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ABSTRACT

A description is given of the reactor on which the calculations are based.
Basic cross sections and other physical data used in the calculation are listed.
The required lattice parameters are evaluated, talcing into account the details
of the lattice cell structure and core structure. Using two-group reflected re-
actor theory, critical size of the core is calculated for three cases: (1) dry:
all materials at 20° C and no sodium in the reactor; (2) wet: sodium present and
all materials at 180° C; (3) hot: operating at full power. The flux and adjoint
flux is given in both radial and axial directions. Several known perturbations are

evaluated for the hot case.

DISTRIBUTION

This report is distributed according to the category "Physics™ as given in
the "Distribution Lists for Nonclassified Research and Development Reports™
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. DESCRIPTION OF THE REACTOR

The reactor description given here vill be sufficient to define the problem
being considered, but will not contain irrelevant details, A more complete des-

cription is given in Reference 1.

Th? core and reflector are made up of hexagonal graphite cells each 10
feet high and arranged inside a cylindrical stainless steel tank. Each graphite
hexagon is canned in zirconium with 0.03 5-inch vails. These hexagonal cans are
supported by stainless-steel grids at top and bottom. Figure 1 shows a cross
section of a typical cell and of the entire assembly and gives the dimensions of
the graphite and of the zirconium can. The cell centers form a triangular lattice
and their spacing is 11 inches at 20° C. Expansion of the lattice spacing is de-

termined by the temperature of the stainless steel supports.

A circular section is removed from a corner of certain cells so that cylin-
drical passages are formed running the full length of the cells. These passages,
which are also shown in Fig. 1, are incorporated to accommodate thimbles in
which control rods, etc., can be placed. There are 17 of these thimbles and they
are fairly uniformly distributed throughout the core. Their outer diameter is
2-5/8 inches, and they are wrapped at an 8-inch pitch vith 0.0625-inch stainless-
steel wire. In this calculation it i s assumed that eight of the thimbles are made
of stainless steel tubing having 0.035-inch wall and the remainder are made of
zirconium tubing having 0.049-inch wall. The interior of all thimbles is assumed
to be empty (rods withdrawn) except that the structure of the safety device des-
cribed in Reference 1 is present in four thimbles. This safety device is assumed
to be constructed of zirconium.

The fuel is 2.75 atomic per cent enriched uranium, N(25)/ [N(25) + N(28jj,

and is located in process tubes which are co-axial with the graphite cells. The
loading pattern is shown in Fig. 1. Figure 2 shows a cross section of the fuel-
and-process tube. The fuel is in the form of 3/4-inch rods arranged in a seven-
rod cluster. Each rod is clad with a 0.011-inch wall stainless-steel tube which is
wrapped at a 12-inch pitch with a 0.09 Finch stainless-steel wire. There is a
0.009-inch NaK bond between the fuel rod and the cladding. As temperature in-
creases the fuel expands more than the cladding and forces the excess NaK

into a reservoir at the top of the fuel rod. The process tube consists of a
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2.875-inch OD zirconium tube having a 0.035-inch wall. The bore in the graphite

is 2.920 inches in diameter.

Sodium coolant flows from bottom to top in the process tube and also between
the cell cans. It is assumed that the sodium presses the cell cans in against the
graphite, thus eliminating 90 per cent of the void which would otherwise result.
The process tube, however, is not distorted by the sodium, so this void remains
unaltered. As the temperature rises, the fuel expands more than the process
tube, thus reducing the amount of sodium contained therein. On the other hand,
the cell spacing expands more than the graphite, so the amount of sodium between
the moderator cans increases. The thickness of the sodium layer between =zir-
conium cans when they are pressed flat against the graphite is 0.167 inch at
operating temperature.

Average temperatures of the various materials when the reactor is in equili-
brium at full power (20 megawatts) were estimated by referring to heat transfer
calculations made by members of the engineering staff. The temperature adopted

for each material, the density, and the thermal expansion coefficient are given in

Table I. The cubical expansion coefficients are given for sodium and NaK liquids.

TABLE 1

DENSITIES AND THERMAL EXPANSION COEFFICIENTS

3 Coefficient of
Material T(°C) I>*(gm/cm ) Thermal Expansion

per° C

37 x 106

Fuel 500 17. 865
Graphite 425 1. 6344 78 x 10°%
Zirconium 400 6. 4583 6.3 x 106
Stainless Steel 410 7. 7401 173 x 10°
Sodium 390 0. 85617 2.66x10 *
NaK 420 0. 809 2.70 x 1074

*The values given in this column retain additional figures in order to provide an
accurate comparison of the effects of temperature changes. Using the tabulated
expansion coefficients, these densities reduce to handbook values at standard

temperatures.
8



The cross sectional area of the stack (core plus reflector) is 12,060 square
inches at 20° C, and its height is 10 feet. In calculating the critical size of the
core, the stack will be represented by a right circular cylinder having the above
height and cross section. The resulting height and radius are corrected for thermal
expansion, and the extrapolation length, 0.71 Atr = 2.13 D, is added to each
boundary. The resulting dimensions, called and H”, are used in the criticality
calculation. The core height, which equals the length of the uranium fuel, is six
feet at 20° C. This is corrected for thermal expansion and the result, called hc,
is used in the criticality calculation. The object of this calculation is to find the

core volume required for criticality.

A considerable amount of stainless steel is located above and below the fuel
in the process tubes. This was taken into account in calculating the properties
of the top and bottom reflectors. Also, although the outermost cell cans in the
reflector are made of stainless steel, it is assumed for the sake of simplicity
that they are made of zirconium. It is also assumed that all cells not actually
loaded with fuel are typical reflector cells. These assumptions greatly simplify

the evaluation of the properties of the radial reflector.

The stack dimensions to the extrapolated boundaries, and the core height,
are listed in Table Il. The condition labeled "hot" refers to the temperatures

existing at equilibrium full power operation as shown in Table 1.

TABLE 11

STACK DIMENSIONS

Dimensions in cm

Dry Wet Hot
H 308.85 309.25 309.84
o
Ro 159.27 159.71 160.35
h 182.90 183.98 186.15



. NUCLEAR CROSS SECTIONS AND OTHER DATA

Values for the nuclear cross sections were taken from the AEC compila-
tionsz’ 3 and are listed in Table lll. Thermal absorption cross sections are
Maxwell averages with the graphite temperature characterizing the Maxwellian
distribution. The temperature correction for neutron "hardening!! was ignored
because it is only 10 or 20 degrees centigrade and the moderator temperature
is not known this accurately. All thermal absorption cross sections except
cg(25) and crl (25) were assumed to have 1/v dependence. The capture-to-fission
ratio was assumed to be constant at the value a = 0.184. Cross sections for
stainless steel were averaged for a composition of 67 per cent iron, 20 per cent
chromium, 10 per cent nickel, 2 per cent manganese, and 1 per cent silicon.
Cross sections for zirconium were averaged for the ingot composition actually
being used. The graphite absorption cross section results in a thermal diffusion
length of 50 cm for graphite of density 1.60 gms Z/cm at 20° C. The composition

of NaK is 56 per cent sodium and 44 per cent potassium by weight.

4
The equilibrium xenon and samarium poison cross section is given by

2a(poison) = 2f(25)(1+8)(ySrn+GyXe)

where
-1) 2
q (e-1) 2,
T A28
Ygm = samarium fission yield = 0.014
yy = Xxenon plus iodine fission yield = 0.059
G = averaged over the core

A+XXel °(Xe)

= average flux in the fuel
The average flux in the fuel is given by

10
_ 3.12x10 P 238.1+235.1£ 1.33x10 13 neutrons/cmz _sec

Q25> £No< ?V>fuel



p - reactor povver = 20x10 vvatts for the hot case and zero for the others.

pY - mass of fuel

No = Avogadro's number
€ = N(25)/N(28)
With Ef(25) ~ 0.393 cm * and G = 0.590, there results:

£1(poison) - 0.0210 cm
C

TABLE Il

NUCLEAR DATA

Mate rial cra(2200) Ag cos 9 Atomic
(barns) (barns) W eight
Graphite 5.14x10~3 4.8 0.0555 12.00
u238 2.75 8.3 0.0028 238.1
u235 687 10 0.0028 235.1
Sodium 0.50 3.5 0.0290 23.00
Zirconium 0.192 8 0.0073 91.22
Stainless Steel 2.94 9.76 0.01 17 55.85
Potas sium 1.97 1.5 - - 39.10
lléor U235
«f(20° C) = 504.0 barns f(20° C) = 0.981
«f(190° C) = 396.8 barns jg=> = : 0.980
af(425° C) = 316.0 barns f(425° C) = 1.002
a = 0.184
V= 2.46
= N25/N28 = 0.02829
Poisons /
aa(Xe-135) = 2.14x10 barns at 425° C
X(Xe) = 2.09x10 3sec *
Total xenon fission yield = 0.059

Samarium fission yield = 0.014

11



TABLE 111 (continued)

Resonance Data4’5
75 \
Ore s dE = 7.6 m+34™M barns with the I/v tail subtracted.
V"E' ff
Xu = 0.420 cm -1 for natural uranium at 20° C
d#u 1
de = 2.46 cm
crs(fuel) = 8.2 barns
crs(graphite) = 4.7 barns
A(graphite) = 0.1577
/n = 2*6

0.162 cm 1 for graphite of density 1.65 gm/cma3

Uranium cross sections averaged over the fission spectrum (barns)

crt(28) = 7.10 V25) = 741
crf(28) = 0.28 o-f(25) = 1.2
or. (28) = 1.85 An(25) = 1.5
ac(28) = 0.09 _ 0.2

A28 = 2,5 ves = 3.0

scattering cross sections for fast neutrons

A(uranium) = 7.4 barns
A (graphite) = 4.40 barns
A (sodium) = 3.7 barns
o“s(stainless steel) = 7.7 barns
o zirconium) = 8.6 barns

= A
Z (NaK) 0.050 cm

12



lll. CELL MODEL AND THERMAL FLUX IN A LATTICE CELL

For the calculation of the thermal utilization and thermal diffusion length
it is necessary to flux-weight the absorption and transport cross sections over
the lattice cell. We require the volume fractions of the materials which constitute
the cell and the average thermal flux in each material. The flux can be obtained
experimentally with good accuracy, since only relative values are needed. As
these measurements have not yet been made for the SRE Ilattice cell, a calculation
is necessary. While methods exist for the accurate calculation of the flux, they
involve considerable computational labor and are complicated by the structure of
the SRE fuel clusters. In order to avoid these complications, a simpler method
was used which applied elementary one-group diffusion theory to the five-region
model of the lattice cell shown in Fig. 3. It is well known that elementary diffu-
sion theory gives inaccurate results in such calculations, but flux measurements
were available for a seven-rod fuel cluster which had somewhat different dimen-
sions and enrichment and which was immersed in moderator, so it was
possible to estimate the corrections to apply to the calculated results. It is be-
lieved that the uncertainty introduced into the thermal utilization because of the

lack of accurate knowledge about the flux is less than 1/2 per cent.

The cell model used to calculate the flux will now be described. The regions
in Fig. 3 are numbered 1 to 5 starting with the innermost. The boundaries of
these regions are determined as follows: r* = radius of a fuel rod without its
cladding and bond, r* and r* are determined by requiring that the area of the
annulus which they bound shall equal the area of six fuel rods and that the average
of r* and r* shall equal the radius of the circle upon which the centers of the six
outer fuel rods are located, r4 is the radius of the graphite bore, and r” is the
radius of a circle whose area equals that of the hexagonal cell. Values of these

radii are given in Table IV.

It was assumed that Regions 1 and 3 consisted only of fuel, Region 5 only
of graphite, Region 2 of a homogeneous mixture in the proper ratios of sodium
and stainless steel, and Region 4 of a homogeneous mixture of sodium, stainless
steel, and zirconium. If the sodium is removed from the cell, as in the dry case,
it is assumed that the flux is constant in Regions 2 and 4. The calculation is then
carried out in the same manner as in the other cases. Average thermal absorp-

tion and transport cross sections for each region were calculated for each of the

13
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3 cases being considered and are listed in Table IV. The inverse diffusion length
and diffusion coefficient for each region was then calculated from the following

formulas:

X tanh (Regions 1 and 3)
2s+2a 2s
PC2 ....... 1 (Reg ions 2, 4, and 5)
N/ 2al
Aa
Xtr = 2sU-7xHXa

Absorption cross sections for the hot case (operation at full power) include

equilibrium xenon and samarium poison.

The desired solution of the one-group diffusion equation for an infinitely
long cylinder is of the form

Q.
i

~(r) = A.yje.r) + B.Ko«.r) ri-’l <r <r,

where i =1 2, 3, 4, 5 refers to regions shown in Fig. 3.
= inverse diffusion length in the i-th region.
= diffusion coefficient in the i-th region.
= source in the i-th region, which we take to be zero in Regions

1 to 4 and constant in Region 5.

1 and Ko are Bessel functions: A.__ind__P. are constants which are determined

o
by the boundary conditions. The condition that the flux be finite at r = 0 requires
that BA = 0, and we may normalize by taking A* = 1. Symmetry demands the
vanishing of the neutron current at r = r~, which requires that
\ (Pe5rb5)
- N —

15



0.9520
1.671
2.869
3.708
14.670

r.(cm)

wet

0.9577
1.662
2.875
3.712
14.710

DIMENSIONS AND NUCLEAR DATA FOR THE CELL MODEL

hot

0.9689

1.649
2.890
3.719
14.764

dry
0.8975

0.8975

3,775x10

. -1
la<cm >
wet

0.6960
0.03431
0.6960

0.01480
3.02x10"4

TABLE IV

hot

0.5560
0.02763
0.5560

0.01480
2.23x10'4

<

0.0028
0.0290
0.0028
0.0290
0.0555

dry
1.2951

1.2951

0,3759

fylom™)

wet

1.0865
0.2281
1.0865
0.1577
0.3745

hot

0.9325
0.2221
0.9325
0.1548
0.3723

JE(cm 1)
dry wet
1.292 1.079
- - 0.1419
1.292 1.079

0.07930

0.02063 0.01844

hot

0.8969
0.1269
0.8969
0.07103
0.01645



The continuity of flux and current at the interfaces leads to the following equations

for the remaining constants

™M K oo

°\ /ro Ko\ /Z\\

h -ol *° ‘11- -KV

A Y% Y4 D1+1 Ai+l; ‘

where i = 1, 2, 3.
[< 1 0 Ko\ /I
m4,5 4 4
~n 2 o =K
Qr 4,5 W4,5 X4 ’ lB7
~D! D5,
The expression in the center of a matrix is the argument of each Bessel

function in that matrix. The Ws and Y's are defined by

Ko<X5r4>
Was
W=’ -KI(*5r5
i argf -K ("5
4,5

11|jaf5r5 -KI11 ™ rS>

The average flux in the i-th region is given by
— ZTxl/.

V.
i

17



where V\ is the volume of the i-th region, and

r, r. .
A._ 1 B. 1 Q 5 2 2

_ i .
~ = ril r) ~ rKjdtf.r) .t 2aop T r-.

Yi-1

Figure 4 shows a graph of the flux in a cell as calculated by the above
method. Table V gives the computed values of<€> * and <#(r*) together with their
"corrected” values, which were obtained by applying corrections which were in-
dicated by the flux measurements made in the seven-rod fuel cluster previously
mentioned to the computed values. A disadvantage factor of 0.945 was estimated

for the stainless steel thimbles by means of a control rod type of flux calculation.

The volume fractions of each material in the cell were calculated. There
are 17 thimbles in the core. The materials in the thimbles were included in this
calculation by assigning 17/31 of the total material in the thimbles to a cell. Table
VI gives the results of this calculation for the 3 cases being considered. Note
that the volume fraction of several of the materials is divided into more than one

part. This is done because of the flux variation in the cell.

TABLE V

AVERAGE FLUX IN CELL

C alculated Flux Adjustment Adjusted Flux
dry wet hot F actor dry wet hot
~ 1.2015 1.1395 1.0974 1.00 1.2015 1.1395 1.0974
(rl) 1.4155 1.2853 1.1979 1.03 1.4580 1.3239 1.2338
9 1.4155 1.3533 1.2382 1.03 1.4580 1,3939 1.2754
$ (r2 1.4155 1.4085 1.2905 1.03 1.4580 1.4508 1.3293
<€ 3 2.2972 2.0946 1.7389 1.04 2.4931 2.1784 1.8084
S (r3) 3.8558 3.0605 2.3438 1.07 4.1257 3.2747 2.5078
4 3.8558 3.3094 2.5006 1.20 4.6269 3.9713  3.0007
~ (r4) 3.8558 3.5469 2.6721 1.30 5.0125 4.6110 3.4737
A5 9.5165 7.0352 5.2859 1.20 11.4198 8.4422 6.3431
$ <rb5) 10.7420 8.4906  6.2080 1.20 12.8904 10.1887 7.4495

18
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TABLE VI

VOLUME FRACTIONS FOR EACH MATERIAL IN A CELL

Material

Fuel

1 rod

6 rods

Stainless Steel
Cladding 1 rod
Cladding 6 rods
8 thimbles

NaK Bond
1 rod

6 rods

Zirconium
Process tube
Moderator can and

9 thimbles

Sodium
Region 2
Region 4
Between moderator
cans and in 17
thimble channels
Void
At process tube wall
In 17 thimbles and be-

tween moderator and

can

Graphite

20

Dry

0.004211
0.025268

0.000322
0.001930
0.000709

0.000216
0.001298

0.002980

0.914388

0.006502
0.019105

0.034486

0.002056

0.025083

0.861446

Wet

0.004239
0.025432

0.000322
0.001930
0.00709

0.000188
0.001126

0. 002969

0.014338

0.006460
0.018983

0.037247

0.002029

0.024987

0.859041

Hot

0.004307
0.025840

0.000322
0.001930
0.000709

0.000116
0.000698

0.002955

0.014269

0.006415
0.018849

0.040855

0.002020

0.024917

0.855798



IV. RECIPES FOR CALCULATING THE LATTICE CONSTANTS

The formulas given in this section are consistent (although not always
identical) with those of Reference 4. The symbols employed have their usual

meaning unless otherwise defined.
A. CROSS SECTIONS

The flux-averaged absorption and transport cross sections over the cell

are given by

1 fv.S.
— 4 TALL Y
_7L7
= ivi

where Y,I represents the volume fractions and the summation is over all materials

in the cell including the void.

B. THERMAL UTILIZATION
(clitV1+cA3V3) SJfuel)

7 A\
i H1 ai

C. THERMAL DIFFUSION LENGTH

L2 =
32 2

D. RESONANCE ESCAPE

where

1) neutrons removed from the resonance energy by slowing down in the moderator
resonance neutrons absorbed in the fuel

The usual formula for T is written as
V £ ~ (mod)
m sl ’
T = + (E-I1)

21



where the subscript m refers to graphite and u refers to fuel. (E-l) is the well
known excess "absorption™ term, where "absorption”™ means removal of neutrons
from the resonance energy region by the process of slowing down, and is calculated
only for Region 5 of the cell model shown in Fig. 3. The inverse diffusion length

for resonance neutrons in the graphite is required for its evaluation and is given

by

& 32,2 " NS =sl

where the slowing down cross sectionS~# is defined by

sl m Ei1/E2

It was estimated that the logarithmic energy band for resonance neutrons when
the 1/v tail is deleted from the U238 effective resonance absorption integral is

In EA/E® = 2.6. We are aware of the value 5.6 which is given in the reactor
handbook but have not been able to justify the use of this value.

The value used for the effective resonance integral in U238 with the 1/v

absorption removed is

[Ares ™

= 76 F + 3A0 barns.
eff

F is the disadvantage factor of the 7 fuel rods for resonance neutrons which

was taken to be
Xnr I

2 Ji (Murlv7)

The value °fXu was adjusted for changes in temperature and enrichment. The

data used are given in Table IIl.

The S/M term in the effective resonance integral was calculated as sug-
gested by Dr. E. R. Cohen by taking the surface to be that given by placing

a taut rubber band around the outside of the fuel rods. This is the proper

22



surface to use provided that a neutron which enters the region inside this surface
cannot escape without traversing a fuel rod, which is the case for the 7 rod fuel
clusters if scattering in the sodium is neglected.

Correction to p for the doppler broadening of the resonances due to a tempera-

ture increase of 60 C was taken to be

P(6) = PQexp 1.0x10 T

The value of the temperature coefficient of the effective resonance integral was

-4
taken to be 1.0x10 per degree centigrade.

E. ETA
vdij.(25)

F (25)+i:r<f (28)+Ia (poison)
a. t a AT
N25

F. EPSILON

<--I>

where the cross sections are averaged over the fission spectrum and

r = r + <x+cr. + o-
Ct Cc )i’cmoe

These cross sections are for the enriched fuel and are given by

1
°fuel j+c 25 TT7Z %28

P is the first collision probability for a fission neutron in the fuel cluster and

is obtained from curves of Reference 7 which gives P for hollow cylinders. The
hollow cylinder used here is Region 3 of Fig. 3. with the inner fuel rod distributed
uniformly on the inside of this region. The variation of € with temperature is

negligible and was not investigated.

23



G. AGE

cr,
mn

rT < Vrm o "
tot =/s I6ki1 Vv -V )
m o
T age in graphite of fission neutrons to the indium resonance
T.m age in graphite of inelastically scattered fission neutrons to the
indium resonance
P = collision probability for fission neutrons in the fuel cluster

p = graphite density

Vo = volume fraction of the void

Vv 'v ( 1 . where the summation is over all the cell
m i i ( £i's) graphite
D

15.01 for epithermal neutrons in graphite of density 1.60 gm/cm

The correction of the age from the indium resonance to thermal energy is made

9
to the energy I6kT.

H. FAST NEUTRON-TRANSPORT CROSS SECTION

Absorption is negligible and it was assumed that the average fast neutron
flux was constant over the cell so that no flux weighting of the cross sections

is required.

where is the average cosine of the scattering angle in the laboratory system.
The values used for the average scattering cross section for fast neutrons
are listed in Table IlIl. The temperature dependence of was assumed to be

the same as for graphite, namely (I-3a AT).
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The diffusion coefficient for fast neutrons is

The slowing down cross section for the cell is

D
T

V. SUMMARY OF CALCULATED RESULTS FOR THE LATTICE

The results of the lattice calculations which were outlined in the preceeding

section are given in Table VII. The buckling listed is calculated from the formula

2_2
1+L B = kCole

TABLE VI

CORE DATA

Dry Wet Hot
v 1.815 1.810 1.741
€ 1.0433 1.0430 1.0423
p 0.8565 0.8560 0.8526
f 0.8784 0.8204 0.8384
Kco 1.4222 1.3257 1.2971
2a(cm_1) 0.006321 0.006231 0.005553
L2(cm2) 149.85 152.05 172.38
Dth(c™?) 0.9472 0.9474 0.9572
T(cm ) 379.5 349.1 346.8
DA(cm) 1.0582 1.0469 1.0572
B2(cm 2) 675x10° 566x10 2 505x10-6
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VI. REFLECTOR

The radial and axial reflectors must be treated separately because of the
different geometries and materials involved. The radial reflector was assumed
to consist of solid graphite hexagons, whose dimensions are identical with those
used in the core, canned in zirconium cans identical with the core cans. No
Ilux weighting of cross sections is required because there is no strongly absorbing
material contained in the cell. Volume fractions for the three cases under study
are given in Table VIII. Calculation of =z » L2, r, and Dr then proceed according

cl
to the same plan as used in the core, and the results are also shown in Table VIIIL.

TABLE VIl

RADIAL REFLECTOR DATA

Volume Fraction

Material

Dry Wet Hot
Graphite 0.963967 0.961040 0.957644
Zirconium 0012582 0.012527 0.012452
Sodium 0.0o000 0.025756 0.029338
Void 0.023451 0.000677 0.000566

Results

Sa(cm ") 0.000455 0.000582 0.000480
T 2/ 2\
L (cm ) 2000.0 1562.5 1923.1
T(cm ) 318.26 307.03 304.91
DA(cm) 0.9906 0.9908 0.9996

It is difficult to evaluate the properties of the axial reflector because of
its more complicated geometry and the lack of symmetry between the top and
bottom reflectors. What is desired is an average homogeneous reflector which
has the same effect on reactivity as have the top and bottom reflectors combined.
This will be achieved here by simply flux weighting the several materials present

in the reflector. The careful calculation of volume fractions and disadvantage
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factors and the evaluation of streaming in the sodium-filled process tubes involves
more labor than-is justified. The results which follow were obtained by making

several simplifying approximations.

The graphite, zirconium, and void-volume fractions are the same as those
obtained for the core, because each cell is simply a extension in the vertical
direction of a core cell. The effect of the zirconium and void at the top and bottom
of the hexagons was neglected because this is a low flux region. The volume of
the stainless steel hangar rods and the irregularly shaped end caps on the fuel
cluster was estimated and added to that in the thimbles. Sodium makes up the
remainder of the cell volume. A disadvantage factor for the process tube was
estimated by means of a control rod type flux calculation for the hangar rod. It

was found that the flux was depressed about 10 per cent in the process tube.

The volume fractions and relative flux in the various materials are given

— 2
in Table IX. The calculated values of 2 , L , and D, are also shown.
a

f

TABLE DC

AXIAL REFLECTOR DATA

Volume Fraction

Material 9
Dry Wet Hot

Graphite 0.86145 0.85904 0.85580 1.00
Steel in process tube 0.00284 0.00284 0.00284 0.90
Sodium in process

tube 0.00000 0.05584 0.05564 0.90
Zirconium in

process tube 0.00298 0.00297 0.00295 0.90
Void in process tube 0.05807 0.00203 0.00202 0.90
Steel in Thimbles 0.00071 0.00071 0.00071 0.945
Zirconium in can 0.01439 0.01434 0.01427 1.00
Void at cell boundary 0.05956 0.02499 0.02492 1.00
Sodium at cell

boundary 0.00000 0.03725 0.04086 1.00

Results
Dry Wet Hot

~, *

(cm *) 0.001183 0.001689 0.001335

\

.2(cm?) 840.34 579.04 740.74
T(cm ) 393.13 348.19 345.86
D”(cm) 1.0920 1.0710 1.0818
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VIl. THE TWO-GROUP PROBLEM, CRITICAL SIZE, AND FLUX

In attempting to solve the two-group, two-region boundary value problem
using the method of separation of variables in cylindrical coordinates for a re-
actor reflected axially as well as radially, one finds that the boundary conditions
at the core-reflector boundary are not satisfied by the fundamental mode solution.
Therefore, this well-known method fails in this case. However, an approximate
solution can be obtained by treating the radial problem as a cylindrical reactor
which is reflected radially but is bare on the ends, and the axial problem as a
cylindrical reactor which is reflected on the ends but is bare radially. The mater-

ial buckling is found by solving the characteristic equation,

(1+L2B2) (1+TB2) = k-

The buckling is then divided into radial and axial components

2 B 2+B 2
r z

It is desired to find the core volume which will make the reactor critical.
Since the height of the core and the height and radius of the stack are given, the
parameters to be adjusted to produce criticality are the axial buckling and the
core radius. The axial problem is solved first by assuming a value for B2Z and
finding the core height h which produces criticality. If this calculated value
of h is not equal to the actual core height, another value of B2Z is tried and the
calculation repeated. This procedure can be continued until the calculated value
of h is equal to the actual core height. The radial problem is then solved for
the critical radius of the core Rc, using the axial buckling which gave the correct

core height.

It is actually not necessary to continue the solution of the axial problem
until h is exactly equal to the core height, because if h is close to the actual
height, the critical volume of the core will be given to sufficient accuracy by
TTRch. Since the volume of a cell is known, the number of cells which must be
loaded can then be found. The thermal and fast fluxes and the adjoint functions
are next evaluated, and if h is within one or two centimeters of the actual height,

they will be given with sufficient accuracy for use in perturbation theory calculations.
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The equations used in solving the two-group, two-region problems are

given below. Subscripts 1 and 2 refer to fast and thermal neutrons respectively:
2
subscripts ¢ and o refer to core and reflector respectively, u and-V are the two

roots of the characteristic equation.

Axial flux

cf 1c ~ A cos B_ z+C cosh yz
ric z 0 <lz|<h/2
c,% = AS cos B z+CT coshyz
c c z c
c£10 = F sinh™10C™ -2)
h/2<|z|<X
~N20 = FSo sinh#10("™-z)+G sinhX,0("™-=z)
X? =KH2.,2 B2
z
*10 = & + Br
o
*20 = 72 + b2
i-J
o
_ ‘}ch 1
Tc T T Do 17T ~X 1~
c 2¢c 1/L c+ I*
T - pCDIC, 1
1/T 2 2
¢ reDye 1L -
s - P Do 1
o  TOD20 52 »2
J20"~ 10
The criticality equation is
H -h
cos B h/2 coshyh/2 -snih?iQ 2 0
H -h
D1 Cstin BZ h/2 sinhyh/2 D1010cosh”™10 2 0
H -h H -h =0
Sccos BZ h/2 coshyh/2 —SOSinhA?IO 2 -sinh”o 2
H -h H -h

D2cTcy sinhXh/2 D20720 cosh”™20 2

2CSCBZSIH BZ h/2 D20S0"?10 cosh™~10 2
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Axial adjoint functions

A*cos B~z+C~coshyz

0 <z <h/2
4>lc A*S* cos B_z+C*T™* cosh yz
c z c
H H
~li G*T*sinh<#20(™ -z) + F*sinh#1()(-jJ- -2)
h/2 <z <H /2
H o
* G*sinh”*"20( ——-z
50 ( )
>+rc/*
s* =
c Pc
1-r 1A
. c
I{\ =
v Pc
p
T 3
r W,,
Radial flux
4>/c = AJO(ar)+Clo(/gr)
0<r<R
*20 = AScJo(ar)+CTclo(/3r) ¢
~O0 = FZz~107°r
R < r <R
c - o

4520 = FSoZ(XIO,r)+GZ(Xz0,r)
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| OCR )

Z<«,r) = 10t*r)-K-(«in KoWr)
o o
1 2
,, v+ B,
'\Pz — - K-+ BZ
fi'ZO ~ 7 z
The criticality equation is
Jo(aR) 10</3r) -Z(J<10, R)
Dilca J aR) DIC/371{/3r) -DioZ"WA.R)
=0
S J (OR) T 1 (/3R) -soz(sei0,R) —-Z(Jc20,R)
c o co
-D2cScaJl(aR) DZcTc™7{BR) -D20S0Z'«10°R> -D20Z,(*20°R)

Radial adjoint functions

4>lc = A Jo(ar)+C 1o(/3r)

o<r <R
- - C

ke A x =
92c = A st<> far)+c TcIo(ﬁr)

*10 = G*Ti“Z«20"r)+F

*20 “ G Z<"§20°'r*

In calculating the axial and radial problems it must be remembered that
the properties of the outer region have different values in each case. Although

the formula for So and To are the same in both cases, their numerical values are

not.
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The critical volume was calculated for each of the three cases being con-
sidered and the number of cells required to give this volume was then determined.

The results are as follows:

f) S
1.73x10 "cm

dry V = N = 13.81
= LN
wet \"4 2.936x10*cm N = 23.48
V = 3.572x1 O~cm
hot, poisoned N = 28.03

The flux and adjoint functions were calculated for each case and normalized
to unit fast flux at the center of the reactor. Figures 5, 6, and 7 show the axial

flux and adjoint; Fig. 8, 9, and 10 show the radial flux and adjoint.

The average value of the thermal flux over the core was calculated by-
normalizing both radial and axial thermal flux to unity at the center of the core

and then evaluating the expression

& <P2cM4=>Zc(Z)2nr dr dz
7rR2h
c core

The result for the hot case is
(> = 0.647

The ratio of the peak-to-average flux along the z-axis is 1.236.

VIll. GENERATION TIME AND PERTURBATIONS FOR THE HOT-POISONED CASE

The designed reactor differs somewhat from the reactor described in
Section | of this report, so it is necessary to investigate the effect of the known
differences on the criticality calculations. This was done by means of perturba-

tion theory. The basis for these calculations is the reactivity formula

Vi | N
= "% 42 TTA~
1=1 1
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where

co = reciprocal reactor period
ft . v fraction of fission neutrons that are delayed in the i-th group
A . = decay constant of the i-th group of delayed neutrons

J? = prompt generation time
p = reactivity

9
Using two group perturbation theory, one finds that

- (i A<E14+~  8(A22)A A+ ())2S(pl1)<th
dv

—_— e \A4>£.§D2VH72

dv

core
dv
2J
=
* —2 di dVv
J¥1p zr2
core
where
c'b = adjoint flux
cp' = perturbed flux

Sq = the perturbation in the quantity q, where q represents any of the

quantities 2., k, etc.

= velocity of neutrons in the i-th group.

Other quantities have definitions previously given. The integrals in the

numerators are over the entire system--core and reflector. For the neutron

velocities we take
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where
A slowing down time in moderator
E, and E_ fission and thermal neutron energies, respectively.
8kT
v
2 Tm
m = mass of the neutron

k = the Boltzman constant

T = average moderator temperature

The flux integrals were evaluated graphically for the hot case and the prompt

generation time was found to be

= 0.50x10 * seconds

We now turn our attention to the reactivity. It is desired to find the change
in the core size which is necessary to compensate for a given perturbation and
leave the perturbed reactor in a steady state. This is done by evaluating p vs
core radius andp for each perturbation. Knowledge of the total p of all the per-

turbations then enables us to determine the required change in core radius.

The perturbations evaluated were enrichment, fuel density, and stainless -
steel cans at the edge of the reflector, the dummy fuel elements which occupy
the unloaded process tubes in reflector cells that are adjacent to the core, and
an increase of three in the number of stainless steel thimbles in the core. The
quantities]”?, D~, D”, k, and p were evaluated for each of the above pertur-

bations, using the recipes given in Sections IV and VI. Then we have

Sq = q(perturbed)-q(unperturbed)
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A description of each perturbation follows. The actual SRE fuel is of
enrichment = 0.02893 (instead of 0.02829) and density 19.03 gm/cm (instead of
18.87). The moderator cells at the outer edge of the reflector are canned in
stainless steel instead of zirconium. Several of these are incomplete cells, but
the total is equivalent to 24 complete cells. The quantities q were averaged over
a typical stainless steel-clad cell and the perturbed region is taken to be a ring
at the outer edge of the reflector whose cross sectional area equals that of 24
cells. The dummy fuel elements consist of graphite cylinders which are canned
in zirconium cans having a 2.5-inch OD and a 0.035-inch wall thickness. There
are 12 additional process tubes provided in the reflector cells which are adjacent
to the core and each of those tubes contain a dummy fuel element. The quantities
q were averaged over a cell containing the dummy element, and the perturbed
region was taken to be a ring around the unperturbed core whose cross-sectional
area equals that of 12 cells. The perturbing effect of an additional stainless-
steel thimble was obtained by adding a volume of stainless steel to the core equal
to that contained in one thimble. The perturbation in q is just q(stainless steel)
since it is assumed that core material is not displaced when the thimble is intro-
duced. The perturbed region is the volume of the stainless steel, and as a
typical example this was assumed to be located 40 centimeters from the axis

of the core.

The reactivity due to a change of core radius was obtained by taking the
perturbation to be a ring of core material around the unperturbed core whose
cross-sectional area equals that of one cell. The perturbation was in all cases
assumed to be constant over the perturbed region and zero elsewhere. The
flux integrals for the hot case were evaluated by graphical integration over each
of the perturbed regions. The reactivity due to each perturbation was calculated

in units of p /ft, which is customarily referred to as dollars. The results are

given in Table X.
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TABLE X

REACTIVITY DUE TO PERTURBATIONS

Perturbation Added Reactivity (dollars)
1. One additional core cell + 0.54
2. Enrichment increase + 0.97
3. Fuel density increase + 0.10
4. Stainless steel reflector cans - 0.04
5. 12 dummy fuel elements - 0.35
6. 3 stainless steel thimbles - 1.08
Net reactivity of 2, 3, 4, 5, and 6 - 0.40

It is therefore necessary to add 40/54 or 0.74 of a core cell to compensate for
the perturbations 2, 3, 4, 5, and 6. This gives for the final critical loading in
the hot-poisoned case 28.77 cells. This, of course, assumes no control rods

in the reactor.
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