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Abstract. This paper introduces tensor methods for solving large sparse systems of nonlin-
ear equations. Tensor methods for nonlinear equations were developed in the context of solving
small to medium-sized dense problems. They base each iteration on a quadratic model of the
nonlinear equations, where the second-order term is selected so that the model requires no more
derivative or function information per iteration than standard linear model-based methods, and
hardly more storage or arithmetic operations per iteration. Computational experiments on small
to medium-sized problems have shown tensor methods to be considerably more efficient than
standard Newton-based methods, with a particularly large advantage on singular problems. This
paper considers the extension of this approach to solve large sparse problems. The key issue
that must be considered is how ro make efficient use of sparsity in forming and solving the
tensor model problem at each iteration. Accomplishing this turns out to require an entirely new
way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether
the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an
efficient tensor method for solving large sparse systems of nonlinear equations. Test results in-
dicate that this tensor method is significantly more efficient and robust than an efficient sparse
Newton-based method. in terms of iterations, function evaluations, and execution time.
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1. Introduction

In this paper we introduce tensor methods for solving the sparse nonlinear equations problem
given F : R —R", find r. € R such that F(z.) = 0, (1.1)

where it is assumed that n is large (say, n > 100), F(z) is a least once continuously differ-
entiable, and the Jacobian matrix F'(z) € R™*™ is sparse. Large sparse systems of nonlinear
equations arise frequently in many practical applications including various network-flow prob-
lems and equations produced by finite-difference or finite-element discretizations of boundary
values problems for ordinary and partial differential equations. In many situations, F’(z.) is
ill-conditioned or singular with a small rank deficiency. This is the case where tensor methods
are especially intended to improve upon the efficiency of standard algorithms based on Newton’s
method. Tensor methods are also intended to be at least as efficient as standard methods on
problems where F'(z.) is nonsingular, and in practice they often seem to be considerably more
efficient on these problems as well.

Tensor methods for small to medium-sized dense systems of nonlinear equations were intro-
duced by Schnabel and Frank [20], and a software package implementing them is described in
(3]. The methods base each iteration on a quadratic model of F(z) that has the form

M(ze + d) = F(ze) + Flz)d + %Tcdd, (1.2)

where z, is the current iterate, and T, € R™*™*" is the tensor term at Ze. The tensor term is
selected so that the model interpolates a very small number, p, of function values from previous
iterations. This results in T, being a rank p tensor. which is crucial to the efficiency of the tensor
method. After the model (1.2) is formed. the problem

find d € R* that minimizes || M(z. + d) |2 (1.3)

is solved; that is, at each iteration of tensor methods. a minimizer of the model is used if no root
exists. Methods for forming the tensor term and solving the tensor model for dense systems
of nonlinear equations are reviewed in more detail in the next section. The tensor method
requires no more derivative or function information per iteration than Newton’s method, and
its storage requirement and arithmetic cost per iteration are not appreciably more than for
Newton’s method.

Methods based on (1.2) have been shown to have very good theoretical properties and very
good computational performance on small to medium-sized dense problems. Theoretically, the
methods converge at least as quickly as Newton's method on nonsingular problems and have
been shown to have 3-step Q-order 1.5 convergence on problems where the Jacobian has rank
n—1 at the solution, whereas Newton's method is linearly convergent with constant 1/2 on such
problems [12]. In tests reported in [3] for both nonsingular and singular problems, the tensor
method virtually never is less efficient than a standard method based upon a linear (Newton)
model, and usually is more efficient. The improvement by the tensor method over the standard
method is substantial, averaging about -19% in iterations and 41% in function evaluations when
a line search is used in each, and about 42% in iterations and 31% in function evaluations when
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the trust region is used in each. on problems solved successfully by both methods. Furthermore,
the tensor method solves a considerable number of problems that the standard method does
not, and the reverse virtually never is the case.

The preliminary success of tensor methods for small to medium-sized nonlinear equations
malkes it reasonable to consider their application to large sparse systems of nonlinear equations.
In doing so, there are several key considerations. First, tensor methods require that the Jacobian
matrix be available, either analytically or by finite differences, at each iteration. While this is not
always the case for small problems - quasi-Newton approximations to the Jacobian sometimes
being used instead — it is almost always the case in methods that are used for solving large
sparse systems of nonlinear equations. The derivatives usually come from efficient sparse finite
differences (see Section 3), from user-supplied analytic derivatives, or recently through automatic
differentiation (see, e.g., [14, 15]). So this requirement is not a problem and indeed fits this
approach well. Second, the methods for forming and solving the tensor model must make
efficient use of the sparsity of the Jacobian matrix and not involve any dense linear algebra
using n X n matrices. The existing method for forming the tensor model adapts immediately
to sparsity as is shown in Section 2. However, the most difficult and expensive part of the
tensor method is solving the quadratic model (1.2) efficiently, and the algorithms used for this
so far are entirely inappropriate for large sparse problems. These algorithms make crucial use of
orthogonal transformations of both the variable and function space, especially to deal efficiently
and stably with cases when the Jacobian matrix is singular or the tensor model has no root.
They are not applicable to sparse problems because the orthogonal transformation of the variable
space would destroy the sparsity of the Jacobian.

To deal efficiently with sparsity, we develop an entirely new way of solving the tensor model.
This approach is able to utilize a sparse variant of Gaussian elimination or any other sparse
direct solver. It includes techniques that allow the tensor model to be solved efficiently and
stably when the Jacobian matrix is singular, based on the factorization of the Jacobian matrix
augmented by a small number of dense rows and columns. It also entails ways to efficiently
calculate the Newton step, which is sometimes used in the tensor algorithm, as a by-product of
the calculation of the tensor step. '

Using these ingredients, we formulate an efficient tensor method for large sparse nonlinear
equations and apply this method to a number of test problems. We compare it with an efficient
Newton-based method for solving sparse nonlinear equations that is based upon the same sparse
linear equations software and global strategy. Our experimental results indicate that the tensor
method is significantly more robust and efficient than the standard method, in terms of iterations,
function evaluations, and execution time.

The remainder of this paper is organized as follows. In Section 2 we briefly review tensor
methods for dense nonlinear equations. and point out the issues involved in extending them
to large sparse problems. Section 3 very brielly surveys approaches for approximating sparse
finite-difference Jacobian matrices, since we use one such approach in our software. In Section
1 we first describe an efficient algorithm for solving the tensor model when the Jacobian matrix
is sparse and nonsingular. Next, we present an eflicient algorithm for solving the tensor model
when the Jacobian is sparse and rank deficient. In Section 5 we show how to efficiently solve
the standard linear model in conjunction with these algorithms for solving the tensor model,
both when the Jacobian matrix is nonsingular and when it is rank deficient. Section 6 gives a




high-level description of the complete tensor method for sparse nonlinear equations, including
the global strategy. In Section 7 we describe comparative testing for this implementation versus
the same implementation based on Newton’s method. We present summary statistics of the test
results and analysis of these results. Finally, Section 8 gives a brief summary and discussion of
future work.

2. Brief Overview of Tensor Methods for Dense Nonlinear Equations

Tensor methods are general-purpose methods intended especially for problems where the Jaco-
bian matrix at the solution is singular or ill-conditioned. Each iteration is based upon a quadratic
model (1.2) of the nonlinear function F(z). The choice of the tensor term T, € R*X™X" in this
model causes the second-order term T.dd in (1.2) to have a simple and useful form.

The tensor term is chosen to allow the model M (z. + d) to interpolate values of the function
F(z) at past iterates z_g; that is, the model satisfies

1
Flz_) = F(z:) + Fl(zc)sr + §Tc3k3k, k=1, ..p (2.1)

where
Sk = I_f — Zg k=1, ..,p

The past points z_1, ..., z_, are selected so that the set of directions {3k} from z. to the
selected points is strongly linearly independent; each direction sy is required to make an angle
of at least 45 degrees with the subspace spanned by the previously selected past directions. The
procedure for finding linearly independent directions is implemented using a modified Gram-
Schmidt algorithm, and usually results in p = 1 or 2.

After the linearly independent past directions. s, are selected, the tensor term is chosen to
be the smallest matrix that satisfies the interpolation conditions (2.1), that is,

' T, 2.2
remin . NTellr (2:2)

subject to Tyusgsy = 2 (F(z-x) — F(zc) — F'(z:)sk),
where |[T¢||r. the Frobenius norm of T is defined by

n n n

NT N = > > > (Tdi g kD> (2.3)

=1 j=1 k=1

The solution to (2.3) is the sum of p rank-one tensors whose horizontal faces are symmetric.

P
T. = Z QL SLSk, (2.4)

k=1
where ay is the k-th column of A € R"**?, A defined by A = ZM™!, Z is an (n X p) matrix

whose columns are Z; = 2 (F(z-;) — [(x:) — F'(zc)sj), and M is a (p X p) matrix defined
by M(i,j) = (s:Ts;)% 1 <4, § < p.
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Using the tensor term (2.d4), we obtain the tensor model

P
Mz, + d) = F(z;) + F'(z)d + % > ar (dsi)2 (2.3)
k=1
The simple form of the quadratic term in (2.5) is the key to being able to efficiently form, store,
and solve the tensor model. For dense problems, the cost of forming the tensor term in the tensor
model is O(n%p) < O(n*®) arithmetic operations, since p < \/n. The leading term comes from
the p matrix-vector products F'(z;)sg. The next most significant cost is the O(np?) operations
required to calculate A = ZM ™!, and the O(np?) cost of the Gram-Schmidt orthogonalization.
The additional storage required is 4p n-vectors.
Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible
that no root exists; in this case a least squares solution of the model is found instead. Thus, in
general, the problem

find d € R® that minimizes || M(z. + d) |]2 (2.6)

is solved. Schnabel and Frank [20] show that the solution to (2.6) can be reduced to the solution
of ¢ quadratic equations in p unknowns (i.e., a very small system of quadratics), plus the solution
of n — g linear equations in n — p unknowns. Here q is equal to p whenever F'(z.) is nonsingular
and usually when rank(F’(z.;)) > n — p, and g is greater than p otherwise. In the dense case,
the main steps of the algorithm used to solve (2.6) are the following:

1. An orthogonal transformation of the variable space is used to cause the n equations in »
unknowns to be linear in n — p variables, d; € R*~P, and quadratic only in the remaining
p variables, d, € RP.

2. An orthogonal transformation of the equations is used to eliminate the n — p transformed
linear variables from n—q of the equations. The result is a system of ¢ quadratic equations
in the p unknowns, ds, plus a system of n — q equations in all the variables that is linear
in the n — p unknowns, czl.

3. A nonlinear unconstrained optimization software package, UNCMIN [21], is used to min-
imize the /s norm of the ¢ quadratic equations in the p unknowns. ds. (If p = 1, this is
done analytically instead.)

4. The system of n — q linear equations that is linear in the remaining n — p unknowns is
solved for d;.

An advantage of this algorithm is that it efficiently and stably solves (2.6), whether or not the
tensor model has a root or the Jacobian is nonsingular.

In the dense case, the arithmetic cost per iteration of the above algorithm is the standard
O(n®) cost of a matrix factorization. plus an additional O(n?p) (< O(n??®)) operations for the
orthogonal transformations, plus the cost of using UNCMIN [21] in step 3 of the algorithm.
The cost of using UNCMIN is expected to be O(p*) < O(n?) operations. since each iteration
requires O(p®) operations (O(p*q) when ¢ > p) and a small multiple of p iterations generally
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suffice. Thus, the total cost of the above algorithm is the O(n3) cost of Newton’s method plus
at most an additional cost of O(n?°) arithmetic operations. The Newton step is computed
inexpensively (in O(n?p) < O(n®*®) operations) as a by-product of the tensor step solution.

An iteration of the tensor method is summarized in Algorithm 2.1 below. For more details
on tensor methods, including the global strategy used in step 5 of Algorithm 2.1, see Schnabel
and Frank [20] and Bouaricha and Schnabel [3].

Algorithm 2.1. An lteration of the Tensor Method for Dense Nonlinear Equations

Given n, current iterate x,, F(z.)
1. Calculate F'(z.), and decide whether to stop. If not:
2. Select the past points to use in the tensor model from among the \/% most recent points.

3. Calculate the second-order term of the tensor model, T, so that the tensor model interpolates
F(z) at all the points selected in Step 2.

4. Find the root of the tensor model, or its minimizer (in the I; norm) if it has no real root.

5. Select the next iterate z using either a line search global strategy or a two-dimensional trust
region method.

6. Set z. — z4, F(z.) — F(z4); go to Step 1.

Now consider applying Algorithm 2.1 to large sparse systems of nonlinear equations. The
leading costs of the tensor model formation are p Jacobian-vector products, to form F’(z.)sy;
n solutions of a dense p X p systems of linear equations with the same p x p matrix M to form
A; and a Gram-Schmidt orthogonalization of p n-vectors. Thus, as long as p is restricted to
being less than or equal to a very small integer (rather than p < \/n as for dense problems),
these costs are small for large sparse problems: the p Jacobian-vector products can be calculated
efficiently utilizing the sparsity of the Jacobian, and the remaining costs total a small multiple
of n operations. Since dense tensor methods generally choose p = 1 or 2 anyhow, even when /7
is considerably larger, the restriction on the size of p is not a problem. In fact, our test software
will be seen to use p = 1 because larger values did not improve its performance.

The procedure for solving the tensor model in the dense case, however, does not adapt to large
sparse problems. The first step of this process, the orthogonal transformation of the variable
space, is crucial to this approach and would destroy the sparsity of the Jacobian, making the
remaining steps have an O(n®) cost even if the Jacobian had been sparse. Therefore, if tensor
methods are to be applied to large sparse problems, an entirely different method for solving the
tensor model is needed. This is developed in Section 4.

3. Sparse Finite-Difference Jacobian Approximation

One of the important advances in the solution of large sparse systems of nonlinear equations
feasible has been the development of efficient techniques for approximating sparse Jacobian
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matrices by finite differences. These techniques allow the Jacobian to be approximated using
far fewer additional evaluations of F(z) than in the dense case. Since we use one such technique
in our test software, we review this approach very briefly in this section. )

For dense nonlinear equations, finite difference methods approximate each column j of the
Jacobian matrix by

F(z, + hje;) — F(z¢)

h; ’

where e; is the j-th unit vector, and h; is a small number. A typical value of h; is ¥
max{| z.(j) |, typz(7)} sign(z.(7)), where v represents the relative error in computing F(zx),
and typz(j) > O0is a typical size of z. provided by the user. A value of v equal to machine
epsilon is appropriate when F(z) is computed to full machine precision. Hence, the Jacobian
approximation for dense nonlinear equations requires n evaluations of F(z) in addition to F(z.).
For large sparse nonlinear equations, the number of evaluations of F(z) needed to estimate
the Jacobian matrix by finite differences usually can be reduced considerably. (We assume here
that the entire vector F((z) must be evaluated at once, i.e., that the cost of evaluating F(z) is
considerably less than evaluating each f;(z) separately.) The basic approach for accomplishing
this task originated with the work of Curtis. Powell, and Reid [8]. Their algorithm, the CPR
algorithm, partitions the columns of the Jacobian matrix into g sets, C1, Ca, ..., Cq, with the
property that if two columns are in the same partition, then they do not have a nonzero in the
same row. Given this partition, one can chose ¢ differencing vectors, & = Y ..o, hjej, and

evaluate F(z) ¢ times at (z. + d¥), & = 1, ..., ¢. For each nonzero row i of column j € C,
one can then approximate .J(x);; by

(3.1)

filze + d¥) = fi(ze) .
. (3.2)
hj
The choice of the partition {C}} is crucial to the efficiency of the CPR algorithm. Unfortu-
nately, there does not seem be an efficient way to obtain the guaranteed best partition, and hence
the smallest number of function evaluations. for a general sparse Jacobian matrix. Research by
Coleman and Moré [7] provided a new approach by showing that the choice of the sets in the
CPR algorithm can be viewed as a graph coloring algorithm. They showed that a coloring of the
intersection graph G(ATA) generates a column partition with the CPR property. Using this,
they often are able to improve significantly upon the heuristic used by Curtis, Powell, and Reid
and often find partitions that are within two function evaluations of the trivial lower bound on
the number of sets, which is the maximum number of nonzeros in any row. Software for their
approach is provided in [5, 6], and we have used this software in our test code.

4. Solving the Tensor Model When the Jacobian Is Sparse

As motivated in Section 2, the key challenge in developing an efficient tensor method for large
sparse systems of nonlinear equations is to construct an efficient algorithm for finding a root of
the tensor model (2.5) when the Jacobian matrix is large and sparse. That is,

Find d € R" such that

-1

BEN



N

1 p
3 > e {dTse}? =0, (4.1)
k=1

M(ze+ d) = F(z.) + F'(z)d +

where F'(z.) is large and sparse. We give such an algorithm in this section. We show that
the solution of (4.1) can be reduced to the solution of a system of p quadratic equations in p
unknowns, plus the solution of p+ 1 systems of linear equations that all involve the same matrix.
This matrix is either J(z.) if it is nonsingular and well conditioned, or J(z.) augmented by p
dense rows and columns if J(z.) is singular or ill-conditioned. We also show that our algorithm
efficiently solves the generalization of (4.1),

find d € R™ that minimizes || M(z. + d) ||2- (4.2)

The basic approach used in all these cases is illustrated by the case when the Jacobian
matrix is nonsingular and the tensor model has a root. In this case, premultiplying (4.1) by
s TJ-1,i=1,..,p, gives the p quadratic equations in the p unknowns g; = s;7d,

P
sTJTIF 4+ B + %Z (s T ap)B? = 0, i = 1, ...,p. (4.3)
k=1

(Here and in the remainder of this section, we let F' denote F(z.) and J denote F’(z.).) These
equations can be solved for 8;,i = 1,...,p, and then from (4.1) the equation

1 & 2
F+ Jd = S =
+ Jd + 3 LZ: ar B 0
0=1
can be solved for d. The entire process requires the solution of p+1 systems of linear equations in
the matrix J to compute J=!F and J~lag, k = 1...., p(or, alternatively, J"HF+130_, arB:?)
and JTs;,i = 1....,p) and the solution of the small system of quadratics (4.3).

4.1. Solving the Sparse Tensor Model When the Jacobian Is Nonsingular

The preceding paragraph indicated how to solve (4.2) efficiently when the Jacobian matrix is
nonsingular and the tensor model has a root. Now we address the more general problem of
solving (4.2) efficiently whether or not the model has a root. when the Jacobian matrix is
nonsingular. We do this by considering the equivalent minimization problem to (4.2),

min || @ M(z: + d) iz, (4.4)
de R"

where @ is an n x n orthogonal matrix that has the structure
v
Q = [ ZT ’

Ueqprxe, g =J-TSST(JTJ)-! S]‘%, S an (n X p) matrix
whose columns are s;,i=1,...,p

with
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Z & R7*("—P) is an orthonormal basis for the orthogonal complement
of the subspace spanned by the columns of J~TS.

Note that ZTJ-T§ = 0. If we define W = [ST(JTJ)1S], B = §Td, and
WB)= STIUF 4§+ 35TITNAR,

where 32 denotes the vector in R? whose i-th component is (;)?, then

QM(ze+ d) = {ZTLM-(ZZU? 2 ] (4.3)

The following lemma is the key to showing that (4.4) can be solved efficiently through (4.5).

Lemma 4.1. For any 3 € R?, there exists a d € & such that ZTM(z.+d) = 0 and 5Td = 8.
Proof. Let

d= (JTHsw-ig + J1Z g, (4.6)

where ¢ is arbitrary vector € R"~?. Then
STd= STJT))ytsw'g + sTy1z¢ = B,
from the definitions of W and Z, and
ZTM(ze+ d) = ZTF + ZTJ(JTNH-1SW13 + J-1Z ¢ + 32T Ap?

=ZTF + t + 127A3%

Thus the choice
= -Z7[F + %A,Bz]

in (4.6) yields a value of d for which ZTM(z; +d) = 0 and STd = 3 are both satisfied.O0

Since for any J, we are able to find a step d such that ZT)(z. + d) = 0 and STd = 3,
Lemma .1 and (4.5) show that problem (4.4) can be reduced to the minimization problem in p
variables

I -
min || W™2q(8) [l2- (4.7)

Furthermore, once the value of 8 that solves (+.7) is determined, we can obtain the solution d
to (4.4) efficiently as follows. From (4.5) and Lemma 4.1, d. must satisfy

0

M(z.+ d) = QT[ W"ffz(ﬂ)}
= UW™Z¢(B).
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From this equation and the definition of U we have
F4 Jd. + %A,s? = JTsw1¢(pB)
and, hence,
de= —JUF + 2AF = TTSW ()] (438)

Therefore, once we know 3, we simply calculate the value of g( ) and substitute these two values
into Equation (4.8) to obtain the value of d..
Now we can give the implementation that we use to solve (4.2).

Algorithm 4.2. Solving the Sparse Tensor Model When J Is Nonsingular

Let J € R™"*" be sparse, F € R*, §, A € R"*P.

1. Form the g(83) equations (4.5) by calculating J-TS as follows: factor J and solve JTy; =
s_,-,j = 1, ey P

2. Form the positive definite matrix IV € RP*?, where W;; = [s:T(JTT) s3], 1< 4,5 < p, as
follows: Wij = (J=Ts)T(J-Ts;) = yiTy;.

3, Perform a Cholesky decomposition of 1V (i.e. W = LLT) resulting in L € RP*?, a lower
triangular matrix. :

4, Use UNCMIN ([21]), an unconstrained minimization software package, to solve
. -1 2
min |1 L7 (Bl (4.9)

or solve (4.9) in closed form if p = 1.

5. Substitute the values of 3 and q(3) into
d = -JYF + %.4,32 - J7Tsw1¢(3)) (4.10)

to obtain the tensor step d; this involves one additional solve, since the factorization of .J is
already calculated.

The total cost of this process is the factorization of the sparse matrix J, p+ 1 backsolves
using this factorization. the unconstrained minimization of a function of p variables, and some
lower-order (O(n)) costs.

4.2. Solving the Sparse Tensor Model When the Jacobian Is Rank Deficient

In this section we show that if the Jacobian matrix is rank deficient, we can solve the tensor
model by building upon the process just described. The basis for our approach is to transform
the tensor model given in (4.1) as follows. Let d = d + §and B = ST d for some fixed step
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d, where § is the new unknown. (We comment on the choice of d later.) Substituting d + 6 for
d into the tensor model (4.1) yields the following model, which becomes a function of é:

- 1 -
M(ze +6) = Flze) + J(z)(d+6) + 5.4{ST(d + 8)}2. (4.11)
This is equivalent to
M(ze+ 8) = Fzo) + J(z)d + %A{ST d}? + J(2:)6 + AD;ST6 + ;:A{ST 8}?, (4.12)

where D5 = diaq(,@). If we let F(xc) = F(:z:c)+J(:cc)J+-;-A{STJ}2, and J(z.) = J(a:c)+ADﬁ-ST,
and recall that d and 8 are constants, then (4.12) is the modified tensor model

M (2o + 6) = Flze) + F(ze)6 + %A{sTa}% (4.13)

The advantage of this transformation is that, as is shown below, the matrix J is very likely to
be nonsingular if rank(J) > n—p. If so, we can solve (-.2) by applying the techniques of Section
4.1 to minimize ||M(z. + 6)||. A necessary and sufficient condition for J to be nonsingular is
given in Lemma +.3. (Presumably this lemma is widely known, but since its proof is so simple
and introduces an augmented matrix that is used in our subsequent algorithm development, we
give it here.) We use A to stand for ADj;. Following Lemma 4.3 we present several results that
give more insight into the conditions under which J + AST is nonsingular.

The apparent disadvantage of the transformed problem (4.13) is that the matrix J is dense.
But since .J is the sum of a sparse matrix and a very low rank matrix, we can solve linear
systems involving J nearly as efficiently as systems involving J. We review how this is done
shortly following Lemma 4.6.

Lemma 4.3. Let J € 7%, 1, § € R**?, Then J + AST is nonsingular if and only if

is nonsingular.
Proof. We prove that there exists v € ™, v # 0, for which (J + ASTyy = 0, if and only if there
exist 7 € ™, w € R, for which

L
e
5}
o
<
o

(4.14)

I
“th
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Suppose first that (J + AST)v = 0,v # 0. Then for o = v,w = 5Ty, (3,w) satisfies (4.14).
Conversely, if there exists (3, w) satisfying (4.14), then $T5 = w, so (J + AST)s = 0. Also
o # 0; otherwise, w = 0 too, which contradicts (4.14). Thus (J + AST) is nonsingular if and
only if M is nonsingular. O

Corollary 4.4. Let J € ®"*» § € ®*. If (J + AST) is nonsingular, then [ J A ] and

JT s ] have full row rank.
Proof. Follows from Lemma 4.3. O

Lemma 4.5. Let J € %", rank(J) = n —p, § € R**?. Then (J + AST) is nonsingular if and
onlyif [ J A]and [ J7 S | have full row rank.
Proof. The only if part follows from Corollary 4.4. Now assume [ J A ] and [ JT § ] have

full row rank. Since J hasrank n—p, J = Jng' , where Jy,J2 € Rrx(n—2) have full column rank.
Since [ J A ] has full row rank,

(vTJ = 0and vTd = 0) = v = 0. (4.15)
Now from J = J1JoT and the fact that J; has full column rank, (4.15) is equivalent to

(vTJ1= 0and vTA = 0) = v = 0.

Thus the n X n matrix [ Jp A ] is nonsingular. Analogously, the n X » matrix [ Jo S ] is
nonsingular. Therefore

[ A [

T - -
éT] =T + AST = J + AST

is nonsingular. O

If rank(.J) + rank(AST) > n, then it is possible that [ J A ] and [ J ST ] have full
I, =

rank, but J + AS7 is singular. For example, consider p= 1,J = A —e;,and S = e

e; the i-th unit vector. Then
— , (4.16)

although [ J A ] and [ JT 5 ] have full row rank. Lemma 4.6 gives a slightly stronger

condition that guarantees (J + AST) is nonsingular. Let C{G} and R{G} denote the subspaces
spanned by the columns and rows of the matrix G, respectively.
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Lemma 4.6. Let J € R™*™ be rank deficient, 4, § € R™*P, and [ J A] and [ JI § ]

have full row rank. If C{J} N C{A} = 0 and A has full column rank, or B{J} N R{ST} = 0
and § has full column rank. then (J 4+ AS7T) is nonsingular.
Proof. Note that

C{J/}n C{A} =0 = (Jv+ dw =0 & Jv = O0and Aw = 0).
Thus
Ju+ Aw = 0 = Jv = 0andw = 0,

since A has full column rank. Hence,
(J+ ASTYw = 0, v # 0 = Jv = 0and A(STv) = 0 = Jv = Oand §Tv = 0, (4.17)

which contradicts the hypothesis that [ JI S ] has full row rank. An analogous proof holds
for the case when R{J} N R{ST} = 0 and S has full column rank. O

Since the values in S and A are not functions of the values in J, and S always has full column
rank, it is very likely that the conditions of Lemma 4.6 will be satisfied at any iterate where J
is singular but has rank at least » — p. Thus in practice, J is very likely to be nonsingular if
rank(J) > n —p.

Now we can give an efficient algorithm for solving the tensor model when J is singular.
Conceptually, we apply Algorithm 4.2 to (4.13) to obtain the value of §. Then we obtain the
tensor step by adding the value of § to the fixed step d.

However, since / = J + AD},;.S'T is a dense matrix, we use an augmented matrix approach
involving the matrix W defined in Lemma 4.3 to solve the required linear systems involving J.
That is, we write (J + .—1D,§ST) x = bas

J AD; || = b
= : (4.18)
ST —I w 0

Since .J is sparse. the (n + p) x (n + p) matrix in (4.13) is sparse except for its last p rows and
columns. and can be factored efficiently as long as the last p rows and columns are not selected
as pivots until the last several iterations. In fact. we can combine the nonsingular and singular
cases by beginning with factoring .J, but shifting to a factorization of the augmented matrix if J
is discovered during the factorization to be singular or ill-conditioned. An implementation using
this approach and a sparse matrix solver is discussed in Section 6. Since pis very small (p =1
in our tests), the factorization of the augmented matrix costs hardly more than factoring J.

A remaining consideration is the choice of d in the linear transformation of the variables that
underlies this approach. The goal is for (J + AD QS'T) to be nonsingular and well-conditioned.

Basically, almost any nonzero d is equally likely to accomplish this, as long as its scale does
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not lead to scaling problems. In our implementation we set d to the step taken in the previous
iteration, simply because it has the right scale.

Finally, we must address the case when J (or equivalently, the augmented matrix in (4.18))
still is singular. We have found that this case is very rare in practice, and so we have not
developed a procedure for solving the tensor model in this case. Rather, our code will use the
singular Newton step described in Section 5 as the step direction for the current iteration if the
factorization of the augmented matrix in (4.18) reveals that this matrix is singular.

An implementation of the algorithm that we use to solve the tensor model when the Jacobian
is rank deficient, as well as when it is nonsingular, is given in Algorithm 4.7.

Algorithm 4.7. Solving the Sparse Tensor Model

Let J € R**™ be sparse, A, § € R**?.

1. Form the matrix ADj, where d is the step computed in the previous iteration, B = STd, and
D= diag(/;). Then construct the augmented matrix M € Rr+p)x(n+7) a5 follows:

M = . (4.19)

2. Begin the factorization of M, pivoting in rows and columns n + 1,....,n+p only if J is
(numerically) singular. If .J is nonsingular, perform Algorithm 4.2 on the tensor model (4.1).

3. If J is singular but M is nonsingular, then perform Algorithm 4.2 on the tensor model M (z.+
§) = F(z)+J(z)6 + LA{STS}?, where F(zc) = F(zc)+J(zc)d+ 14{57d}? and J(z.) =
J(J:c)+AD35T, and any required value of the form z = J=1borz = J-This found by solving
the augmented system (4.18) or the analogous transposed system for z. Then set d = d + 6.

4. If M is singular, use the singular Newton step calculated in Section 5 instead of the tensor
step.

The arithmetic cost per iteration of Algorithm .7 is the cost of a sparse madtrix factorization
of the Jacobian J or the augmented matrix 1/, plus the same costs discussed following Algorithm
4.2: p+ 1 back solves, plus the O(p') cost of using UNCMIN [21] for solving the g(3) equations
if p > 1, plus some O(n) costs. Thus the main additional cost in relation to Newton’s method
again is p additional forward and back solves per iteration.

5. Solving the Newton Model Along with the Sparse Tensor Model

As in the dense case [20, 3], the global strategy that is used in our tensor method for sparse
nonlinear equations sometimes utilizes the Newton step rather than the tensor step (see Section
6). In the dense case, the Newton step can be computed inexpensively as a by-product of
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computing the tensor step. In this section. we show that this computation can also be done in
the large sparse case.

If the Jacobian matrix J is nonsingular, then the calculation of the tensor step described
above produces a sparse LU factorization of J. In this case, the Newton step is simply found
by performing one additional pair of triangular solves to solve the system

Jd = - F. (5.1)

That is, since
J= ATLUPRT, (5.2)

where L € R™*™ is unit lower triangular, U € R™*" is upper triangular, and P, and P, are row’
and column permutation matrices, we first solve

Ly= ¢ (5.3)
for y, where y= U P,Td and ¢ = — P F. Then we solve
Uz=y (5.4)

for z, where z = P;Td. Finally d = P, z. Our algorithm uses the MA28 package [11] to
perform the sparse matrix factorization and triangular solves.

Otherwise the matrix J is singular, so (5.1) has either zero or an infinite number of solutions.
Therefore, we would like to solve the least squares problem

ig, I| Jd + F {|2- (5.3)

The method that we use to solve the problem (5.3) is an extension of the method of Peters and
Wilkinson [19] that was suggested by Bjorck and Duff [1]. This approach usually produces a
better solution to (5.5) than the one obtained using the MA28 package. which sets the last r
components of the solution = in (5.4) to 0. where r is the rank deficiency of J. In particular,
on problems where singular or very nearly singular Jacobians are encountered, Newton-based
methods using the step produced by the Bjorck and Duff method usually require fewer iterations
than those using the step produced by MA28. The remainder of this section reviews the method
of Bjorck and Duff.

The first step in the method of Bjorck and Duff [1] is to compute an LU factorization of the
Jacobian matrix .J, using Gaussian elimination with both row and column interchanges. This is
equivalent to multiplying a permutation of J from the left by the product. G. of a sequence of
elementary elimination matrices, to obtain

G’Pl-fpg = ( g ) . (5.6)

where P,, P, are permutation matrices. and 7 is an r X n upper trapezoidal matrix with
r = rank(J). If we apply the same transformations to the right-hand side b = —F, we

obtain
G'P1b= (z), (

O
-4
~—
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wherec € R"and e € R
If we look at this in terms of an LU decomposition of J,

PJP, = LU, (5.8)

with L a unit lower trapezoidal n X r matrix, then we have

Pb= Lc + (2) (5.9)
Now if d, is any solution of the system
UPTd = ¢, (5.10)

the residual norm corresponding to it is given by

1Jds — bllz = || P(Jds = b)|l2 = || Le = Le - (2) 2 = 1l el (5.11)

Thus, if ||e |2 < € (¢ some suitable tolerance), then ds is a solution to (5.5) with a slightly
perturbed right-hand side b, and we can immediately accept d, as the solution to our problem
at the cost of a simple forward elimination (5.7) and back substitution (5.10).

However, if ||e ||z is larger, we would like to solve the least squares problem using our initial
decomposition (5.6) and (5.7). For an arbitrary d we have that

e

P(Jd— b) = LUPTd — Le — (0)

0 R
—L.:. - (e>, (0.12)

where
UPTd= ¢ + = (5.13)

Therefore, d is a least squares solution of (5.3) if it satisfies (5.13), where z is the solution of

minimize || Lz — ( 2 ) [{2- (5.14)

This least squares problem can be solved using the n+r X n +71 augmented system matrix

= , (5.15)

16

.- - <
e ————— - ————

DI £ 4N



followed by the solution of (5.13) for d. Here p is the residual of (5.14). We use the augmented
system approach because it is an efficient method in terms of preservation of sparsity and
accuracy.

Hence, if || e ||z is larger than €, then d is the solution to (5.5) at the cost of one forward
solve (5.7), one back solve (5.10), an LU factorization of the augmented matrix (5.15) followed
by one forward and one backward solve using the resulting factors, and a back solve (5.13).

An advantage of Bjorck and Duff’s method is that (5.14) is used only to compute a correc-
tion to the equations (5.13). Hence, for problems with small residuals, this method should be
reasonably stable, since any ill-conditioning in L will affect only the correction z. Also, L is less
likely than U to be ill-conditioned. Furthermore, since

(JTJd= —JTF) = dTJTF = -dTJTJd < 0, (5.16)

the solution d to (5.5) is a descent direction unless Jd = 0, which would imply that JITF = 0.
Hence d is 2 descent direction unless we are at a root of F(z) or a critical point of ||F(z) ||2°.
The step produced by MA28 when J is singular does not necessarily have this property.

6. Implementation of Tensor Methods for Sparse Nonlinear Equations

This section gives a complete high-level description of an iteration of the sparse tensor method
for nonlinear equations that is used in our computational tests. This includes some more details
about the sparse matrix factorization than were given in preceding sections, and a description
of the global strategy. We present test results for this implementation in Section 7.

As stated previously, the sparse linear equation solutions in our implementation use the
MA28 package [11], a widely used package for solving large, sparse, unsymmetric systems of
linear equations. Also, as mentioned previously, the implementation reported here uses only one
past iterate at each iteration to form the tensor term T¢, i.e. p=1. We use only one past point
because our tests indicated that no further improvements were obtained by allowing a larger
number of past points. In addition, using p = 1 reduces the storage requirement and cost per
iteration of the tensor method, and allows the tensor model to be solved in closed form and
without using an unconstrained optimization package. The entire additional cost of an iteration
of the tensor method with p = 1.in comparison with Newton’s method, is essentially one sparse
matrix vector multiplication of F’(z,.) times a vector to form the tensor model, one additional
npper and lower triangular solve to solve the tensor model. and sometimes a second additional
pair of triangular solves to calculate the Newton step. Some parts of Algorithm 6.1 are still
stated in terms of arbitrary p, for generality.

The global strategy that is used in our implementation is a standard line search. In [3}. both
line search and two-dimensional trust region strategies were used in tensor methods for small,
dense systems of nonlinear equations. In the tests in that paper. both methods appeared to be
equally robust, with the trust region method possibly having a small advantage in efficiency.
We have used the line search in the sparse code, however. because of its greater simplicity
and because the two-dimensional trust region method requires two additional matrix-vector
multiplications involving the Jacobian matrix.

The line search strategy that we use is identical to that developed and used in [20] and
[3], so we review it only very brielly here. If the full tensor step provides sufficient decrease
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in ||F(z)||, it is taken. Otherwise, line searches usually are conducted in both the tensor and
Newton directions, resulting in two possible next iterates, and the point with the lower function
value is chosen as the next iterate. (The extra cost of this dual line search strategy, usually one
function evaluation per iteration, has proven empirically to be justified by the decrease in the
number of iterations required.) However, if the tensor step is not a descent direction, or in the
very rare case when the Jacobian matrix and the augmented matrix M are both singular and
no tensor step is calculated, the line search is based solely upon the Newton direction.

Algorithm 6.1. An lteration of the Tensor Method for Sparse Nonlinear Equations

Given current iterate z., F(z;)
1. Calculate J = F’(z.) and decide whether to stop. If not:

2. Form the second-order term of the tensor model, T¢, so that the tensor model interpolates
F(z) at the most recent past point (i.e., p = 1).

3. Factorize J using the MA28 software package [11].

4. If J has full rank, then perform Algorithm 4.2 on the tensor model M (z.+d) = F(z.)+Jd+
%Zi’.:l ar(dTst)?, to compute the tensor step d; and go to Step 6. Else:

4.1. Augment J by adding p rows and columns as follows (in this implementation, p = 1). In
general, column k of A = ay, column k of S = s, and D; = diag(de), where d is the
step computed in the previous iteration.

M= (6.1)

4.2. Complete the factorization of the augmented matrix M as follows. Let r denote the rank

of .J.

4.2.1. Update the lower left rectangular p x r submatrix, and the upper right rectangular
T X p submatrix of the augmented matrix (6.1), using the multipliers stored in the L
factor of the LU factorization of .J.

4.2.2. Factor the lower right square (n — r 4 p) X (n — r 4+ p) submatrix of the augmented
matrix (6.1) using the MA28 software package [11].

4.2.3. Update the factorization of the entire augmented matrix (6.1) by combining the LU
factorization of the submatrix in Step 4.2.2, the updated submatrices in Step 4.2.1,
and the LU factorization of J into one LU factorization of the augmented matrix

(6.1).

5. If .J was singular but the augmented matrix M has full rank, then perform Algorithm 4.2 on the
tensor model M(z.+6) = F(z.)+J6+ %.»'l{ST&}Z, where F(z.) = F(z.)+Jd+ %A{STd}z,
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J=J+ ADBST, and d is the step computed in the previous iteration, to compute the step

8. (Any required value of the form z = J™1b or J=Tb in Algorithm 4.2 is formed using the

augmented system M.) Then set d; = d + § and go to Step 6. Else:

5.1. Calculate the Newton step d,, from the LU factorization of J by the Bjorck and Duff [1]
method to find some solution to mingepn |[Jd + Fl|2.

5.2. Select the next iterate 24 using line search Algorithm 6.2 outlined below, where d,, is the
search direction, and go to Step 7.

6. Select the next iterate z.. using a line search global strategy as follows:

6.1. If x. + d; is acceptable, then set . = z. + d; and go to Step 7. Else:

6.2. Calculate the Newton step d, from the LU factorization of J (or as in Step 5.1 if J is
singular). Then calculate 27 = 2. + Ad,, for some A > 0, using Algorithm 6.2.

6.3. If the tensor step is a descent direction, then calculate xf*_ = 2, + Ad; for some A > 0,
using Algorithm 6.2.

6.4. If ||[F(zi)l2 > || F(2% )2, then 2y — 2%, else 4y — z7%.
7. Set z; — x4, F(x.) — F(z4+). Go to Step 1.

Algorithm 6.2, Standard Quadratic Backtracking Line Search

Given z., search direction d, g = J(z.)T F(z.), and o = 10~*

slope := gTd

f = HIF(z)ll
A:=10

Ip =2+ Ad

fo := 5lIF(zp)ll2*
While f, > fc 4+ a- A- slope do
Atemp 1= —A- slope [(2[f, — f: — A- slope])
A :=max{Atemp, A/10}
Ty =2+ Ad
5
fo = 3l F(zp)ll2°
EndWhile

The sparse tensor code (and the Newton code) terminates successfully if the relative size of
(z4—xc)is less than machep.s%, or || F(z 4+ )}|co is less than macheps%; it terminates unsuccessfully
if the iteration limit is exceeded. If the last global step fails to locate a point lower t:ha.nlrz:c in
the line search global strategy, or the relative size of J(z4)¥ F(z4) is less than machepss, the
method stops and reports this condition; this may indicate either success or failure.
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7. Test Results

This section describes the comparative testing of the sparse tensor method from Section 6 with
an analogous implementation based upon a linear model (Newton’s method). The Newton’s
method algorithm is identical to the tensor Algorithm 6.1 except that the tensor model is never
formed or solved, and the next iterate z4 is calculated from a line search based solely on the
Newton search direction d,,. That is, it uses steps 1, 3, 6.2/5.1, and 7 of Algorithm 6.1. As in
Algorithm 6.1, the Jacobian matrix is factored at each iteration using the M A28 package, and
if the Jacobian is singular, the search direction is calculated by the method of Bjorck and Duff.
We tested these algorithms on a variety of nonsingular and singular problems. First we
tested them on three sparse problems provided to us from Boeing Computer Services and used
as test problems in [13]. These problems are described as follows:
1. LTS : This problem discretizes the differential equations for the Linear Tangent Steering
problem in Bryson and Ho [4]. This is the search problem formulation where the adjoint differ-
ential equations are also discretized and an optimality condition is imposed.
2. GRST : This problem discretizes the differential equations for a coast about a spherical earth.
The problem is initialized on the equator in an orbit with inclination of 1.0 radians. A search
problem is obtained by requiring that the vehicle be at a given latitude at the final time. There
are two solutions for every desired final latitude that is less than the inclination in absolute value.
There is a single solution if the final latitude is required to be greater than the inclination.
3. LGNDR : The recurrence relation for the Legendre polynomials is used to generate a sparse
system of nonlinear equations equivalent to finding the value of z at which the n-th Legendre
degree polynomial is equal to 1.

We then tested our methods on a system of sparse trigonometric equations from [18] that
have the form

n n
Z(a,-j sin z; + by cos x;) + ZC,‘j z; = dj, ¢ = 1,2, .., n, (7.1)
=1 Jj=1

where the matrices {a;;} and {b;;} have the same sparsity pattern as one another, including
nonzeros on the diagonal, and {¢;;} has a different sparsity pattern. Each matrix is a band
matrix consisting of a main diagonal and zero, one. or two superdiagonals and subdiagonals that
are each distance two apart. The nonzero values are generated randomly in [0, 1]. The solution
components are generated randomly in [0, 1], and the right-hand side vector d is calculated from
the solution. For the starting iterate we randomly perturb the components of the solution by
adding or subtracting 0.1 from each.

We also ran our methods on some sparse nonlinear equations problems in Moré, Garbow,
and Hillstrom [17], namely, the Broyden banded, the Broyden tridiagonal, and the variable-
dimension test problems, and on the distillation column test problem from [16].

These problems all have nonsingular Jacobians at the solution. Then we created singular test
problems as proposed in Schnabel and Frank {20] by modifying these nonsingular test problems
to the form

F(z)= F(z) = F'(zl) AATAAT (2 - z.), (7.2)
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where F(z) is the standard nonsingular test function, z. is its root, and 4 € R™%¥ has full col-
umn rank with 1 < k& < n. Note that F(z) also has a root at z. and rank(F' (z«)) = n — rank(Ad).
We used (7.2) to create two sets of sparse singular problems, with F'(z.) having rank n — 1
and n — 2, respectively, by using the matrices A € R**! and R**? whose columns are the unit
vectors e;, and {ej, ez}, respectively. Note that these changes do not affect the sparsity pattern
of the Jacobian, except possibly for the first and second diagonal elements.

The dimensions of the test problems we ran ranged from n = 31 ton = 324, with six of
the nine problems we used having dimension 300 or greater. For each test problem, we used
several different starting guesses, generated by

£0= zo + const (zg — Zx), (7.3)

where const is an real number indicating how far the initial guess is from the solution, and z.
is the solution resulting from running the problem with initial guess zo. All our computations
were performed on a Sun SPARCstation 2 computer in the Computer Science Department at
the University of Colorado at Boulder, using double-precision arithmetic.

Tables 7.1 through 7.9 summarize the performance of the sparse tensor and sparse New-
ton methods on the test problems described above. Each table presents the test results for a
nonsingular test problem and for its rank » ~ 1 and rank n — 2 singular versions. Columns
“Better” and “VWorse” represent the number of times the tensor method was better and worse,
respectively, than the Newton’s method by more than one iteration, over all the starting points
for the problem under consideration. The “Tie” column represents the number of times the
tensor and Newton methods required within one iteration of each other. The columns labeled
“Average Ratio” measure the efficiency of the tensor method against the Newton’s method; for
example, if the test set contained two problems for which the tensor method required 3 and
5 iterations, respectively, and the Newton’s method 7 and 9 iterations, respectively, then the
average ratio would be —‘_*]—_—59 0.50. The same measure is used for execution times and func-
tion evaluations. These average ratios include only problems that were successfully solved by
both methods. Problems that were solved by only one method are included in the “Better” and
“Worse” columns. however, and the numbers of such problems are discussed below. We have
excluded entirely from Tables 7.1-7.9 all cases where the tensor and Newton methods converge
to different roots. or to the same root but not the singular root z. for a singular problem.

Table 7.10 presents the average iteration, execution time, and function evaluation ratios of
the tensor method versus Newton's method for all of the rank n. n — 1. and n — 2 problems
that are included in the average ratio statistics in Tables 7.1-7.9. The one exception is that we
exclude the rank n — 2 versions of the Legendre problem (Table 7.3) from the last line in Table
7.10 because in almost all cases, the tensor and Newton methods converge to a different root.
For the three cases where the rwo methods converged to the same root, the tensor method was
dramatically more efficient than the Newton method. These results are so different from any of
the others that it seemed best to eliminate them from the summary statistics. Their inclusion
would change the numbers in the last line of Table 7.10 to 0.43, 0.51, and 0.43.

On the basis of Tables 7.1 through 7.10, the following observations can be made. The tensor
method virtually never is less efficient than Newton’s method and usually is more efficient
in terms of iterations, function evaluations. and execution times. The improvement by the
tonsor method over Newton’s method is substantial, averaging about 50% in iterations, 40%
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in execution times, and 30% in function evaluations, if all problems are considered. For all
the nonsingular problems, the improvement averages 0% in iterations, 28% in execution times,
and 41% in function evaluations. For problems where F’(z.) has a small rank deficiency, the
improvement is greater. It averages 56% in iterations, 45% in execution times, and 46% in
function evaluations for rank n — 1 problems, and 52% in iterations, 45% in execution times,
and 52% in function evaluations for rank n—2 problems. In the case of the rank n — 1 problems,
this advantage is due in part to the tensor method achieving 3 step Q-order % convergence
whereas the Newton’s method is linearly convergent ([12]).

The tensor method also has a substantial advantage in robustness in comparison to Newton’s
method on this test set. Over all the test problems, 12 nonsingular problems, 11 rank n — 1
problems, and 12 rank n — 2 problems were solved by the tensor and not by the Newton’s
method. On the other hand, there were no problems that were solved by Newton’s method and
not by the tensor method.

Another important observation that can be made on the basis of Table 7.10 is that the average
improvement of the tensor method over the Newton’s method in execution times is about 10%
smaller than in iterations. This is primarily because a tensor iteration requires at least one
more pair of triangular solves than a Newton iteration (two more if both the tensor and Newton
directions are calculated), and one additional matrix vector multiplication. The increased cost
per iteration ranges from 12% on problems with relatively expensive function evaluations, like
the LTS problem. to 57% on problems with very sparse Jacobians and inexpensive function
evaluations, like the Broyden tridiagonal problem. (Note that one exception is the rank n
and n — 2 problems in Table 7.4. Here. the average execution time improvement is about 5%
more than the average iteration improvement. This is because the Newton’s method line search
requires many nonunit steps on this problem, as is clearly indicated by the large improvement in
function evaluations, and because function evaluations are expensive for the trigonometric test
problem.)

We examined our test results to obtain an experimental indication of the local convergence
behavior of the tensor method and Newton’s method on problems where rank(F'(z.)) = n—1.
Specifically, we examined the sequence of ratios

ll2* — 2 [/ 11257 — |l (74)

produced by the Newton and tensor methods on problems with rank(F'(z.)) = » — L The
ratios for a typical problem are given in Table 7.11. In almost all cases the standard method
exhibits local linear convergence with constant near 0.5, which is consistent with the theoretical
analysis (see, e.g., [9. 10]). The local convergence rate of the tensor method is faster, with a
typical final ratio of around 0.01. This final ratio might be smaller if analytic Jacobians were
used in combination with tighter stopping tolerances. As is anticipated in [12], the convergence
usually seems to be one-step superlinear, although only a three-step Q- order 2 S result can be
proven.

Finally. we also tried, on most of the test problems, a variant of the tensor method that
allows up to two past points to be used in the tensor model. There was almost no difference
in terms of number of iterations or function evaluations. There was, however, an increase in
execution time by approximately 10% to 20% when we allow two past points. This is due in
part to the extra pair of triangular solves required per tensor iteration.
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Overall, the size and consistency of the efficiency gains indicate that the tensor method may
be preferable to the linear model based method for solving large sparse systems of nonlinear
equations. The tensor method seems to obtain a surprisingly large improvement from a compar-
atively small amount of additional information. In particular, the tensor method using only one
past point seems to be more efficient than the tensor method using more than one past point
from the viewpoints of execution time and storage.

8. Summary and Future Work

We have developed and tested an efficient tensor method for solving large sparse 'systems of
nonlinear equations. The method, like previous tensor methods for nonlinear equations, is
based upon using a second-order model of the nonlinear equations at each iteration. The tensor
model is formed in the same way as in the previous tensor method research for small, dense
nonlinear equations ([20, 3]), as this approach still is efficient for large sparse problems. The
solution of the tensor model, however, utilizes an entirely new approach. By using this new
approach, we are able to make the main step of the tensor model solution procedure be a
(sparse) factorization of the Jacobian matrix, which can be performed efficiently. In contrast,
previous approaches for solving the tensor model required orthogonal transformations to the
Jacobian matrix, which would destroy its sparsity, before performing a matrix factorization.
In cases when the Jacobian matrix is rank deficient, the matrix that is factored in the new
approach is the Jacobian augmented by a few dense rows and columns. Again, this is efficient
for large, sparse problems. The approach also allows a minimizer of the tensor model to be
found efficiently if no root exists.

In computational comparisons using an analogous code based on Newton’s method, the
tensor method is significantly more efficient in terms of iterations, function evaluations, and
execution times. The advantages of the tensor method are greater on singular problems than on
nonsingular problems, but are large in both cases. averaging about 30% to 40% for nonsingular
problems and about 45% to 55% for problem with small rank deficiencies. The tensor method
code also solves considerably more problems successfully than the Newton’s method code. The
most effective tensor method uses a rank-one second-order term, in which the tensor model
interpolates the function value at just the previous iterate. The additional storage and arithmetic
cost per iteration needed to use this tensor model are particularly small.

We are continuing to refine and test the software corresponding to the methods described in
this paper, and plan to make it generally available in the near future. We have also developed
tensor methods for solving large, sparse nonlinear least squares problems. The issues involved
are considerably different because of the different large sparse linear algebraic computations
that are required. This work is described in [2] and in a forthcoming paper. Finally, research
is ongoing in developing variants of tensor methods for solving very large systems of nonlinear
equations that are based on iterative linear solvers such as Krylov subspace methods.
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Table 1: Summary for the LTS Problem

Dimension | Rank Tensor Average Ratio—-Tensor/Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
313 n 12 2 3 0.78 0.90 0.84
n—1 11 0 0 0.55 0.67 0.60
n—2 7 0 0 0.62 0.68 0.65
Table 2: Summary for the GRST Problem
Dimension | Rank Tensor Average Ratio~Tensor/Newton
n F'(z,) | Better | Worse { Tie | Iteration | Time Feval
324 n 2 0 5 0.52 0.63 0.52
n—1 14 0 0 0.48 0.57 0.51
n—2 14 0 1 0.46 0.53 0.43
Table 3: Summary for the LGNDR Problem
Dimension | Rank Tensor Average Ratio—Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time " Feval
30 n 13 0 0 0.86 1.02 0.86
n—1 7 0 1 0.45 0.87 0.51
n—2 3 0 0 0.10 0.15 0.10

Table 4: Summary for the TRIGONOMETRIC Problem

Dimension { Rank Tensor Average Ratio—Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 n 4 1 2 0.0 0.35 0.21
n—1 5 0 1 0.7 0.47 0.31
n—2 8 0 0 0.42 0.38 0.26
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Table 5: Summary for the BROYDEN BANDED Problem

Dimension | Rank Tensor Average Ratio—-Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 n 11 0 0 0.81 0.95 0.83
n—1 11 0 0 0.69 0.81 0.69
n—2 11 0 0 0.66 0.77 0.64

Table 6: Summary for the BROYDEN TRIDIAGONAL Problem

Dimension | Rank Tensor Average Ratio—Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 n 11 0 0 0.30 0.8 0.35
n~—1 11 0 0 0.23 0.36 0.27
n—2 11 0 0 0.31 0.47 0.50

Table 7: Summary for the VARIABLE DIMENSION Problem

Dimension | Rank Tensor Average Ratio—Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
300 n 11 0 0 0.36 0.39 0.38
n—-1 11 0 0 0.38 0.40 0.39
n—2 10 0 0 0.34 0.36 0.35

Table $: Summary for the DISTILLATION COLUMN Problem (31 Variables)

Dimension | Rank Tensor Average Ratio—Tensor /Newton
n F'(z.) | Better | Worse | Tie | Iteration | Time Feval
31 n 5 0 10 0.93 1.16 0.95
n—1 4 0 0 0.43 0.48 0.40
n—2 3 0 0 0.53 0.66 0.33
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Table 9: Summary for the DISTILLATION COLUMN .Problem (99 Variables)

Dimension | Rank Tensor Average Ratio—Tensor /Newton
n F'(z,) | Better | Worse | Tie | Iteration | Time Feval
99 n 3 0 4 0.45 0.61 0.44
n—1 6 0 0 0.31 0.34 0.31
n—2 5 0 0 0.50 0.60 0.49

Table 10: Average Ratios of Tensor Method versus Newton’s Method

Rank Tensor

F'(z.) | Iterations | Execution Time | Function Evaluations
n 0.60 0.72 0.59

n—1 0.44 0.55 0.44

n—2 0.48 0.55 0.48

Table 11: Speed of Convergence on the LTS Problem (n = 313), modified by (7.2) to have
rank(F’(z.)) = n — 1, started from zo. The ratios in the second and third columns are defined
by (7.4)

Iteration (k) | Tensor Method | Standard Method
3 0.9789 0.9789
4 0.9511 0.9511
5 0.9399 ).9396
] 0.9710 0.9289
7 0.9362 0.8363
8 0.9207 0.7632
9 0.8209 0.4815
10 0.4955 0.6176
11 0.5573 0.4443
12 0.3450 0.6730
13 0.6667 0.3756
14 0.1131 0.2224
15 0.1104 0.4119
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Table 11: Speed of Convergence on the LTS Problem (n = 313), modified by (7.2) to have
rank(F’(z.)) = n — 1, started from zo. The ratios in the second and third columns are defined

by (7.4) (continued)

Iteration (k)

Tensor Method

Standard Method

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0.1233
0.6085
0.5505
0.9529
0.1571
0.1032
0.0440
0.0095

0.7639
0.9472
0.9474
0.9476
0.9477
0.9478
0.9480
0.9481
0.9482
0.9483
0.9484
0.9477
0.9445
0.9409
0.9367
0.9317
0.9258
0.9187
0.9100
0.8989
0.8846
0.8654
0.8390
0.8013
0.4967
0.4996
0.4998
0.4999
0.4999

0.4999
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