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ABSTRACT

Simple expressions are derived for the time dependence of the

slowing down of neutrons in simple media. In Section I, a method sug-

gested by age theory is used, while in Section II, a two parameter

scattering function is employed. Results sire compared with exact cal-

culations.
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We consider the slowing down of neutrons in an infinite, homogenous

medium having a constant scattering cross section and either no capture

or "1/v" capture. Under these conditions we derive a simple formula for

the time behavior of the slowed down neutrons. The formula has the

wrong asymptotic behavior for large t but apparently describes the

slowing down of most neutrons rather well. It is most useful for light
elements.
We use the notation of Marshak, R.M.P. 19, 185 (19~7). Let us

first consider the case of no capture and let JiQ be the scattering

mean free path, v the neutron velocity, and u = "“n EQ/E. Then Ofu,t),

the collision density, satisfies the equation

u
to BDLEOIM | 10 ust) - 5 du ~0(u',t)£0 (u—u')+ &(u) &(t). (1)

Introducing the Laplace transform of the collision density with respect

to time.
00
-si/

/e ~0(u,t)dt,

we find that ~?o(u,s) must satisfy the equation

SQ r Jp T
(1+ ] 20(u,s) = du' ~(u'~fru-u') + & (u). (2)




If we are interested in energies well below the source energy, the

influence of the & (u) is negligible, and when we introduce
s A
O(u,s) = (1+ =) /o(u,s).

our equation takes the form

u
~(u,s) = £ —~jr- »~ (u,,s)fo(u-u,)

J <D
e} 1+

(3)

Thus ~) (u.s) satisfies just the same equation as would the collision
density in a medium with a capture mean free path v/s. It is well

known, therefore, that for sufficiently small silo/ v, equation (3) bas

the solution

<f£ (u, s) du’
Here j is the average logarithmic energy loss per collision. This
sf,0
equation is surely valid for <.< 1, and in some cases 1s 1in error
sdlo
by only a few percent for = 1.
Evaluating the integral we see that
i -1-
S (us) =¢C 1+ ) 00
-5-
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si
where terms of order —— have been neglected in comparison with unity,
o

This expression 1is readily inverted and gives

ae /2['(" (5)

vt
where x =

(¢]

We note that '~'O(u>t) has the following properties:
a) It is maximum when x = j, corresponding to the result of
age theory in which ‘'ijp'O(n,t) J).
b) It is normalized so that

3° A

X~ fo(*tydu = 1) /0uydt = J

(o]0]
xkJ"o (u, x)dx P(k+ | +1)
c) = 6
= r ~ (] +1) ()
J 1P*0 (u, x) dx ~
l—r2 -x
Now it .is known that for large x behaves like x
M-1 ) ) ) .
where r = M:E, (viz. Marsheik, page 196) Thus it 1s clear that our
equation (5) is generally poor for large x. For hydrogen, 'g =1, r =
and the elementary solution is exact. If M >1, x> 1, 5
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M
M —x . . £2 ~x
behaves as x e , while the exact solution behaves as X e To see

how good it is in the vicinity of x = j one may compare the moments of
the true distribution (calculated by Placzek and given by Marshak,
equation 47) with those given by our equation (6). Exactly

n \ n n
<%/ =n! 7T (1- ~1,)" , where

k=1 k
k+2
k k+2 1-r
The comparison follows for the first ten moments with M = 2 and 15;
R = ratio of approximate to exact moment. R% is the corresponding ratio

with Goertzells solution of Part II.

A

Evidently our Is useful near X = — and is off by approximately

2
a factor 2 when x = j + 10. is clearly most useful for light

scattering elements in which - 1is down by a large value from its

maximum when x = j + 10.

If "1/v" capture is present a similar equation may be easily derived.

Let be the scattering mean free path, and the total mean free

path. Then the collision density, jj" (u,t), 1is given by the approximate

expression:

~(u,t) - Je'x (x0)2/,/2nf)

vt vt
where x = -jr XQ = -g-. This expression is so normalized that

800 « —<*t
J £ f£(u,t)du e

-7-
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1.0441
1.1031
1.168
1.235
1.300
1.364
1.426
1.486
1.544

1.600

TABLE 1

R(M=15) RG(M=2)
1.0197 .9899
1.0565 .961
1.1086 915
1.1786 .856
1.2658 .71882
1.3716 717
1.4972 645
1.6449 *975
1.8170 .509
2.0164 447
8.

s E (L*?€fc 51*

RG(M=15)

.99985
.9983
.9947
.9887
.9199
.9679
.9526
+9338
9116

.8860



where “capture =<5 * We note that in equation (7), the build-up factor,

2/5
%20 , 1s determined by the scattering properties of the medium; while

w

.. rr " . X, 1s determined bg the total m.f.p..
the attenuation factor, e !

IT. TIME BEHAVIOR WITH GOERTZEL'S SOLUTION

G. Goertzel and E. Greuling have developed a method of modifying

the scattering cross section and scattering function, fo(u-u'), so as

to obtain a good approximation to the flux. They use the scattering
function
- -(u-u')//
fO(u-U') =" e
with a scattering cross section equal to |l— times the true one. Here

5 1is the usual logarithmic energy loss and Yy 1is related to the second

moment of the slowing down function, namely

yau 1oy Jl' in 2 (1n r2)2
(1-r2) s 2

In this method the flux, >"(u,t), will satisfy the equation:

-(u-u'")//

+ S (u) <I>(t),

where iQ is the scattering m.f.p. and no capture has been assumed.

s E C/t-p-.iP
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Introducing the Laplace transform of \p with respect to time;

00 4-

-st
e -yr(u,t)dt, |
®

4

we find that ~ (u,s) satisfies the equation

u
(v j—+7) =J (/>(u',s) H(u-u')/X
du' + &(u).
i I
o
If we now let
M (u,s) = X(u,s) + £>(U)
/5 1 s\
{(>>72 + v)
! o
%4
and introduce J?qJ = ~ , we see that X(u,s) must satisfy
u T -w/

This 1is equivalent to the differential equation

T(7 + 1)

- x(u,s) —Y
u s

X (u,s) =

A~

plus the bovmdary condition

~10-

(9)

(10)

(11)
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e/ ' -2

X(o,s8) = ~07/ (1+ —-)

The solution of this equation is

"L 8)1-

X(u,3) =
Sib n2// +1

I+ —

We have now only to invert this expression to find the fluxk,

be done in terms of a confluent hypergeometric

Laplace Transformation, page 310.

Making use of the formula

. *rn_l , i, k-mT
Y e-et (s- g)

k+m-4-

= P(2m+1)
(=+1)

where

t
m+ T -
N m™" =t 2 e 2 iFi(m+ |-k» 2m+1"
and is the usual hypergeometric function.

function

"t)

=i*riy * " arfry™ t7™+

we find that

-11

viz,

This can

Doetsch
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1 (1_7) w 7\\v F ? (V_V )t
u,t) =JI~" v ~ v- X *e ° 11(1-1, 2; ' ©I +
7 )
-V t/1 (13)
o /'¢'0

+ Vv 6 (‘fu )Xe

The moments of ~(u~t) with respect to t", or of '37(u,x) with respect
to x may be computed with the help of equation (12). Thus we may write

00

/ xky(u,x)ta k i xk

<xk; = —mmm———————— = (") /r4d4—r (XEIS);
(14)
£ io sk
yr (u,x)dx s=0

which gives

< * > =/ 2 o o

V=V v +Vv VvV -V vV +v
<x2> = (£ (| =2=4 ~=) (] —i-+2 -2—) -2 21
\4 \ "y v \
/ o o ( o Vo ! o
v.t 2 2
For v ~"< v , and -yfj- >> (2“—) ,A(uAt) has the asymptotic form

@] -K

v @t — 1l ey 20041 T ol 9y, (15)

and it follows that the moments will be given by

-12

s E»"-JCE; -
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, k r +i+k)
& - (X)) —2
5 P (f1)

It is clear that this asymptotic behavior is not correct, but again

the function '“/'(u,t) may not be a bad approximation in the region

where it 1is relatively large

4

When M >> 1, ' ~ > 80 the if/ of the equation behaves as

du v 3

e . For very large x, it 1s clear that this solution behaves
badly because it has the wrong factor in the exponential, in fact, it
is worse than the age solution.

The moments (16) have been compared with the exact moments of
Placzek and the results are tabulated for M = 2 and M = 15 in Table I.
It is seen that for M = 15, the Goertzel solution is wvastly superior
to the simple solution. The Goertzel solution is problably superior
for M > 3> save perhaps at very large x where the correct asymptotic

build-up factor should be used, anyway.

If "1/v" capture is present, then the Goertzel solution for the

v t P 2
flux takes the form, for vo >»> v, > ()

ox 2//+1 -(j-, +<x)t

gD - ROV e o (14D 27)

where the capture mean free path has been taken to be

13-



