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',3NFiDENTIftL
ABSTRACT

Simple expressions are derived for the time dependence of the 

slowing down of neutrons in simple media. In Section I, a method sug­

gested by age theory is used, while in Section II, a two parameter 

scattering function is employed. Results sire compared with exact cal­

culations.
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I.

. SECRET

We consider the slowing down of neutrons in an infinite, homogenous 

medium having a constant scattering cross section and either no capture 

or "l/v" capture. Under these conditions we derive a simple formula for 

the time behavior of the slowed down neutrons. The formula has the 

wrong asymptotic behavior for large t but apparently describes the 

slowing down of most neutrons rather well. It is most useful for light 

elements.

We use the notation of Marshak, R.M.P. 19, 185 (19^7). Let us 

first consider the case of no capture and let JiQ be the scattering 

mean free path, v the neutron velocity, and u = ^n Eq/e. Then Q{u,t),

the collision density, satisfies the equation

to bfoM u
---— + ]?r0(u>t) = j du' ^0(u',t)f0(u-u')+ &(u) &(t). (1)

Introducing the Laplace transform of the collision density with respect 

to time.
00

/-si/e ^0(u,t)dt,

we find that ^?o(u,s) must satisfy the equation

D Usi r f T
(1+ —) ?0(u,s) = J du' ^(u'^f^u-u') + &(u). (2)
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If we are interested in energies well below the source energy, the 

influence of the &(u) is negligible, and when we introduce

s^
0(u,s) = (1+ -^) /o(u,s).

our equation takes the form

u
^(u,s) = f -~jr- ^ (u,,s)fo(u-u,)

J <D
(3)

o 1+

Thus ^)(u.s) satisfies just the same equation as would the collision 

density in a medium with a capture mean free path v/s. It is well 

known, therefore, that for sufficiently small sJLq/v, equation (3) bas 

the solution

<£(u,s) du'

Here j is the average logarithmic energy loss per collision. This
s£,o

equation is surely valid for <.< 1, and in some cases is in error

sJlo
by only a few percent for —= 1.

Evaluating the integral we see that

$ (u,s) = C (1+
i -1-

) 00
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where terms of order

S E T

si
—— have been neglected in comparison with unity, 
o

This expression is readily inverted and gives

A,
-x

e x
2///2 r(!) (5)

where x = vt
o

We note that '^'0(u>t) has the following properties:

a) It is maximum when x = j, corresponding to the result of 

age theory in which 'ijp'0(n,t) j).

b) It is normalized so that

<3° ^ OO
X ~ fo(^t)du = fo /0(u^)dt = J

OO
xkJ^o(u,x)dx P(k+|+1)

c) = r r ^ (| +1)
J ]P*0(u,x)dx ^

(6)

Now it .is known that for large x behaves like x 1-r2 -x

M-l 
M+l ‘where r = tf-?-. (viz. Marsheik, page I96) Thus it is clear that our

equation (5) is generally poor for large x. For hydrogen, 'g = 1, r = 0,

and the elementary solution is exact. If M >> 1, x >> 1, 5
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S E ^TE T

M —x £_behaves as x e , while the exact solution behaves as x e
M
2 ~x

To see

how good it is in the vicinity of x = j one may compare the moments of 

the true distribution (calculated by Placzek and given by Marshak,

equation 47) with those given by our equation (6). Exactly

<n \ n nx / = n! 7T (1- ^t,)" , where
k=l k

k k+2

k+2

1-r

The comparison follows for the first ten moments with M = 2 and 15;

R = ratio of approximate to exact moment. R^, is the corresponding ratioU
with Goertzel1s solution of Part II.

Evidently our ^ Is useful near x = — and is off by approximately 
2

a factor 2 when x = j + 10. is clearly most useful for light

scattering elements in which ^ is down by a large value from its 
2maximum when x = j + 10.

If "l/v" capture is present a similar equation may be easily derived. 

Let be the scattering mean free path, and the total mean free

path. Then the collision density, jj’(u,t), is given by the approximate 

expression:

^(u,t) - Je'X (xo)2/,/2nf)
(7)

where x = -jrvt vt
xq = -g-. This expression is so normalized that 

o

p00 « -<*tJo f f(u,t)du = e

-7-
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n

1

2
3

k

5

6
7

8
9

TABLE I

R(M=2) R(M=15)

1.0441 1.0197

1.1031 1.0565

1.168 1.1086

1.235 1.1786

1.300 1.2658

1.364 1.3716

1.426 1.4972

1.486 1.6449

1.544 1.8170

1.600 2.0164

rg(m=2) Rg(M=15)

.9899 .99985

.961 .9983

.915 .9947

.856 .9887

.7882 .9199

.717 .9679

.645 .9526

• 575 • 9338

.509 .9116

.447 .8860
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s RET

where ^capture = <5 * We note that in equation (7), the build-up factor,

2/5
xo , is determined by the scattering properties of the medium; while

.. ,, „ . “x, is determined by the total m.f.p..
the attenuation factor, e ' J

II. TIME BEHAVIOR WITH GOERTZEL'S SOLUTION

G. Goertzel and E. Greuling have developed a method of modifying 

the scattering cross section and scattering function, fo(u-u'), so as 

to obtain a good approximation to the flux. They use the scattering 

function
- -(u-u')//

f0(u-U') =^e

with a scattering cross section equal to ■— times the true one. Here 

5 is the usual logarithmic energy loss and y is related to the second 

moment of the slowing down function, namely

/ =
(1-r2)S 1-r jl- in 2 (in r2)2 

2

In this method the flux, >^(u,t), will satisfy the equation:

yr 7<u^) +1 -/ £
-(u-u')//

du'+ (8)

+ S(u) <!>(t),

where iQ is the scattering m.f.p. and no capture has been assumed.
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Introducing the Laplace transform of \p with respect to time;

00 4-;-st
e -yr(u,t)dt, /

we find that ^ (u,s) satisfies the equation

u
(y j- + ^) =J (/>(u',s) ■(u-u')/X

i r
o

du' + &(u). (9)

If we now let

<^> (u,s) = X(u,s) + £> (u)
/ 5 1 s\
{yr + v)
' o

y
and introduce J?q' = ~ , we see that X(u,s) must satisfy

u
s^' r -1

(1+ ) X(u,s) = J X(u',s) i

T -W/ 
-(u-u')// ye

- “ du' + —-------/I s \(j-, + —)

o o

(10)

This is equivalent to the differential equation

^X(u,s) =
^u

7(7 + |)
- x(u,s) —Y

s
+ V

o

(11)

-10-
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e/ ' -2
X(o,s) = ^07/ (1+ ~-)

o

The solution of this equation is

^ . (1+ sS)2/y -1X(u,3) = ^------ ------------
> Sib n2// +1

(1+ —)' v '

We have now only to invert this expression to find the flux, 

be done in terms of a confluent hypergeometric function - viz, 

Laplace Transformation, page 310.

Making use of the formula
m-i

y” e-et *

*r\ P( 2m+l)

, i,k-mT
(s- g)

k+m-4-
(=+1)

where 1 t m+ 7T -\ m^^ = t 2 e 2 iFi(m+ |-k» 2m+1^ "t)

and is the usual hypergeometric function.

= i* riy * * arfry^ t*+

we find that

(12)

This can 

Doetsch
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i (1-7) “ 7“' f ?
U,t) = JT~' V ^ V- X * e ° 1 1(1- I, 2;

(v-v )t v o7
“X' ) +

-V t/1o / X o /'c'0+ V 6(u)e
(13)

The moments of ^(u^t) with respect to t", or of 'j^(u,x) with respect 

to x may be computed with the help of equation (12). Thus we may write

00/ xky(u,x)ta k i xk
<xk; ------------- =(^) /r4-r (xKs);

£ yr(u,x)dx
io’ ^sk

s=0

(14)

which gives

<*> =/ - V -V V +v2 o o+ ----y v ' o

<x2> = (f V-v V +V ^ V -V V +v(| -2- 4. ^-)(| -i- + 2 -2- ) - 2 21
/ V V ' V / V v y V' o o ' o o o

v.t 2 2O 2For v ^ < v , and -yrj- >> (^-) ^(u^t) has the asymptotic form
o -k 7 ’

t / 1 + 2// +1 "Tr' "o / 0y (u,t)- i-2. t^.) e yT(| +1),
(15)

and it follows that the moments will be given by

-12-
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/ k\Sx > =

, k r +i+k) 
(X) —2_____

5 P(f+i)

It is clear that this asymptotic behavior is not correct, but again 

the function '^/'(u,t) may not be a bad approximation in the region 

where it is relatively large.
✓ 4

When M > > 1, ' ~ > 80 the if/ of the equation behaves as

J_ 32M " 2X
x e . For very large x, it is clear that this solution behaves

badly because it has the wrong factor in the exponential, in fact, it

is worse than the age solution.

The moments (l6) have been compared with the exact moments of

Placzek and the results are tabulated for M = 2 and M = 15 in Table I.

It is seen that for M = 15, the Goertzel solution is vastly superior

to the simple solution. The Goertzel solution is problably superior

for M > 3> save perhaps at very large x where the correct asymptotic

build-up factor should be used, anyway.

If "l/v" capture is present, then the Goertzel solution for the
v t p 2

flux takes the form, for vq » v, , > (—)

ox 2//+1 -(j-, + <x)t
i /.\ 0/Vt\ oy (u,t) = y£- ( jt) e (|+D (17)

where the capture mean free path has been taken to be
m
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