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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
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ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
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owned rights. Reference herein to any specific commercial product, process, or service by
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1.0 INTRODUCTION

In addition to this report, two publications discuss work performed under this contract.
Reprints are included in Appendix A. The work documented in them is not included in
the main body of this report. We wish to thank Bernadette Lerma for her expertise in

typesetting this report.

A significant problem in the design of high-energy free-electron lasers (FELs) centers on
the technique for outcoupling the output beam. FELs with currently achieveable output
power usually include a conventional stable resonator with output through a partially
transmitting mirror. This outcoupling method will not work for arbitrarily high average
power, so an alternate scheme must be found for high-energy FELs. A high-efficiency
grating outcoupler is an attractive possibility because it can be included as an element of
a grating thomb to suppress the sideband radiation!, but it is difficult to manufacture,
particularly because it must withstand high average optical flux without suffering severe
thermal distortion nor damage. Other suggestions include unstable resonators with an
intracavity focus?~® and unstable resonators with an intracavity focus and beam
rotation.® The intensity distribution at the intracavity focus of a negative-branch
unstable resonator has side-lobes that would be scraped off by the faces of the wiggler
magnets or by the beam tube through the wiggler, because the space between the faces
of the wiggler magnets is too small to pass the side lobes and still allow the main lobe to
have the optimum size for interaction with the electron beam.’ The resulting power loss
would be significant. Therefore, it is desirable to develop another type of resonator for
use with FELs.

The resonator that we have developed under this project is the compact-beam
stable-unstable ring resonator (CBSUR). It is a stable resonator in one transverse
dimension and an unstable resonator with an intracavity focus in the orthogonal
transverse dimension. A scraper mirror outcouples the output beam from one side of the
mode only. The resonator can be configured so that it has a small beam waist at the
center of the wiggler in the stable direction and has an intra.cavity focus in the unstable

direction. The half-width of the central lobe of the focus is approximately the size of the




stable beam waist. In the stable direction, the Gaussian amplitude distribution results in
a small loss on the wiggler magnets, or on a beam tube that will fit within the wiggler, if
one is used. The beam tube can have an elliptical shape to permit the passage of several
side lobes in the unstable dimension. We have published the results of the numerical

calculation of modes of the CBSUR'. A reprint is included in Appendix A.

The integral equation is separable in cartesian coordinates for the bare-cavity modes of
an orthogonal® resonator if the dominant apertures are rectangular. Therefore, a mode of
the CBSUR is a product of the mode of a strip stable resonator with a strip
compact-beam negative-branch unstable resonator, and the properties of these two
resonators also apply to the CBSUR. '

The negative-branch unstable resonator is not an off-axis resonator in the usual sense
that is applied to positive branch resonators. The output beam is scraped off only one
side of the intracavity beam, but the optic axis is well within the geometric beam, and
diffraction losses are not significant at the side of the beam opposite the scraper mirror.
This is because the light 'ra.ys cross to the opposite side of the resonator each round-trip
pass, so the scraper mirror limits the beam on both sides of the mode even though only
one side is clipped. This is in contrast to the positive-branch off-axis unstable resonator
that has been studied previously.®!? The use of a negative-branch strip resonator with a
single-sided scrape was independently suggested by Jones, Cason, and Perkins for use in
one or both transverse dimensions of an FEL'!, subsequent to the submission of our
proposal for this project in Feb. 1987. It was also independently proposed by A.E.
Siegman.!? This resonator has been shown in our previous work to have the same modes
as the unstable resonator with 90° beam rotation, and its properties were discussed and

modes were calculated for application to that geometry.!3*

The geometry of the stable dimension is constrained by the requirement that the beam
width at the mirrors must be much larger than at a beam waist. The stable dimension is
an almost confocal stable ring resonator. This resonator was shown to be much less

sensitive to mirror tilt than its standing-wave counterpart, the almost concentric stable

resonator.'®




Geometric Properties of Experimental CBSUR

We tested a CBSUR, but with the laser gain provided by a flashlamp-pumped dye cell
rather than an electron beam. We wanted to determine whether the resonator would
operate with nearly diffraction limited beam quality and to determine the sensitivity to
mirror tilt for comparison with values from simple ray-optical equations and from laser

simulation codes.

Our initial intent was to perform the experiments using a cylindrical telescope to provide
beam expansion in the unstable dimension. We were unable to obtain cylindrical mirrors
or lenses with the appropriate focal lengths, so we decided to introduce astigmatism at
spherical mirrors to differentiate between the stable and unstable dimensions. A top view
of the resonator is shown in Fig. 1. This projection shows the unstable dimension of the
resonator. It is convenient to use a separate coordinate system for each segment of the
resonator, as is shown in Fig. 1. The 2 coordinate is always along the direction of
propagation of the mode, and y is always vertical. The angle of incidence of the
resonator beam was 10° at both of the spherical mirrors. The focal length for tangential

rays, which applies to the unstable dimension, is

fi =rcos(8)/2 = 344.68 (1)
and the focal length for saggital rays, which applies to the stable dimension, is

fs =r/(2cos(6)) = 355.40 (2)

The angle was selected to allow stable operation in the y dimension, with a beam size of
about w = 5 mm in the expanded region, Region 2. The other goal was unstable
operation in the = dimension, with resonator magnification around M = 1.3 or M = 1.4.
The condition for stable-unstable operation was, f; < L;/2 < f,.
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Figure 1. Top view of compact-beam stable-unstable resonator (CBSUR). Light rays at
the geometric edges of the beam are shown. It is apparent that the scraper
mirror also limits the edge of the beam opposite it because the rays change
sides each round trip. The mode reflects from each of the two spherical
mirrors, M; and M,, with a 10° angle of incidence. Their focal lengths are
both 350.0 cm. The off-axis angle results in an effective focal length of
ft = 344.7 cm for rays in the tangential plane (the z,z plane), which are
shown in this projection. The dimensions for the initial setup were
Ly = Ly, = 220.79 cm, L,;, = 268.42 cm, and L; = 146.52 cm. After setting
up the resonator with these dimensions, the desired stable beam width of

= 0.49 cm in Region 2 was obtained by moving Mirrors M; and M, outward
by 1.975 c¢cm each giving Ly, = 224.50 cm, Ly, = 270.4 cm, L;, = 220.79 cm,
and L, = 148.50 cm. This design can be modified to locate the
tangential-plane focus at the saggital-plane beam waist by replacing M3 with a
cylindrical mirror; see Fig. 22.
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Beam Geometry in Stable Dimension

A y, z projection of the resonator, with the spherical mirrors shown as lenses, is sketched
in Fig. 2. This projection shows the stable dimension. The stable-resonator mode is
symmetrical about the two planes where the beam waists occur. The equations for the
propagation of a Gaussian beam can be used to derive the Gaussian-beam widths in the
vertical dimension at various locations in the resonator. A first-order treatment was
given in Ref. 15. An exact unobsecured Gaussian-beam treatment results in a significant
difference for the geometry of our experiment, so we apply it here. We will now derive
the equations for the sizes of the two beam waists. Once these are known, the
Gaussian-beam size at any plane in the resonator can be found. Region 1 has a
symmetrical mode with beam size w,, at mirrors M; and M,, and Region 2 has a
symmetrical mode with beam size w,, at mirrors M; and M,. The radius of curvature C;
of the wavefronts of the optical beam immediately adjacent to mirror M; in Region 1
must be related to the radius of curvature C; of the wavefronts immediately adjacent to

mirror M, in Region 2 by the equation,

1 1

1
ate =7 )

Applying these conditions, we obtain the g parameters for the equivalent standing-wave

resonators,
1 L,L, Li-L?
=— |Li+ L;— 4
=g [T T Ty +L1+L2_£1f£z (4)

where g; is obtained by interchanging L; and L; in Eq. 4, and the g parameters are
defined to be

gi=1-L;/R; (5)

The usual equation for the beam waist in a symmetrical resonator applies,
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Figure 2. The envelope of the light beam that constitutes the laser mode shown in the
saggital planes (the y, z planes). The envelope of the beam at the distance of
the Gaussian beam half-width, w, from the central axis is traced by two lines.
One period of the periodic lens train equivalent to the resonator is shown. The
effective focal length of each of the two concave mirrors for light rays in the
saggital planes is 355.4 cm. The unperturbed resonator has a small beam
waist at the center of Region 1 and has a large waist at the center of Region 2.
The beam is effectively collimated in Region 2 because its Rayleigh range is
orders of magnitude larger than L.




. I [T¥g
T gs

[
|

as does the usual equation for the beam size where the end mirrors would be in the

equivalent standing-wave resonators, at M; and M,,

. L [ 1

w =

: | ™)

Plots of the sizes of the beam waists as a function of the segment lengths, L; and L,
provide an indication of the sensitivity of the mode geometry to variations in these
parameters. The beam waist in the shorter segment is always larger. Figure 3 shows the
size of the small waist as a function of Ly for three values of L;. The middle value of L,
was the value initially selected for the experiment. The small waist size approaches zero
as L approaches 2f,, while it is not particularly sensitive to changes in L, provided that
L, is enough smaller than L;. Curves of the large waist size as a function of L, are
shown in Fig. 4. The large waist size approaches infinity as L; approaches 2f,.

Beam Geometry in Unstable Dimension

An z — z projection of the resonator mode is shown in Fig. 5. The unstable mode has an
intracavity focus at point ¢;, and the center of curvature of the mode in Region 2 is
located at ¢;. The geometry of the mode is derived from the conditions that the image of
¢; seen in Mirror M, is at ¢;, and the image of ¢, seen in Mirror M; is at ¢;. Thus,

1 1 1
LI R 8
AN ®)
and
1 1 1
+ =— 9
Lz—dz Ll_dl fl ()

The solution is
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Figure 3. Curves showing the size of the small waist as a function of L;. The values of
L, from bottom to top are 2.0 cm, 146.5 cm, and 291.0 cm. The middle curve
corresponds to the initial configuration for the resonator. The waist size
approaches zero as L; approaches twice the effective focal length of the mirrors.
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Figure 4. Curves showing the size of the large waist as a function of L;. The values of
L,, from bottom to top are 291.0 ¢cm, 146.5 cm, and 2.0 cm. The middle curve
corresponds to the initial configuration for the resonator.




Figure 5. One period of the periodic lens train equivalent to the tangential plane of the
resonator. The geometric optical size of the feedback beam is b, and the size of
the beam incident on the outcoupling plane is Mb in this dimension. The
center of curvature of the light beam in Region 2 is at ¢;, and the intracavity
focus is at ¢;.




d, = (-B +VB? —44C)/2A (10)

where

A= fi-Li+f,
B = Lifs— Lif; - Lyfs — Lif1+ Iy Ly
C = Lifi—Lil; + LInfy (11)

The magnification of the resonator is defined to be the beam width immediately before
the scraper mirror divided by the beam width immediately after the scraper mirror, as

shown in Fig. 5. It is given by

_ di(dz — L)

M =2\"2 7 2
dz(dy — Ly)

(12)

Curves of the magnification as a function of L, are shown in Fig. 6. The curves
correspond to three different values of L;, and the middle curve corresponds to the initial

design for the resonator.

An important geometrical parameter of the unstable resonator mode is the equivalent
Fresnel number. The equivalent Fresnel number is indicative of the influence of
diffractive effects on the resonator mode. A higher equivalent fresnel number indicates
that the intensity of the optical beam falls off more sharply at its geometric edges. The
feedback ratio as a function of the equivalent Fresnel number, with the magnification
kept constant, is quasiperiodic with local maxima near half-integer values. The difference
between the bare-cavity feedback ratios of the lowest loss and second lowest loss modes is

also a maximum for values of the equivalent Fresnel number near half-integers.

To illustrate the dimensions that determine the equivalent Fresnel number, Fig. 7 shows

the projection of the laser beam on the z, z plane with dimensions labeled that are not
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Figure 6. Magnitude of resonator magnification, M, as a function of L, for three values
of L. The values of L, from bottom to top are 291.0 cm, 146.5 cm, and
2.0 cm. The magnification is negative.




Figure 7. One period of the periodic lens train equivalent to the tangential plane of the
resonator. The transverse geometric optical beam sizes at various planes are
shown. These are used in calculating the equivalent Fresnel number.




shown on Fig. 5. A Fresnel number can be defined for each beam segment with a

constant center of curvature. From left to right starting with the scraper mirror, they are

aay
— 13
M=5T (13)
a;az
__ 14
N, = - (14
and
asas
N, = 15
T ALy (15)
The overall Fresnel number for the resonator is
1 1 1 1
L = 4 16
NN NN, (16)

and the equivalent Fresnel number can be defined in terms of the overall Fresnel number

(M?—1)N,

No= s (17)

Equations 16 and 17 clearly apply to conventional symmetrical resonators.’® The
fundamental derivation of the equivalent Fresnel number for negative-branch resonators
with a compact output beam is given in Ref. 14. Equation 17 gives the same result as
this derivation. The derivation in Ref. 14 is based on Anane’ev’s explanation!? of the
quasi-periodicity of the resonator eigenvalue based on the phase of the ray of the edge
wave from the feedback aperture that goes into the converging wave of the resonator.
The equivalent Fresnel number of the design for our experimental stable-unstable

resonator is N,; = —1.3.

A resonator with a negative equivalent Fresnel number has the same intensity
distribution and eigenvalue spectrum as a resonator with a positive value with the same

magnitude.® Curves showing the magnitude of the equivalent Fresnel number as a
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Figure 8. Magnitude of equivalent Fresnel number divided by a? as a function of L, for
three values of L,. The scraper mirror was assumed to be located 2/3 of the
way from Mirror M, to Mirror M;. The precise values of Ly, and Ly; used in
the experiment were not measured. The values of L; from bottom to top are
2.0 cm, 146.5 cm, and 291.0 cm. The equivalent Fresnel number is negative.
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function of Ly are given in Fig. 8. The three curves correspond to three values of L;; the
middle curve corresponds to the design value for the resonator.

Experimental Configuration

For misalignment experiments, the apertures at the two ends of the wiggler were
simulated by two slits with diameter 0.056 cm placed 14 cm on either side of the small
beam waist. The size of the small beam waist for the experimental configuration was

wo = 0.0135 cm, and the beam size at the apertures was w, = 0.024 cm.

The resonator was stable in the vertical dimension and unstable with a magnification of
M = 1.37 in the horizontal dimension. Figure 1 shows the resonator viewed in the
horizontal plane. Figure 2 shows the unfolded resonator viewed in vertical planes that

contain the optic axis.

The output beam was taken from one side of the beam only by an output scraper mirror. -

To minimize the effect of the scraper edge on the beam quality, a mirror segment
fabricated for use in a segmented adaptive mirror was used. The segment was a 1.65 cm
square dielectric coated flat with better than A/40 rms surface figure, averaged over the
entire aperture (as opposed to the usual specification over the central 80% of the clear
aperture). The substrate blank was machined to + 0.0005”, with no bevel, chip, or edge
irregularities of more than 0.001”. The outcoupled beam was rectangular, measuring
approximately 1.0 cm in the vertical and 0.2 cm in the horizontal. These dimensions are
determined by the size of the stable mode at the scraper and by the unstable-resonator
magnification and the distance from the optic axis to the edge of the scraper mirror,
respectively. The beam is nearly collimated in the region between M; and My, in which

the scraper is positioned.

The gain medium was a coaxial flashlamp-pumped Candela SLL-500 pulsed dye laser,
operating on a 2.0 X 10~° molar concentration of R-590 perchlorate in a 50/50 mix of
reagent grade methanol and water. The SLL-500 comes with a standard Fabry-Perot

resonator consisting of two flat mirrors, one of them with 20% reflectivity. In this

standard configuration, the laser characteristics are listed in Table 1.




\ | TABLE 1

Wavelength 590 nm
Output energy* 1.25 J/pulse
Maximum repitition rate 0.5 Hz
Pulse duration 500 ns
Divergence 2.5 mr
Length of gain region 43.2 cm

* Operation at derated flashlamp input for increased lamp life.

The standard flat-flat resonator was removed and the CBSUR was constructed with A/20
flats and A/10 concave mirrors, dielectrically coated for a center wavelength of 590 nm.
M; and M; were 2” flats. M; and M, were concave mirrors that were 2” in diameter
with the same focal length of 350.0 £ 0.5 cm. A Foucault knife-edge measurement was

made to verify the focal lengths and surface figures of the spherical mirrors.

The small Gaussian-beam waist in the stable dimension occurred approximately halfway
between M, and M3 and was predicted to be wy = 0.0158 cm for the initial resonator.
The final resonator dimensions were dictated by physical constraints imposed by the
table area, available optics, and the need to keep the beam waist out of the dye cell. Due
to the pumping distribution of the flowing dye, some lensing occurred in the gain
medium, with the effective focal length changing during the pulse. Care was taken to
prevent damage to the laser head due to this effect.

To compensate for the effect of the index of refraction of the dye and the lensing effect,
the length of the resonator was expanded by translating mirrors M, and M, parallel to
the axis between M, and Ms. The resonator was expanded along this axis until the
stable-unstable condition was observed. The beam diameter expanded dramatically in
the region between M; and M, when the stable-unstable condition obtained. Near the

stable-unstable condition, adjustment of the mirrors by just a few mm made a large
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difference in the beam width in this region. When the resonator was running
stable-stable, prior to adjustment of the ring perimeter, the beam half-width in at mirror
M; in the stable dimension was w = 0.1 cm. Upon achieving the proper compensation
for the refractive index in the circulating dye, a half-width of w = 0.49 cm was obtained.
A value close to w = 0.5 cm was desired. It was demonstrated that, despite the extreme
sensitivity of the resonator to the length between the concave mirrors of the region with
the small beam waist, the resonator could be adjusted to compensate for perturbations

with magnitudes that were not precisely known.

Rough alignment was achieved by passing the output from a 1.5 mW Lansing HeNe
alignment laser through the back of M, at the location desired for the optic axis. The
mirrors were adjusted until the HeNe beam was centered on the mirror surfaces and
through the gain tube. Then a final adjustment was made to cause the beam to
reproduce its path after a round trip in the resonator. The optic axis was kept planar to

within a tolerance of 0.5 mm.

The lowest flashlamplamp voltage for which lasing occurred reliably was 17 kV. The
experiments were done at a slightly higher voltage to preserve the low-power dielectrec

coatings on some of the mirrors.
Output Energy and Near-Field Intensity Distribution

A slit was placed at the small beam waist of the resonator. It was oriented horizontally
to reject nonzero order modes in the stable dimension. The position and size of the slit
were adjusted to maximize the output energy while obtaining an intensity distribution at
M, corresponding to a Gaussian beam. It was found that a slit width of 0.4 mm worked
well. We measured the pulse energy and spatial distribution of the laser output, and the
spatial and temporal distribution of the field at M;.

We studied the temporal behavior of the resonator using EG&G FND-100Q photodiodes
on fast 50 {2 microstriplines and an internally triggered Tektronix 7844 dual-beam
storage scope. With the microstripline configuration, the FND-100Q has a rise time of
< 1 ns and a response of 0.4 A/W at 590 nm with a 70 V bias. With a 50 {1 load, its




response is 0.02 V per 1 mW of incident laser light. The temporal developement of
sidelight fluorescence from the dye head is shown in Fig. 9. The power near M; is shown
in Fig. 10.

The output pulse energy was measured with a Gentech E200 energy detector and a
PRJ-A monitor. Lasing occurred in both directions around the ring. Output properties
were obtained for both directions by changing the position and orientation of the scraper
mirror. Beam profiles were essentially the same, but the output energy measured in the
direction indicated in Fig. 1 was approximately 1.5 mJ per pulse higher. All
measurements were made using this scraper position unless otherwise noted. The pulse
energy with the scraper in this position was 8.30 mJ + 0.05 mJ, corresponding to
approximately 16.6 kW power averaged over the pulse length. Measurements were made

and averaged over 100 pulses.

The spatial characteristics of the resonator were studied using a Reticon 1024-G linear
photodiode array and a RD-2 digitizer. The array has 1024 elements with a spacing
between adjacent elements of 24.8 um from center to center. Figures 11 and 12 are traces
of the beam intensity profiles off the scraper in the unstable (horizontal) and stable
(vertical) dimensions. The output appears to correspond to a Gaussian beam in the
stable dimension and has diffractive structure in the unstable dimension. Figures 13 and
14 are traces of the beam intensity profile taken at M; in the stable and unstable

dimensions.
Beam Quality Measurements

Pure astigmatism can be corrected by a cylindrical mirror or lens or by off-axis reflection
from a spherical mirror. We wanted to determine the beam quality of the CBSUR if it
were corrected for astigmatism. This was done by locating a slit at one of the two line
foci corresponding to the stable and unstable directions. The fractional (peak) power
passing through a vertical slit at the vertical line focus gave the beam quality in the
unstable (horizontal) dimension. The fractional power passing through a horizontal slit

at the location of the horizontal line focus gave the beam quality in the stable (vertical)
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Figure 9. Sidelight fluorescence as a function of time. The trace is the output of a fast
photodiode placed alongside the flashlamp and dye cell.

Figure 10. Laser power at Mirror M; as a function of time. A beamsplitter that reflected
9% of the incident power was placed in the resonator at M; and the output
was focused onto a fast photodiode.




Figure 11. Beam intensity reflected from the scraper mirror as a function of z, showing
the intensity profile in the unstable dimension. A horizontally oriented
1024-element photodiode array was placed 4” from the scraper.

Figure 12. Beam intensity reflected from the scraper mirror as a function of y, showing
the intensity profile in the stable dimension. A vertically oriented
1024-element photodiode array was placed 4” from the scraper.




Figure 13. Beam intensity at Mirror M, as a function of z, showing the mode profile in
the unstable dimension. A beamsplitter with a total reflectivity of 9% was
placed 2” in front of M;. The trace is the output from a 1024-element
photodiode array placed 6” from the beamsplitter and oriented horizontally.

Figure 14. Beam intensity at Mirror M; as a function of y, showing the intensity profile
in the stable dimension. A beamsplitter was placed 2” in front of M;. The
- trace is the output from a 1024-element photodiode array placed 6” from the
beamsplitter and oriented vertically.
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dimension. The overall beam quality was the product of the values in the vertical and

horizontal directions.

If the gain medium were not present, the beam in Region 2 of the resonator would be
perfectly collimated in the vertical transverse dimension. The horizontal line focus would
then occur at a distance of 300 cm from the focusing mirror. The focus of the beam in
the unstable dimension would be closer to the focusing mirror. The gain medium had the
effect of a positive lens, causing the beam to converge in both the horizontal and vertical
transverse dimensions in Region 2. Each line focus was located by moving the reticon
array along the beam until the best focus was found. The slit was placed at this location.

The diagnostic layout we used for the beam-quality measurements is shown in Fig. 15.

Beam Quality in Unstable Dimension

The output from the resonator reflected from a mirror with a 3-meter focal length and
came to a focus at a distance of 270.5 ¢cm from its surface. The output beam from the
laser had an irregular shape that made it difficult to directly measure its width, D, for
use in beam quality measurements. We derived a geometric width of 0.301 cm. This was
obtained by measuring the width of the resonator mode at mirror M; and correcting for
the beam convergence in passing from the scraper mirror to M;. The output beam width
was obtained from the width of the feedback beam by substituting the nominal value of
the magnification, M = 1.357, into the equation Dy = (M — 1) Dy;. The output beam
converged with a radius of curvature of R, = 3051 cm. This value was obtained from the
location of the beam focus distance: d = 270.5 ¢cm past the 3 m focusing mirror. The
width of the output beam at the 3 m focusing mirror was d = 0.272 cm. A slit was placed
at the focus and a photodiode was placed behind it. The (peak) power through the slit
divided by the output (peak) power of the laser was measured for several values of the
slit width. The data are plotted in Fig. 16 with a curve showing the integrated intensity
that would result if a beam of width 0.272 cm with uniform intensity and parabolic
wavefronts were brought to a focus at that location. The width of the central lobe for the
ideal uniform-intensity beam is 0.117 cm. This would contain 0.903 of the power. The
actual fraction of the power in this width, obtained by interpolating between grid points,
was 0.846. The beam quality is the ratio of these, n, = 1.07 in the unstable dimension.
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Figure 15. Diagnostic layout for beam-quality measurements. The horizontal slit for the
measurement of the beam quality in the stable dimension was at 213.4 cm
from the 3 m mirror. The vertical slit for the measurement of the beam
quality in the unstable dimension was at 270.5 cm from the 3 m mirror.
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Figure 16. The plotted points give the fractional power through a vertical slit at the
vertical line focus as a function of the slit width. The total output power was
determined for each shot by splitting the output beam and measuring the
total power in one branch. The curve gives the fractional power that would
pass through the slit for an output beam with uniform intensity and ideal
cylindrical wavefronts in the unstable dimension.
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Beam Quality in the Stable Dimension

The focus in the stable dimension occurred at a distance of 213.4 cm from the 3 m
mirror. This corresponds to a converging output beam with a radius of curvature of

R, = 1038.8 cm. The Gaussian-beam width at mirror M; was w; = 0.49 cm, which
corresponds to a width of ws = 0.363 cm at the 3 m mirror. A horizontal slit was placed
at the location of the focus with a photodiode behind it. The (peak) power through the
slit was measured as a function of the slit width. The power through the slit was divided
by the laser output power. The results are shown in Fig. 17. The solid curve shows the
normalized integrated intensity for an ideal Gaussian beam with a width of 0.363 cm at
the 3 m mirror. We define a beam quality in this dimension by selecting a slit width that
would let 0.900 of the power pass for an ideal Gaussian beam. The width is 0.0182 cm.
Interpolating between data points, we obtain a measured fraction of 0.80 of the incident
energy through the slit. The beam quality is n, = 1.13. The square of the overall beam
quality is the product of the stable and unstable values, n? = 1.21, and the beam quality
is n = 1.10.

Sensitivity to Mirror Tilt

Two slits were located 14 c¢cm on either side of the beam waist in order to simulate the
apertures at the ends of the wiggler magnets in a free-electron laser. The decrease in
output (peak) power as a function of the tilt of mirrors M; and M, about horizontal axes
was determined. Tilt that misaligns the mode in the stable dimension was studied
because a free-electron laser would be more sensitive to tilt in this dimension due to
clipping of the light beam at the end of the wiggler gap. Figure 18 shows the diagnostic
layout for these measurements. Before the misalignment measurements, a set of data was
taken to try to obtain an indication of the small-signal gain of the dye head. The
horizontal edge of a plate was lowered into the beam in the expanded region to determine
the decrease in output power as a function of the location of the edge of the plate. For all
three sets of data, the voltage across the flashtubes was set to 18 kV, near the lowest
value for which the laser would lase reliably in the aligned condition.
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Figure 17. The plotted points give the fractional power through a horizontal slit at the
horizontal line focus as a function of slit width. The curve gives the power
that would pass through the slit for an ideal Gaussian beam.
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Figure 18. Diagnostic layout for determining the sensitivity to mirror tilt. Two
horizontal slits were symmetrically located 14 cm from the small beam waist.
The beam from a HeNe laser was reflected from each mirror that was tilted
and its position on a reticon array gave the tilt angle.
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The output power as a function of the distance from the bottom edge of the plate to the
resonator optic axis is shown in Fig. 19. The optic axis location was obtained using a
HeNe beam that was injected into the resonator and made to cdrrespond to the optic
axis during the alignment procedure. The resonator alignment was adjusted until the
injected beam retraced its path after a round trip through the resonator. The heating of
the dye during the laser pulse and the dependence of the index of refraction of the
windows and dye on the wavelength may have resulted in a laser mode with a slightly
different optic axis than that given by the HeNe beam. The points plotted on Fig. 19 are
the experimental data. The solid and dashed curves were calculated using a laser
simulation code. The product of the small-signal gain with the length of the dye tube,

go Ly, is equal to 1.0 for the solid curve, and go L, = 2.0 for the dashed curve. The sharp
drop in the measured output power at 0.1 cm from the optic axis seems to favor the

lower value for the gain. The laser simulation code is described in more detail below.

The measured output power as a function of the tilt angle of mirror M; is shown in
Fig. 20. The solid and dashed curves were calculated using the laser simulation code with -
go L, = 1.0 and 2.0, respectively. The computer model agrees with the experimental data
very well, predicting values of the misalignment that are essentially the same as
measured values corresponding to the same relative output power up to a tilt angle of

about 17 urad.

The simulated and measured values of the output power as a function of the tilt of
mirror M, are shown in Fig. 21. The angle corresponding to a given loss is much larger
than for mirror M;. The simulated curves agree reasonably well with the measured

values, but give a tolerance that is somewhat larger for a given power loss.

Computer Simulation of Experimental Laser

A strip-resonator code was used to simulate the laser with misalignment in the vertical
direction. The stable transverse dimension was simulated using a diffractive code, and

the outcoupling was included by normalizing the field to reduce the circulating power to

a factor of 0.73 of the incident power at the location of the outcoupling mirror. A simple
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Figure 19. Fractional output power as a function of the location of the horizontal edge of
a plate that was lowered into the laser beam in Region 2. The points give the
experimental data and the curves were calculated using a diffractive
computer code. The solid and dashed curves correspond to goL, = 1.0, and
goL, = 2.0, respectively.
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Figure 20. Fractional output power as a function of the tilt angle of Mirror M;. The
points give the experimental data and the curves were calculated using a
diffractive computer code. The solid and dashed curves correspond to

goL, = 1.0, and goL, = 2.0, respectively.
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points give the experimental data and the curves were calculated using a
diffractive computer code.. The solid and dashed curves correspond to
goL, = 1.0, and goL, = 2.0, respectively.




saturable gain algorithm was included to represent the dye laser head, and the gain was

lumped at a single transverse sheet at its center.

To check the diffractive propagation code, we calculated the size of the beam at one of
the spherical mirrors and at the small waist of a ring resonator that was not as close to
the boundary of stability as the nearly confocal resonator that is the subject of this
report. Our reason for selecting a different resonator was that the mode of a resonator
that is near the boundary of stability is changed significantly by the finite apertures that
must be included in a diffractive calculation (and in a real laser). The correct answer for
the diffractive code would not necessarily agree with the ideal aperture-free
Gaussian-beam theory. The results for a ring resonator with L; = 660 cm, L,=400 cm
and mirror focal length f; = f; = 400 cm were compared with the values obtained from
the Gaussian-beam equations discussed above. The waist size calculated using
Gaussian-beam theory was 0.8127 mm, and the value obtained from the bare-cavity
diffractive code was 0.8148 mm. The beam size at the mirror was 1.438 mm using
Gaussian-beam theory and 1.444 mm using the diffractive code, which is very good

agreement. The number of grid points used in this comparison was 256.

The propagation algorithm used in the code was the kernel-averaged fast Fourier
transform algorithm developed by Phelps.!®!® In our experience, accurate answers can be
obtained for problems in which the field is clipped near a focus with fewer grid points
than are required using the more conventional algorithm of Sziklas and Siegman.?® An

1620 was used to match the size of the calculational grid to

expanding coordinate system
the size of the beam at planes where the field was evaluated. The number of grid points

used in the calculations was 1024.
Modified configuration with the unstable focus at the location of the stable waist

The resonator shown in Figs. 1 and 2 is adequate to compare theory and calculations
with the performance of the compact-beam stable-unstable resonator, but it would
probably not be desirable to use a scaled version of this exact configuration in a FEL.
The problem is, the intracavity focus of rays in the tangential plane (unstable dimension)

does not occur at the same location as the focus of rays in the saggital plane (stable
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dimension). Many modifications are possible to correct this situation. A negative
cylindrical mirror oriented so that it causes additional divergence of rays in the tangential
plane can be substituted for mirror Ms of Fig. 1. The modified resonator is sketched in
Fig. 22. The focal length of the cylindrical mirror is selected so that the intracavity focus
occurs at the center of Region 1. For our initial configuration, the focal length required to
move the focus to the center of section L;; is fs = —758.6 cm. However, the magnification
is reduced to M = —1.156. The magnification can be made larger by increasing the angle
of incidence of the beam at each of the spherical mirrors. For example, an increase from
10° to 15° requires the lengthening of region L; from 710.000 cm to 723.895 cm to keep
2f,-L; the same so that the stable mode waist size is essentially the same as for the
initial resonator. If we select L, = L;, = 220.0 cm giving L, = 97.2 ém, a magnification
of M = —1.31 results, and the focal length required for the cylindrical mirror replacing
‘M3 is f3 = —304.1 cm. Configurations with higher magnification are possible by further

increasing the angle of incidence at the spherical mirrors.

The equations for the centers of curvatures of the mode are simpler than than the

corresponding equations not including the cylindrical mirror, Eqs. 8-10.

Only linear equations result because the location of the intracavity focus is known
initially. Let d; be the distance from mirror M, to the center of curvature of the beam in
Region 1c; a positive value corresponds to an expanding beam. Let d; be the distance
from mirror M; to the center of curvature of the beam in Region 2; a positive value

corresponds to an expanding beam. Also, define h = 0.5 L;. The equation for d; is

1 +l
Lo+ d, h

% (18)

and d, is obtained from

i _1_1 (19)

and the equation for fs is
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Figure 22. Resonator configuration similar to the experimental setup, but with a
cylindrical mirror substituted for a flat to move the intracavity focus in the
tangential plane to the location of the Gaussian beam waist in the saggital

plane.
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1 1 1
= = 20
fo Ln-d T h—L (20)

These equations were obtained by imaging the center of curvature of a segment of the
mode through the intervening optical element to obtain the center of curvature of the
next segment. The resonator magnification is the product of the individual values for the

segments,

e (5 (222) (a42)

Other resonator configurations with the tangential intracavity focus occuring at the

saggital beam waist are possible. A configuration involving two extra mirrors is sketched
in Fig. 23. This configuration has the advantage that the output beam would not have to
be corrected for astigmatism. The angle of incidence is adjusted so that in the saggital
plane, the spherical mirrors are almost confocal, at a point centered between the two flat
mirrors. In this dimension they both have effective focal length f, that is slightly too
large for them to be confocal. In the tangential plane, shown in Fig. 23, the spherical
mirrors are exactly confocal (using the effective focal length) at the point halfway
between the two flat mirrors. The cylindrical mirrors form a confocal telescope. Then the
output beam is collimated and has no astigmatism (assuming that the Gaussian beam
width in the saggital planes at the spherical mirrors is much larger than the small beam

waist).
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Free Electron Lasers using Stable-Unstable Ring Resonators
Mark J. Schmitt and Alan H. Paxton

Mission Research Corporation, 127 Eastgate Drive, Suite 208
Los Alamos, New Mexico 87544

ABSTRACT

The free electron laser (FEL) simulation code FELEX is used to examine the operation of stable-unstable
FEL resonators. These resonators are stable along one tranaverse axis and unstable along the orthogonal
transverse axis. The simulations utilize a ring resonator with an intracavity focus in the unstable plane
near the center of the wiggler {close to the same axial position as the waist in the stable plane) thereby
enhancing the coupling between the optical and electron beams. Asymmetric output scraping is performed
in the back leg of the ring using a reflective mirror inserted from one side of the unstable axis. Resonators
with relatively low equivalent Fresnel number (|N.,| < 10} and magnification (|M.| =~ 1.2) are examined.
Optical characteristics including the cavity mode profile at various positions inside the resonator are shown.

1. INTRODUCTION

The construction of laser oscillators with very high circulating powers requires the use of totally reflective
optical elements. Such elements minimize the absorption of optical power and allow for mirror substrate
cooling across the entire mirror aperture. Stable resonators employing these optical elements can only be
out-coupled using either diffractive elements?, halo scrapers or hole couplers. Unfortunately, each of these
techniques suffers from at least one drawback. Diffraction gratings of significant size are difficult to fabricate
and have significant losses; halo scrapers produce annular output beams that have inferior focus intensities
and hole couplers produce a loss of on-axis intracavity intensity that reduces laser efficiency. One can avoid
the use of these techniques by allowing the cavity geometry along one transverse axis to become unstable,
such that an output coupling scheme previously described =5 can be employed. This scheme involves
asymmetrically scraping one edge of the ciculating optical beam as shown in Figure 1. The position of the
scraper edge dictates the size of the optical mode along the unstable axis. Since the cavity has a focus in
the unstable plane, output scraping of only one side of the optical beam is required to limit the mode size
at both edges. This is a consequence of the field inversion that occurs at the focus. Thus, each edge of the
mode is scraped on every other pass through the cavity. This output coupling scheme also has the advantage
that a filled-in output beam is produced which propagates to a central peak in the far field.

A study has been undertaken to examine the properties of this type of resonator for free electron laser
applications. The three-dimensional code FELEX® is being used to model both the optical propagation
in the resonator and the interaction of the optical mode with the electron beam inside the wiggler. In
Section 2 initial simulations are compared to previously published unstable cavity mode profiles for code
validation purposes. These simulations include linear and ring geometries with and without intracavity foci.
Simulation of the cavity of a stable-unstable dye laser currently in operation is conducted in Section 3.
Subsequent simulations of the stable-unstable resonator with a FEL as the active gain medium are given in
Section 4.-

2. BARE-CAVITY SIMULATIONS

Prior to this work, FELEX was primarily used to investigate the operation of FELs employing stable
resonators. One primary difference between stable and unstable resonator simulations is the high transverse
spatial frequencies introduced by aperturing (or scraping) in the unstable direction. Owing to the discrete
nature of the simulation, the discontinuity in the optical field imposed by these apertures can give rise to
aliasing of the field at subsequent propagation locations. The following three techniques were used to control
these high spatial frequency components.
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e Aperture Apodization: the transmission (T) of the optical field near the edge of hard apertures was
changed from a step function to a smoothly varying sinusoidal function of the form

1 TZL—Zgp
= PR 4 —_ <
T 2 {1 + sin {2 hap ] } lz. Iapl > hap (1)

where z,, i3 the location of the aperture edge and hgp is the half-width of the apodization region. The
half-width is specified by an integer number of grid points and was typically 2 to 4 depending on the
grid resolution. Although the field values on the grid are a piecewise approximation of the expression in
Eq.(1), significant reductions in aliasing can be achieved with apodization over just a few grid points.
Care was taken to keep the half-width of the apodization region small enough so that the physics of the
problem being studied was not altered. The cavity mode would be significantly changed if the deviation
in the radius of the aperture introduced by the apodization modified the equivalent Fresnel number of
the resonator by unity. Therefore, the half-width of the apodization was chosen to keep AN, < 1.

o Spatial Frequency Filtering: The algorithm used to propagate the optical field in free-space involves the
use of fast Fourier transforms {FFT). In transform space the large wavenumber values will appear at the
edges of the 2-D field array. These large wavenumber field components can be suppressed by applying
an apodized “wavenumber aperture” to the electric field transform array. In FELEX this filter has the

form 1 k/k Kap/k
— = - maz — “ap/*maz
Ty = 5 {1 cos [r S }} (2)

where k.. is the maximum wavenumber allowed by the grid such that k.p/kmaz is the normalized
input wavenumber specifying where the filtering begins. As with the spatial apodizer, one must take
care not to change the problem by excessively filtering in Fourier space. A reasonable guideline for the
truncation of spatial frequencies is given by

Fresnel zone
’\ms'n < _"‘—5'-"‘_‘ (3)
where A,nin is the shortest transverse wavelength remaining after filtering. When emp]oyed this filtering
procedure is performed at each propagation step through the resonator.

e Aperturing at a Focus: Since the optical field profile at a focus is just a scaled version of the Fourier
transform of the electric field, one can filter out the high frequency spatial components by introducing
an aperture at the focus that scrapes off the wings of the field. The application of this technique differs
from the above case in that the truncation of the higher spatial frequencies is imposed more abruptly
and at only specific positions in the resonator.

Cavities with low equivalent Fresnel numbers were modeled using one or more of the previously described
filtering techniques to control aliasing. Low Fresnel number cavities were chosen to minimize the amount
of transverse resolution required to adequately resolve the problem. A transverse grid of 128x128 was
commonly used. The propagation algorithm used an expanding grid coordinate system, similar to that
described by Sziklas and Siegman’. The size of the grid was initially set equal to 2.5 times the geometric
size of the beam in the resonator. When modeling resonators with symmetric scrapers, an interpolator was
used to magnify the remaining field, thereby maintaining optimum resolution.

As an initial test case, a symmetric standing-wave resonator with M = 1.42 and N, = .52 was chosen.
The mode profile obtained was in close agreement with that given by Rensch and Chester®.

Next, an attempt to model a confocal ring resonator with M = —1.42,'and N., = —3.12 was made.
The ring configuration is shown in Figure 2. Note that the ring incorporates transmissive optics while an
actual high-power resonator would employ cylindrical or spherical mirrors. Although the ring has a negative
magnification and equivalent Fresnel number {owing to the intracavity focus), the mode pattern at the output
scraper will be identical to the mode pattern on either mirror of a positive branch symmetric resonator if the
magnitudes of M and N4 for the two resonators are identical. To calculate the Fresnel number of the ring
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we use the property® that the reciprocal of the cavity Fresnel number is equal to the sum of the reciprocal
Fresnel numbers of the individual segments of the cavity. With the help of Figure 2, the collimated Fresnel
number of the ring can be expressed

- A L L
Nc1=;;[L1"ﬁ+—M%] (4)

where a is the aperture half-width. Using this relation in conjunction with the expression for N., given by

M?-1

Nea= 07

N, (4)

the various cavity lengths can be chosen to obtain the desired M and N,,.

Initial simulations produced mode patterns that deviated significantly from those given by Rensch and
Chester®. However, by placing an aperture at the intracavity focus, an intensity profile closely resembling
the pattern given in [8] was achieved. Figure 3a and 3b show the mode pattern from [8] and from the
FELEX simulation with focal aperturing. Since the exact filtering algorithm used in [8] was not specified by
the authors, a closer comparison could not be performed. An additional comparison was made of the mode
pattern obtained analytically by Rodgers and Erkkila!®. They conducted calculations for a standing-wave
resonator with M = 2.5 and N, = 3.12. This resonator was modeled again using a negative branch ring
configuration with the same parameter magnitudes. To control aliasing, apodization over 4 grid points was
employed and an aperture was placed at the focus. The lowest order mode pattern from their paper is given
in Figure 4a while the simulation result is given in Figure 4b. The results of these comparisons indicated
that the FFT propagator in FELEX was adequate for modeling unstable resonator geometries.

3. EXPERIMENTAL COMPARISON

A stable-unstable ring laser has been constructed at MRC-Albuquerque. The resonator has near confocal
geometry with astigmatism introduced to make the ring unstable in one dimension. The magnification of the
cavity was kept low (JM| = 1.2) to limit the the output coupling. This keeps the saturated single-pass gain
in the FEL simulation relatively low (10~ 30%). As a result, the amount of mode distortion!! caused by the
gain in the narrow electron beam will not significantly alter the mode shape of the bare-cavity resonator. In
the experiment a laser dye tube provided the active gain media.

The equivalent resonator depicted in Figure 5 was used to model the experimental resonator. The
simulation converged after approximately 20 passes to a loss of >~ 14% per pass. Transverse profiles in the
unstable direction of the experimental mode and the mode from the simulation are shown in Figure 6. Clean
gaussian mode profiles were obtained in the orthogonal transverse plane both experimentally and in the
simulation.

4. STABLE-UNSTABLE FEL SIMULATIONS

A modification of the propagation algorithm had to be made before the FEL interaction could be
included in the simulation model. FELEX uses a fixed {non-expanding) grid inside the wiggler. A finite
difference algorithm is used in this region so that the optical source due to the electrons can be added in
as the optical field is stepped through the wiggler. As a final check, the finite difference propagator was
tried through the wiggler region with no electron beam present. The resulte obtained were identical to the
previous simulations using only the FFT propagator.

A scaled (with identical M and N,,) version of the experimental stable-unstable ring analysed in Section
3 was modeled. The cavity dimensions were increased so that the Rayleigh range was equal to the length
of typical experimental wigglers (= 1 meter). Approximately 20 passes were required for the optical mode
to converge in the unstable direction. Then, depending on the amplitude of the initial optical field, the
circulating power in the cavity increased until saturation was reached. A 3-D plot of the transverse electric

38 / SPIE Vol. 1045 Modeling and Simulation of Laser Systems {1989)




field at the end of the wiggler is given in Figure 7. The mode in the unstable direction has several side
lobes (caused by the high transverse spatial frequencies) while the mode in the stable direction has a narrow
gaussian dependence. The size of the optical mode was chosen so that the central lobe of the optical mode
was approximately twice the size of the electron beam. This assured that virtually all the electrons interacted
efficiently.

The output beam scraped off one side of the unstable direction in the back leg of the resonator is shown
in Figure 8a. Since the beam is unobscured, it can be focused to a narrow spot as shown in Figure 8b. This
focusing ability is crucial for applications where high intensity is desired.

5. CONCLUSIONS

We have shown that FELEX is an effective tool for addressing the usefulness of stable-unstable resonators
for free electron laser applications. Good agreement has been obtained both with previously published
unstable mode profiles and with the experimentally measured mode profiles of the stable-unstable laser
currently operating at Mission Research Corporation in Albuquerque. The simulations show that a clean
output beam can be obtained using an asymmetric scraper in conjunction with the stable-unstable FEL
cavity configuration. More simulations will be required to determine the operating characteristics of such
resonators for high power applications.
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Figure 1. Stable-unstable ring with asymmetric edge scraper.
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Figure 2. Unstable ring resonator with symmetric halo scraper.
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Sideband Instability in Free-Electron Lasers—A New Technique for
Suppression

ALAN H. PAXTON anp MARK J. SCHMITT

Abstract—We describe an optical element that causes very large ap-
erture losses at the sideband frequency in a free-electron laser. The
center frequency is not affected. The scheme requires the frequency
width at the center frequency to be much less than the offset of the
sideband radiation.

HE sideband instability can broaden the frequency

width of free-electron lasers and decrease their effi-
ciency due to the detrapping of electrons [1]-[3]. Several
techniques have already been proposed for the suppres-
sion of the sideband radiation. The sidebands were sup-
pressed in an FEL by replacing an end mirror in a stand-
ing-wave stable cavity by a Littrow grating [4]. A
diffraction-grating rhomb is a device that can be used to
suppress sideband oscillations in a ring resonator [5], [6].
The grating rhomb is also used as an outcoupling element.
If the grating rhomb is not needed for sideband suppres-
sion, a different outcoupling method may be preferable
for some applications. For example, the stable-unstable
resonator with a scaper mirror only on one side of the
beam may be used [7], [8]. The fully unstable resonator
has also been proposed [9]-{12], as has the unstable res-
onator with 90° field rotation [13]. Here, we shall discuss
the stable resonator and the stable-unstable resonator as
examples for the application of our new device.

Our method for sideband suppression is based on the
existence of a low-pass spatial-frequency filter in the res-
onator. Concepts for high-energy free-electron lasers al-
ready include a spatial filter as part of the resonator. The
optical beam must have a small diameter in the wiggler
region; its diameter is typically larger by at least a factor
of ten in some other section of the resonator. Focusing
the beam and propagating it through the beam tube inside
the wiggler acts as a spatial filter [14]~[15]. Increasing
the spatial frequency content of the sideband light above
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Small Business Innovative Research Program.
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NM 87106.
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the cutoff frequency of the spatial filter while maintaining
nearly diffraction-limited performance at the central fre-
quency would discriminate against the sideband radiation
due to its higher losses at the spatial filter. Oscillation at
the sideband frequency would be driven below threshold
by an increase in the round-trip loss that would cause it
to exceed the round-trip gain.

An optical element that would do this is a flat or spher-
ical mirror with sections raised relative to the reference
surface. The height of the raised areas would be an inte-
gral number of half wavelengths at the center frequency
divided by the cosine of the angle of incidence. The height
would be selected to cause substantial variations in the
phase fronts of reflected sideband light. In contrast to con-
ventional gratings, the widths of the steps are on the order
of the optical beam width.

For concreteness, consider the stable resonator shown
in Fig. 1. The resonator is an almost concentric, standing-
wave, stable resonator. Suppose that the center wave-
length is A, and that the sideband is at A, = A, + AA.
Now suppose that mirror 1 of Fig. 1 is replaced by the
phase grating shown in Fig. 2. It has the same curvature.
but (for normal incidence) it has periodic steps of height

Az = {n\, ' (1)

where n is an integer for which

oA
AN

n = (2)
and « is a constant to be chosen.

Typical values are A, = 1.0 um and AN = Q.01 A..
Using these values and choosing « = 0.5 gives n = 50
and Az = 25 um. Reflection of a spherical wave of wave-
length X\ . from the phase grating causes no aberration be-
cause the difference in path length of any of the steps is
an integral number of half wavelengths. We have as-
sumed that the step height is much less than the pulse
length of the FEL so that effects due to the finite pulse
length may be ignored. Reflection of a spherical wave of
wavelength A\, from the mirror aberrates it severely, in-
troducing a phase shift of 2wa for every half period of the

0018-9197/90/0700-1167$01.00 © 1990 IEEE
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Fig. 1. Stable resonator showing beam tube through wiggler in the vicinity

of the waist.
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Fig. 2. Phase-step mirror. The steps are raised a distance Az above the
spherical reterence surtace. The step height is selected to shift the phase
fronts of light at the center frequency by an integral number of wave-
lengths. and to cause significant phase shifts at the sideband frequency.

mirror step pattern. We shall refer to this phase grating
with multiwavelength steps and a very low period as the
phase-step mirror.

We will now derive some properties of the mode at the
sideband frequency for the resonator in Fig. 1 with a
phase-step end mirror. We assume that the light beam of
the mode that is incident on the phase-step mirror is an
unaberrated spherical wave. We will show that the fol-
lowing points are true.

1) The beam of light immediately after reflection from
the phase-step mirror can be decomposed into a series of
spherical waves; a zero-order wave propagates along the
resonator optic axis. and the other waves propagate along
axes that are tilted with respect to the optic axis.

2) A period can be derived for the phase steps such that
the foci of all the tlted waves fall well outside the FEL
beam tube that extends through the wiggler. Thus. only
the unaberrated zero-order wave arrives to reflect from the
phase-step mirror after a round-trip through the resonator.
justifying our initial assumption.

3) The fractional loss of the sideband radiation at the
wiggler approaches 1.0 as « approaches 0.5.

Consider a beam of light reflecting at normal incidence
from the phase-step mirror shown in Fig. 2. The complex
amplitude before reflection is

U' = F' exp [i(kz — wrt)] (3)
and the complex amplitude after reflection is

U= Fexp[i(ks — wt)]. (4)
Before reflection. the phase fronts are unaberrated and

have radius of curvature r.

F' = u(x.y)exp (5)

2r

—ik(x* + V\,:) l
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The complex amplitude after reflection from the phase-
step mirror is

[—ik(x2 + yz)1

u(x, y)exp R J exp ( —iarw)
for(n - )p/2 <x=<np/2
F= (2 2 (6)
u(x, yyexp [%—n exp (iarw)

. fornp/2 <x<(n+1)p/2

where n is any even integer, and a constant phase shift
has been dropped. It is assumed that the steps continue
over the entire region where the beam has appreciable in-
tensity so that (6) corresponds to u(x, y) exp { —ik(x* +
¥?)/2R] multiplied by an infinite periodic function of x.
Equation (6) can be expanded as a Fourier series.

F = u(x, y)exp {:%}

. {cos ¢ + isin¢ 21 a, sin (mk,x)} (7)

where a,, = 4/mn for m odd, and a,, = 0 for m even.
The fundamental spatial frequency is k, = 2« /p: the lon-
gitudinal wavenumber is £ = 27 /A half the magnitude
of the phase steps imposed on the reflected beam is ¢ =
7o, u(x, y) is the amplitude of the beam. not including
the spherical curvature, before reflection; R is the radius
of curvature of the phase fronts after reflection. The com-
ponent at spatial frequency mk, is

_k 3 2 + 2
fo = %u(x, v) exp [—L—%—) a,, sin ¢
« [exp (imk.x) — exp (—imk.x)]. (8)

The wave corresponding to the first term in brackets is

1 — iky?
fo = Eu(x. v) exp < zll;y ) a,, sin
-—ik(.r - xU)2 imlk,:R>
. ettt e e e . 9
exp 1 3R ] exp < % (9)
where x, = mk,R/k. Equation (9) is a tilted spherical

wave with its focus offset by x, from the focus of the zero-
frequency component. The second term in square brack-
ets of (8) is also a tilted spherical wave. but its focus 1s
offset by —x,. Thus. the spatial frequency components
imposed on the sideband radiation are shifted lateraily out
of the main optical beam in the vicinity of the focus. which
is located a distance R from the phase-step mirror.

To determine the appropriate step period. assume that
u{x, v)is separable and that the reflected beam is Gauss-
ian in the x-direction,

ulx, v) = v(x)g(y) (10)
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v(x) = exp <—wa>

For an almost concentric resonator, R is much greater than
the Rayleigh range at the waist, so the beam waist loca-
tion is essentially at distance R from the phase-step mir-
ror. The size of the waist is

and

(11)

(12)

Wy = —.

W

The radius of the beam tube is given by a = 8w, where

a typical value is 8 = 2.5. The condition for the mth com-

ponent to be centered a distance w, outside the beam tube
at the waist is

x, > (1 + 8)w,.

(13)
Equivalently,

maw

1 +8

For m = 1. this condition leads to the loss of almost all
of the power in the spatial frequencies with nonzero or-
der.

Therefore, if inequality (14) is satisfied, the feedback
power of the nonzero orders may be neglected and our
assumption that an unaberrated beam is incident on the
phase-step mirror is justified. The resonator has the same
dominant mode that it would have if the phase-step mirror
were simply a spherical mirror. Reflection from the phase-
step mirror converts part of the incident field to nonzero
Fourier components, which are almost entirely filtered
out. The only component that survives a round-trip is the
zero-order Fourier term. The fractional round-trip loss of
the sideband radiation can be made arbitrarily close to one,
but the dominant mode is unchanged if inequality (14) is
satisfied. The fraction of the sideband power fed back,
given by (7)., is

p < (14)

(15)

after one round-trip through the resonator, where 7 is the
fractional feedback power the mode would have if the
phase-step mirror were replaced by a simple spherical
mirror. As ¢ approaches x /2, the fractional feedback
power approaches zero.

The sideband gain has a finite frequency width. The
step height Az in (1) would be selected to correspond to
a value of « near 0.5 at a wavelength near the middle of
the sideband gain A = A,. The derivative of the feedback
power with respect to the sideband wavelength can be ob-
tained from (1). (2). and (15) as

Py=79 cos® ¢

@,

dA

= —n¢ sin 26 /AN (16)

where AN is the wavelength separation from the center
frequency to the middle of the sideband gain. For o =

1169

0.5ath =\,

dP
— = mn(a - 0.5)/4\.

oy (17)

Therefore, if any frequency A under the sideband gain
curve satisfies |A — A;| << AN, then |[P;(N) -
Pi(A;)|/n << 1, and the resonator losses within the
sideband frequency range are about the same fraction of
the losses at the center frequency.

The mirror steps need not follow straight lines. This
configuration was selected because simple analysis is pos-
sible. If the laser has a long enough wavelength that dia-
mond-turned mirrors may be used, a circular step pattern
may be used to increase the loss at the sideband fre-
quency.

A phase-step mirror will suppress the sidebands in any
FEL resonator if it can be included in a region where the
optical beam size is much larger than its size in the wig-
gler. The stable-unstable ring resonator with a compact
output beam [7], [8] is of interest because it overcomes
undesirable properties of other resonators proposed for use
with the FEL. Standing-wave resonators for high-energy
FEL’s are more sensitive to mirror tilt than ring resona-
tors [16] because the optical beam is radially inverted
twice during each round-trip propagation in a standing-
wave resonator versus once in a ring. Fully unstable res-

-onators would have undesirably large diffractive losses

because the magnet faces of the wiggler are too close to-
gether to accommodate the diffractive side lobes at the
focus. Stable ring resonators use a partially transparent
mirror or a diffraction grating for outcoupling, which may
be undesirable in a high-energy laser. The stable-unstable
resonator allows reflective outcoupling of a filled-in rect-
angular beam. Sketches of the stable-unstable ring are
shown in Figs. 3 and 4. Modes of this resonator are de-
scribed in [7].

Numerical calculations were performed with the FEL
simulation code FELEX [20] to obtain the power loss ra-
tio for a stabie-unstable ring cavity including a phase-step
mirror. Only empty-cavity calculations were done. The
dimensions of the ring are shown in Figs. 3 and 4. The
steps caused phase variation only along the stable () di-
rection. The optical propagation algorithm made use of a
fast Fourier transform. Filtering of the high spatial fre-
quencies was required to prevent significant aliasing. The
transmission function in transform space was

Tk=l

7l'( 1 kr l /kumx - kup/kmu\)
lt] * cos < 1 - kup/kmax

for |k| > k

for |k| < k,

and

Tk =

-

(18)

ap

where k. is the maximum spatial frequency of the grid
for the discrete Fourier transform. and. for these simula-
tions, K,/ kmix = 0.85.
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2

Fig. 3. Stable-unstable ring resonator with a phase-step mirror. The trav-
eling-wave optical beam is rectangular in cross section. The stable di-
rection is shown. For clarity. the optical elements are shown as offset.
but the optic axis is really contained in a single plane of constant x.
Mirrors M, and M, are curved in this dimension and M, is a flat mirror.
The phase-step mirror is labeled G. Dimensions are L, = L,, + L, +
L. = 7100 cm and L, = 1500 cm. In doing the calculation. it was
assumed that L, was negligible in comparison to L,. The focal lengths
of the curved mirrors are F, = F, = 3554 cm in this dimension. The
Gaussian beam size is w = 1.33 cm in the region with length L,. The
wavelength used in the simulation was 0.593 um.

QUTPUT
BEAM

Y

Fig. 4. Stable-unstable ring resonator with a phase-step mirror. Unstable
direction is shown. Dimensions not shown in Fig. 3 are L,, = 750 cm,
L., = 750 cm, and the beam width just after the scraper is £ = 1.49 cm.
The mirror focal lengths in this dimension are F, = F; = 3446.8 cm.
Different focal lengths in the two dimensions could be obtained by se-
lecting the angle of incidence for the beam at spherical mirrors to induce
the required astigmatism [17). The resonator magnification is M =
—1.36, and the equivalent fresnel number [10], {18], {191 is N,, =
—-0.38.

The simulations consisted of propagating an initial
complex electric-field amplitude around the resonator (in-
cluding the phase-step mirror) until a constant loss per
pass was achieved. 20 passes were usually sufficient. The
half-width of the beam tube through the wiggler was a =
2.5w, in the stable direction. The period of the phase-step
mirror was p = 0.30w. A plot of the fractional round-trip
power loss as a function of the angular shift of the phase
fronts due to reflection from the phase-step mirror is
shown in Fig. 5. Although the maximum loss will occur
in the vicinity of = radians, simulations with phase shift
greater than « /2 rad could be performed due to numerical
difficulties. Results plotted in Fig. 5 may be compared
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Fig. 6. Optical intensity just past the plane of reflection from the phase-
step mirror.

with the simple theory derived above. The point at ¢ =
0 in Fig. 5 gives n = 0.875. Values of P, obtained from
(15) agree with the second and third points from the left
on Fig. 5 to within 0.4 percent. The right-hand point on
Fig. 5 agrees with (15) to within 1%. Plots of the electric-
field intensity and phase immediately after reflection from
the phase-step mirror are given in Figs. 6 and 7. Note the
phase steps introduced by the phase-step mirror. These
phase variations caused the field intensity oscillations
shown in Fig. 8 after propagating approximately two-
thirds of the distance to the focus. The field just in front
of the wiggler is given in Fig. 9. The two side lobes were
caused by the two titled plane waves corresponding to the
fundamental spatial frequency of the phase-step mirror.
Since an aperture was imposed at +£0.2 cm, the side lobes
were prevented from propagating through the wiggler. As
the phase step height moved toward 7 radians, the side
lobe amplitude increased at the expense of the central
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Fig. 9. Optical intensity at the entrance to the wiggler. The edges of an
aperture were located at.x = +0.2 cm.

lobe. Losses would be extremely high for phase shifts near
w radians.

A phase-step mirror could be used in a slightly different
way to discriminate against the sideband radiation. A
phase-step mirror with a period equal to its width might
not cause sufficient losses at apertures for suppression,
but destructive interference would decrease the intensity
at the electron beam location, thereby decreasing the cou-
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pling between the optical beam and the electron beam.
The use of a “‘grating’” with a single step for sideband
suppression has already been suggested [21].

A resonator could be designed with a configuration sim-
ilar to the Boeing burst mode resonator [22], [23] but
modified to be unstable in one transverse direction. The
grating rhomb could be eliminated and a phase-step mir-
ror added, together with a flat mirror to keep the number
of resonator mirrors even. Outcoupling could be achieved
by adjusting the curvature of the resonator mirrors to make
the resonator unstable in the transverse dimension with its
axis parallel to the faces of the wiggler magnets and in-
serting an output coupling scraper mirror on one side of
the beam.

The compact-beam, stable-unstable ring resonator with
a phase-step mirror may provide a useful alternative to the
stable ring resonator with a grating rhomb for high-energy
FEL’s.
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