tested in the NASA Ames hyper the rma l wind 

tunnel under s imulated a tmospher ic reen t ry conditions. Surface heat flux 

m e a s u r e m e n t s were made with ca lo r ime te r models (Figure A-1), employing 

asymptotic ca lo r ime te r heat s e n s o r s . The exper imenta l RADE models (Fig­

u r e s A-3 through A-6) were ablated at both 0° and 30° angles of attack in the 

flow s t r e a m . The t empera tu re response of the models to the aerodynamic 

heating of the je t s t r eam was obtained throughout each tes t run from t h e r m o ­

couples s t ra tegical ly mounted in the models . 

Throughout each ablation tes t , event motion pic ture film coverage (24 f rames 

per second) and high-speed motion pic ture film coverage (128 f rames per s e c ­

ond) were obtained which provided a detailed visual descr ip t ion of the sequence 

of events during reac to r ablation dis integrat ion. These events c lear ly defined 

the meltdown and mode of d is integrat ion of the r eac to r components under 

simulated reen t ry conditions. 

B. TEST DESCRIPTION 

1. Faci l i ty Descr ip t ion 

The RADE tes t was per formed in the hyper the rmal wind tunnel of the G a s -

dynamics Branch Faci l i ty at NASA Ames Resea rch Center , Moffett Field, Calif. 

This facility is capable of producing nominal Mach 5 gas flow at ex t remely high 

t e m p e r a t u r e s . The flow is produced by injecting air into the plenum of a Linde 

a r c - h e a t e r , used in conjunction with a 10-Mw power supply. The a rc -hea ted 

air i s expanded through a conical, supersonic nozzle to a 24-in. d i ame te r exit 

plane. A simplified schemat ic d iagram of the tes t facility i s shown in Figure A-2. 

*This work has been repor ted in g rea t e r detail in Reference 9 
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2. Model Descr ipt ion and Inst rumentat ion 

a. Reactor Ablation Models 

The RADE ablation models were ha l f -sca le rep l i cas of SNAP-lOA and 8 

flight r eac to r configurations, r e s t r i c t ed basical ly to the external geometry 

(other components were scaled as requi red t o insu re duplication of the t h e r ­

mal cha rac t e r i s t i c s ) . The ablation model complement included two SNAP-lOA 

and two SNAP-8 configurations, one each to be tes ted at 0° and 30° angles of 

attack. 

The RADE-A nnodel consis ted of a NaK pipe and s imulated the rmoelec t r i c 

pump assembly welded to the head of a cyl indr ical ve s se l enclosing the reac to r 

core components. Three NaK tubes prot ruded forward from the t r a n s v e r s e 

section of the NaK pipe; the cent ra l tube is a fill tube and the outer tubes a re 

overflow tubes. Six simulated the rmoe lec t r i c switches extended through the 

t r a n s v e r s e pipe normal to the NaK fill and overflow tubes. The pump assembly , 

positioned between the vesse l head and t r a n s v e r s e NaK pipe, consisted of a 

pump housing containing the cen t ra l NaK outlet pipe, one pair of Alnico m a g ­

ne ts , two pump f ixtures , and four plane rad ia tor surfaces (pump fins). The 

ex te r io r dimensions of the NaK piping were ha l f -sca le with full-size wall 

th ickness as was the case for the pump fins. The pump itself was half -scale 

and, although void a reas were duplicated by extensive simplification of p a r t s , 

the genera l assembly concept was naaintained. The pump and NaK pipe a s s e m ­

blies were secured to the vesse l head at i ts center by two pump support b racke ts 

and four support legs . The NaK downcomer pipes were secured to the outer 

per iphery of the vesse l head by two spacer blocks. 

The cyl indrical vesse l shell of the models housed 2 gr id p la tes , 6 internal 

r e f l ec to r s , and 37 fuel e lements . The vesse l shell was one-half the scale of a 

SNAP-lOA flight r eac to r with ful l -scale wall th ickness . The upper and lower 

grid plates positioned the fuel e lements and in ternal re f lec tors inside the v e s ­

sel . The upper grid plate (located under the top head) was half -scale with full-

scale th ickness , and i ts instal lat ion conformed to the SNAP-lOA configuration. 

The lower grid plate was the hal f -scale concept of the SNAP-8 configuration 

with the hal f -sca le SNAP-lOA fuel rod hole pat tern . The in ternal ref lec tors 

were ha l f - sca le to the SNAP-lOA internal r e f l ec to r s . The fuel elements were 
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1-13-6/ UNC 

F i g u r e A - 3 . D i s a s s e m b l e d R A D E - A Model 
Showing M a j o r C o m p o n e n t s 

of the f u l l - s c a l e S N A P - 8 c o n f i g u r a t i o n (0. 56 - in . d i a m e t e r ) r e d u c e d to a l eng th 

of 6.3 in . With the c o r e a s s e m b l y in p l a c e , a s t o p r i n g - n u t a s s e m b l y w a s 

t h r e a d e d into the b o t t o m of the r e a c t o r v e s s e l to s e c u r e the c o m p o n e n t s and to 

s e r v e as an a t t a c h m e n t f i x tu r e to the s u p p o r t e q u i p m e n t . The R A D E - A m o d e l 

nnajor c o m p o n e n t s a r e shown in F i g u r e A - 3 and the a s s e m b l e d m o d e l ( n o t w e l d e d ) 

i s shown in F i g u r e A - 4 . 

The R A D E - B nnodel c o n s i s t e d of a U - s h a p e d NaK p i p e , a h e m i s p h e r i c a l -

s h a p e d v e s s e l h e a d , and a c y l i n d r i c a l r e a c t o r v e s s e l , al l h a l f - s c a l e to the 

S N A P - 8 conf igu ra t ion in e x t e r n a l d innens ions wi th f u l l - s c a l e w a l l t h i c k n e s s e s . 

The NaK pipe w a s w e l d e d to the h e a d , wh ich in t u r n w a s we lded to the r e a c t o r 

v e s s e l . The c o r e c o m p o n e n t s -were i d e n t i c a l wi th t h o s e of the R A D E - A nmodel 

e x c e p t for the u p p e r g r i d p l a t e , w h i c h w a s h a l f - s c a l e to the u p p e r g r i d p l a t e 

of the S N A P - 8 c o n f i g u r a t i o n wi th f u l l - s c a l e t h i c k n e s s . The R A D E - B m o d e l 

m a j o r c o m p o n e n t s a r e shown in F i g u r e A - 5 , and F i g u r e A-6 shows the 

a s s e m b l e d m o d e l . 

The ind iv idua l nnodel c o m p o n e n t s w e r e f a b r i c a t e d frona l ike m a t e r i a l s of 

t h e i r a c t u a l c o u n t e r p a r t s . T h i s , for the m o s t p a r t , w a s Type 316 s t a i n l e s s 
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Figure A-4. RADE-A Ablation Model 
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STOPRING NUT' 

K 1 '.Jl 

F i g u r e A - 5 . D i s a s s e m i b l e d R A D E - B Mode l Showing Ma jo r 
Comiponents 

s t e e l , e x c e p t for the fuel e l emien t s , i n t e r n a l r e f l e c t o r s , and R A D E - A p u m p 

c o m p o n e n t s . The fuel r o d s w e r e z i r c o n i u n n - h y d r i d e ( H / Z r = 1.75), con ta in ing 

no u r a n i u m , and c lad wi th H a s t e l l o y - N which w a s i n t e r n a l l y coa t ed wi th a n o n ­

c l a s s i f i e d c e r a m i c . The i n t e r n a l r e f l e c t o r s w e r e naade of a connmiercia l g r a d e 

Mone l in p l a c e of b e r y l l i u m , s ince i t c l o s e l y d u p l i c a t e s the t h e r m a l p r o p e r t i e s 

of the a c t u a l r e f l e c t o r m a t e r i a l and i s not t ox ic . T h e s e s u b s t i t u t i o n s of c o r e 

m a t e r i a l s e l i m i n a t e d the h e a l t h safe ty h a z a r d a s s o c i a t e d wi th n u c l e a r and toxic 

m a t e r i a l s . The p u m p r a d i a t o r s u r f a c e s (pump f ins) w e r e a l u m i n u m , the miag-

n e t s w e r e Aln ico , and the punap f i t t ings w e r e a t i t a n i u m i - a l u m i n u m - v a n a d i u m 

al loy. 

b . I n s t runnen ta t i on 

The R A D E - A and R A D E - B m o d e l s w e r e i n s t r u m e n t e d wi th 0 .02 - in . OD 

c h r o n n e l - a l u m e l t h e r m o c o u p l e s l o c a t e d in the NaK p ipe , head , g r i d p l a t e s , fuel 

r o d s , r a d i a t o r s , and v e s s e l w a l l . The 0 .02- in . OD the rmiocoup le s w e r e u s e d 

in p l a c e of the p r e f e r r e d 0 .04 - in . OD to mi inimize the effect of the i n t r o d u c e d 

condi t ion p a t h s of the l e a d s and shea t h ing . The t h e r m o c o u p l e s w e r e we lded 
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in to the v a r i o u s s u r f a c e s , wi th the s t a i n l e s s s t e e l shea th ing r o u t e d i n t e r n a l l y 

t h r o u g h the v e s s e l c o r e to the b a s e of the m o d e l , w h e r e 10 ft of f lex ib le l e ad 

p e r t h e r m o c o u p l e w a s s p l i c e d to the s h e a t h s . The f lex ib le l ead bundle w a s 

b r a i d e d to p r e v e n t p o s s i b l e c a p a c i t i v e p i ckup , and c o n n e c t e d to two e l e c t r i c a l 

p l u g s . A t o t a l of 30 t h e r m o c o u p l e s w e r e m o u n t e d in the R A D E - A m o d e l , and 

25 in the R A D E - B m o d e l . 

T e m p e r a t u r e s e n s i t i v e p a i n t s w e r e app l ied to the g r i d p l a t e s , fuel r o d s , and 

i n t e r n a l r e f l e c t o r s of bo th R A D E - A and R A D E - B m o d e l s to s u p p l e m e n t the 

t h e r m o c o u p l e i n s t r u m e n t a t i o n . S t r i p s of d i f fe ren t t e m p e r a t u r e l e v e l po in t s w e r e 

u s e d to c o v e r a r a n g e of m a x i m u m a n t i c i p a t e d t e m p e r a t u r e s s i n c e the e x a c t 

m o d e of d i s i n t e g r a t i o n w a s diff icul t to p r e d i c t . 

C. T E S T R E S U L T S AND ANALYSIS 

1. C a l o r i m e t e r T e s t s 

T h r e e c a l o r i m e t e r m o d e l s w e r e u s e d to ob ta in h e a t f lux m e a s u r e m e n t s ove r 

the R A D E - A and B e x p e r i m e n t a l m o d e l s u n d e r t e s t c o n d i t i o n s . Two of the c a l o ­

r i m e t e r m o d e l s d u p l i c a t e d the R A D E - A and B c o n f i g u r a t i o n s . The t h i r d c a l o ­

r i m e t e r m o d e l c o n s i s t e d of a h e n n i s p h e r i c a l head a t t a c h e d to the r e a c t o r v e s s e l 

c a l o r i m e t e r m o d e l . 

F r o m the m e a s u r e d r e a d i n g s of the h e a t s e n s o r s l o c a t e d in the d o m e head 

m o d e l , l o c a l - t o - s t a g n a t i o n poin t hea t ing r a t i o s ( q ^ / q . ) w e r e c a l c u l a t e d . The 
1 s tag 

r e s u l t i n g r a t i o s a r e p lo t t ed in F i g u r e A - 7 as a funct ion of angle f r o m the s t a g ­

na t ion poin t . Also p lo t t ed in the f igu re i s a t h e o r e t i c a l c u r v e for the r a t i o 

q , / q o b t a i n e d f r o m the w o r k of L e e s ( R e f e r e n c e 5). The e x c e l l e n t a g r e e -
1 s tag 

m e n t of the m e a s u r e d r a t i o wi th tha t of t h e o r y s u b s t a n t i a t e s the va l id i ty of the 

m e a s u r e d d a t a at the s t a g n a t i o n poin t for u s e as a s t a n d a r d va lue of r e f e r e n c e 

h e a t flux. 
The h e a t s e n s o r s in the R A D E - A and B c a l o r i n n e t e r m o d e l s gave s i m i l a r , 

l o c a l - t o - s t a g n a t i o n poin t hea t i ng r a t i o s ( q , / q . ), for v a r i o u s p o s i t i o n s on the 
1 s tag 

r e s p e c t i v e ab l a t ion m o d e l s . T h e s e v a l u e s w e r e u s e d to c o r r e l a t e the a n a l y t i c a l 

and e x p e r i m e n t a l r e s u l t s . 
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Figure A-7. Heat Transfer D i s t r i ­
bution Around Hemispher ica l 

(Dome) Heat Ca lo r imete r 

2. Ablation Tests —Results and Analysis 

a. Analytical Model Descr ipt ion 

A Thermal Analyzer P r o g r a m (TAP) analog was developed to r ep resen t a 

180° portion of each RADE exper imenta l model configuration. A detailed d e ­

scr ipt ion of this computer code is given in Section IV of this repor t . These 

models were used in corre la t ing the RADE ablation data to analytical methods. 

The thermophysica l p roper t i e s used in making the var ious analytical ca lcula­

tions a re the same as given in Section III. 

b. Corre la t ion of Analytical and Experinnental Resul ts 

The exper imenta l tennperature resu l t s for the four ablation cases were con­

ver ted to t empera ture -vs - t inne t r a c e s . Corre la t ion of the analytical c a s e s , 

simulating the four tes t conditions, to the corresponding exper imental r e su l t s 

was completed using the TAP models and the heat input r a t e s from the ca lo ­

r i m e t e r m e a s u r e m e n t s . 

Representa t ive t e m p e r a t u r e - v s - t i m e t r a c e s for var ious positions on the 

RADE-A and RADE-B, 0° angle-of-at tack cases i l lus t ra t ing the overal l extent 
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of corre la t ion between exper imenta l and analytical r esu l t s a re given in F ig ­

u r e s A-8 through A-15. 

The t e m p e r a t u r e - v s - t i m e t r ace s of the various external thermocouples on 

the RADE tes t models become e r r a t i c after short per iods of t ime. This may 

be attributed to ei ther the change in local heat input due to d i spe r sa l of reac to r 

components or to molten metal hitting the thermocouple locations. RADE-A, 

0° thermocouples 20 and 21 (see F igures A-8 and A-9, respect ively) a re smooth 

in shape until they ceased to function after approximately 2 sec. At this t ime, 

the NaK c ross -p ipe began to ablate and break away. The e r r a t i c behavior of 

thermocouples 16 and 13 (see F igures A-10 and A-11 , respect ively) , during the 

same test case , was caused by molten meta l hitting these thermocouple locations 

The NaK outlet pipe began to ablate away at approximately 5 sec during the 

RADE-B, 0° angle-of-at tack tes t case . Because of th is , thermocouples 25 

(see Figure A-12) and 22 (see F igure A-13) ceased to function at 6 and 4.5 sec , 

respectively. During the same tes t ca se , thermocouple 19 (see Figure A-14) 

became e r r a t i c and was lost at approximately 22.5 sec . The sharp inc rease in 
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t e m p e r a t u r e e x p e r i e n c e d by t h e r m o c o u p l e 20 ( see F i g u r e A-15) du r ing the 

R A D E - B , 0° c a s e w a s c a u s e d by m o l t e n m e t a l f r o m the d i s p e r s i n g NaK ou t le t 

p ipe h i t t ing the t h e r m o c o u p l e . 

The a n a l y t i c a l r e s u l t s ob t a ined f rom the ana logs c o m p a r e r e a s o n a b l y w e l l 

wi th t h o s e of the four e x p e r i m e n t a l c a s e s . B e t t e r c o r r e l a t i o n b e t w e e n the a n a ­

l y t i c a l and e x p e r i m e n t a l r e s u l t s w a s ob ta ined for the two R A D E - B ab la t ion r u n s 

than for the two R A D E - A t e s t s . Th i s m a y be a t t r i b u t e d to the s i m p l i c i t y of the 

e x t e r n a l con f igu ra t i on of the R A D E - B r e a c t o r m o d e l . 

D. SUMMARY AND CONCLUSIONS 

In s u m m a r y , the R A D E t e s t s e r i e s w a s h ighly s u c c e s s f u l in sa t i s fy ing the 

p r i m a r y t e s t o b j e c t i v e s . A e r o d y n a m i c h e a t flux m e a s u r e m e n t s , ob ta ined wi th 

the c a l o r i m e t e r m o d e l , p r o v i d e d to a SNAP r e a c t o r e x p e r i m e n t a l l o c a l hea t 

r a t e s tha t , p r e v i o u s l y , w e r e b a s e d on t h e o r y . T h e s e m e a s u r e m e n t s w e r e u t i ­

l i zed as i n i t i a l cond i t ion input to ana logs of the m o d e l s , r e s u l t i n g in good c o r ­

r e l a t i o n of the a n a l y t i c a l c a l c u l a t i o n s wi th the e x p e r i m e n t a l t e m p e r a t u r e r e ­

s p o n s e of the m o d e l s . T h e r e f o r e , e x p e r i m e n t a l s u p p o r t of the a n a l y t i c a l c a p a ­

b i l i ty to a c c u r a t e l y p r e d i c t the p r e a b l a t i o n t e m p e r a t u r e r e s p o n s e of SNAP r e a c ­

t o r s r e e n t e r i n g the e a r t h ' s a t m o s p h e r e h a s been ach i eved . 
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APPENDIX B 

CORNELL AEROHEATING EXPERIMENT 

A. INTRODUCTION 

R e e n t r y a e r o d y n a m i c hea t ing d i s t r i b u t i o n s for the S N A P - 8 conf igu ra t ion w e r e 

ob t a ined b a s e d on h y p e r s o n i c shock tunne l e x p e r i m e n t s . The h e a t t r a n s f e r c o r ­

r e l a t i o n s w e r e d e t e r m i n e d as a funct ion of angle of a t t a ck f r o m 0 to 7 0 ° . The 

l o c a l a e r o d y n a m i c hea t ing f a c t o r s for the 0, 30, and 70° a n g l e - o f - a t t a c k c a s e s 

ob ta ined in t h i s e x p e r i m e n t f o r m e d the b a s i s of the hea t ing d i s t r i b u t i o n s u s e d 

in the t h r e e a n a l y t i c a l c a l c u l a t i o n s c o n s i d e r e d u n d e r the f i r s t m o d e of r e e n t r y . 

B. T E S T O B J E C T I V E S AND R E Q U I R E M E N T S 

1. F a c i l i t y D e s c r i p t i o n 

The C o r n e l l A e r o n a u t i c a l L a b o r a t o r y 4 8 - i n . h y p e r s o n i c shock tunne l w a s 

s e l e c t e d for d e t e r m i n i n g the a e r o d y n a m i c hea t ing d i s t r i b u t i o n on the S N A P - 8 

con f igu ra t i on . A s c h e m a t i c of the CAL 4 8 - i n . h y p e r s o n i c shock i s p r e s e n t e d 

in F i g u r e B - 1 . The b a s i c shock tunne l c o m p o n e n t s a r e the shock tube , e x p a n ­

s ion n o z z l e , and m o d e l s u p p o r t and i n s t r u m e n t a t i o n s y s t e m s . The shock tube 

i s s e p a r a t e d in to r e g i o n s of h igh ( d r i v e r g a s ) and low (d r iven t e s t a i r ) p r e s s u r e 

by a s e t of d i a p h r a g m s ; the p r e s s u r e and t e m p e r a t u r e r a t i o s d i c t a t e the flow 

cond i t i ons and m u s t be s e t to g ive a t a i l o r e d i n t e r f a c e for the d r i v e r - t o - d r i v e n 

g a s e s . The d o w n s t r e a m end of the shock tube i s t e r m i n a t e d by a c o n v e r g e n t -

d i v e r g e n t n o z z l e w h e r e the a r e a r a t i o of the n o z z l e t h r o a t shock tube c r o s s s e c ­

t ion i s s m a l l . Th i s h a s the effect of a l m o s t c o m p l e t e l y r e f l e c t i n g the p r i m a r y 

shock wave u p s t r e a m f rom the t h r o a t , l eav ing a r e g i o n of a l m o s t s t a g n a n t , c o m ­

p r e s s e d , and h e a t e d a i r at the end of the l o w - p r e s s u r e s e c t i o n of the shock tube . 

Th i s p r o c e s s e d a i r i s then expanded t h r o u g h the n o z z l e to the d e s i r e d h y p e r s o n i c 

c o n d i t i o n s . 

2. M o d e l - D e s c r i p t i o n 

The a e r o - h e a t i n g m o d e l d e s i g n w a s b a s e d on c r i t e r i a se t to sa t i s fy the t e s t 

o b j e c t i v e s . T h e r e f o r e , the m o d e l con f igu ra t ion w a s s e l e c t e d to be r e p r e s e n t a ­

t ive of a r e a c t o r s y s t e m at r e e n t r y into the u p p e r a t m o s p h e r e of the e a r t h af ter 

a s p a c e m i s s i o n . The m o d e l d r a w i n g of the S N A P - 8 r e a c t o r , r a d i a t i o n sh ie ld , 

=''This w o r k h a s b e e n r e p o r t e d in g r e a t e r de ta i l in R e f e r e n c e 10. 
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and s y s t e m piping i s p r e s e n t e d in F i g u r e B - 2 . The m o d e l tunne l s u p p o r t s y s t e m 

w a s d e s i g n e d so tha t the m o d e l could be o r i e n t e d at any d e s i r e d c o m b i n a t i o n of 

a n g l e - o f - a t t a c k and r o l l f r o m 0 t h r o u g h 90 and 3 6 0 ° , r e s p e c t i v e l y . T h i s f r e e ­

dom of pos i t i on ing a l lowed the m e a s u r e m e n t of a e r o d y n a m i c h e a t t r a n s f e r r a t e s 

w h e r e flow p e r t u r b a t i o n , due to piping o v e r the b a s i c body c o n f i g u r a t i o n , r a n g e d 

f r o m n e g l i g i b l e to m a x i m u m in d e g r e e . 

The a e r o - h e a t i n g m o d e l w a s s c a l e d to one- f i f th of a c t u a l s y s t e m s i z e . Th i s 

p h y s i c a l s i z e w a s s m a l l enough to be a c c e p t e d by the C A L 4 8 - i n . h y p e r s o n i c 

shock tunne l and l a r g e enough to h o u s e the 44 h e a t - t r a n s f e r g a g e s i n s t a l l e d on 

the m o d e l . The p l a c e m e n t of h e a t t r a n s f e r g a g e s on the m o d e l w a s m a d e wi th 

a c o n c e n t r a t i o n on the r e a c t o r v e s s e l s e c t i o n . T h i s r e s u l t e d in a d i s t r i b u t i o n 

of 8, 25 , and 11 h e a t - t r a n s f e r s e n s o r s on the p ip ing , r e a c t o r v e s s e l , and r a d i ­

a t ion s h i e l d , r e s p e c t i v e l y . Hea t t r a n s f e r gage l o c a t i o n s a r e shown on F i g ­

u r e B - 2 . 

3 . F l o w C o n d i t i o n s 

The flow cond i t i ons w e r e b a s e d on c r i t e r i a e s t a b l i s h e d to p r o v i d e hea t t r a n s ­

fe r d a t a in the r e e n t r y h y p e r s o n i c c o n t i n u u m flow r e g i m e . To be m o r e s p e c i ­

f ic , the flow m u s t c o r r e s p o n d to the e n v i r o n m e n t tha t would be e x p e r i e n c e d by 

a SNAP con f igu ra t i on ( F i g u r e B - 2 ) d u r i n g the e a r l y a e r o d y n a m i c hea t ing p h a s e s 

of c o n t i n u u m flow. T h e s e f l ight c o n d i t i o n s a r e r e p r e s e n t e d by high a l t i tude and 

ve loc i t y w e l l be fo re the m a x i m u m hea t i ng poin t in the r e e n t r y t r a j e c t o r y i s 

r e a c h e d . With t h e s e c r i t e r i a in m i n d , the t e s t c o n d t i o n s w e r e s e t at a uni t R e y ­

no lds n u m b e r of 35 , 000, c o r r e s p o n d i n g to a s i m u l a t e d a l t i t ude of 250, 000 ft for 

a one- f i f th s c a l e m o d e l and a f r e e - s t r e a m M a c h n u m b e r of 18.4 for flow field 

s i m i l i t u d e . 

4. H e a t F l u x Gage 

The h e a t t r a n s f e r m e a s u r e m e n t s w e r e a c c o m p l i s h e d by u s e of the t h i n - f i l m 

h e a t t r a n s f e r g a g e s d e s c r i b e d in R e f e r e n c e s 6 and 7. T h e s e d e v i c e s w e r e i n ­

s e r t e d , o r i n t e g r a l l y f a b r i c a t e d , in to the m o d e l at spec i f i ed l o c a t i o n s . Dur ing 

the t e s t i n t e r v a l of j u s t l e s s than 4 m s e c , e a c h of the s e n s o r s m e a s u r e d the 

t e m p o r a l v a r i a t i o n s in l o c a l s u r f a c e t e m p e r a t u r e s . T h i s l i m i t e d t e s t t i m e r e ­

q u i r e d an e x t r e m e l y f a s t r e s p o n s e and d i c t a t e s the u s e of the t h i n - f i l m h e a t 

t r a n s f e r g a g e . 

N A A - S R - 1 2 3 5 5 

57 



> 
> 

00 ?o 

ts) 

HT-1 I — 0 . 1 5 0 

HT-18>. 

HT-5 /HT-6 

y 
- ' • ^ HT-7 

-Z HT-23 

HT-27 ̂  
HT-21 X 

_z 
^HT-19 HT-26 

HT-24 

\ HT-29 
^ H T - 2 0 HT-28 \ , 

HT-16 ^ ^ H T - 2 2 \ _ I 

^HT-25 • 

HT-17 

-4.242-

HEMISPHERICALHEAD 

HEAT TRANSFER SENSOR 

LOCATIONS 

f'=30» 

- ^0 .400 

1.885 diameter 

NOTE: 

DIMENSIONS IN INCHES 

s = 9 0 O ' 

HT-30 

Figure B-2 . Aeroheating Test Model Heat Transfer Sensor Locations 



C . T E S T DATA AND CORRELATIONS 

1. H e m i s p h e r i c a l Head C a l i b r a t i o n Run 

H e a t - t r a n s f e r d a t a w e r e a c q u i r e d at a z e r o - d e g r e e a n g l e - o f - a t t a c k p o s i t i o n , 

wi th a h e m i s p h e r i c a l head on the r e a c t o r v e s s e l in p l a c e of the d o m e head and 

p ip ing . The h e m i s p h e r i c a l h e a d w a s equ ipped w i th h e a t t r a n s f e r s e n s o r s a t 

body a n g l e s of 0, 30, 45 , 60, and 9 0 ° . T h e s e d a t a w e r e ob ta ined to s u b s t a n ­

t i a t e the p r e d i c t e d t h e o r e t i c a l a e r o d y n a m i c h e a t t r a n s f e r r a t e s b a s e d on tunne l 

a i r flow cond i t i ons and to e s t a b l i s h an e x p e r i m e n t a l b a s e l ine for the s e r i e s of 

t e s t s . The r a t i o of l o c a l - t o - s t a g n a t i o n h e a t t r a n s f e r r a t e s on the h e m i s p h e r i ­

c a l n o s e a r e c o m p a r e d in F i g u r e A-7 to the t h e o r e t i c a l d i s t r i b u t i o n deve loped 

by L e e s ( R e f e r e n c e 5). 

2. S N A P - 8 Conf igu ra t ion R e s u l t s 

H e a t - t r a n s f e r d a t a w e r e a c q u i r e d f r o m the s e n s o r l o c a t i o n s noted on F i g ­

u r e B - 2 . A s e r i e s of 12 h e a t - t r a n s f e r a c q u i s i t i o n r u n s w e r e m a d e for the 

S N A P - 8 con f igu ra t i on . T h e s e t e s t r u n s w e r e p e r f o r m e d in 10° a n g l e - o f - a t t a c k 

s t e p s f r o m 0 to 70° wi th the piping in the shadow of the flow ( z e r o r o l l ) , axid for 

piping s p a t i a l r o l l p o s i t i o n s of 90 and 180° at 30 and 60° a n g l e s - o f - a t t a c k . All 

a e r o d y n a m i c h e a t - t r a n s f e r d a t a ob ta ined f r o m the t e s t have been n o r m a l i z e d by 

the c a l i b r a t i o n h e m i i s p h e r i c a l s t a g n a t i o n po in t v a l u e , and a r e p r e s e n t e d in a 

s c h e m a t i c d i s t r i b u t i o n a l f o r m on the r e a c t o r v e s s e l and p ip ing . T h e s e a r e 

g iven for flow imping ing on the m o d e l at 0, 30, and 70° in F i g u r e s B - 3 , B - 4 , 

and B - 5 , r e s p e c t i v e l y . T h e s e h e a t - t r a n s f e r d i s t r i b u t i o n s on the S N A P - 8 c o n ­

f i g u r a t i o n r e p r e s e n t o v e r a l l e q u i l i b r i u m cond i t i ons at the s e l e c t e d s t a t i c o r i e n ­

t a t i o n s to the a i r f low. The s t a g n a t i o n l ine l o c a l h e a t d i s t r i b u t i o n s shown in 

F i g u r e s B - 3 , B - 4 , and B - 5 w e r e u s e d in the a n a l y t i c a l c a l c u l a t i o n s s i m u l a t i n g 

the S N A P - 8 s y s t e m u n d e r the f i r s t m o d e of r e e n t r y . 

In g e n e r a l , al l h e a t - t r a n s f e r t r e n d s a r e s u b s t a n t i a t e d by t h e o r y . E x a m p l e s 

and an exp l ana t i on of s o m e of the flow p h e n o m e n a a r e g iven in the following 

p a r a g r a p h s . The h e a t t r a n s f e r on the f o r w a r d a r e a s of the piping ( S e n s o r s 1 

and 2 in F i g u r e B-2 ) exh ib i t s m o o t h c o r r e l a t i o n s w h e r e the shock wave l i e s 

c l o s e l y o v e r the body; h o w e v e r , o t h e r p o r t i o n s of the piping show the ef fec ts 

of a changing s e c o n d a r y flow f ield. T h i s can be s e e n on the piping s e g m e n t j u s t 

above the h e a d (Sensor 3 in F i g u r e B - 2 ) , w h e r e h e a t t r a n s f e r i s in f luenced by 
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Figure B-4. Aerodynamic Heat 
Transfer Distr ibutions at 

30° Angle-Of-Attack 
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F i g u r e B - 6 . S c h l i e r e n P h o t o g r a p h of A e r o h e a t i n g 
T e s t Mode l 

the v e s s e l head at h igh a n g l e s - o f - a t t a c k . T h i s c o r r e l a t i o n d i s con t inu i t y b e ­

t w e e n 40 and 50° a n g l e - o f - a t t a c k i s a r e s u l t of the i n c r e a s e d shock standoff 

d i s t a n c e at t h i s l oca t ion at h igh a n g l e s - o f - a t t a c k . E v i d e n c e of th i s p h e n o m ­

enon i s s e e n in the s c h l i e r e n p h o t o g r a p h ( F i g u r e B - 6 ) t a k e n at 50° ang le -of -

a t t a c k . 

F o r the nnost p a r t , the l o c a l h e a t - t r a n s f e r d i s t r i b u t i o n s on the r e a c t o r 

h e a d and v e s s e l exh ib i t s m o o t h c o r r e l a t i o n s wi th a n g l e - o f - a t t a c k . The m a j o r 

flow s e p a r a t i o n inf luencing t h e s e d a t a o c c u r s at the low a n g l e s - o f - a t t a c k w h e r 

the f o r w a r d piping and r e l a t i v e l y blunt v e s s e l h e a d s e p a r a t e the flow f rom the 

v e s s e l s i d e s . The e x p e c t e d t r e n d of h i g h e r h e a t - t r a n s f e r r a t e s wi th i n c r e a s ­

ing a n g l e - o f - a t t a c k can be s e e n for al l d a t a m t h i s a r e a of the s y s t e m . Th is 

i s the r e s u l t of e a c h l o c a l body s e g m e n t be ing t r a n s l a t e d to a pos i t i on a p ­

p r o a c h i n g n o r m a l wi th r e s p e c t to f r e e - s t r e a m flow wi th i n c r e a s i n g ang le -o f -

a t t a ck . A v e r y m i n o r p e r t u r b a t i o n to the flow is s e e n to r e s u l t f r om the r i b 

b e t w e e n the r e a c t o r v e s s e l and head . The flow s e p a r a t e s at the r i b with a 

c o r r e s p o n d i n g d e c r e a s e in h e a t t r a n s f e r a t , and d i r e c t l y aft of the r i b . The 

effect of the b lunt sh ie ld h a s a p r o n o u n c e d effect on the flow field in the 

N A A - S R - 1 2 3 5 5 
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vicinity of the reac tor vesse l . This can be seen graphical ly in Figure B-6 

where the shock wave genera ted by the shield stands off by approximately 40% 

of the vesse l length at 50° angle-of-at tack. 

To de termine the local heating factors used in the 0, 30, and 70° angle-of-

attack c a s e s , a l inear interpolat ion was made between the heat sensor locations 

on the Cornell aero-heat ing t e s t model for each analytical node location. 

Heat sensors 3, 8, 11, 15, 17, 25, 30 and 32 are located along the s tagna­

tion line of the test model . The length to these heat s ensor s were normal ized 

to the overal l length of the tes t model , which was taken as the distance from 

the base of the NaK outlet pipe to the top of the neutron shadow shield. The 

heating ra t ios for each case investigated were plotted at the corresponding 

normal ized length as shown in F igures B-7 , B-8 and B-9. The axial nodal 

locations on the analytical model were s imi lar ly normal ized to the c o r r e ­

sponding length on the analytical model . These normal ized locat ions, for each 

angle-of-at tack case , were super imposed upon the respect ive Cornell data 

t r ace . In this way, the local heating factors for each axial nodal location were 

read direct ly from F igures B-7 , B -8 , and B-9, and are given in Table 3. 

D. CONCLUSIONS 

The hea t - t rans fe r data der ived from the Aero-heat ing tes t provides a r e l ­

atively complete hea t - t r ans fe r dis t r ibut ion over the SNAP-8 system config­

urat ion in the range of 0 to 70° angle-of-at tack. The data have been n o r m a l ­

ized to the stagnation point value of a 1.885-in. d iameter sphere for conven­

ience. However, these normal ized data can be converted to a 1-ft sphere 

reference through a mult ipl icat ion factor consisting of a square root of the 

radi i ra t io . In addition, this is the method for determining the absolute hea t ­

ing ra t e s to a system along a theore t ica l flight t ra jec tory . 

In the event that a heating investigation be undertaken for a reac tor r e e n ­

ter ing free from the shield, ca re mus t be taken to use the forward and vesse l 

heating distr ibution over the ent i re vesse l . This is due to the flow field gen­

era ted around the lower portion of the vesse l as a resu l t of the aerodynam­

ic ally blunt shape of the shield. 

The p r imary emphasis of the tes t was placed on acquisition of date free 

from a piping-dependent flow field. This was done on the p r e m i s e that piping 
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will undergo ear ly ablation, and not contribute significantly to the overa l l heat ­

ing received by the vesse l . However, the test runs made at 30 and 60° angle-

of-attack with piping d i rec t ly in the flow should provide sufficient data to eval ­

uate the the rma l response of the piping to reen t ry heating. 
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