

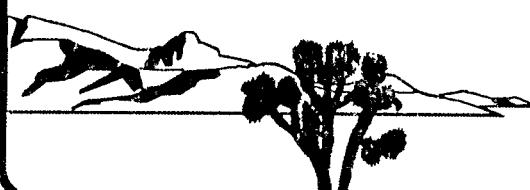

Nevada  
Environmental  
Restoration  
Project

DOE/NV-446 - Rev. 1



# Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 430, Buried Depleted Uranium Artillery Round No. 1, Tonopah Test Range

**UNCONTROLLED**


Controlled Copy No.: 21

Revision: 1

September 1996

**MASTER**

Environmental Restoration  
Division



U.S. Department of Energy  
Nevada Operations Office

This report has been reproduced from the best available copy.

Number of pages in this report: 100

Available to DOE and DOE contractors from:  
Office of Scientific and Technical Information, P.O. Box 62,  
Oak Ridge, TN 37831. (615) 576-8401.

Available to the public from the National Technical Information Service,  
Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.  
(703) 487-4650.

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

**STREAMLINED APPROACH FOR ENVIRONMENTAL  
RESTORATION PLAN FOR CORRECTIVE ACTION  
UNIT 430, BURIED DEPLETED URANIUM ARTILLERY  
ROUND NO. 1, TONOPAH TEST RANGE**

DOE Nevada Operations Office  
Las Vegas, Nevada

**UNCONTROLLED**

Controlled Copy No.: 21

Revision: 1

**MASTER**

September 1996

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

*nf*

**STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION  
PLAN FOR CORRECTIVE ACTION UNIT 430, BURIED DEPLETED URANIUM  
ARTILLERY ROUND NO. 1, TONOPAH TEST RANGE**

**UNCONTROLLED**

Approved by: Sabine Curtis

Sabine Curtis, Subproject Manager  
Industrial Sites Subproject

Date: Sept. 30, 1996

Approved by: David P. Shafer

David Shafer, Acting Project Manager  
Environmental Restoration Project

Date: September 30, 1996

## **Table of Contents**

---

|                                                                                                              |     |
|--------------------------------------------------------------------------------------------------------------|-----|
| List of Figures .....                                                                                        | iii |
| List of Tables .....                                                                                         | iii |
| List of Acronyms and Abbreviations .....                                                                     | iv  |
| 1.0 Introduction .....                                                                                       | 1   |
| 2.0 Unit Descriptions and Closure Objectives .....                                                           | 5   |
| 2.1 Tonopah Test Range .....                                                                                 | 5   |
| 2.2 Site Location and Description .....                                                                      | 8   |
| 2.3 Process Knowledge .....                                                                                  | 10  |
| 2.3.1 Hazardous Components and Information .....                                                             | 10  |
| 2.3.2 Constituents of Concern .....                                                                          | 10  |
| 2.4 Closure Standards .....                                                                                  | 10  |
| 2.5 Depleted Uranium and Plutonium Closure Standards .....                                                   | 13  |
| 2.5.1 RESRAD Risk Assessment Calculations .....                                                              | 13  |
| 2.5.2 RESRAD Risk Assessment Methodology .....                                                               | 13  |
| 2.5.3 Summary and Recommendations for Depleted Uranium and Plutonium<br>Closure Standards Using RESRAD ..... | 14  |
| 2.6 Clean Closure .....                                                                                      | 15  |
| 3.0 Field Activities .....                                                                                   | 16  |
| 3.1 Sampling .....                                                                                           | 16  |
| 3.1.1 Sample Locations .....                                                                                 | 22  |
| 3.1.2 Analytical Parameters .....                                                                            | 23  |
| 3.2 Field Screening and Field Surveys .....                                                                  | 23  |
| 3.3 Verification .....                                                                                       | 23  |
| 3.4 Remediation .....                                                                                        | 24  |
| 3.5 Site Restoration .....                                                                                   | 24  |
| 3.6 Schedule .....                                                                                           | 24  |

## ***Table of Contents (Continued)***

---

|                                                                               |     |
|-------------------------------------------------------------------------------|-----|
| 4.0 Reports .....                                                             | 25  |
| 5.0 Waste Management .....                                                    | 26  |
| 6.0 Site-Specific Health and Safety Plans .....                               | 28  |
| 7.0 Community Relations Plan .....                                            | 29  |
| 8.0 References .....                                                          | 30  |
| Appendix A - Data Quality Objectives .....                                    | A-1 |
| Appendix B - Guideline Concentration for Depleted Uranium and Plutonium ..... | B-1 |

## ***List of Figures***

---

| <b><i>Number</i></b> | <b><i>Title</i></b>                                                                                               | <b><i>Page</i></b> |
|----------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|
| 1-1                  | Closure Decision Diagram .....                                                                                    | 3                  |
| 2-1                  | Tonopah Test Range Location Map .....                                                                             | 6                  |
| 2-2                  | Tonopah Test Range Layout, Nye County, Nevada .....                                                               | 7                  |
| 2-3                  | Site Location Map, Buried Depleted Uranium Artillery Round No. 1,<br>Tonopah Test Range, Nye County, Nevada ..... | 9                  |

## ***List of Tables***

---

| <b><i>Number</i></b> | <b><i>Title</i></b>                                                                                                                               | <b><i>Page</i></b> |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2-1                  | Suspected Constituents of Concern and Closure Standards for the<br>Buried Depleted Uranium Artillery Round No. 1 Corrective Action Unit 430 ..... | 11                 |
| 2-2                  | Site-Specific Radionuclide Guideline Concentrations .....                                                                                         | 14                 |
| 3-1                  | Analytical Requirements for the Buried Depleted Uranium Artillery Round No. 1<br>Corrective Action Unit 430 .....                                 | 17                 |
| 3-2                  | Site Characterization and Closure Verification Analytical Chemical<br>Requirements .....                                                          | 18                 |

## ***List of Acronyms and Abbreviations***

---

|                    |                                                          |
|--------------------|----------------------------------------------------------|
| Ac                 | Actinium                                                 |
| AIHC               | American Industrial Health Council                       |
| Am                 | Americium                                                |
| Be                 | Beryllium                                                |
| Bq/Ci              | Becquerel(s) per curie                                   |
| CAU                | Corrective Action Unit(s)                                |
| C <sub>e</sub>     | Evapotranspiration coefficient                           |
| CFR                | Code of Federal Regulations                              |
| Ci                 | Curie(s)                                                 |
| CLP                | Contract Laboratory Program                              |
| cm                 | Centimeter(s)                                            |
| cm <sup>3</sup> /g | Cubic centimeter(s) per gram                             |
| C <sub>r</sub>     | Runoff coefficient                                       |
| Cs-137             | Cesium-137                                               |
| d                  | Days                                                     |
| d/yr               | Day(s) per year                                          |
| D                  | Decay products                                           |
| DOE                | U.S. Department of Energy                                |
| DOE/AL             | U.S. Department of Energy, Albuquerque Operations Office |
| DOE/NV             | U.S. Department of Energy, Nevada Operations Office      |
| DQO                | Data Quality Objective(s)                                |
| DU                 | Depleted Uranium                                         |
| EPA                | U.S. Environmental Protection Agency                     |
| FFACO              | Federal Facility Agreement and Consent Order             |
| FIWP               | Facility Investigation Work Plan                         |
| ETr                | Evapotranspiration rate                                  |
| ft                 | Foot (feet)                                              |
| ft <sup>2</sup>    | Square foot (feet)                                       |
| G                  | Glass                                                    |
| g                  | gram(s)                                                  |
| g/cm <sup>3</sup>  | Gram(s) per cubic centimeter                             |
| g/m <sup>3</sup>   | Gram(s) per cubic meter                                  |
| g/yr               | Gram(s) per year                                         |
| ha                 | Hectare(s)                                               |
| HASL               | Health and Safety Laboratory                             |

## ***List of Acronyms and Abbreviations (Continued)***

---

|                     |                                             |
|---------------------|---------------------------------------------|
| HE                  | High explosives                             |
| hrs/d               | Hour(s) per day                             |
| hrs/y               | Hour(s) per year                            |
| in.                 | Inch(es)                                    |
| IRr                 | Irrigation rate                             |
| ITLV                | IT Corporation, Las Vegas                   |
| JTA                 | Joint Test Assembly                         |
| keV                 | Kiloelectron volt                           |
| kg                  | Kilogram(s)                                 |
| kg/yr               | Kilogram(s) per year                        |
| km                  | Kilometer(s)                                |
| L                   | Liter(s)                                    |
| L/day               | Liter(s) per day                            |
| L/yr                | Liter(s) per year                           |
| LANL                | Los Alamos National Laboratory              |
| m                   | Meter(s)                                    |
| MB                  | Mass balance                                |
| m/s                 | Meter(s) per second                         |
| m/yr                | Meter(s) per year                           |
| m <sup>2</sup>      | Square meter(s)                             |
| m <sup>2</sup> /s   | Square meter(s) per second                  |
| m <sup>3</sup> /day | Cubic meter(s) per day                      |
| m <sup>3</sup> /yr  | Cubic meter(s) per year                     |
| mg/kg               | Milligram(s) per kilogram                   |
| mg/L                | Milligram(s) per liter                      |
| mi                  | Mile(s)                                     |
| mL                  | Milliliter(s)                               |
| mrem/pCi            | Millirem(s) per PicoCurie                   |
| mrem/yr             | Millirem(s) per year                        |
| NA                  | Not applicable                              |
| NAS                 | National Academy of Science                 |
| ND                  | Nondispersion                               |
| NDEP                | Nevada Division of Environmental Protection |
| Ni                  | Nickel                                      |

## ***List of Acronyms and Abbreviations (Continued)***

---

|         |                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------|
| No.     | Number                                                                                            |
| Np      | Neptunium                                                                                         |
| NTS POC | <i>Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste</i> |
| Pa      | Protactinium                                                                                      |
| Pb      | Lead                                                                                              |
| pCi     | PicoCurie(s)                                                                                      |
| pCi/g   | PicoCurie(s) per gram                                                                             |
| pCi/L   | PicoCurie(s) per liter                                                                            |
| PE      | Polyethylene                                                                                      |
| Pr      | Precipitation                                                                                     |
| PRG     | Preliminary Remediation Goals                                                                     |
| Pu      | Plutonium                                                                                         |
| QA      | Quality assurance                                                                                 |
| QAPP    | Quality Assurance Project Plan                                                                    |
| r       | Radius                                                                                            |
| Ra      | Radium                                                                                            |
| RCRA    | Resource Conservation and Recovery Act                                                            |
| RESRAD  | Residual Radioactivity (computer code)                                                            |
| Rn      | Radon                                                                                             |
| RPD     | Relative percent difference                                                                       |
| s/yr    | Second(s) per year                                                                                |
| SAFER   | Streamlined Approach for Environmental Restoration                                                |
| SNL     | Sandia National Laboratories                                                                      |
| SNM     | Special Nuclear Material                                                                          |
| sq ft   | Square foot (feet)                                                                                |
| SSHASP  | Site-Specific Health and Safety Plan(s)                                                           |
| SVOC    | Semivolatile organic compound(s)                                                                  |
| TAL     | Target Analyte List                                                                               |
| Tbq     | Tetrabecquerel(s)                                                                                 |
| TCLP    | Toxicity Characteristic Leaching Procedure                                                        |
| Th      | Thorium                                                                                           |
| TRU     | Transuranic                                                                                       |
| TTR     | Tonopah Test Range                                                                                |

## ***List of Acronyms and Abbreviations (Continued)***

---

|                    |                        |
|--------------------|------------------------|
| U                  | Uranium                |
| UXO                | Unexploded ordnance    |
| yr(s)              | Year(s)                |
| $\mu\text{g/L}$    | Microgram(s) per liter |
| $\mu\text{m}$      | Micrometer             |
| %                  | Percent                |
| %R                 | Percent recovery       |
| $^{\circ}\text{C}$ | Degree(s) Celsius      |

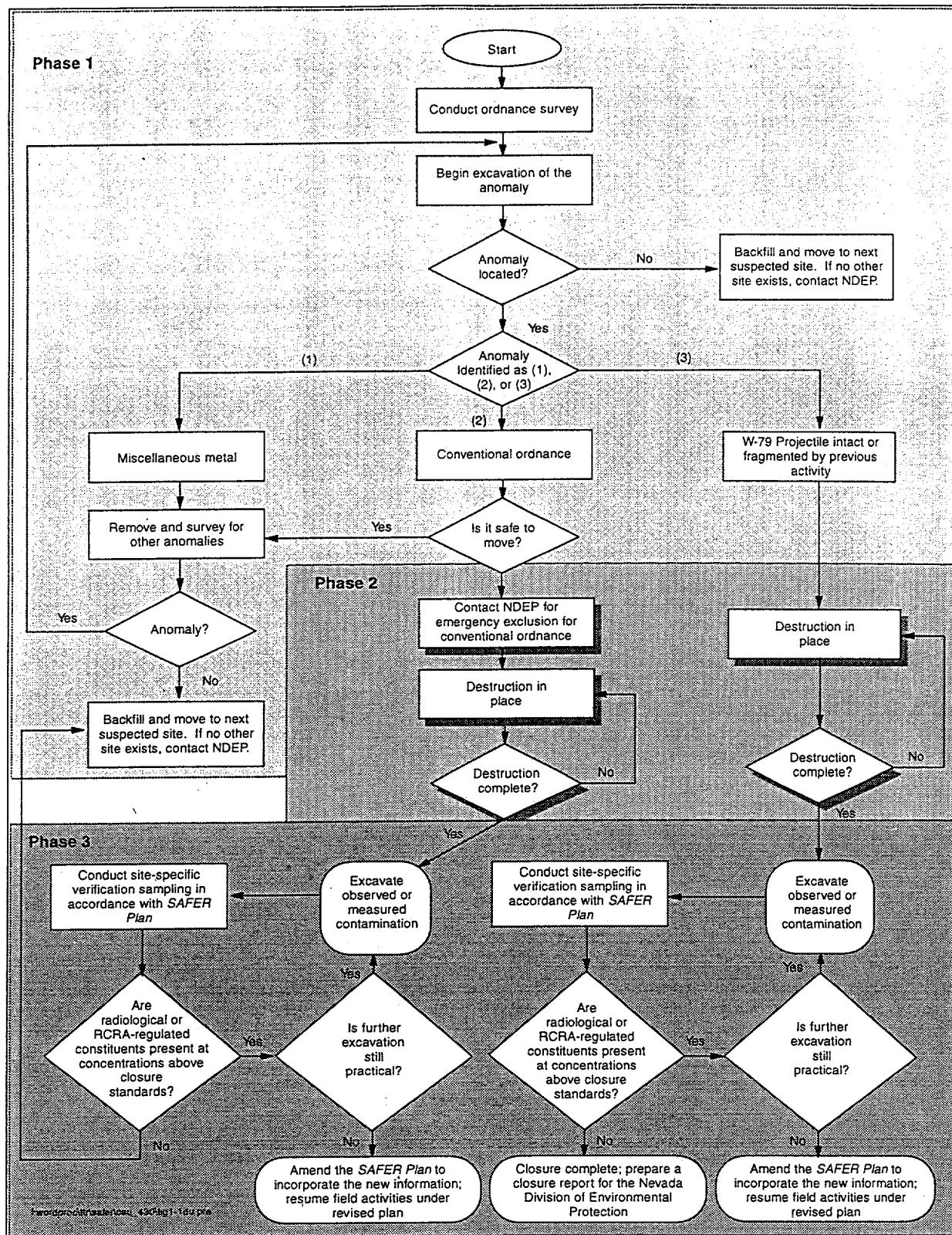
## 1.0 *Introduction*

---

This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE) (Kessel, 1996), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and the Resource Conservation and Recovery Act (RCRA) *Industrial Sites Quality Assurance Project Plan* (DOE/NV, 1994a).

The SAFER process is employed at CAUs where enough information exists about the nature and extent of contamination to propose an appropriate corrective action prior to implementing a Corrective Action Investigation. This process combines elements of the Data Quality Objective (DQO) process and the observational approach to help plan and conduct corrective actions. DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the process. The observational approach provides a framework for managing uncertainty and planning decision making. The purpose of the investigation in the SAFER process is to document and verify the adequacy of existing information, such as process knowledge; to affirm the decision for clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action.

The SAFER concept recognizes that technical decisions may be made based on incomplete, but sufficient, information and the experience of the decision maker. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, and on-site observations as planned activities progress, and by contingency plans as necessary. The remediation and closure may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made in selecting the closure method. If, at any time during the site closure, new information is developed that indicates that the closure method or underlying assumptions should be revised, the decision-makers will redirect the closure activities to more appropriately protect human health and the environment.


NDEP will be notified, and this plan will be amended. Following the completion of SAFER activities, a closure report will be prepared and submitted to the NDEP.

Adequate process knowledge currently exists to propose clean closure as the corrective action for the Buried DU Artillery Round No. 1 CAU. The process knowledge includes review of historical records, geophysical surveys, and interviews with project personnel. This process knowledge was used to determine the constituents of concern that will be present as well as the most appropriate SAFER methods.

Corrective action at the Buried DU Artillery Round No. 1 CAU will be achieved in three phases. The first phase will involve locating and assessing the projectile. The second phase involves destruction in place and removal of the projectile or its remaining components. Finally, the third phase will involve the remediation of radiological and chemical contamination, which includes collecting soil samples to verify clean closure. A decision diagram which shows the iterative process for each phase is presented in Figure 1-1.

This plan reflects the following assumptions. If, at any time during closure activities, information is developed that invalidates any assumption, this plan shall be amended, and amendments will be provided to NDEP for approval.

- The Buried DU Artillery Round No. 1 is located in one of three suspected locations south of Avenue 13.
- The Buried DU Artillery Round is believed to contain unexploded HE and depleted uranium.
- The Buried DU Artillery Round cannot be safely removed without first causing an explosion of the HE, so the projectile will be detonated in place.
- Depleted uranium (U-238) will be released to the subsurface in the vicinity of the projectile during detonation, resulting in localized contamination of the soil with depleted uranium.
- All potentially existing contamination is limited in extent to the immediate vicinity of the artillery round. Explosives residue (i.e., 2,4-Dinitrotoluene and Nitrobenzene) to be released during the detonation will be minor and only affect a small volume of soil near the detonation. All contamination that may result from detonating the round will be limited to the immediate vicinity of the round.



**Figure 1-1**  
**Closure Decision Diagram**

- A small amount of mixed waste may be generated during the detonation of the projectile because of the simultaneous release of U-238 and regulated organic compounds in the explosive.

If any mixed waste is generated, it will be managed in accordance with the *Mutual Consent Agreement Between the State of Nevada and the Department of Energy for the Storage of Low-Level Land Disposal Restricted Mixed Waste*. Within nine months of the placement of mixed waste on the transuranic (TRU) mixed waste storage pad, DOE/NV will submit a plan for treatment and disposal of the waste to the Nevada Division of Environmental Protection.

## ***2.0 Unit Descriptions and Closure Objectives***

---

The Buried DU Artillery Round No. 1 (CAU No. 430) is located on the Tonopah Test Range, a U.S. Department of Energy (DOE) weapons test and research facility located in Nye County, Nevada, on the northern portion of the Nellis Air Force Range (Figure 2-1).

### ***2.1 Tonopah Test Range***

The TTR is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas by air and approximately 64 km (40 mi) southeast of Tonopah by road. The nearest occupied community is Goldfield, Nevada, which is 42 km (26 mi) west of the western TTR boundary (ERDA, 1975).

The TTR occupies about 1,616 square kilometers (624 square miles). It is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the U.S. Bureau of Land Management and the U.S. Forest Service (DOE/NV, 1992a).

Since 1957, the TTR has been operated for the DOE Albuquerque Operations Office (DOE/AL) by Sandia National Laboratories (SNL) and used for weapon test-support activities varying from simple tests of hardware components or systems needing limited support to rocket launches or air drops of test vehicles requiring full range support for the U.S. Air Force, U.S. Army, and U.S. Navy operational and test groups as well as some defense contractors (ERDA, 1975).

Through a Memorandum of Agreement with DOE/AL, primary responsibility for environmental restoration activities associated with TTR CAUs has been transferred to DOE/NV (Powers, 1996).

The TTR is divided into various areas (Figure 2-2). Areas 3 and 9 and an unnumbered Test Area along the flight line are under SNL control; Areas 3 and 9 are the main centers of SNL activities. Area 3 is also known as the Control Point Area and includes support facilities for maintenance and operations. Area 9 is the center for rocket and gun firings, ordnance storage, and related test support operations, with impact areas to the southeast. The Test Area is a series of dry lakes that begin at Main Lake near Area 9, continue south for about 21 km (13 mi), and end with Antelope Lake (ERDA, 1975). Area 10 and other remote parts of the range are under control of the U.S. Air Force.

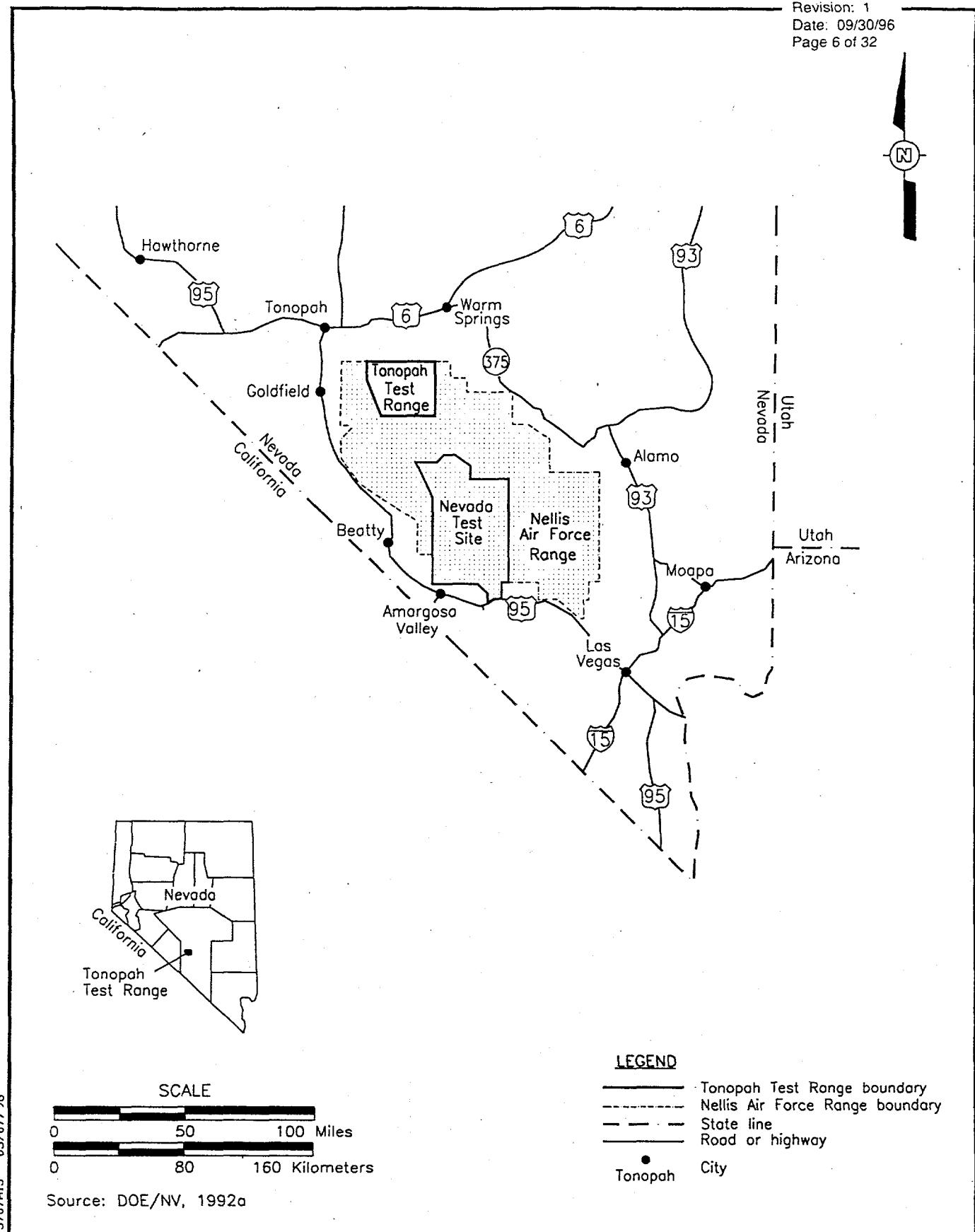
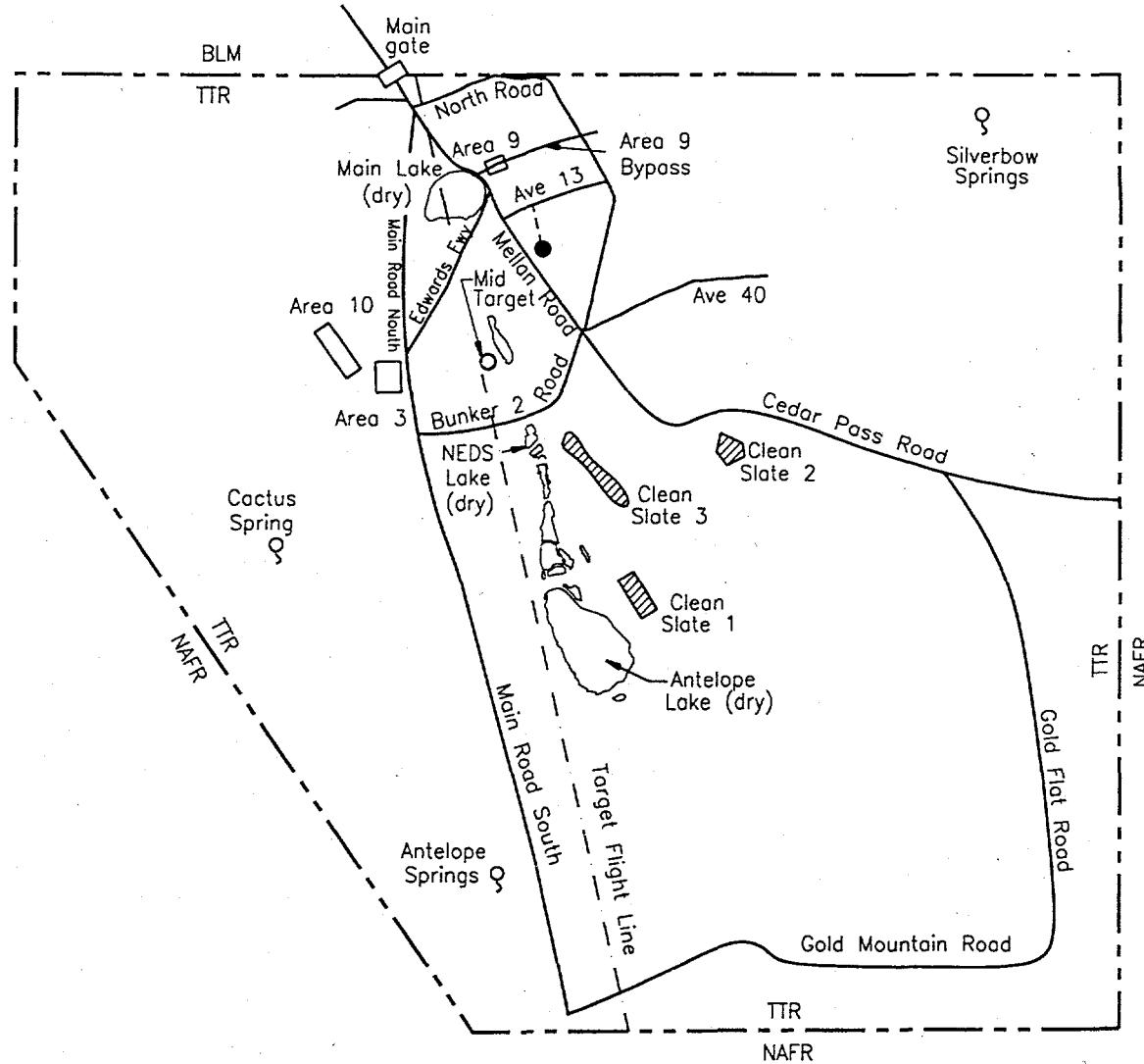
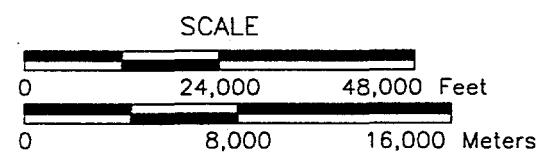





Figure 2-1  
Tonopah Test Range Location Map



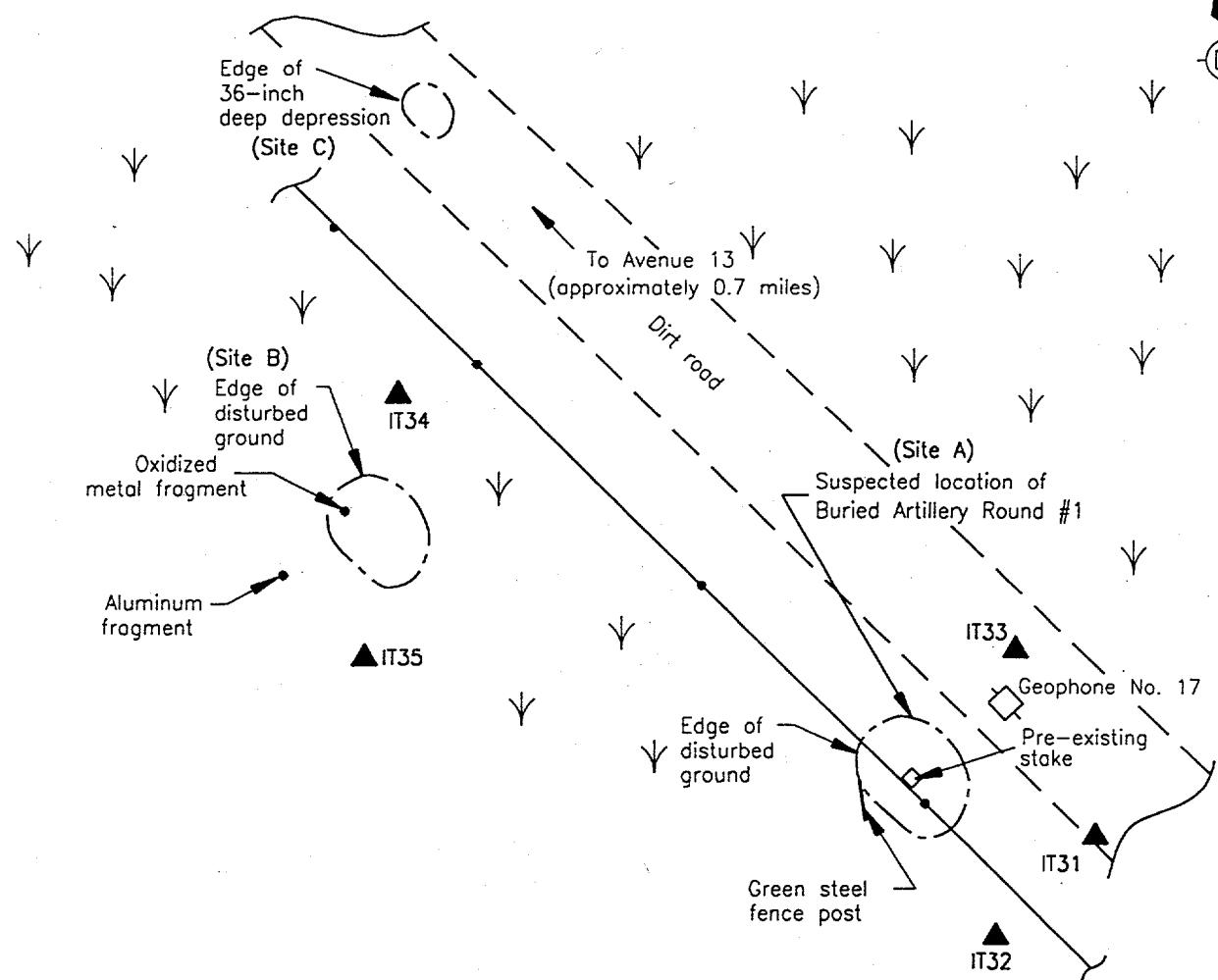
LEGEND

- - - Tonopah Test Range boundary
- Primary roadway
- Buried DU Artillery Round No. 1
- ▨ Operation Roller Coaster sites
- Area/gate
- Spring
- BLM Bureau of Land Management
- NAFR Nellis Air Force Range
- TTR Tonopah Test Range
- Dirt road along orange barrels

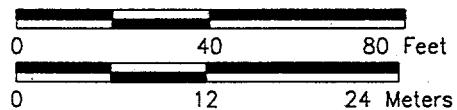


Source: Adapted from DOE/AL, 1992

Figure 2-2  
 Tonopah Test Range Layout  
 Nye County, Nevada


## ***2.2 Site Location and Description***

The approximate location of Buried DU Artillery Round No. 1 is 1.1 km (0.7 mi) south of Avenue 13, south of Area 9 in the Test Area (Figure 2-2). The site consists of a potentially unexploded W-79 JTA test artillery projectile with HE. The projectile is reportedly buried in one pit, approximately 5 to 10 feet (ft) deep (Smith, 1993a; Smith, 1996; Quas, 1996). (Because the burial depth is not known, all exploratory excavations will be advanced past 10 feet to confirm the absence of the projectile.) The exact location of the pit is not known. There are three disturbed areas at the suspected site that have been identified via geophysical survey as possible locations of the test projectile (Figure 2-3).


Buried DU Artillery Round No. 1 had DU substituted for Special Nuclear Material (SNM) to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. Even though the artillery projectiles used at TTR did not contain SNM, they did contain explosives and detonators; however, the detonators were not wired into the fire system (Smith, 1996). Explosives with detonators were used in the projectile recovery system, and these components may pose a health and safety risk.

The test procedure involved firing the projectile southward at an angle of 87° from an 8-inch (in.) artillery gun located in Area 9. A drogue parachute was scheduled to be deployed during the projectile's terminal phase of travel to facilitate recovery of the undamaged test projectile (Smith, 1993b). However, in this instance, the parachute failed to deploy, resulting in a "hard" landing. Due to damage that the projectile received upon landing, normal recovery operations were aborted. The projectile was retrieved and placed in a 5-foot-deep excavation for destruction. Approximately 6 pounds of C-4 explosive (C-4) were placed in an excavation adjacent to the projectile, and the excavation was backfilled (Smith, 1993a).

The detonation of the C-4 was planned to cause a sympathetic detonation of the HE contained within the buried projectile which could be inferred by a resultant "burp" (or release) of radiation (gamma radiation from U-238) at the ground surface. However, radiation from U-238 was not detected at the surface after the detonation (Smith, 1993a), which may indicate that the C-4 failed to cause a sympathetic detonation of the projectile. The area suspected of containing the projectile may also contain other unexploded ordnance (UXO) (i.e., inert projectiles) (Smith, 1996; Enlow, 1996).



SCALE



Note: All locations are approximate.

3707A12 08/23/96

LEGEND

- Line of Orange Drums for Telemetry
- Boundary/Baseline
- Photodocumentation Monument
- Desert Shrub Vegetation
- Dirt Road

Figure 2-3  
Site Location Map, Buried DU Artillery Round No. 1  
Tonopah Test Range, Nye County, Nevada

## **2.3 Process Knowledge**

Process knowledge is based on interviews of personnel involved with the project and a review of historical records, geophysical surveys, and associated activities. All unclassified process knowledge records are available for review at the IT Corporation office in Las Vegas.

Interviews and historical records used to compile process knowledge are referenced where applicable, are listed in Section 8.0 of this plan, and are available upon request to Kevin Cabble of DOE/NV Environmental Restoration Division.

### **2.3.1 Hazardous Components and Information**

The internal specifications of a W-79 JTA projectile with HE are classified as Secret Restricted Data. There are two different configurations of the W-79 JTA artillery test projectile with HE. The only notable difference between the two configurations is the use of an inert vs. a live rocket motor. The configuration of the test projectile buried at this site may be documented in the Range Instrumentation Order, or test document. This information does not affect safety, but might be of concern with respect to identifying post-detonation residues (SNL, date unknown). The configuration is classified information.

The basic components of the projectile were DU and HE. The only mechanism of transport that will result in significant contamination will be the demolition that will be performed using C-4 explosive. The remediation will focus on remediating soil containing DU and explosive residue. Any other contaminants potentially present will be contained within the DU and explosive residue contaminated soil.

### **2.3.2 Constituents of Concern**

Based on process knowledge, the constituents of concern for the Buried DU Round No. 1 are depleted uranium from components of the projectile and chromium, mercury, lead and the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine, which are common components of the explosive C-4 used in the attempt to destroy the projectile. Other projectile constituents which may be present include beryllium, nickel, plutonium, and tritium.

## **2.4 Closure Standards**

The site must have soil contaminant concentrations below NDEP regulatory action levels to be evaluated for closure. The proposed closure standards (action levels) are presented in Table 2-1. The particular soil action levels are the following:

**Table 2-1**  
**Suspected Constituents of Concern and Closure Standards**  
**for the Buried Depleted Uranium Artillery Round No. 1 Corrective Action Unit 430**  
 (Page 1 of 2)

| Parameter Group              | Individual Constituents                                                                                                                                                                                                                                                                                                                                                 | Analytical Method <sup>a</sup>       | Closure Standard                                                                                                                                                                                  | Source of Standard                                                                                                                                        |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLP Metals <sup>b</sup>     | Arsenic<br>Barium<br>Cadmium<br>Chromium<br>Lead<br>Mercury<br>Selenium<br>Silver                                                                                                                                                                                                                                                                                       | 1311/<br>6010A,<br>7470 <sup>c</sup> | 5 mg/L <sup>d</sup><br>100 mg/L<br>1 mg/L<br>5 mg/L<br>5 mg/L<br>0.2 mg/L<br>1 mg/L<br>5 mg/L                                                                                                     | Title 40 CFR 261.24<br>Table 1                                                                                                                            |
| TAL Total Metals             | Beryllium<br>Nickel                                                                                                                                                                                                                                                                                                                                                     | 6010                                 | 0.14 mg/kg <sup>e</sup><br>150 mg/kg                                                                                                                                                              | NDEP, 1992, and<br>proposed RCRA<br>Subpart S rule for<br>corrective action,<br>55 FR 30796 <sup>f</sup> , 1990,<br>and EPA Region 9<br>PRGs, August 1996 |
| TCLP Semivolatile Organics   | Nitrobenzene<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                      | 1311/<br>8270                        | 2<br>0.13                                                                                                                                                                                         | Title 40 CFR 261.24<br>Table 1                                                                                                                            |
| Nitroaromatics & Nitroamines | Octahydro-1,3,5,7-tetrinitro-1,3,5,7-tetrazocine<br>Hexahydro-1,3,5-trinitro-1,3,5-triazine<br>1,3,5-Trinitrobenzene<br>1,3-Dinitrobenzene<br>Methyl-2,4,6-trinitrophenylnitramine<br>2,4,6-Trinitrotoluene<br>4-Amino-2,6-dinitrotoluene<br>2-Amino-4,6-dinitrotoluene<br>2,6-Dinitrotoluene<br>3-Nitrotoluene<br>4-Nitrotoluene<br>Nitrobenzene<br>2,4-Dinitrotoluene | 8330                                 | 3000 mg/kg<br>4.0 mg/kg<br>3.3 mg/kg<br>6.5 mg/kg<br>650 mg/kg<br>15.0 mg/kg<br>0.65 <sup>g</sup> mg/kg<br>0.65 <sup>g</sup> mg/kg<br>65 mg/kg<br>650 mg/kg<br>650 mg/kg<br>130 mg/kg<br>18 mg/kg | NDEP, 1992, and<br>proposed RCRA<br>Subpart S rule for<br>corrective action,<br>55 FR 30796, 1990,<br>and EPA Region 9<br>PRGs, August 1996.              |
| Isotopic Uranium             | Uranium-238, -234 and -235/236                                                                                                                                                                                                                                                                                                                                          | NAS-NS-<br>3050 <sup>h</sup>         | 1,044 pCi/g <sup>i</sup> U-238<br>for DU if no<br>plutonium present                                                                                                                               | Calculated from the<br>dose rate given in DOE<br>Order 5400.5 <sup>j</sup> and<br>NTS POC                                                                 |
| Isotopic Plutonium           | Pu-238<br>Pu-239/240                                                                                                                                                                                                                                                                                                                                                    | NAS-NS-<br>3058 <sup>k</sup>         | Pu-238 12.8<br>Pu-239/240 1,376                                                                                                                                                                   | DOE Order 5400.5 and<br>NTS POC                                                                                                                           |
| NA <sup>l</sup>              | Tritium                                                                                                                                                                                                                                                                                                                                                                 | EPA EERF<br>H-01 <sup>m</sup>        | NA                                                                                                                                                                                                | NTS POC                                                                                                                                                   |

**Table 2-1**  
**Suspected Constituents of Concern and Closure Standards**  
**for the Buried Depleted Uranium Artillery Round No. 1 Corrective Action Unit 430**  
**(Page 2 of 2)**

| Parameter Group              | Individual Constituents                                                                                 | Analytical Method <sup>a</sup>   | Closure Standard | Source of Standard |
|------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--------------------|
| Gamma emitting radionuclides | Analyze by gamma spectroscopy and report Cs-137 and any other radionuclide identified in library search | HASL 300<br>4.5.2.3 <sup>b</sup> | Isotope-specific | NTS POC            |

<sup>a</sup>From SW-846 (EPA, 1986) unless otherwise specified.

<sup>b</sup>Title 40 CFR §261.24, Table 1

<sup>c</sup>Method for Mercury

<sup>d</sup>Milligrams per liter

<sup>e</sup>Milligrams per kilogram

<sup>f</sup>All RCRA Subpart S values from EPA, 1996. Methodology for use of Subpart S values is contained in the Contaminated Soil and Groundwater Remediation Policy (NDEP, 1992).

<sup>g</sup>Uses value for dinitrotoluene mixture per Art Gravenstein - State of Nevada (Deshler, 1996).

<sup>h</sup>National Academy of Science, Nuclear Science Series, 1962

<sup>i</sup>PicoCuries per gram

<sup>j</sup>DOE, 1990

<sup>k</sup>National Academy of Science, Nuclear Science Series, 1963

<sup>l</sup>Not applicable due to gaseous form

<sup>m</sup>U.S. Environmental Protection Agency Eastern Environmental Radiation Facility

<sup>n</sup>Environmental Measurements Laboratory Procedure Manual, HASL-300, U.S. Department of Energy, 1992

CFR = Code of Federal Regulations

Cs-137 = Cesium-137

DU = Depleted Uranium

HASL = Health and Safety Laboratory

NAS = National Academy of Science

NDEP = Nevada Division of Environmental Protection

NTS POC = Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste

PRG = Preliminary Remediation Goals

RCRA = Resource Conservation and Recovery Act

TAL = Target Analyte List

TCLP = Toxicity Characteristic Leaching Procedure

- Toxicity Characteristics Leaching Procedure (TCLP) concentration limits for defining hazardous waste characteristics of solids under RCRA (Title 40 *Code of Federal Regulation* [CFR] 261.24, Table 1) for semivolatile organic compounds (SVOCs), and inorganic compounds.
- Isotopic activities or total activities (e.g., total alpha, total gamma or total beta activities) above the *Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste* (NTS POC) set forth by Bechtel Nevada (1995).
- For any parameters not covered in the above action levels, action levels will be taken from the concentration limits in the proposed RCRA Subpart S rule for corrective action (55 FR 30796).

Soil found to contain soil concentrations above the closure standard will be excavated, containerized, and managed appropriately as waste in accordance with Section 5.0 of this plan. Following excavation and removal, there will be additional sampling to verify that concentrations

remaining in the soil are below closure standards. This process is described in more detail in Sections 3.1 and 3.2 of this plan.

## **2.5 Depleted Uranium and Plutonium Closure Standards**

A site-specific radiological risk assessment was performed for CAU No. 430 to determine the guideline concentration in soil. The guideline is defined as a depleted uranium and plutonium concentration in soil, that given appropriate use scenarios and site parameters, will reasonably ensure that individual dose limits of 100 millirems per year (mrem/year) will not be exceeded. The DOE has established generic cleanup guidelines for radium and thorium in soil; cleanup guidelines for depleted uranium and plutonium must be derived on a site-specific basis.

### **2.5.1 RESRAD Risk Assessment Calculations**

RESRAD is a microcomputer program which utilizes the dose assessment methodology recommended for use in deriving site-specific soil cleanup guidelines. The methodology and resultant code were adapted from a manual developed in 1989 for implementing DOE residual radioactive material guidelines.<sup>1</sup> The manual and the code are used widely by DOE and its contractors and, to some extent, by the U.S. Nuclear Regulatory Commission and licensing states. The program is issued by the Environmental Assessment Division of Argonne National Laboratory.

### **2.5.2 RESRAD Risk Assessment Methodology**

Analysis of radiation exposure pathways is used to translate radiation dose guidelines, which are generally not directly measurable, into derived concentration guidelines, i.e., concentration of a radionuclide in soil. The primary objective is to establish the DU and plutonium concentration in soil that relates to a maximum effective dose equivalent of 100 mrem/year.

The pathways analysis relates DU and Pu concentration in soil to the 100 mrem/year dose guidelines for the maximum exposed dose receptor. The analysis requires:

- Development of scenarios that describe potential exposure modes

---

<sup>1</sup>The DOE guidelines were incorporated into DOE Order 5400.5 in February 1990 and were included in proposed Title 10, Part 834 of the *Code of Federal Regulations* (March 1993).

- Selection and use of mathematical models of radiation exposure and radionuclide transport
- Reasonable numeric values for parameters used in the mathematical models

Appendix B presents the site-specific and generic data used in calculating the depleted DU and Pu guideline concentrations, including all of the RESRAD input values and dose calculation output. In addition, Appendix B includes the methodology used in calculating site-specific input parameter values used as input to RESRAD. The dose contribution by individual radionuclides for each exposure pathway and the total dose contribution by each radionuclide and from each exposure pathway is also listed.

### ***2.5.3 Summary and Recommendations for Depleted Uranium and Plutonium Closure Standards Using RESRAD***

Using a conservative and limiting site resident exposure scenario, the radiological risk assessment was performed to ensure that the soil guideline concentration complies with the 100 mrem/yr basic dose requirement established in DOE Order 5400.5. The site-specific guideline concentrations for CAU No. 430 are listed in Table 2-2.

**Table 2-2**  
**Site-Specific Radionuclide Guideline Concentrations**

| Radionuclide | Guideline Concentration<br>(pCi/g) |
|--------------|------------------------------------|
| U-238        | 6.95E-2                            |
| U-235        | 1.13E-3                            |
| U-234        | 6.50E-3                            |
| Pu-238       | 1.28E+1                            |
| Pu-239       | 1.26E+3                            |
| Pu-240       | 1.19E+2                            |
| Pu-241       | 1.97E+3                            |
| Pu-242       | 2.53E-3                            |
| Am-241       | 6.02E+1                            |
| Total        | 3,422                              |

pCi/g = PicoCuries per gram

U = Uranium

Pu = Plutonium

Am = Americium

## 2.6 Clean Closure

The objective of the SAFER activities at the Buried DU Artillery Round No. 1 CAU is to remove contaminated material with concentrations above the closure standard and to gather adequate data to affirm the decision for clean closure. The first phase involves locating and exposing the test projectile, assessing its condition, and determining the appropriate method to destroy the device. The second phase includes destruction in place, removal of depleted uranium fragments, and removal of soil potentially contaminated with DU or explosive residues. The third phase of SAFER activities will be accomplished through sampling and analysis to verify adequacy, correctness, and completeness of process knowledge and remedial actions.

Verification samples will be collected and analyzed to determine if additional soil excavation and remediation are required. If each sample meets the standards described in Table 2-1, the site may be restored and clean-closed. If the verification samples indicate that constituents of concern are present in the soil above closure standards as presented in Section 2.4 of this plan, additional excavation will take place; the excavated soil will be stockpiled and managed as waste in accordance with Section 5.0 of this plan. Additional verification samples will be collected and analyzed; this sequence may be repeated as necessary until all areas are demonstrated to meet the closure standards presented in Table 2-1. All verification samples will be collected and managed in accordance with U.S. Environmental Protection Agency (EPA) quality protocols as reflected in Section 3.0 and in the *RCRA Industrial Sites Quality Assurance Project Plan (QAPP)* (DOE/NV, 1994a).

If conventional UXO (UXO containing high explosives without SNM or DU) is unearthed during the excavation of one of the three areas suspected of containing the Buried DU Artillery Round No. 1, and is found to be unsafe to move, it will be destroyed in place after notification and agreement with NDEP. Verification samples will be collected from the destruction pit and analyzed to determine if TCLP RCRA metals, or SVOCs, or explosives residue (nitroaromatics or nitroamines) are present above the closure standards presented in Table 2-1. If these constituents of concern are above closure standards, the impacted soil will be excavated, segregated from other soil stockpiles, and managed as waste. Additional verification samples will be collected and analyzed, and this sequence may be repeated as necessary until the area is demonstrated to meet closure standards. Sampling activities will parallel those given in Section 3.0 of this plan for the Buried DU Artillery Round No. 1 destruction pit.

## **3.0 Field Activities**

---

Field activities to obtain clean closure of the Buried DU Artillery Round No. 1 CAU will be completed using the three-phase approach discussed in Section 2.9 (see Figure 1-1). This approach includes:

- Locating and exposing the projectile or remaining components of the projectile
- Destroying the projectile or remaining components in place
- Excavating contaminated soil from the destruction pit
- Using sampling and analyses of soil to verify that all soil contaminated above closure standards have been excavated and removed

Verification analyses for the Buried DU Artillery Round CAU will include all of the parameters listed in Table 2-1 (TCLP and total metals, TCLP SVOCs, nitroaromatics and nitroamines, isotopic uranium and plutonium, tritium, and gamma spectroscopy for other radionuclides). The sampling and analyses introduced in Table 2-1 is explained further in Tables 3-1 and 3-2.

If a conventional UXO is unearthed and requires detonation in place, or if evidence of unexpected non-radiological contamination is discovered through analysis, further soil removal, sampling, and analysis will be performed in accordance with Section 3.1 of this plan.

Verification analyses for any conventional UXO destruction pit or non-radiological source will be for TCLP metals, SVOCs, and nitroaromatics and nitroamines. Radiological analyses will not be performed for any nonradiological source discovered. With the exception of the radiological analysis, the analytical requirements are the same as those given in Tables 3-1 and 3-2 for the Buried DU Artillery Round No. 1.

### **3.1 Sampling**

After the Buried DU Artillery Round No. 1 projectile is located and destroyed in place, the soil from the destruction pit will be removed in 1-meter (m) (3-ft) layers, segregated according to radiological activity (based on field radiological screening results), stored on plastic sheeting, and sampled to determine if radioactive or hazardous constituents are present in the soil above closure standards. Surface soil around the pit that is contaminated through destruction activities will also be removed as appropriate.

Table 3-1  
 Analytical Requirements for the Buried Depleted Uranium  
 Artillery Round No. 1 Corrective Action Unit 430

| Parameter Group                               | Analytical Method <sup>a</sup> | Number of Verification Soil Samples | Number of Waste Profile Soil Samples | Number of Field Quality Control Samples <sup>b</sup> |
|-----------------------------------------------|--------------------------------|-------------------------------------|--------------------------------------|------------------------------------------------------|
| TCLP <sup>c</sup> Metals (eight metals)       | 1311/6010A/7470                | 5                                   | 1                                    | 3                                                    |
| Total Metals (beryllium and nickel)           | 6010A                          | 5                                   | 1                                    | 3                                                    |
| TCLP Semivolatiles (two compounds)            | 1311/8270                      | 5                                   | 1                                    | 3                                                    |
| Gamma Emitting Radionuclides                  | HASL 300 4.5.2.3 <sup>d</sup>  | 5                                   | 1                                    | 3                                                    |
| Isotopic Uranium                              | NAS-NS-3050 <sup>e</sup>       | 5                                   | 1                                    | 3                                                    |
| Isotopic Plutonium                            | NAS-NS-3058 <sup>f</sup>       | 5                                   | 1                                    | 3                                                    |
| Tritium                                       | EPA-EERF H-01 <sup>g</sup>     | 5                                   | 1                                    | 3                                                    |
| Nitroaromatics and Nitroamines (14 compounds) | 8330                           | 5                                   | 1                                    | 3                                                    |

<sup>a</sup>From SW-846 (EPA, 1986) unless otherwise specified

<sup>b</sup>Duplicate, rinsate blank, and field blank samples. Duplicates and field blanks will be collected at a frequency of 1 per 20 environmental samples. One rinsate blank will be collected for each separate decontamination event.

<sup>c</sup>Title 40 CFR §261.24, Table 1

<sup>d</sup>Environmental Measurements Laboratory Procedure Manual, HASL-300, U.S. Department of Energy, 1992c

<sup>e</sup>National Academy of Science, Nuclear Science Series, 1962

<sup>f</sup>National Academy of Science, Nuclear Science Series, 1963

EPA = U.S. Environmental Protection Agency

HASL = Health and Safety Laboratory

NAS = National Academy of Science

TCLP = Toxicity Characteristic Leaching Procedure

Excavated soil will be sampled to profile the soil prior to selecting an appropriate waste disposal. Verification sampling will be conducted within the destruction pit and surrounding surface soil to verify that all contaminated soil has been removed.

All soil samples will be collected with a decontaminated trowel or equivalent. Discrete surface-soil samples and waste profile samples will be collected from 0 to 15 centimeters (cm) (0 to 6 in.) below the bottom of surface. All sampling activities and locations will be documented. The statistical calculation of the number of required verification samples is given in the following text. The analytical requirements for each sample are given in Table 3-1.

**Table 3-2**  
**Site Characterization and Closure Verification Analytical Chemical Requirements**  
 (Page 1 of 3)

| Parameter Group                | Analytical Method               | Sample Medium | Sample Container                                 | Minimum Amount of Sample Required | Preservative                                           | Holding Time                                                         | Analytes to be Analyzed and Reported                                                                                                                                                                                                                                                                                                                                                      | Minimum Detectable Concentration (mg/L) <sup>a</sup>                  | Regulatory Limit or Closure Standard for Soil                                                                                                                                                                                                                                                                                                    | Acceptable Precision (RPD) <sup>b</sup> | Acceptable Accuracy (%R) <sup>c</sup> |
|--------------------------------|---------------------------------|---------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|
| Nitroaromatics and Nitroamines | 8330                            | Water         | G <sup>d</sup> , amber                           | 2 x 1 liter                       | Cool with ice                                          | 7 days                                                               | Ocatahydro-1,3,5,7-tetrinitro-1,3,5,7-tetrazocine<br>Hexahydro-1,3,5-trinitro-1,3,5-triazine<br>1,3,5-Tinitrobenzene<br>1,3-Dinitrobenzene<br>Methyl-2,4,6-trinitrophenylnitramine<br>2,4,6-Trinitrotoluene<br>4-Amino-2,6-dinitrotoluene<br>2-Amino-4,6-dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Nitrotoluene<br>3-Nitrotoluene<br>4-Nitrotoluene<br>2,4-Dinitrotoluene<br>Nitrobenzene | 45 µg/L <sup>e</sup>                                                  | 3300 mg/kg <sup>f</sup><br>4.0 mg/kg <sup>g</sup><br>3.3 mg/kg <sup>g</sup><br>6.5 mg/kg <sup>g</sup><br>650 mg/kg <sup>g</sup><br>15.0 mg/kg <sup>h</sup><br>0.65 mg/kg <sup>h</sup><br>0.65 mg/kg <sup>h</sup><br>65 mg/kg <sup>i</sup><br>650 mg/kg <sup>i</sup><br>650 mg/kg <sup>j</sup><br>130 mg/kg <sup>j</sup><br>18 mg/kg <sup>j</sup> | 20                                      | 53 to 133                             |
| TCLP Metals                    | 1311/6010A <sup>k</sup><br>7470 | Water         | PE <sup>m</sup> or G                             | 1 liter                           | pH < 2, HNO <sub>3</sub> <sup>n</sup><br>Cool with ice | 180 days to leaching;<br>180 days to analysis                        | As<br>Ba<br>Cd<br>Cr<br>Pb<br>Hg<br>Se<br>Ag                                                                                                                                                                                                                                                                                                                                              | 0.500<br>0.200<br>0.010<br>0.025<br>0.150<br>0.0002<br>0.500<br>0.020 | 50 mg/L<br>100.0 mg/L<br>1.0 mg/L<br>5.0 mg/L<br>5.0 mg/L<br>0.20 mg/L<br>1.0 mg/L<br>5.0 mg/L                                                                                                                                                                                                                                                   | 20                                      | 80 to 120                             |
| TCLP Semivolatile Organics     | 1311/8270 <sup>k</sup>          | Water         | G, amber,<br>Teflon <sup>TM</sup> ,<br>lined cap | 2 x 1 liter                       | Cool with ice                                          | 14 days to leaching;<br>7 days to extraction;<br>40 days to analysis | 2,4-Dinitrotoluene<br>Nitrobenzene                                                                                                                                                                                                                                                                                                                                                        | 0.010<br>0.010                                                        | 0.13 mg/L<br>2.0 mg/L                                                                                                                                                                                                                                                                                                                            | 25                                      | 1 to 180                              |

Refer to footnotes at end of table.

**Table 3-2**  
**Site Characterization and Closure Verification Analytical Chemical Requirements**  
 (Page 2 of 3)

| Parameter Group              | Analytical Method             | Sample Medium | Sample Container | Minimum Amount of Sample Required | Preservative                       | Holding Time              | Analytes to be Analyzed and Reported                                  | Minimum Detectable Concentration (mg/L) <sup>a</sup> | Regulatory Limit or Closure Standard for Soil                                                                      | Acceptable Precision (RPD) | Acceptable Accuracy (%R) <sup>c</sup> |
|------------------------------|-------------------------------|---------------|------------------|-----------------------------------|------------------------------------|---------------------------|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|
| Gamma Emitting Radionuclides | EPA 901.1 <sup>p</sup>        | Water         | PE or G          | 1 liter                           | HNO <sub>3</sub> to pH<2           | 6 months                  | Report Cs-137 and any other radionuclide identified in library search | 20 pCi/L <sup>f</sup>                                | DOE Order 5400.5 and NTS POC                                                                                       | ±20                        | 80 to 120                             |
|                              | HASL 300 <sup>q</sup> 4.5.2.3 | Soil          |                  | 500 grams                         | None                               |                           |                                                                       | 0.2 pCi/g                                            |                                                                                                                    |                            |                                       |
| Isotopic Uranium             | NAS-NS-3050 <sup>s</sup>      | Water         | PE or G          | 1,000 mL <sup>l</sup>             | HNO <sub>3</sub> to pH<2           | 6 months after collection | Uranium-238<br>Uranium-234<br>Uranium-235/236                         | 1 pCi/L<br>1 pCi/g                                   | 500 pCi/g                                                                                                          | ±25                        | 70 to 120                             |
|                              |                               | Soil          |                  | 50 grams                          | None                               |                           |                                                                       |                                                      |                                                                                                                    |                            |                                       |
| Total Metals                 | 6010                          | Water         | PE or G          | 1 liter                           | pH<2, HNO <sub>3</sub> Cool to 4°C | 180 days                  | Beryllium (Be)<br>Nickel (Ni)                                         | 5 µg/L (Be)<br>40 µg/L (Ni)                          | 0.14 mg/kg (Be)                                                                                                    | 20                         | 75 to 125                             |
|                              |                               | Soil          |                  | 8-ounce wide-mouth jar            | Cool to 4°C                        |                           |                                                                       | 0.5 mg/kg (Be)<br>4 mg/kg (Ni)                       | 150 mg/kg (Ni)                                                                                                     |                            |                                       |
| Isotopic Plutonium           | NAS-NS-3058                   | Water         | PE or G          | 1 liter                           | HNO <sub>3</sub> to pH<2           | 6 months                  | Plutonium-238<br>Plutonium-239/240                                    | 1 pCi/L                                              | Soil:<br>Pu-238 = 12.8 pCi/g<br>Pu-239/240 = 1.376 pCi/g<br>Water:<br>Pu-238 = 17 pCi/L<br>Pu-239/240 = 15.5 pCi/L | 25                         | 75 to 125                             |
|                              |                               | Soil          |                  | 4 ounce                           | None                               |                           |                                                                       | 1 pCi/g                                              |                                                                                                                    |                            |                                       |

Refer to footnotes at end of table.

**Table 3-2**  
**Site Characterization and Closure Verification Analytical Chemical Requirements**  
 (Page 3 of 3)

| Parameter Group | Analytical Method | Sample Medium | Sample Container | Minimum Amount of Sample Required | Preservative | Holding Time | Analytes to be Analyzed and Reported | Regulatory Limit or Closure Standard for Soil | Acceptable Precision (RPD) <sup>b</sup> | Acceptable Accuracy (%R) <sup>c</sup> |
|-----------------|-------------------|---------------|------------------|-----------------------------------|--------------|--------------|--------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------|
| Tritium         | EPA 9060          | Water         | PE or G          | 250 mL                            | Cool to 4°C  | 6 months     | Tritium                              | 500 pCi/L                                     | Not Applicable                          | 20 to 120                             |
|                 | EPA EERF H-01     | Soil          | G                | 100 grams                         |              |              |                                      | 1 pCi/g                                       |                                         |                                       |

<sup>a</sup>Milligrams per liter, unless otherwise specified

<sup>b</sup>Relative percent difference

<sup>c</sup>Percent recovery

<sup>d</sup>Glass

<sup>e</sup>Micrograms per liter

<sup>f</sup>Milligrams per kilogram

<sup>g</sup>All RCRA Subpart S values from EPA, 1996

<sup>h</sup>Uses value for dinitrotoluene mixture per Art Gravenstein - State of Nevada (Deshler, 1996)

<sup>i</sup>Value is same as that calculated for 3-nitrotoluene and 4-nitrotoluene

<sup>j</sup>Toxicity Characteristic Leaching Procedure from Title 40 CFR §261.24, Table 1

<sup>k</sup>EPA Test Methods for Evaluating Solid Waste, 3rd Edition, Part 1-4, SW-846, 1986

<sup>l</sup>Method for mercury analysis

<sup>m</sup>Polyethylene

<sup>n</sup>Nitric acid

<sup>o</sup>Except mercury: 28 days to leaching, 28 days to analysis

<sup>p</sup>Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1992

<sup>q</sup>Environmental Measurements Laboratory Procedure Manual, HASL-300, U.S. Department of Energy, 1992

<sup>r</sup>PicoCuries per liter

<sup>s</sup>National Academy of Sciences, Nuclear Science Series, September 1963

<sup>t</sup>Milliliter

<sup>°</sup>C = Degrees Celsius

CFR = Code of Federal Regulations

Cs-137 = Cesium-137

HASL = Health and Safety Laboratory

NTS POC = Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste (Bechtel Nevada, 1995)

RCRA = Resource Conservation and Recovery Act

Data quality objectives and quality assurance (QA) objectives, including precision, accuracy, representativeness, comparability, and completeness, have been established for the project to ensure that the data are sufficient and of adequate quality for their intended uses. The DQOs are included in Appendix A. The laboratory will provide Contract Laboratory Program (CLP)-like data packages for all analyses, and ten percent of all sample results will be validated by third-party data validators. The QA objectives are discussed in the *RCRA Industrial Sites QAPP* (DOE/NV, 1994a). Quality control requirements specific to these assessment activities include the following and are also discussed in detail in the *RCRA Industrial Sites QAPP*:

- One duplicate sample will be collected per 20 environmental samples collected.
- One rinsate blank will be collected per decontamination event. Dedicated trowels may be used to preclude decontamination between sample locations.
- One field blank will be collected per 20 environmental samples collected.

Statistical methods were used to determine the appropriate number of samples to collect and verify that constituents of concern are present below closure standard levels (Table 2-1). Equation Number 8 in Chapter 9 of SW-846 (EPA, 1986) gives the process for calculating the number of samples required to measure the sample mean,  $X$ , of the sampled area associated with a sample standard deviation of  $s$ , with an acceptably small probability of error,  $\alpha$ , as:

$$n = (t_{1-\alpha/2, n-1} s/[RT-X])^2$$

Where:

$t_{1-\alpha/2, n-1}$  = the corresponding student t value for the appropriate probability and number of degrees of freedom ( $= n-1$ )  
 $s$  = the sample standard deviation  
 $RT$  = the regulatory threshold for the constituent of concern  
 $X$  = the mean concentration of the constituent of concern

For the Buried DU Artillery Round No. 1 at the TTR, there is no preliminary information regarding the mean or standard deviation of the constituents of concern. In the absence of this information, the destruction pit and any other area of concern will be divided into equal grid spaces; and a systematic, random sampling pattern will be followed. The required number of samples will then be calculated from the analytical results using the above equation. If additional

samples are required to demonstrate that the site meets closure standards, they will be collected at a later time. If the initial sampling effort shows that there are areas that are above the closure standard, the contaminated areas will be excavated and resampled. The data showing the presence of constituents of concern above the closure standard will be discarded for purposes of calculation, and Equation 8 of Chapter 9 of SW-846 (EPA, 1986) will be applied again, using the new data. This will confirm that an adequate number of samples was collected and analyzed to demonstrate that the site meets closure standard requirements.

### ***3.1.1 Sample Locations***

In the following sections, the sampling strategy for the destruction pit and the stockpiled soil are described.

#### ***Verification Sampling of the Destruction Pit and Surroundings***

Sample locations will be determined by dividing the destruction pit into four quadrants of approximate equal size and then dividing each of these quadrants into four quadrants. The intersection of the lines that meet in the center of each subdivided quadrant mark the approximate sample locations. Actual sampling locations will be documented in the field.

In the event that the destruction in place is not fully contained, the sampling program will be adjusted to verify that the impacted area around the excavation was cleaned adequately.

Radiological surveys and sampling will be carried out over that area by expanding the grid area that will be used within the excavation.

#### ***Characterization Sampling of the Stockpiled Soil***

Waste characterization soil samples will also be collected from stockpiled soil having elevated field screening readings. There is a possibility that some uncontaminated soil may need to be excavated (e.g., initial excavation of the soil cover to be excavated when trying to locate the projectile); in such case, the uncontaminated soil (based on field screening) will not be characterized. Waste characterization will be guided by the *Waste Characterization Sampling and Analysis Plan for Tonopah Test Range: Corrective Action Units 400, 407, 426, 430, and the Wind Radar Antenna Pedestal*, (DOE/NV, 1996b). The piles will be divided into four quadrants. Five surface samples (0 to 6 in.) will be collected from the pile, one from the center of each quadrant and one from the center where the four quadrants meet. The five samples will be composited into a single sample and submitted for the same laboratory analysis as those samples collected from the destruction pit. Results from these samples will be used to characterize the piles of soil for disposal. Sampling locations will be documented in the field.

### **3.1.2 Analytical Parameters**

At the Buried DU Artillery Round No. 1, all samples will be analyzed for TCLP and total metals, TCLP SVOCs, nitroaromatics and nitroamines, isotopic uranium and plutonium, tritium, and gamma spectroscopy analyses for other radionuclides, per Tables 2-1, 3-1 and 3-2. At all other nonradiological UXO that may be encountered, samples will be analyzed only for TCLP metals and SVOCs, and nitroaromatics and nitroamines.

The laboratory will provide CLP-like data packages for all analyses, and ten percent of all sample results will be validated by third-party data validators.

### **3.2 Field Screening and Field Surveys**

Magnetometer and radiological field screening methods will be used to guide excavation activities. To ensure proper handling and shipping of potentially radioactive materials, all soil samples from this investigation will be screened for alpha, beta, and gamma radiation in accordance with the *NV/YMP Radiological Control Manual* (DOE/NV, 1994b) before being removed from the TTR.

The radiological surveys will be performed over a grid whose grid spacing will be selected appropriately to cover the area effected by the demolition. The survey will be performed using a Sodium Iodide detector to collect gamma activities and a Geiger-Mueller detector to collect alpha and beta activities.

### **3.3 Verification**

Excavation activities will be stopped when field magnetometer and radiological surveys determine that sufficient soil has been removed. To verify that the excavation has been sufficient, the soil within potentially impacted areas (e.g., destruction pit or surface areas impacted by a release) will be sampled and analyzed in accordance with Section 3.1. If the analytical results meet the closure standards and no other constituents of concern are found, and if concurrence is obtained from NDEP, then no further action will be required and the site will be considered restored and closed. If contamination is detected at concentrations above closure standards, then additional excavation and soil sampling will be performed as described in Section 3.1. This process will be repeated, as necessary, until analyses indicate that the closure standards have been achieved.

### ***3.4 Remediation***

The excavation process will be performed using a backhoe or other means as directed by the UXO team. Excavated soil will be removed in 1-m (3-ft) layers. Each layer will be screened for radiological contamination prior to removal. Radiologically contaminated soil will be segregated from noncontaminated soil on the basis of field measurements, and the soil will be placed on heavy plastic sheeting and covered. All excavated soil will remain on site until sample analysis determines its disposition. If it is determined that excavation is no longer practical or cost-effective, work will be stopped; NDEP will be notified as soon as practical; and this plan will be amended (or a new plan written) to encompass a subsurface investigation.

### ***3.5 Site Restoration***

Upon confirmation that the site has met closure standards and upon receipt of a notice of closure from NDEP, all deep excavations will be filled with clean soil from existing borrow pits, and all shallow excavations will be graded. The landscape of the site will be recontoured to grade.

### ***3.6 Schedule***

All appropriate permits will be obtained prior to field work. Sampling will begin after the approval of this SAFER Plan by the NDEP. Upon approval of this plan, NDEP will be notified of the scheduled start date of field activities at least 10 working days prior to the start of field work. The expected schedule of completion dates (in working days) is as follows:

- Day 0: Begin location and assessment of Buried DU Artillery Round No. 1
- Day 10: Destruction in place of projectile or related components
- Day 85: Complete any required excavations and a second round of sampling if required. If not required, confirm site remediations are complete through analytical results and waste removal.

Factors beyond DOE/NV's control, such as weather, classified TTR activities, or delays in receipt of laboratory results, may delay field activities. If such delays occur, NDEP will be verbally notified.

Within six months of receipt of validated laboratory results from final field activities, a closure report will be submitted to NDEP as discussed in Section 4.0 of this plan.

## ***4.0 Reports***

---

Reports during field activities and after completion of the SAFER process will be provided to NDEP by DOE/NV.

Daily reports of field activities will be provided to NDEP while field activities are ongoing through informal fax transmittal. In addition, DOE/NV will verbally inform NDEP as soon as is practical of any substantial changes in scope or schedule. If it is determined that this plan requires significant amendments, NDEP will be notified as soon as practical; this plan will be amended; and NDEP's concurrence with the modified plan will be solicited.

If clean closure is achieved within six months of receipt of validated laboratory results from final field activities, DOE/NV will provide a written closure report to the NDEP documenting that closure was completed in accordance with this plan and will include all analytical results to verify that clean closure did occur. Both radiological and chemical laboratory analytical results, in addition to waste characterization and disposition information, will be included in the closure report. The report will describe the SAFER Plan activities for each unit and request a notice of completion from NDEP.

## 5.0 Waste Management

---

All waste generated through the performance of field activities at the Buried DU Artillery Round No. 1 CAU will be managed in accordance with existing federal and State of Nevada regulations, DOE waste minimization and pollution prevention objectives, waste management programs, and radiological control programs. The waste will be categorized (i.e., as sanitary, low-level, mixed, or hazardous waste) through application of process knowledge, field screening, and confirmatory sampling and analysis. Soil shown to be uncontaminated may be returned to the location from which it was excavated.

The absence or removal of radiological constituents will be demonstrated through laboratory analyses and the use of sufficiently sensitive radiological screening instruments. The instruments will be used for detecting alpha and beta/gamma activities. In addition, swipes will be collected on all sample containers prior to shipment off site for analysis. Off-site release limits for surface contamination listed in the *Radiological Control Manual*, Table 2-2 (DOE/NV, 1994b) will apply. Waste will be determined to be radioactive through sampling and analysis. As a waste minimization effort, the data will be evaluated to see if they meet the definition of nonradioactive waste as discussed in the *Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste* (Bechtel Nevada, 1995). With the approval by the Bechtel Nevada Waste Management Program, waste meeting the requirements of the NTS POC may be disposed in a sanitary landfill. Radioactive waste that does not meet the NTS POC will be segregated and stored at the designated TTR Radioactive Material Area pending disposal at one of the Nevada Test Site's Radioactive Waste Management Sites according to NVO-325 requirements (DOE/NV, 1992b).

Hazardous waste is defined in Title 40 CFR Part 261. Hazardous waste will be managed in accordance with applicable federal and state regulations. Hazardous waste will be determined to be a mixed waste if analytical results do not meet the NTS POC for radioactivity. Mixed waste, if generated, will be shipped to the Nevada Test Site Area 5 Transuranic Waste Storage Pad, pending treatment and disposal. Nonradioactive hazardous waste to be disposed off of the TTR will be packed in containers that meet all EPA and U.S. Department of Transportation criteria for shipment and any additional criteria specified by the receiving disposal site. Hazardous wastes will be disposed of at an off-site commercial, permitted treatment, storage, and disposal facility

or recycling facility. Hazardous waste may be shipped to the Nevada Test Site for storage at the permitted Area 5 Hazardous Waste Storage Site pending shipment to a commercial facility.

Nonrecyclable wastes that are nonhazardous and nonradioactive will be disposed of at an appropriate sanitary landfill. Generation of transuranic, high-level, or biological waste is not anticipated. In the event that one of these waste types is generated, work will stop; NDEP will be notified; and this plan will be amended to assure proper waste disposition.

If any mixed waste is generated, it will be managed in accordance with the *Mutual Consent Agreement Between the State of Nevada and the Department of Energy for the Storage of Low-Level Land Disposal Restricted Mixed Waste*. Within nine months of the placement of mixed waste on the TRU mixed waste storage pad, DOE/NV will submit a plan for treatment and disposal of the waste to the Nevada Division of Environmental Protection.

## ***6.0 Site-Specific Health and Safety Plans***

---

The health and safety protocols for the field activities related to the implementation of this SAFER plan will be delineated in a Site-Specific Health and Safety Plans (SSHASPs). This SSHASP, controlled separately from this SAFER plan, is not included as part of this plan, but will be available upon request prior to start of field activities. The SSHASP sets forth the specific requirements and procedures that will be followed while performing operations under this SAFER plan. The SSHASP includes the following information:

- Engineering and administrative protective measures
- Monitoring for site-specific chemical and radiological contaminants
- Personal protective equipment and its use
- Site control
- Emergency communications
- Emergency reporting protocol
- Decontamination
- Site characterization
- Training
- Excavation safety

All field activities will be performed in accordance with the applicable SSHASP, and all field personnel involved in these activities will be familiar with requirements of the SSHASP. All visitors to the work sites will be required to abide by these procedures.

The objective of the SSHASP is the protection of workers during SAFER plan activities. This will be accomplished through compliance with DOE Orders, Occupational Safety and Health Administration Regulations, and the *DOE/NV NV/YMP Radiological Control Manual* (DOE/NV, 1994b), as well as the SSHASPs. Many of the operations conducted under the DOE/NV Environmental Restoration Program are regulated under the DOE Orders and Title 29 of the *Code of Federal Regulations*.

Due to unique logistics, hazards, and site conditions, individual groups of sites and/or tasks require the production of a SSHASP. It is considered a living document, and as new information becomes available, changes will be made as appropriate, with concurrence and approval of the Subproject Manager.

## **7.0 Community Relations Plan**

---

A *Public Involvement Plan* is being developed for environmental restoration activities at Nevada sites operated by DOE/NV. Under this plan, specific public-involvement activities will be outlined for the Environmental Restoration Project, including the TTR.

Until the *Public Involvement Plan* is developed, public-participation activities for the Environmental Restoration Project are referenced in the *Public Participation Plan for the ERWM Program, Nevada Operations Office* (DOE/NV, 1993). Any public-participation activities specifically relating to DOE/NV environmental restoration activities at the TTR will be publicly announced through press releases and/or newspaper advertisements.

A fact sheet, poster board, and video covering environmental restoration activities at the TTR also has been prepared. These and other public information materials can be obtained by writing to the following address:

U.S. Department of Energy  
Nevada Operations Office  
Public Affairs and Information Office  
P.O. Box 98518  
Las Vegas, Nevada 89193-8518

## 8.0 References

---

American Public Association. 1992. *Standard Methods for the Examination of Water and Wastewater*.

Bechtel Nevada. 1995. *Nevada Test Site Performance Objective for Certification of Nonradioactive Hazardous Waste (NTS POC)*.

*Code of Federal Regulations*. 1993. *Protection of the Environment*, Title 40, Parts 261 and 265. Washington, DC.

*Code of Federal Regulations*. 1996. Title 40, Part 261.24, Table 1. Washington DC.

Deshler, B. IT Corporation. 1996. Communication with Art Gravenstein, State of Nevada, 3 January.

DOE, see U.S. Department of Energy.

Enlow, J. Sandia National Laboratories, Test Director. 1996. Communication with E. Seuter, IT Corporation.

EPA, see U.S. Environmental Protection Agency.

ERDA, see U.S. Energy Research and Administration.

*Federal Facility Agreement and Consent Order (FFACO) of 1996*. Prepared by the Nevada Division of Environmental Protection, U.S. Department of Energy, and U.S. Department of Defense.

Kessel, D. Sandia National Laboratories, Yucca Mountain. 1996. Communication with C. Rodriguez. IT Corporation. Las Vegas, NV.

National Academy of Sciences. 1963. *Nuclear Science Series*.

NDEP, see Nevada Division of Environmental Protection.

Nevada Division of Environmental Protection. 1992. Contaminated Soil and Groundwater Remediation Policy, June 25, 1992.

Powers, K. W. DOE/NV. 1996. Memorandum to Principal Staff Regarding, "Memorandum of Agreement Between DOE/NV and DOE/AL, Appendix C: Tonopah Test Range," January 2, 1996. Las Vegas, NV.

Quas, J. REECO/TTR, Retired. 1996. Communication with E. Seuter, IT Corporation.

SNL, see Sandia National Laboratories.

Sandia National Laboratories. Date unknown. TTR Range Test Plan for W-79 UD tests.  
"W-79 UD Hydro Test Vehicle." TTR, NV.

Smith, H. D. Sandia National Laboratories. 1993a. Telecon between H. Duane Smith,  
Jim Truman, IT Corporation; John Quas, REECO/TTR and Randy Dubiskas,  
IT Corporation, about Buried DU Rounds #1 and #2. 28 July.

Smith, H. D. Sandia National Laboratory. 1993b. Telecon between H. Duane Smith,  
Sandia National Laboratories; Jim Truman, IT Corporation; John Quas, REECO/TTR and  
Randy Dubiskas, IT Corporation, 7/28/93, 1505 hrs: Buried DU Round #1 and Other  
Potential Sites, 3 p.

Smith, H. D. Sandia National Laboratories. 1996. Communication with E. Seuter,  
IT Corporation.

U.S. Department of Energy. 1990. *Radiation Protection of the Public and the Environment*,  
DOE Order 5400.5. Washington, DC.

U.S. Department of Energy. 1992. *Environmental Measurements Laboratory Procedure  
Manual*, HASL-300.

U.S. Department of Energy, Albuquerque Operations Office. 1992. *Tonopah Test Range  
Environmental Monitoring Plan*. Albuquerque, NM.

U.S. Department of Energy, Nevada Operations Office. 1992a. Tonopah Test Range Tour.  
April 28, 1992. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1992b. *Nevada Test Site Defense Waste  
Acceptance Criteria, Certification, and Transfer Requirements*, NVO-325, Rev. 1.  
Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1993. *Public Participation Plan for  
the ERWM Program*. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1994a. *Resource Conservation and  
Recovery Act, Industrial Sites Quality Assurance Project Plan, Nevada Test Site, Nevada*.  
Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1994b. *NV/YMP Radiological Control  
Manual*. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1996a. *Streamlined Approach for Environmental Restoration Plan, CAU No. 400: Bomblet Pit and Five Points Landfill, Tonopah Test Range*. Las Vegas, NV.

U.S. Department of Energy, Nevada Operations Office. 1996b. *Draft Waste Characterization Sampling and Analysis Plan for Tonopah Test Range: Corrective Action Units 400, 407, 426, 430, and the Wind Radar Antenna Pedestal*. Las Vegas, NV.

U.S. Energy Research and Development Administration. 1975. *Environmental Assessment, Tonopah Test Range, Tonopah, Nevada*. Washington, DC.

U.S. Environmental Protection Agency. 1986. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, SW-846, 3rd Edition. Washington, DC.

U.S. Environmental Protection Agency. 1989. *Soil Sampling Quality Assurance User's Guide (EPA/600/8-89/046)*. Washington, DC.

U.S. Environmental Protection Agency. 1994. *Guidance for the Data Quality Objectives Process (EPA QA/G4)*. Washington, DC.

U.S. Environmental Protection Agency. 1996. *Region 9 Preliminary Remediation Goals (PRGs) 1996*. Letter from Stanford J. Smucker, Ph.D. to PRG Table Mailing List. August 1, 1996.

55 FR 30796. *Corrective Action for Solid Waste Management Units (SWMUs) at Hazardous Waste Management Facilities*. Proposed Rule. Washington, DC.

**Distribution List**

(Page 1 of 2)

|                                                                                                                                                                 | <u>Copies</u>      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Mr. Kevin J. Cabble, TTR Project Manager<br>DOE/Nevada Operations Office                                                                                        | 1                  |
| Ms. Sabine T. Curtis,<br>Acting Industrial Sites Subproject Manager<br>DOE/Nevada Operations Office                                                             | 1                  |
| Ms. Janet Appenzeller-Wing<br>Industrial Sites Subproject Manager<br>DOE/Nevada Operations Office                                                               | 1                  |
| Mr. Steven Mellington<br>Environmental Restoration Division Director<br>DOE/Nevada Operations Office                                                            | 1                  |
| Environmental Restoration Division Record Center<br>DOE/Nevada Operations Office                                                                                | 1 (Uncontrolled)   |
| Mr. Paul J. Liebendorfer<br>Bureau of Federal Facilities<br>Division of Environmental Protection<br>State of Nevada<br>333 W. Nye Lane<br>Carson City, NV 89710 | 2                  |
| Mr. G.J. Sieren<br>Division of Environmental Protection<br>State of Nevada<br>555 East Washington<br>Suite 4300<br>Las Vegas, NV 89101                          | 1                  |
| Ms. Susan Barrow, Chief EMN<br>Environmental Management Directorate<br>4551 Devlin Drive<br>Nellis AFB, NV 89191-6546                                           | 1                  |
| Mr. Richard A. Dubiskas, Project Manager<br>IT Corporation<br>Las Vegas, NV 89103                                                                               | 1 (3 Uncontrolled) |

**Distribution List**  
(Page 2 of 2)

|                                                                                                                                              | <u>Copies</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Mr. Ken Beach, Project Manager<br>IT Corporation<br>Las Vegas, NV 89103                                                                      | 1             |
| Ms. Cheryl Rodriguez<br>IT Corporation<br>Las Vegas, NV 89103                                                                                | 1             |
| Mr. Don Cox<br>IT Corporation<br>Las Vegas, NV 89103                                                                                         | 1             |
| Mr. Brad Schier<br>IT Corporation<br>Las Vegas, NV 89103                                                                                     | 1             |
| Ms. Stacey Sorg<br>IT Corporation<br>Las Vegas, NV 89103                                                                                     | 1             |
| Ms. Jeanne Wightman<br>IT Corporation<br>Las Vegas, NV 89103                                                                                 | 1             |
| Mr. Dave Madsen<br>Bechtel Nevada                                                                                                            | 1             |
| Ms. Karen Patton<br>Bechtel Nevada                                                                                                           | 1             |
| U.S. Department of Energy<br>Office of Scientific and Technical Information<br>175 Oak Ridge Turnpike<br>P.O. Box 62<br>Oak Ridge, TN 378831 | 2             |
| DOE/Nevada Operations Office<br>Technical Information Resource Center<br>Post Office Box 98518<br>Las Vegas, NV 89193-8518                   | 2             |

## **Appendix A**

### **Data Quality Objectives**

## ***Table of Contents***

---

|                                                                   |      |
|-------------------------------------------------------------------|------|
| List of Figures .....                                             | A-ii |
| A.1.0 Data Quality Objectives .....                               | A-1  |
| A.1.1 Conceptual Model .....                                      | A-2  |
| A.1.2 Data Quality Objectives .....                               | A-6  |
| A.1.2.1 Step 1: State the Problem .....                           | A-6  |
| A.1.2.2 Step 2: Identify the Decision .....                       | A-6  |
| A.1.2.3 Step 3: Identify the Inputs to the Decision .....         | A-6  |
| A.1.2.4 Step 4: Define the Boundaries of the Study .....          | A-6  |
| A.1.2.5 Step 5: Develop a Decision Rule .....                     | A-7  |
| A.1.2.6 Step 6: Specify Acceptable Limits on Decision Error ..... | A-7  |
| A.1.2.7 Step 7: Optimize the Design .....                         | A-7  |

## ***List of Figures***

---

| <b><i>Number</i></b> | <b><i>Title</i></b>                                                                                                                    | <b><i>Page</i></b> |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A-1                  | Conceptual Model for the Buried Depleted Uranium Artillery Round No. 1<br>Corrective Action Unit .....                                 | A-3                |
| A-2                  | Planar and Cross-Sectional Views of the Area Affected by the<br>Destruction of the Buried Depleted Uranium Artillery Round No. 1 ..... | A-4                |

## ***A.1.0 Data Quality Objectives***

---

The sampling objectives for the Buried DU Artillery Round No. 1 SAFER Plan were determined using the Data Quality Objective process outlined by the Environmental Protection Agency (EPA, 1994). DQOs are qualitative and quantitative statements that specify the quality and type of data required to support proposed potential courses of actions for the Buried DU Artillery Round No. 1 CAU. The DQOs were developed to clearly define the purpose(s) for which environmental data will be used and to design a data collection program that will satisfy these goals.

The DQO process is a planning process that provides a systematic approach to defining the criteria and objectives that data collection should satisfy. DQOs have been developed using the step-wise planning process outlined by the EPA. The DQOs are qualitative and quantitative statements derived from the step-wise process that clarify the study objective, define the most appropriate type of data to collect, determine the most appropriate conditions from which to collect the data, and specify tolerable limits on decision errors which will be used as the basis for establishing the quantity and quality of data needed to support the decision. The seven sequential steps of the DQO process are:

1. State the problem
2. Identify the decision
3. Identify inputs to the decision
4. Define the study boundaries
5. Develop a decision rule
6. Specify tolerable limits on decision errors
7. Optimize the design

Ultimately, the DQO process yields a thoughtfully designed study that has well-defined objectives, has obtainable objectives, is designed to meet objectives, and is sufficiently detailed to be defensible -- but not overly detailed to result in wasting resources. The following seven sections, A.1.2.1 to A.1.2.7, present the results of the seven step DQO planning process.

One tool used in the DQO process is the formulation of a site conceptual model.

### ***A.1.1 Conceptual Model***

A conceptual model has been developed to postulate potential exposure pathways from likely contaminant sources at the Buried DU Artillery Round No. 1 CAU (Figure A-1). The conceptual model is based on the historical information described in Section 2.0 of the main text. The following are assumptions that were considered regarding the projectile:

- The projectile is located in one of three areas suspected of containing the projectile.
- Some components of the projectile contain depleted uranium (U-238), chromium, mercury, and lead.
- The disposition of the projectile is unknown (i.e., whether the projectile is intact or not).
- The projectile is assumed to contain unexploded high explosive and must be destroyed in-place before it is safe to remove.

The following are assumptions that were considered regarding concerns caused by the destruction of the projectile:

- A portion of the DU will burn during the destruction of the projectile.
- Following in-place destruction of the projectile, the bulk of the contaminated soil will be confined to the disturbed soil around the projectile. The explosives will be placed on the projectile in such a way that the explosion is directed downward; therefore, the majority of the contamination will increase from the original elevation of the explosives towards the bottom of the pit (Figure A-2).
- Distribution of the contaminants after destruction of the projectile will be heterogeneous. Fragments or particles of DU (depending on size) will be found as radioactive hot spots through radiological field screening activities.
- The concentrations of the residual hazardous or radioactive materials from the destroyed projectile will be low.
- No other significant mechanisms (such as infiltrating fluids) exist that could drive the constituents significantly deeper than the zone of detonation in the time interval between detonation and remediation.
- Destruction of the projectile could result in surface contamination in the form of DU fragments or particles caused from a breach in the detonation containment. Hot spots will be located using radiological field screening.

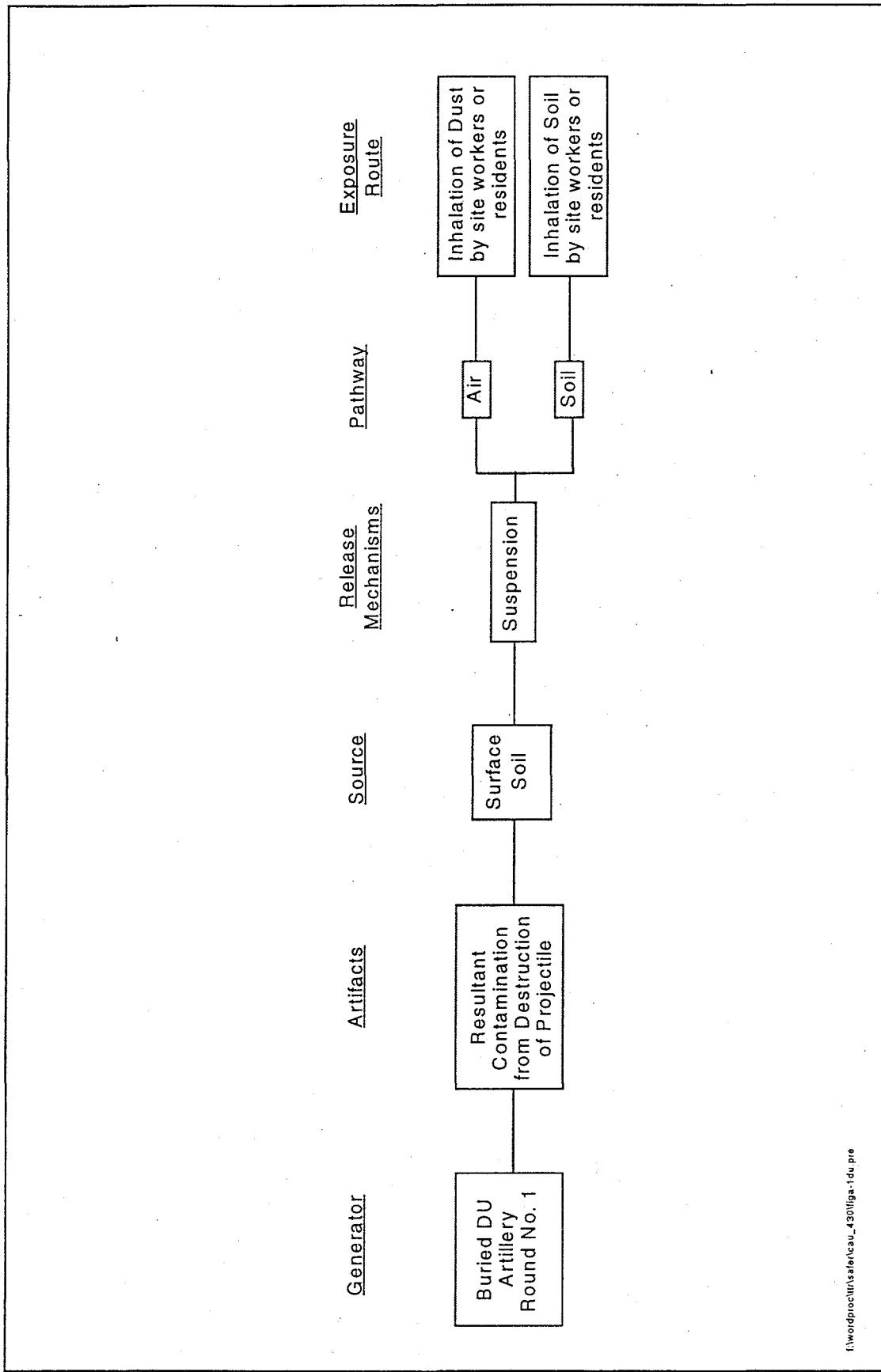
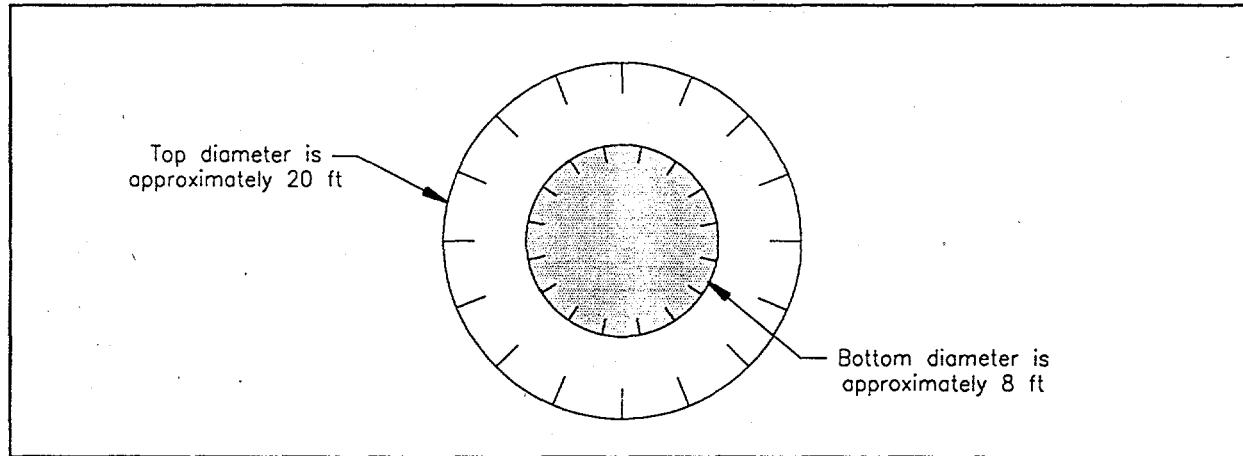
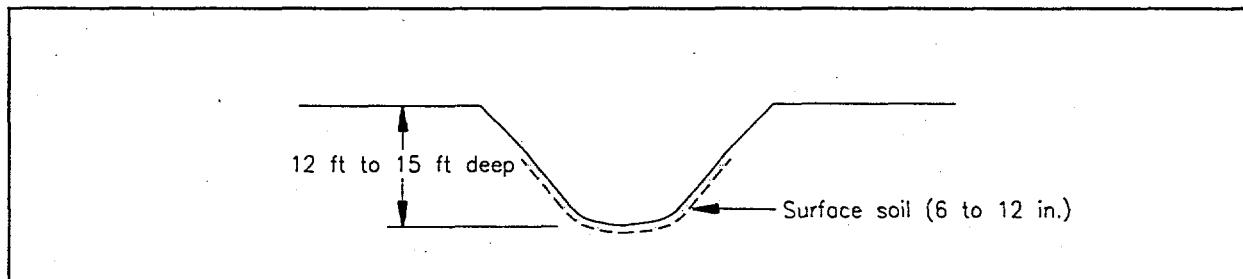
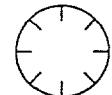





Figure A-1  
Conceptual Model for the Buried Depleted Uranium Artillery Round No. 1 Corrective Action Unit



Planar View of Destruction Pit




Cross-sectional View of Destruction Pit

NOT TO SCALE

LEGEND

 Area suspected to have the greatest concentration of contamination from projectile destruction



Depression

Figure A-2  
Planar and Cross-Sectional Views of the Area Affected by the  
Destruction of the Buried Depleted Uranium Artillery Round No. 1

- Hot spots will be detected within the top 0 to 15 cm (0 to 6 in.) of native soil within the pit and on the surface (if a breach occurred) because the majority will be removed with the excavation of the disturbed soil.
- A minor amount of mixed waste may be generated through a mixing during the detonation of DU with regulated metals or semivolatiles.

These factors were considered, and from them, a conceptual model was created. Based on these factors, it was determined that the primary contamination source of concern are fragments or particles of DU from the destruction of the projectile. These fragments will be located as hot spots with field radiological screening. It was also determined that the primary area impacted by DU fragments from the destruction of the projectile will be the lower portion of the destruction pit. Some surface contamination could occur if a breach of containment occurs during destruction of the projectile. Depleted uranium fragments or particles will be located only within the disturbed soil within the pit, or thin (6 in. deep) layer of undisturbed soil directly beneath the pit.

The conceptual model interprets that the destruction pit and potential additional surface area has only a shallow soil (< 30 cm [1 ft]) source after re-excavation. There would be two potential exposure routes: inhalation and ingestion of contaminated soil. The viable contamination release mechanism is the suspension of potentially contaminated surface soil to the air through either soil disturbance or high winds. If the surface soil is contaminated, inhalation or ingestion (or general consumption through the mouth) of dust or soil could be potentially harmful exposure routes. High winds and dust devils have been documented at the TTR (DOE/NV, 1996a). Both soil excavation activities and high winds could cause suspension of contaminated soil.

The amount of contamination will not exceed what was contained in the projectile. As such, the amount of contamination will not be great enough to impact groundwater. Environmental sample data will be used to determine when the site (destruction pit) or sites (destruction pit and additional areas of surface contamination) are cleaned up. If analytical results are below closure standards, the site(s) will be restored and clean closed. If analytical results indicate that contamination is present above closure standards, additional soil excavation and sampling will be performed. This will be repeated until all contamination has been removed and clean closure can be obtained.

### ***A.1.2 Data Quality Objectives***

The DQO process (EPA, 1994) is a systematic planning tool for establishing criteria for data quality and for developing data collection designs. It is a seven-step process which results in a design to collect the right type, quality, and number of data needed to support an environmental decision. The DQO process has been applied to proposed corrective action at the TTR Buried DU Artillery Round No. 1. Each step will be discussed in the following text.

#### ***A.1.2.1 Step 1: State the Problem***

In this section, the problem is defined so that the focus of the study is unambiguous. The problem statement is based on the site history presented in Section 2.0 and the conceptual model presented in Section A.1.1.

The disposition and location of the Buried DU Artillery Round No. 1 is uncertain. It is known to contain depleted uranium and believed to contain RCRA characteristic constituents. This site must be closed. Closure of the site will require the location, assessment, and destruction of the projectile and remediation of the contamination caused by the destruction of the projectile and the explosives used to cause the destruction. Sampling and analysis will be required to verify that contaminated soil above action levels has been excavated.

#### ***A.1.2.2 Step 2: Identify the Decision***

This step defines the study question that the study will attempt to address. Field screening instruments are needed to guide the excavation activities to ensure that excavation removes contaminated soil, but does not remove clean soil. Verification sampling must be used to verify that the excavation has removed all soil that exceeds action levels.

#### ***A.1.2.3 Step 3: Identify the Inputs to the Decision***

The excavation of the contaminated soil will be guided by visual definition of impacted soil and field screening instruments which will be used to screen for metal debris and alpha and beta/gamma activities. The field screening is not a definitive tool for identifying soil contamination, so verification sampling with offsite analyses will be performed to ensure that all soil with concentrations or activities above action levels have been removed.

#### ***A.1.2.4 Step 4: Define the Boundaries of the Study***

The temporal boundary of the study will be the time at which the SAFER plan is implemented. No follow-up study of the CAU is planned. The spatial boundaries of the remediation and

verification sampling area will include the destruction pit and any surface area impacted by a release of contamination during destruction activities.

#### ***A.1.2.5 Step 5: Develop a Decision Rule***

The results of the laboratory analytical data for the verification samples from the destruction pit and any other areas with potential contamination will determine whether the site is clean or not. Closure standards for the constituents of concern are discussed in Section 2.0 and listed in Table 2-1. If analytical data indicate that constituents of concern are not detected above the closure standards, the site will be declared closed. If not, remediation will continue until analytical data from resampling demonstrate the site to be clean.

Note that the null hypothesis ( $H_0$ ) is that the site is contaminated. Only if statistically valid results prove that the analytical data is less than the closure standards will the site be considered "clean." Thus, the burden of proof is on the data to demonstrate that the site is clean.

#### ***A.1.2.6 Step 6: Specify Acceptable Limits on Decision Error***

There are two types of decision errors possible in conducting the SAFER process. These errors are described as a Type I error ("false positive," judging a clean area to be contaminated, referred to by statisticians as the "confidence level" or  $1-\alpha$ ) and a Type II error ("false negative," judging a contaminated area to be clean, referred to by statisticians as the "power," or  $1-\beta$ ). This SAFER plan is designed to minimize both types of errors.

For a planned removal or remedial response operation involving potentially contaminated soil, Type I and Type II errors are of about equal significance and are usually established at 90 to 95 percent (EPA, 1989). For the purpose of this SAFER plan, the confidence level and power will both be assigned at 90 percent.

Because the collected data will be used to support a closure, all off-site analyses will be documented with CLP-like data packages, and 10 percent of the data will undergo data validation by a third party.

#### ***A.1.2.7 Step 7: Optimize the Design***

The sampling and analysis plan has been presented in Section 3.1 of this report and considered all seven DQO steps. Soil will be removed from the projectile destruction pit in 3-ft layers until

native fill beneath the projectile is reached and field screening results are negative. Each layer will be screened for metal debris and radiological contamination prior to excavation. Metal debris not radiologically contaminated will be removed and staged separately for disposal in a sanitary landfill. Soil and/or metal found to be radiologically contaminated will be staged separately pending soil sample results. Verification soil samples will be collected from native soil at the bottom of the pit. These analytical results will verify when all contamination (e.g., radiological or hazardous) has been removed and the site is "clean."

**Appendix B**

**Guideline Concentration  
for Depleted Uranium and Plutonium**

## ***Table of Contents***

---

|                                                                        |                                                  |      |
|------------------------------------------------------------------------|--------------------------------------------------|------|
| B.1.0                                                                  | Introduction                                     | B-1  |
| B.2.0                                                                  | Analysis                                         | B-11 |
|                                                                        | B.2.1 Radiological Source Term                   | B-11 |
|                                                                        | B.2.2 Exposure Scenario and the Parameter Values | B-12 |
| B.3.0                                                                  | Analytical Results                               | B-15 |
| B.4.0                                                                  | References                                       | B-17 |
| Attachment B-1 - Parameter Values Used as RESRAD Input for CAU No. 430 |                                                  |      |
|                                                                        | Buried DU Artillery Round                        | B-20 |

## ***List of Tables***

---

| <b><i>Number</i></b> | <b><i>Title</i></b>                                                                                                                        | <b><i>Page</i></b> |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| B-1                  | Dose Contributions for Individual Radionuclides and Exposure Pathways<br>at Corrective Action Unit No. 430 (mrem/year) .....               | B-2                |
| B-2                  | Parameters Used in the RESRAD Code for Calculating Guidance<br>Concentrations for Corrective Action Unit No. 430, Tonopah Test Range ..... | B-3                |
| B-3                  | DU and Pu Isotope Contribution to Total Radioactivity .....                                                                                | B-13               |
| B-4                  | Concentration of Source Radionuclides Resulting in a 100 mrem/yr<br>Residential Dose Rate for CAU No. 430 .....                            | B-16               |

# Memorandum

To: Randy Dubiskas

Date: September 5, 1996

From: Steve Adams *SDA*

Project No. 764037.07010100

Subject: Letter Report: GUIDELINE CONCENTRATION FOR DEPLETED URANIUM AND PLUTONIUM AT CORRECTIVE ACTION UNIT 430, BURIED DEPLETED URANIUM ARTILLERY ROUND NO. 1

## ***B.1.0 Introduction***

Corrective Action Unit (CAU) No. 430 is located 0.7 miles south of Avenue 13, south of Area 9 in the Test Area of the Tonopah Test Range (TTR). CAU No. 430 consists of a W-79 Joint Test Assembly (JTA) test artillery projectile. The projectile was reportedly buried at the site in May 1987, at a depth of approximately 5 to 10 feet deep. The buried projectile had depleted uranium (DU) substituted for most of the special nuclear material. Therefore, the projectile still contains a small amount of weapons grade plutonium (Pu). In addition, the W-79 projectile contained high explosives and tritium gas.

Because the W-79 projectile is believed to contain unexploded high explosives (HE), it cannot be safely removed because of the risk of causing the HE to explode. Therefore, the projectile will be detonated in place. Closure of CAU No. 430 includes destruction of the projectile in place and removal of the projectile fragments and soil potentially contaminated with DU, Pu, and explosives residue. The purpose of this letter report memorandum is to document an analysis performed to define the maximum residual concentration of DU and Pu in soil that will ensure compliance with the public dose limit established in the Department of Energy Order 5400.5 (DOE, 1993).

A guideline is required for residual concentration of DU and Pu in the soil at CAU No. 430. The guideline is defined as a DU and Pu concentration in soil that, given appropriate use scenarios and site parameters, will reasonably ensure that individual dose limits of 100 millirems per year (mrem/yr) will not be exceeded. The Department of Energy (DOE) has established generic cleanup guidelines for radium and thorium in soil; cleanup guidelines for DU and Pu must be derived on a site-specific basis.

This letter report memorandum presents the results of the guideline concentration calculations for DU and Pu in soil at CAU No. 430. In addition, it includes all of the site-specific and generic data used in calculating this guideline concentration. The DOE residual radioactive material guideline computer code, RESRAD, was used to calculate the guideline concentration (Yu et al., 1993a). The RESRAD computer program utilizes a dose assessment methodology for deriving

R. Dubiskas

September 5, 1996

deriving site-specific soil guidelines. The dose assessment method and resultant code were adapted by DOE from a manual developed in 1989 for implementing DOE residual radioactive material guidelines (DOE, 1989). The RESRAD code and dose assessment methodology is established by reference in DOE Order 5400.5 (DOE, 1993) as the method to be used in calculating guideline concentrations in soil.

Section B.3.0 of this letter report memorandum lists the guideline concentrations for DU and Pu in soil at CAU No. 430. Table B-1 lists the dose contribution by individual radionuclide for each exposure pathway and the total dose contributed by each radionuclide and from each exposure pathway. Table B-2 lists all of the RESRAD code input parameter values. Attachment B-1 documents how the user-defined code input values were calculated and utilized in RESRAD. Section B.4.0 lists the references for this letter report memorandum and Attachment B-1.

**Table B-1**  
**Dose Contributions for Individual Radionuclides and Exposure Pathways**  
**at Corrective Action Unit No. 430 (mrem/year)<sup>a</sup>**

| Isotope | External Exposure | Inhalation | Radon | Plant Ingestion | Soil Ingestion | Total |
|---------|-------------------|------------|-------|-----------------|----------------|-------|
| Am-241  | 1.64              | 1.25       | 0.00  | 1.23            | 1.32           | 5.44  |
| Pu-238  | 0.00              | 0.19       | 0.00  | 0.19            | 0.20           | 0.58  |
| Pu-239  | 0.25              | 26.43      | 0.00  | 26.14           | 28.19          | 81.01 |
| Pu-240  | 0.01              | 2.51       | 0.00  | 2.48            | 2.67           | 7.67  |
| Pu-241  | 1.45              | 1.27       | 0.00  | 1.25            | 1.34           | 5.32  |
| Pu-242  | 0.00              | 0.00       | 0.00  | 0.00            | 0.00           | 0.00  |
| U-234   | 0.00              | 0.00       | 0.00  | 0.00            | 0.00           | 0.00  |
| U-235   | 0.00              | 0.00       | 0.00  | 0.00            | 0.00           | 0.00  |
| U-238   | 0.01              | 0.00       | 0.00  | 0.00            | 0.00           | 0.01  |
| Total   | 3.35              | 31.64      | 0.00  | 31.28           | 33.73          | 100   |

<sup>a</sup>Doses are for the guideline concentration during the year of maximum dose, 33 years after environmental restoration. Doses in the table are rounded to the nearest 0.01 mrem. The total doses are calculated by summing the individual doses and then rounding to the nearest 0.01 mrem.

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
**(Page 1 of 8)**

| Parameter                               | Unit     | Value Resident | Reference      |
|-----------------------------------------|----------|----------------|----------------|
| Dose Limit                              | mrem/yr. | 100            | DOE, 1993      |
| Dose conversion factors for inhalation: |          |                |                |
| Ac-227+D                                | mrem/pCi | 6.72E+0        | RESRAD default |
| Am-241                                  |          | 4.40E-1        | RESRAD default |
| Np-237+D                                |          | 5.40E-1        | RESRAD default |
| Pa-231                                  |          | 1.28E+0        | RESRAD default |
| Pb-210+D                                |          | 2.32E-2        | RESRAD default |
| Pu-238                                  |          | 3.92E-1        | RESRAD default |
| Pu-239                                  |          | 4.29E-1        | RESRAD default |
| Pu-240                                  |          | 4.29E-1        | RESRAD default |
| Pu-241+D                                |          | 8.25E-3        | RESRAD default |
| Pu-242                                  |          | 4.11E-1        | RESRAD default |
| Ra-226+D                                |          | 8.60E-3        | RESRAD default |
| Ra-228+D                                |          | 5.08E-3        | RESRAD default |
| Th-228+D                                |          | 3.45E-1        | RESRAD default |
| Th-229+D                                |          | 2.16E+0        | RESRAD default |
| Th-230                                  |          | 3.26E-1        | RESRAD default |
| Th-232                                  |          | 1.64E+0        | RESRAD default |
| U-233                                   |          | 1.35E-1        | RESRAD default |
| U-234                                   |          | 1.32E-1        | RESRAD default |
| U-235+D                                 |          | 1.23E-1        | RESRAD default |
| U-236                                   |          | 1.25E-1        | RESRAD default |
| U-238+D                                 |          | 1.18E-1        | RESRAD default |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
**(Page 2 of 8)**

| Parameter                              | Unit     | Value<br>Resident | Reference      |
|----------------------------------------|----------|-------------------|----------------|
| Dose conversion factors for ingestion: |          |                   |                |
| Ac27+D                                 | mrem/pCi | 1.48E-2           | RESRAD default |
| Am-241                                 |          | 3.64E-3           | RESRAD default |
| Np-237+D                               |          | 4.44E-3           | RESRAD default |
| Pa-231                                 |          | 1.06E-2           | RESRAD default |
| Pb-210+D                               |          | 7.27E-3           | RESRAD default |
| Pu-238                                 |          | 3.20E-3           | RESRAD default |
| Pu-239                                 |          | 3.54E-3           | RESRAD default |
| Pu-240                                 |          | 3.54E-3           | RESRAD default |
| Pu-241+D                               |          | 6.85E-5           | RESRAD default |
| Pu-242                                 |          | 3.36E-3           | RESRAD default |
| Ra-226+D                               |          | 1.33E-3           | RESRAD default |
| Ra-228+D                               |          | 1.44E-3           | RESRAD default |
| Th-228+D                               |          | 8.08E-4           | RESRAD default |
| Th-229+D                               |          | 4.03E-3           | RESRAD default |
| Th-230                                 |          | 5.48E-4           | RESRAD default |
| Th-232                                 |          | 2.73E-3           | RESRAD default |
| U-233                                  |          | 2.89E-4           | RESRAD default |
| U-234                                  |          | 2.83E-4           | RESRAD default |
| U-235+D                                |          | 2.67E-4           | RESRAD default |
| U-236                                  |          | 2.69E-4           | RESRAD default |
| U-238+D                                |          | 2.69E-4           | RESRAD default |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 3 of 8)

| Parameter                                                                  | Unit           | Value<br>Resident | Reference       |
|----------------------------------------------------------------------------|----------------|-------------------|-----------------|
| Plant/Soil concentration ratio:                                            |                |                   |                 |
| Ac-227+D                                                                   | None           | 2.50E-3           | RESRAD default  |
| Am-241                                                                     |                | 1.00E-3           | RESRAD default  |
| Np-237+D                                                                   |                | 2.00E-2           | RESRAD default  |
| Pa-231                                                                     |                | 1.00E-2           | RESRAD default  |
| Pb-210+D                                                                   |                | 1.00E-2           | RESRAD default  |
| Pu-238                                                                     |                | 1.00E-3           | RESRAD default  |
| Pu-239                                                                     |                | 1.00E-3           | RESRAD default  |
| Pu-240                                                                     |                | 1.00E-3           | RESRAD default  |
| Pu-241+D                                                                   |                | 1.00E-3           | RESRAD default  |
| Pu-242                                                                     |                | 1.00E-3           | RESRAD default  |
| Ra-226+D                                                                   |                | 4.00E-2           | RESRAD default  |
| Ra-228+D                                                                   |                | 4.00E-2           | RESRAD default  |
| Th-228+D                                                                   |                | 1.00E-3           | RESRAD default  |
| Th-229+D                                                                   |                | 1.00E-3           | RESRAD default  |
| Th-230                                                                     |                | 1.00E-3           | RESRAD default  |
| Th-232                                                                     |                | 1.00E-3           | RESRAD default  |
| U-233                                                                      |                | 2.5E-3            | RESRAD default  |
| U-234                                                                      |                | 2.5E-3            | RESRAD default  |
| U-235+D                                                                    |                | 2.5E-3            | RESRAD default  |
| U-236                                                                      |                | 2.5E-3            | RESRAD default  |
| U-238+D                                                                    |                | 2.5E-3            | RESRAD default  |
| Area of contaminated zone                                                  | m <sup>2</sup> | 1.82E+2           | Calculated      |
| Thickness of contaminated zone                                             | m              | 4.57              | Calculated      |
| Length parallel to aquifer flow                                            | m              | 1.52E+1           | Calculated      |
| Time since placement of material                                           | years          | 0                 | Assumption      |
| Times for calculation<br>10, 50, 100, 250, 500, 800, 1000, 5000,<br>10,000 | years          | NA                | User assumption |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 4 of 8)

| Parameter                                                                                                                                    | Unit              | Value<br>Resident                                                                                | Reference                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Initial principal radionuclide concentration in soil:<br>Am-241<br>Pu-238<br>Pu-239<br>Pu-240<br>Pu-241<br>Pu-242<br>U-234<br>U-235<br>U-238 | pCi/g             | 6.02E+1,<br>1.28E+1<br>1.26E+3<br>1.19E+2<br>1.97E+3<br>2.53E-3<br>6.50E-3<br>1.13E-3<br>6.95E-2 | Calculated<br>Calculated<br>Calculated<br>Calculated<br>Calculated<br>Calculated<br>Calculated<br>Calculated<br>Calculated |
| Concentration of radionuclides in groundwater:                                                                                               | pCi/L             | not used                                                                                         | RESRAD calculates from input data                                                                                          |
| Cover depth                                                                                                                                  | m                 | 0                                                                                                | Conservative assumption                                                                                                    |
| Density of contaminated zone                                                                                                                 | g/cm <sup>3</sup> | 1.5                                                                                              | RESRAD default                                                                                                             |
| Contamination zone erosion rate                                                                                                              | m/yr              | 1.442E-3                                                                                         | Calculated                                                                                                                 |
| Contaminated zone total porosity                                                                                                             | -                 | 0.30                                                                                             | RCRA FIWP for TTR DOE, 1994                                                                                                |
| Contaminated zone effective porosity                                                                                                         | -                 | 0.30                                                                                             | RCRA FIWP for TTR DOE, 1994                                                                                                |
| Contaminated zone hydraulic conductivity                                                                                                     | m/yr              | 1000                                                                                             | Table 5.4, page 31<br>Yu et al., 1993b                                                                                     |
| Contaminated zone "b" parameter                                                                                                              | -                 | 4.05                                                                                             | Table 13.1, page 77<br>Yu et al., 1993b                                                                                    |
| Evapotranspiration coefficient                                                                                                               | -                 | 0.68                                                                                             | Calculated                                                                                                                 |
| Precipitation                                                                                                                                | m/yr              | 0.127                                                                                            | Culp and Howard, 1995                                                                                                      |
| Irrigation                                                                                                                                   | m/yr              | 1.53                                                                                             | Calculated                                                                                                                 |
| Irrigation mode                                                                                                                              | -                 | ditch                                                                                            | User assumption                                                                                                            |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 5 of 8)

| Parameter                                         | Unit     | Value<br>Resident | Reference                              |
|---------------------------------------------------|----------|-------------------|----------------------------------------|
| Runoff coefficient                                | -        | 0.2               | RESRAD default                         |
| Watershed area for pond                           | $m^2$    | 1.82E+2           | not used                               |
| Accuracy for water/soil computations              | None     | 1.00E-3           | RESRAD default                         |
| Density of saturated zone                         | $g/cm^3$ | 1.5               | RESRAD default                         |
| Saturated zone total porosity                     | -        | 0.3               | RCRA FIWP for TTR<br>DOE, 1994         |
| Saturated zone effective porosity                 | -        | 0.3               | RCRA FIWP for TTR<br>DOE, 1994         |
| Saturated zone hydraulic conductivity             | $m/yr$   | 1.0E+3            | Tables 5.4 page 31<br>Yu et al., 1993b |
| Saturated zone hydraulic gradient                 | -        | 1.00E-4           | RCRA FIWP for TTR<br>DOE, 1994         |
| Saturated zone "b" parameter                      | -        | 4.05              | Table 13.1<br>Yu et al., 1993b         |
| Water table drop rate                             | $m/yr$   | 1.0E-4            | RCRA FIWP for TTR<br>DOE, 1994         |
| Well pump intake depth<br>(below water table)     | m        | 10                | RESRAD default                         |
| Well pumping rate                                 | $m^3/yr$ | 279.6             | Calculated                             |
| Model: nondispersion (ND) or<br>mass balance (MB) | -        | ND                | ND                                     |
| Number of unsaturated zones                       | -        | 1                 | 1                                      |
| Unsaturated zone thickness                        | m        | 80                | RCRA FIWP for TTR<br>DOE, 1994         |
| Unsaturated zone density                          | $g/cm^3$ | 1.5               | 1.5                                    |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 6 of 8)

| Parameter                                    | Unit               | Value<br>Resident | Parameter                      |
|----------------------------------------------|--------------------|-------------------|--------------------------------|
| Unsaturated zone total porosity              | -                  | 0.3               | RCRA FIWP for TTR<br>DOE, 1994 |
| Unsaturated zone effective porosity          | -                  | 0.3               | RCRA FIWP for TTR<br>DOE, 1994 |
| Unsaturated zone "b" parameter               | -                  | 4.05              | Table 13.1, Yu et al., 1993b   |
| Unsaturated zone hydraulic conductivity      | m/yr               | 1.0E+3            | Table 5.4, Yu et al., 1993b    |
| Distribution coefficient (all zones)         |                    |                   |                                |
| Uranium isotopes                             | cm <sup>3</sup> /g | 35                | Table 32.1 Yu et al., 1993B    |
| Plutonium isotopes                           | cm <sup>3</sup> /g | 550               |                                |
| Americium isotopes                           | cm <sup>3</sup> /g | 1900              |                                |
| Actinium isotopes                            | cm <sup>3</sup> /g | 450               |                                |
| Neptunium isotopes                           | cm <sup>3</sup> /g | 5                 |                                |
| Protactinium isotopes                        | cm <sup>3</sup> /g | 550               |                                |
| Lead isotopes                                | cm <sup>3</sup> /g | 270               |                                |
| Radium isotopes                              | cm <sup>3</sup> /g | 500               |                                |
| Thorium isotopes                             | cm <sup>3</sup> /g | 3200              |                                |
| Inhalation rate                              | m <sup>3</sup> /yr | 6,372             | Calculated                     |
| Mass loading for inhalation                  | g/m <sup>3</sup>   | 9.86E-6           | Calculated                     |
| Dilution length for airborne dust inhalation | m                  | 3                 | RESRAD default                 |
| Exposure duration                            | years              | 30                | RESRAD default                 |
| Shielding factor, inhalation                 | -                  | 1                 | Clayton, 1993                  |
| Shielding factor from external radiation     | -                  | 0.7               | RESRAD default                 |
| Fraction of time spent indoors               | -                  | 6.792E-1          | Calculated                     |
| Fraction of time spent indoors (on site)     | -                  | 2.797E-1          | Calculated                     |
| Shape factor flag, external gamma            | -                  | 1                 | RESRAD default                 |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 7 of 8)

| Parameter                                                                                     | Unit             | Value Resident | Reference                                                 |
|-----------------------------------------------------------------------------------------------|------------------|----------------|-----------------------------------------------------------|
| Soil ingestion rate                                                                           | g/yr             | 36.5           | Calculated                                                |
| Fruit, vegetable, and grain consumption                                                       | kg/yr            | 49.49          | Calculated                                                |
| Leafy vegetable consumption                                                                   | kg/yr            | 4.13           | Calculated                                                |
| Milk consumption from on-site livestock                                                       | L/yr             | 0              | Not an exposure pathway                                   |
| Meat consumption from on-site livestock                                                       | kg/yr            | 0              | Not an exposure pathway                                   |
| Fish consumption                                                                              | kg/yr            | 0              | Not an exposure pathway                                   |
| Other seafood consumption                                                                     | kg/yr            | 0              | Not an exposure pathway                                   |
| Drinking water intake                                                                         | L/yr             | 511            | Calculated                                                |
| Contamination fraction of drinking, household, and irrigation water                           | -                | 1              | RESRAD default                                            |
| Contamination fraction of plant food                                                          | -                | -1             | RESRAD computes fraction based upon area of contamination |
| Mass loading for foliar deposition                                                            | g/m <sup>3</sup> | 3.656E-3       | Calculated                                                |
| Depth of soil mixing layer                                                                    | m                | 0.0            | Conservative assumption                                   |
| Depth of roots                                                                                | m                | 0.9            | RESRAD default                                            |
| Drinking, household, and irrigation, water fraction from groundwater                          | -                | 1              | RESRAD default                                            |
| Storage time for fruits, nonleafy vegetables, and grain<br>leafy vegetables<br>drinking water | d                | 14<br>1<br>0   | RESRAD default<br>RESRAD default<br>RESRAD default        |
| Thickness of building foundation                                                              | m                | 0.15           | RESRAD default                                            |

R. Dubiskas

September 5, 1996

**Table B-2**  
**Parameters Used in the RESRAD Code for Calculating Guidance**  
**Concentrations for Corrective Action Unit No. 430, Tonopah Test Range**  
 (Page 8 of 8)

| Parameter                                                                                                                | Unit              | Value Resident   | Reference                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Bulk density of building foundation                                                                                      | g/cm <sup>3</sup> | 2.4              | RESRAD default                                                                                                                     |
| Total porosity of building foundation                                                                                    | -                 | 0.1              | RESRAD default                                                                                                                     |
| Volumetric water content of the foundation                                                                               | -                 | 3.0E-2           | RESRAD default                                                                                                                     |
| Diffusion coefficient for radon gas in foundation material in contaminated zone soil                                     | m/s               | 3.0E-7<br>2.0E-6 | RESRAD default<br>RESRAD default                                                                                                   |
| Radon vertical dimension of mixing                                                                                       | m                 | 2                | RESRAD default                                                                                                                     |
| Average annual wind speed                                                                                                | m/s               | 3.4              | Culp and Howard, 1995                                                                                                              |
| Average building air exchange rate                                                                                       | per hour          | 0.5              | RESRAD default                                                                                                                     |
| Height of the building (room)                                                                                            | m                 | 2.5              | RESRAD default                                                                                                                     |
| Building interior area factor                                                                                            | -                 | 0.0              | RESRAD default                                                                                                                     |
| Building depth below ground surface                                                                                      | m                 | -1               | RESRAD default                                                                                                                     |
| Emanating power of radon gas<br>Rn-222 gas<br>Rn-220 gas                                                                 | -                 | 0.20<br>0.15     | RESRAD default<br>RESRAD default                                                                                                   |
| Summary of pathways selected external gamma inhalation without radon plant ingestion drinking water soil ingestion radon | NA                | NA               | Scenario-dependent.<br>Resident lives on the site and raises as much food as possible, but area not sufficient to raise livestock. |

|                    |   |                              |           |   |                                                                         |
|--------------------|---|------------------------------|-----------|---|-------------------------------------------------------------------------|
| Ac                 | = | Actinium                     | ND        | = | Nondispersion                                                           |
| Am                 | = | Americium                    | Np        | = | Neptunium                                                               |
| cm <sup>3</sup> /g | = | Cubic centimeter(s) per gram | Pa        | = | Protactinium                                                            |
| d                  | = | Day(s)                       | Pb        | = | Lead                                                                    |
| D                  | = | Decay product(s)             | pCi/g     | = | PicoCurie(s) per gram                                                   |
| g/yr               | = | Gram(s) per year             | pCi/l     | = | PicoCurie(s) per liter                                                  |
| g/cm <sup>3</sup>  | = | Gram(s) per cubic centimeter | Pu        | = | Plutonium                                                               |
| kg/yr              | = | Kilogram(s) per year         | Ra        | = | Radium                                                                  |
| m                  | = | Meter(s)                     | RCRA FIWP | = | Resource Conservation and Recovery Act Facility Investigation Work Plan |
| m/yr               | = | Meter(s) per year            | Rn        | = | Radon                                                                   |
| m                  | = | Meter(s)                     | Th        | = | Thorium                                                                 |
| m <sup>3</sup> /yr | = | Cubic meter(s) per year      | U         | = | Uranium                                                                 |
| MB                 | = | Mass balance                 |           |   |                                                                         |
| NA                 | = | Not applicable               |           |   |                                                                         |

R. Dubiskas

September 5, 1996

## **B.2.0 Analysis**

A resident exposure scenario was chosen for CAU No. 430. This resident scenario is a plausible, but unlikely, scenario. The assumption is that, at some time within the next 10,000 years, the area consisting of CAU No. 430 may be released for use following remediation without any radiological restrictions, and an individual (resident) will move onto the site.

### **B.2.1 Radiological Source Term**

Calculating the dose to a member of the public from residual contamination requires definition of a contaminated zone. This is the region within which radionuclides are present in above-background concentrations, and it is the common source term and starting point for all exposure pathway analysis. The derivation of guideline concentrations is based upon an idealized contaminated region of cylindrical shape within which radionuclides are assumed to be uniformly distributed.

The tritium in the W-79 projectile was in a gaseous form which most likely escaped to the atmosphere when the projectile crashed to the ground. In the unlikely event that the tritium gas did not escape from the projectile when it crashed, it will escape into the atmosphere upon in-place detonation of the projectile. Tritium decays to stable helium, so there will be no radioactive decay products from the tritium to contaminate the soil upon detonation.

However, DU and Pu contamination may spread into the soil upon the in-place detonation of the W-79 projectile. For this analysis, it is conservatively assumed that the detonation may spread the contamination to the surface and 5 feet (ft) below the maximum expected depth of the projectile. The lateral spread of the contamination is expected to be 5 ft; for this analysis it is conservatively assumed to be 25 ft. Thus, the total area of contamination is 1,963.5 square feet ( $ft^2$ ) (182.4 square meters [ $m^2$ ]). The depth of contamination is assumed to be from the surface to 15 ft (4.57 m) below the surface. Thus, the DU and Pu contamination is assumed to be uniformly distributed in a right circular cylinder with an area of 1,963.5  $ft^2$  and a depth of 15 ft.

DU is a mixture of uranium-238, uranium-235, and uranium-234 (U-238, U-235, U-234). Decay products from these three uranium isotopes have been produced during the time period since the projectile was manufactured. Based upon the initial DU composition, the RESRAD code automatically calculates the concentrations of the uranium and its decay products in the soil and other environmental pathway media as well as the resultant dose contribution from each isotope. The initial assumed composition of the DU is that referenced in the *Health Physics Manual of Good Practices for Uranium Facilities* (Rich et al., 1988).

The actual amount of plutonium in the W-79 JTA projectile is classified information. The Pu source term is assumed to be weapons grade plutonium that has decayed for 10 years. In order to calculate the dose to the hypothetical resident, the amount of Pu in the W-79 projectile has to be

R. Dubiskas

September 5, 1996

defined (estimated). Even if the amount of Pu is a very small fraction of the DU mass, its contribution to the total radioactivity will dominate the contribution from the DU. This is because the activity of a radionuclide is directly proportional to the inverse of its half-life, the time it takes for half of its radioactivity to decay. The shorter the half-life, the more radioactivity per unit mass. The uranium isotopes that compose the DU have half-lives that are five orders of magnitude greater than the half-lives of the weapons-grade plutonium isotopes. Given the same mass of DU and Pu, the radioactivity of the uranium isotopes is five orders of magnitude less than the activity of the weapons-grade plutonium isotopes. For example, if the Pu mass is only 0.01 percent of the DU mass, the radioactivity from the Pu will contribute 97.8 percent of the total radioactivity, while the DU mass will contribute only 2.2 percent of the total radioactivity (see Attachment B-1, pages B-5 through B-7 on how the radioactivity contribution from the Pu and DU is calculated). As the mass fraction of the Pu varies from 0.01 percent to 10 percent, its contribution to the total radioactivity varies from 97.8 to greater than 99.99 percent.

The dose to the hypothetical resident is directly proportional to the radioactivity to which that person is exposed. The inhalation and ingestion dose conversion factors for uranium are approximately an order of magnitude less than plutonium. Given the same intake of radioactivity for both DU and Pu to the hypothetical resident, the dose from DU will be about 10 percent of the dose from Pu. To ensure that the chosen radiological source term chosen provides sufficient protection to the hypothetical resident, the amount of Pu in the W-79 projectile was chosen to be 10 percent by mass. For each gram of DU, there is assumed to be 0.1 gram of weapons-grade plutonium. Though the mass contribution of weapons-grade plutonium is only 10 percent, the radioactivity contributed by the Pu is significantly greater than the DU. The Pu will contribute greater than 99.99 percent to the total radioactivity present in the W-79 round. The methodology used in calculating the contribution of each DU and Pu isotope to the total radioactivity is shown in Attachment B-1, on pages B-5 through B-6. The results are listed in Table B-3.

### ***B.2.2 Exposure Scenario and the Parameter Values***

This section examines the exposure pathways for the hypothetical resident living on the CAU No. 430 site. An exposure pathway is a route of intake to the resident from the radioactivity associated with the DU- and Pu-contaminated soil. For example, ingestion of vegetables, fruits, and grains grown on contaminated soil would be an exposure pathway. The dose to the hypothetical resident is calculated by summing up the doses from all exposure pathways. The calculations are performed using RESRAD.

The exposure pathways used in calculating the dose to the hypothetical resident include:

- External gamma irradiation
- Inhalation of resuspended soil
- Ingestion of plants grown on contaminated soil and irrigated with contaminated water

R. Dubiskas

September 5, 1996

**Table B-3**  
**DU and Pu Isotope Contribution to Total Radioactivity**

| Isotope | Abundance by Mass<br>(g <sup>a</sup> isotope/g total mass) | Abundance by Radioactivity<br>(pCi <sup>b</sup> of isotope per pCi of total activity) |
|---------|------------------------------------------------------------|---------------------------------------------------------------------------------------|
| U-238   | 9.07E-1                                                    | 2.03E-5                                                                               |
| U-235   | 2.23E-3                                                    | 3.29E-7                                                                               |
| U-234   | 4.54E-6                                                    | 1.9E-6                                                                                |
| Pu-238  | 3.26E-6                                                    | 3.73E-3                                                                               |
| Pu-239  | 8.84E-2                                                    | 3.67E-1                                                                               |
| Pu-240  | 2.29E-3                                                    | 3.49E-2                                                                               |
| Pu-241  | 8.38E-5                                                    | 5.76E-1                                                                               |
| Pu-242  | 2.82E-6                                                    | 7.4E-7                                                                                |
| Am-241  | 7.68E-5                                                    | 1.76E-2                                                                               |

<sup>a</sup>Gram(s)

<sup>b</sup>PicoCurie(s)

- Ingestion of contaminated drinking water
- Ingestion of contaminated soil
- Inhalation of radon and radon daughter products

The hypothetical resident resides on the site and is exposed to radiation emitted from the DU, the Pu, and their decay products. The resident does not have to contact the contamination directly to receive an external radiation exposure. The hypothetical resident receives external radiation exposure both while indoors and outside. This person breathes air that is contaminated with resuspended contaminated soil, radon gas, and radon decay products. The hypothetical resident raises, to the extent possible, his food in a garden located on contaminated soil. All of the water used for drinking, cooking, and irrigation comes from a well located on site. In addition, the hypothetical resident is assumed to ingest contaminated soil.

The hypothetical resident is assumed to live on the site 350 days per year (EPA, 1991). He is assumed to raise food in a garden irrigated with water from a well located at the downgradient edge of the decontaminated area. This location will ensure that the water from the well receives the maximum amount of contamination from the site. All drinking and cooking water is

R. Dubiskas

September 5, 1996

obtained from this well. The resident drinks 1.4 liters (L) of well water per day, 490 L per year (AIHC, 1994). He raises, to the extent possible, all of his own fruits, vegetables, and grains. The amount of food raised is limited due to the area of the contaminated soil, 0.0182 hectares (ha) (0.045 acres). The fraction of his food that is raised on the contaminated soil is calculated internally by RESRAD. The code assumes that it takes 2,000 square miles ( $m^2$ ) to raise all of an individual's vegetables, fruits, and grains. This assumption is conservative given the climate and soil conditions on the Tonopah Test Range. The hypothetical resident is assumed not to raise any livestock for beef or milk or poultry for meat or eggs on the contaminated land. The area of contamination is not sufficiently large to raise any feed animals. The consumption rate of all food items is based upon a 10-county lifestyle survey relevant to rural areas and towns of fewer than 25,000 residents in the arid and semi-arid western United States (Whicker et al., 1990).

The inhalation rate for the hypothetical resident is for a reasonable worst case. This case is defined for an individual who spends 8 hours per day sleeping and, during the remaining day, spends 25 percent of his time at a resting activity level, 60 percent at a light activity level, 10 percent at a moderate activity level, and 5 percent at a heavy activity level (Yu et al., 1993b). The concentration of resuspended soil in the air is based upon the activities assumed for the hypothetical resident and site-specific measurements performed at the Tonopah Test Range and the Nevada Test Site. The hypothetical resident is assumed to spend 24 hours per year rototilling and cultivating his garden (EG&G, 1986). During this time, the concentration of contaminated dust in the air is assumed to increase by a factor of 150 (Shinn et al., 1986). In addition, for 8 hours per day, 150 days per year, the resident performs other outdoor activities associated with maintaining his garden, orchards, and property. During these activities, the concentration of contaminated dust in the air is assumed to increase by a factor of two (Shinn et al., 1986).

The total time spent indoors and outside is based upon a study of nine lifestyles of individuals living near the Nevada Test Site (Henderson and Smale, 1990). On the average, the hypothetical resident is assumed to spend 4 hours per day outdoors on site, 350 days per year. While outside, he is exposed to an external radiation rate that is 3.33 times greater than while indoors. The RESRAD default value of 0.7 was used to describe the amount of shielding from the external exposure rate while the resident is indoors. The concentration of contaminated dust in the air indoors is assumed to be the same as outdoors (Clayton et al., 1993). No dust is assumed to be filtered by the heating, cooling, or ventilation system in the home or other buildings. The radon inhalation dose is calculated by assuming the residential building foundation depth is set at one meter and the effective radon diffusion coefficient is  $3 \times 10^{-7}$  square meters per second ( $m^2/s$ ) (Yu et al., 1993b). These parameter values are RESRAD default values.

Other assumptions used in this analysis include the following:

- No cover is assumed to be placed over the decontaminated area after remedial action is completed.

R. Dubiskas

September 5, 1996

- The surface soil, unsaturated zone, and saturated zone soil are assumed to be sandy alluvium. This medium has an effective and total porosity of 0.3 (McWorter and Sunada, 1977) and a hydraulic conductivity of 100 meters per year (m/yr) (DOE, 1994).
- Climatography data were obtained from the *1993 Site Environmental Report for the Tonopah Test Range* (Culp and Howard, 1995). This document contains temperature, precipitation, and wind velocity data for TTR. The climatography data are put directly in RESRAD and are also used in calculating other parameter values, such as the evapotranspiration coefficient.
- Data on the food consumption rate and lifestyle habits of the hypothetical resident were adapted from articles in the November 1990 Special Issue of the *Health Physics Journal*, "Evaluation of Environmental Radiation Exposures from Nuclear Testing in Nevada" (Gesell and Voilleque, 1990).
- The leach rates of the DU, Pu, and their decay products from the soil by precipitation and irrigation water are calculated by RESRAD by using the distribution coefficients listed for sandy soil, Table 32.1, *RESRAD Data Collection Handbook* (Yu et al., 1993b).

The parameter values used in the RESRAD code for calculating the guideline concentrations are listed in Table B-2. Attachment B-1 includes the methodology on how the user-defined, site-specific data were calculated and utilized in RESRAD. The results of the analysis are discussed in the next section.

### ***B.3.0 Analytical Results***

A radiological risk assessment was performed in order to determine the relationship between the concentration of DU and Pu in the soil at CAU No. 430 and the dose to a hypothetical resident. The analysis demonstrates that given a conservative and limiting exposure scenario for the site resident, a concentration of 3,422 pCi/g of Pu would be required to obtain a dose of 100 mrem/yr. This concentration is the sum of the Pu-238, 239, 240, 241, and americium (Am)-241. Survey instruments used to confirm cleanup concentrations are often calibrated for Pu-239/240 using the 59.5 kiloelectron volt (keV) photon emission rate from Am-241 and the assumed Pu-239/240/Am-241 radioactivity ratio. The Pu-239/240 activity at this Pu concentration is 1,376 pCi/g. The concentration of the Am-241 is 60.3 pCi/g. The ratio of Pu-239/240 radioactivity to Am-241 is 22.8. All of these concentrations are equivalent and are representative of the concentration that could result in a 100 mrem/yr dose to a hypothetical resident. Listed in Table B-4 are the concentrations of the source radionuclides that will result in a 100 mrem/yr dose rate to a resident on CAU No. 430. The maximum annual dose rate of 100 mrem/yr occurs in 33 years, the year 2029.

R. Dubiskas

September 5, 1996

**Table B-4**  
**Concentration of Source Radionuclides Resulting**  
**in a 100 mrem/yr Residential Dose Rate for CAU No. 430**

| Radionuclide | Guideline Concentration (pCi/g) |
|--------------|---------------------------------|
| U-238        | 6.95E-2                         |
| U-235        | 1.13E-3                         |
| U-234        | 6.50E-3                         |
| Pu-238       | 1.28E+1                         |
| Pu-239       | 1.26E+3                         |
| Pu-240       | 1.19E+2                         |
| Pu-241       | 1.97E+3                         |
| Pu-242       | 2.53E-3                         |
| Am-241       | 6.02E+1                         |

mrem/yr = Millirem(s) per year  
pCi/g = PicoCurie(s) per gram

The dose contribution from each isotope for each exposure pathway and the total dose from each isotope and each exposure pathway are listed in Table B-1. The Pu-239/240 contributes 88.7 percent of the total dose to the hypothetical resident. Approximately 31 percent of the dose is received from the ingestion of Pu-239/240-contaminated soil and dust. Inhalation of resuspended soil contaminated with Pu-239/240 contributes 29 percent of the dose, as does the ingestion of Pu-239/240-contaminated food grown on site. Am-241 and Pu-241 contribute about 5 percent each to the dose. No other isotope contributes greater than 0.6 percent of the dose. The uranium isotopes contribute 0.01 percent of the total dose.

A radiological risk assessment has been performed to ensure that the chosen soil guideline criteria would not present a risk exceeding the basic dose limit in DOE Order 5400.5 (DOE, 1993). The guideline concentrations stated above and listed in Table B-2 will result in the hypothetical resident receiving less than 100 mrem/yr.

R. Dubiskas

September 5, 1996

#### ***B.4.0 References***

AIHC. See American Industrial Health Council.

DOE. See U.S. Department of Energy.

EG&G. See EG&G Idaho.

EPA. See U.S. Environmental Protection Agency.

RCRA FIWP. See U.S. Department of Energy, 1994.

American Industrial Health Council. 1994. *Exposure Factors Sourcebook*. Washington, D.C.

Clayton, C.A. et al. 1993. "Particle Total Exposure Assessment Methodology (PTEAM) Study: Distribution of Aerosol and Elemental Concentration in Personal, Indoor, and Outdoor Air Samples in a Southern California Community." In *J. Expos. Analysis Environ. Epidemi.*, 6:227-250.

Culp, T. and D. Howard. 1995. *1993 Site Environmental Report Tonopah Test Range*. SAND 94-1292. Sandia National Laboratories. Albuquerque, NM.

EG&G Idaho. 1986. *Development of Criteria for Release of Idaho National Engineering Laboratory Sites Following Decontamination and Decommissioning*. EGG-2400. EG&G Idaho. Idaho Falls, ID.

Gesell, T.F. and P.G. Violette. 1990. "Evaluation of Environmental Radiation Exposures From Nuclear Testing in Nevada." In *Health Physics*, V.59.

Henderson, R.W. and R.F. Smale. 1990. "External Exposure Estimates for Individuals Near the Nevada Test Site." In *Health Physics*, 59:715-721.

Layton, D.W. 1993. "Metabolically Consistent Breathing Rates for Use in Dose Assessments." In *Health Physics*, 64:23-36.

Lindicotte, G.W. et al. 1978. "Suggested Concentration Limits for Shallow Land Burial of Radionuclides. Waste Management and Fuel Cycles 1978." Proceedings of the Symposium of Waste Management, March 6-8, 1978. Tucson, AZ.

R. Dubiskas

September 5, 1996

McWorter, D.B. and D.K. Sunada. 1977. *Groundwater Hydrology and Hydraulics*. Fort Collins, CO: Water Resources Publications.

Rich, B.L. et al. 1988. *Health Physics Manual of Good Practices for Uranium Facilities*. EGG-2530. EG&G Idaho. Idaho Falls, ID.

Shinn, J.H. et al. 1986. *A Summary of Plutonium Aerosol Studies: Resuspension at the Nevada Test Site*. Lawrence Livermore National Laboratory. Livermore, CA.

Shinn, J. 1994. Personal memorandum to R. Smiecinski on September 14, 1994, regarding the Results of Air Monitoring from October 1993 to April 1994, Clean Slates 3 Site at Tonopah Test Range.

Shleien, B. Ed. 1992. *The Health Physics and Radiological Health Handbook*. Scinta, Inc. Silver Springs, MD.

U.S. Department of Energy. 1989. *A Manual for Implementing Residual Radioactive Material Guidelines*, DOE/CH/8901. Washington, D.C.

U.S. Department of Energy. 1990. *Radiation Protection of the Public and the Environment*, DOE Order 5400.5. Washington, D.C.

U.S. Department of Energy. 1993. *Radiation Protection of the Public and the Environment*. U.S. Department of Energy Order 5400.5, Change 2. Washington, D.C.

U.S. Department of Energy. 1994. *Resource Conservation Recovery Act Facility Investigation Work Plan. U.S. Department of Energy Environmental Restoration Sites, Tonopah Test Range, Nevada (Draft)*. U.S. Department of Energy Nevada Operations Office. Las Vegas, NV.

U.S. Environmental Protection Agency. 1991. *Risk Assessment Guidance for Superfund: Volume 1-Human Health Evaluation Manual, Part B: Development of Risk-based Preliminary Remediation Goals*, OSWER Directive: 9285.603. Washington, D.C.

Wicker, F.W. et al. 1990. "The PATHWAY Food-Chain Model." In *Health Physics*, 59:645-657.

R. Dubiskas

September 5, 1996

Yu, C. et al. 1993a. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0 ANL/EAD/LD-2. Argonne National Laboratory. Argonne, IL.

Yu, C. et al. 1993b. *Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil*, ANL/EAIS-8. Argonne National Laboratory. Argonne, IL.

R. Dubiskas

September 5, 1996

## **Attachment B-1**

### **Parameter Values Used as RESRAD Input for CAU No. 430 Buried DU Artillery Round**

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
 (Page 1 of 24)

| Parameter:                                                                    | Source:                                                                                                |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Dose Conversion Factors                                                       | RESRAD default values                                                                                  |
| Food Transfer Factors                                                         | RESRAD default values                                                                                  |
| Bioaccumulation factors, fresh water                                          | not applicable, not used                                                                               |
| Area of contamination                                                         | Calculated                                                                                             |
|                                                                               | Assumption is that area is a 25 ft radius around the projectile                                        |
| Area = $\pi \times r^{**2} =$                                                 | 1963.494 sq. ft.                                                                                       |
| Area =                                                                        | 182.4153 m <sup>**2</sup>                                                                              |
| thickness of contaminated zone                                                | 15 ft = 4.572 m                                                                                        |
| length parallel to aquifer flow                                               | 50 ft = 15.24                                                                                          |
| basic radiation dose limit (mrem/yr)                                          | 100 mrem/yr                                                                                            |
| time since placement of material                                              | 9 years (May 1987)                                                                                     |
| times for calculations                                                        | 0, 10, 50, 100, 250, 500, 800, 1000, 5000, 10 000 yrs                                                  |
|                                                                               | note - 0 used in RESRAD input for activity is calculated for 1996; RESRAD assumes equilibrium          |
| Initial principal radionuclides                                               | U-234 = 84.2 pCi/g                                                                                     |
|                                                                               | U-235 = 14.6 pCi/g                                                                                     |
|                                                                               | U-238 = 901.3 pCi/g                                                                                    |
|                                                                               | total = 1,000 pCi/g                                                                                    |
|                                                                               | note - source term modified in accordance with LANL/SNL guidance, see pages B-5, B-6 of Attachment B-1 |
| concentration in groundwater                                                  | 0 pCi/L for all 3 radionuclides                                                                        |
| cover depth (m)                                                               | 0                                                                                                      |
| soil density of contaminated zone                                             | 1.5 g/cm <sup>**3</sup> (RESRAD default)                                                               |
| contaminated zone erosion rate (m/yr)                                         | 1.44E-03 a calculated value described below                                                            |
|                                                                               | Erosion rate = average resuspension factor (1E-11 per second [Shinn, et al, 1986]) x                   |
|                                                                               | 3.154E+7 s/yr x 4.572 m contaminated zone thickness                                                    |
| Contaminated zone erosion rate =                                              | 0.001442 (m/yr)                                                                                        |
| contaminated zone total porosity =                                            | 0.3 (RCRA FIWP for TTR [DOE, 1994])                                                                    |
| contaminated zone effective porosity =                                        | 0.3 (RCRA FIWP for TTR [DOE, 1994])                                                                    |
| contaminated zone hydraulic conductivity =                                    | 1000 (Yu, et al., 1993b, Table 5.4, page 31, sandy soil)                                               |
| contaminated zone b parameter =                                               | 4.05 (Yu, et al., 1993b, Table 13.1, page 77, sandy soil)                                              |
| evapotranspiration coefficient =                                              | 0.679125 is calculated value                                                                           |
| Ce = ETr/((1-Cr)Pr + IRr) where                                               |                                                                                                        |
| Ce = Evapotranspiration coefficient                                           |                                                                                                        |
| ETr = evapotranspiration rate, Fig. 12-1, pg 72, Yu et al., 1993b =           | 1.11 m/yr                                                                                              |
| Cr = runoff coefficient, Table 10.1, pg 66, Yu et al., 1993b (default)        | 0.2                                                                                                    |
| Pr = precipitation from (Culp and Howard, 1995) =                             | 0.127 m/yr                                                                                             |
| IRr = irrigation rate = assuming a 70% irrigation efficiency =                | 1.532857 m/yr                                                                                          |
| Ce = 0.679125                                                                 |                                                                                                        |
| precipitation rate =                                                          | 0.127 m/yr (Culp and Howard, 1995)                                                                     |
| irrigation rate =                                                             | 1.53 m/yr is a calculated value                                                                        |
| IRr = 1.2 - 0.127 / 0.7 where                                                 |                                                                                                        |
| 1.2 = water required per year to raise garden (m/yr)                          |                                                                                                        |
| 0.127 = average precipitation (m/yr) at TTR (Culp and Howard, 1995)           |                                                                                                        |
| 0.7 is the assumed irrigation efficiency, mid-range (pg 68, Yu et al., 1993b) |                                                                                                        |
| IRr = 1.532857                                                                |                                                                                                        |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 2 of 24)**

|                                                                                               |                                                                                                                                      |           |           |          |         |          |                     |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|---------|----------|---------------------|
| irrigation mode =                                                                             | ditch                                                                                                                                |           |           |          |         |          |                     |
| runoff coefficient =                                                                          | .2 (Table 10.1, pg 66, Yu et al., 1993b)                                                                                             |           |           |          |         |          |                     |
| watershed area for nearby stream or pond =                                                    | 182.4153 m**2                                                                                                                        |           |           |          |         |          |                     |
|                                                                                               | note - the area of contamination is the minimum area that RESRAD will accept and still execute, even if no water pathways are chosen |           |           |          |         |          |                     |
| accuracy for water/soil computation =                                                         | .001 (RESRAD default)                                                                                                                |           |           |          |         |          |                     |
| saturated zone total porosity =                                                               | .03 (RCRA FIWP for TTR [DOE, 1994])                                                                                                  |           |           |          |         |          |                     |
| saturated zone effective porosity =                                                           | .03 (RCRA FIWP for TTR [DOE, 1994])                                                                                                  |           |           |          |         |          |                     |
| saturated zone hydraulic conductivity =                                                       | 1000 (Table 5.4, pg 31, Yu et al., 1993b)                                                                                            |           |           |          |         |          |                     |
| saturated zone hydraulic gradient =                                                           | 1E-4 (RCRA FIWP for TTR [DOE, 1994])                                                                                                 |           |           |          |         |          |                     |
| saturated zone b parameter =                                                                  | 4.05 (Table 13.1, pg 77, Yu et al., 1993b)                                                                                           |           |           |          |         |          |                     |
| water table drop rate (m/yr) =                                                                | 1E-4 (RCRA FIWP for TTR [DOE, 1994])                                                                                                 |           |           |          |         |          |                     |
| well pump intake depth =                                                                      | 10 m below the water table, RESRAD default value                                                                                     |           |           |          |         |          |                     |
| Model: nondispersion or mass balance                                                          | ND (nondispersion, RESRAD default value)                                                                                             |           |           |          |         |          |                     |
| well pumping rate (m**3/yr) =                                                                 | 279.6165 m**3/yr                                                                                                                     |           |           |          |         |          |                     |
|                                                                                               | calculated = area x irrigation rate                                                                                                  |           |           |          |         |          |                     |
| number of unsaturated zone strata =                                                           | 1 (RCRA FIWP for TTR, [DOE, 1994])                                                                                                   |           |           |          |         |          |                     |
| unsaturated zone thickness =                                                                  | 80 m (RCRA FIWP for TTR [DOE, 1994])                                                                                                 |           |           |          |         |          |                     |
| unsaturated zone soil density =                                                               | 1.5 g/cm**3 (RCRA FIWP for TTR [DOE, 1994])                                                                                          |           |           |          |         |          |                     |
| unsaturated zone total porosity =                                                             | 0.3 (RCRA FIWP for TTR [DOE, 1994])                                                                                                  |           |           |          |         |          |                     |
| unsaturated zone effective porosity =                                                         | 0.3 (RCRA FIWP for TTR [DOE, 1994])                                                                                                  |           |           |          |         |          |                     |
| unsaturated zone b parameter =                                                                | 4.05 (Table 3.2, pg 23, Yu et al., 1993b)                                                                                            |           |           |          |         |          |                     |
| unsaturated zone hydraulic conductivity =                                                     | 1000 (m/yr) (Table 5.4, pg 31, Yu et al., 1993b )                                                                                    |           |           |          |         |          |                     |
| distribution coefficients:                                                                    |                                                                                                                                      |           |           |          |         |          |                     |
| element                                                                                       | distribution coefficient (cm**3/g) from (Table 32.1, p 105, sandy soil, Yu, 1993b)                                                   |           |           |          |         |          |                     |
| U                                                                                             | 35                                                                                                                                   |           |           |          |         |          |                     |
| Th                                                                                            | 3200                                                                                                                                 |           |           |          |         |          |                     |
| Pa                                                                                            | 550                                                                                                                                  |           |           |          |         |          |                     |
| Ra                                                                                            | 500                                                                                                                                  |           |           |          |         |          |                     |
| Pb                                                                                            | 270                                                                                                                                  |           |           |          |         |          |                     |
| Inhalation rate =                                                                             | 6372 m**3/yr                                                                                                                         |           |           |          |         |          |                     |
| value calculated using the following methodology:                                             |                                                                                                                                      |           |           |          |         |          |                     |
| Activity                                                                                      | Percent                                                                                                                              | hours/day | (m**3/hr) | m**3/day | days/yr | m**3/yr  | Occupancy corrected |
| sleeping                                                                                      | 33.33                                                                                                                                | 8         | 0.4095    | 3.276    | 350     | 1146.6   | 1195.74             |
| light work/resting                                                                            | 56.67                                                                                                                                | 13.6008   | 0.611     | 8.310089 | 350     | 2908.531 | 3033.182            |
| moderate work                                                                                 | 6.666                                                                                                                                | 1.59984   | 1.625     | 2.59974  | 350     | 909.909  | 948.9051            |
| very heavy work                                                                               | 3.333                                                                                                                                | 0.8       | 4.088     | 3.2704   | 350     | 1144.64  | 1193.696            |
| total                                                                                         | 99.999                                                                                                                               | 24.00064  |           |          |         | 6109.68  | 6371.524            |
| where:                                                                                        |                                                                                                                                      |           |           |          |         |          |                     |
| breathing rates from (Table 7, pg. 33, averaged by sex and age group, Layton, 1993)           |                                                                                                                                      |           |           |          |         |          |                     |
| percent of time performing different activities from reasonable worst case, (Yu et al, 1993b) |                                                                                                                                      |           |           |          |         |          |                     |
| 350 days per year, (EPA, 1991)                                                                |                                                                                                                                      |           |           |          |         |          |                     |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 3 of 24)**

|                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                            |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------|--|
| exposure duration =                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                         | years (RESRAD default value)               |       |  |
| shielding factor, inhalation =                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                          | (Clayton et al., 1993)                     |       |  |
| mass loading for inhalation =                                                                                                                                                                                                                                                                                          | 9.86E-06                                                                                                                                                                                   | g/m**3                                     |       |  |
| this is a calculated value based upon the following:                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                            |       |  |
| mass loading =                                                                                                                                                                                                                                                                                                         | $x = ((1 \times 150 \times .1 \times 1.36E-5) + (8/24 \times 150 \times 2 \times .1 \times 1.36E-5) + (90 \times .1 \times 3E-5) + [(350-90-(8 \times 150/24) - 1) \times 1.36E-5]) / 350$ |                                            | where |  |
| 1 = days per year that the resident is rototilling or cultivating (EG&G, 1986)                                                                                                                                                                                                                                         |                                                                                                                                                                                            |                                            |       |  |
| 150 = increase in the mass loading during rototilling/cultivation (Shinn et al., 1986)                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                            |       |  |
| 0.1 = correcting mass loading for fraction of 5.7 um particles reaching pulmonary lung (Shinn, 1986)                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                            |       |  |
| 1.36E-5 (g/m**3) = average annual mass loading at TTR (Shinn et al., 1994)                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                            |       |  |
| 8 (hrs/d) = rate resident is performing garden chores, not rototilling/cultivation (Lindicotte et al., 1978)                                                                                                                                                                                                           |                                                                                                                                                                                            |                                            |       |  |
| 150 (d/yr) = days per year resident is performing agricultural chores (Lindicotte et al., 1978)                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                            |       |  |
| 2 = increase in the mass loading due to agricultural chores when not rototilling/cultivation                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                            |       |  |
| 90 = days per year of maximum mass loading, but not during rototilling/cultivation                                                                                                                                                                                                                                     |                                                                                                                                                                                            |                                            |       |  |
| 3E-5= maximum natural mass loading during the above stated 90 days(g/m**3)                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                            |       |  |
| 350 = days resident is assumed to be on the contaminated site                                                                                                                                                                                                                                                          |                                                                                                                                                                                            |                                            |       |  |
| x =                                                                                                                                                                                                                                                                                                                    | 9.86E-06                                                                                                                                                                                   | g/m**3                                     |       |  |
| dilution length for airborne dust =                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                          | m (RESRAD default value)                   |       |  |
| exposure duration =                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                         | years (RESRAD default value)               |       |  |
| shielding factor (inhalation) =                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                          | (Clayton et al, 1993)                      |       |  |
| shielding factor, (external gamma) =                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                        | (RESRAD default value)                     |       |  |
| fraction of time spent indoors on site =                                                                                                                                                                                                                                                                               | 0.679224                                                                                                                                                                                   | calculated value                           |       |  |
| fraction of time indoors on site = 17 (hrs/d) x 350 (d/yr) / 8760 (hrs/yr)                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                            |       |  |
| fraction of time spent outdoors =                                                                                                                                                                                                                                                                                      | 0.27968                                                                                                                                                                                    | calculated value                           |       |  |
| fraction of time outdoors = 7 (hrs/d) x 350 (d/yr) /8760 (hrs/yr)                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                            |       |  |
| occupancy factor = fraction of time onsite =                                                                                                                                                                                                                                                                           | 0.958904                                                                                                                                                                                   |                                            |       |  |
| note - RESRAD corrects dietary consumption, soil ingestion, inhalation inputed by the user by multiplying the input by the occupancy factor, calculated inputs have to be corrected by dividing by the occupancy factor, dietary intakes do not have to be corrected if area <1000m**2 and contamination fraction = -1 |                                                                                                                                                                                            |                                            |       |  |
| shape factor flag, external gamma =                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                          | (RESRAD default value)                     |       |  |
| consumption of fruits, vegetables, grains =                                                                                                                                                                                                                                                                            | 49.49                                                                                                                                                                                      | kg/yr is a calculated value                |       |  |
| consumption of fruits, vegetables, grains per year from table 1 (Whicker et al., 1993)                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                            |       |  |
| other vegetables & fruits = .282 kg/d for males, 0.269 kg/d for females                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                            |       |  |
| grains = 0.90 kg/d for males, 0.066 for females                                                                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                            |       |  |
| total = $[(.282 + .269)/2] + [(.09 + .066)/2] \times 350 \text{ days/year} \times 0.4 = 49.49 \text{ kg/yr}$                                                                                                                                                                                                           |                                                                                                                                                                                            |                                            |       |  |
| 0.4 is the EPA guideline for maximum fraction of homegrown vegetables, fruits, grains                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                            |       |  |
| RESRAD corrects production by area if contamination fraction = -1, area/2000 m**2                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                            |       |  |
| consumption of leafy vegetables =                                                                                                                                                                                                                                                                                      | 4.13                                                                                                                                                                                       | kg/yr calculated value                     |       |  |
| consumption of leafy vegetables, Table 1, pg 649 (Whicker et al., 1990)                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                            |       |  |
| total = $(.03 + .029)/2 \times 350 \text{ days/year} \times 0.4 = 4.13$                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                            |       |  |
| RESRAD corrects production if contamination fraction = -1, correction = area/2000m**2                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                            |       |  |
| milk, meat, fish, & seafood consumption =                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                          | no cattle or cows raised on-site, no ponds |       |  |
| soil ingestion rate = 0.1 g/d x 350 d/yr =                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                         | g/yr                                       |       |  |
| correct for occupancy factor =                                                                                                                                                                                                                                                                                         | 36.5                                                                                                                                                                                       | g/yr for RESRAD input                      |       |  |
| occupancy factor = 365/350                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                            |       |  |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 4 of 24)**

|                                                                                                                                                                                                       |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| drinking water intake =                                                                                                                                                                               | 511 L/day is a calculated value                                      |
|                                                                                                                                                                                                       | drinking water intake = 1.4 L/d x 350 d/yr / occupancy factor        |
|                                                                                                                                                                                                       | consumption rate is from AIHC, 1994, pg. 6.36, Table 21              |
| contamination fraction of all food =                                                                                                                                                                  | -1 corrects for small area of site                                   |
| mass loading for foliar deposition =                                                                                                                                                                  | 0.003656 g/m**3 is a calculated value                                |
| mass loading = $x = \{(1 \times 150 \times .1 \times 1.36E-5) + (8/24 \times 150 \times 2 \times .1 \times 1.36E-5) + (90 \times .1 \times 3E-5) + [(365-90-(8 \times 150/24) - 1) \times 1.36E-5]\}$ | where                                                                |
|                                                                                                                                                                                                       |                                                                      |
| 1 = days per year that the resident is rototilling or cultivating (EG&G, 1986)                                                                                                                        |                                                                      |
| 150 = increase in the mass loading during rototilling/cultivation (Shinn et al., 1986)                                                                                                                |                                                                      |
| 0.1 = correcting mass loading for fraction of 5.7 um particles reaching pulmonary lung (Shinn, et al, 1986)                                                                                           |                                                                      |
| 1.36E-5 (g/m**3) = average annual mass loading at TTR (Shinn et al., 1994)                                                                                                                            |                                                                      |
| 8 (hrs/d) = rate resident is performing garden chores, not rototilling/cultivation (Lindicotte et al., 1978)                                                                                          |                                                                      |
| 150 (d/yr) = days per year resident is performing agricultural chores (Lindicotte et al., 1978)                                                                                                       |                                                                      |
| 2 = increase in mass loading due to agricultural chores when not rototilling/cultivation (Shinn et al, 1986)                                                                                          |                                                                      |
| 90 = days per year of maximum mass loading, but not during rototilling/cultivation (Shinn et al, 1986)                                                                                                |                                                                      |
| 3E-5= maximum natural mass loading during the above stated 90 days(g/m**3) (Shinn et al, 1994)                                                                                                        |                                                                      |
| $x = 0.003656$ g/m**3                                                                                                                                                                                 |                                                                      |
| depth of soil mixing layer =                                                                                                                                                                          | 0 m assumes no mixing from clean areas                               |
| depth of roots =                                                                                                                                                                                      | 0.9 m (RESRAD default value)                                         |
| fraction of drinking water fraction from groundwater =                                                                                                                                                | 1 assumes all water from onsite well                                 |
| household water fraction from groundwater =                                                                                                                                                           | 1 assumes all water from onsite well                                 |
| irrigation fraction from groundwater =                                                                                                                                                                | 1 assumes all water from onsite well                                 |
| contamination fraction for livestock fodder, water, soil                                                                                                                                              |                                                                      |
| meat, milk =                                                                                                                                                                                          | 0 not applicable to this analysis                                    |
|                                                                                                                                                                                                       | resident not consuming meat or milk from cattle, cows raised on-site |
| storage time of contaminated foodstuffs (days)                                                                                                                                                        |                                                                      |
| fruits, non-leafy vegetables, grains =                                                                                                                                                                | 14 RESRAD default value                                              |
| leafy vegetables                                                                                                                                                                                      | 1 RESRAD default value                                               |
| well water                                                                                                                                                                                            | 1 RESRAD default value                                               |
| meat, milk, fish, animal fodder =                                                                                                                                                                     | na not applicable to this analysis                                   |
|                                                                                                                                                                                                       | resident not consuming any meat from animals raised on-site          |
| thickness of building foundation (m)                                                                                                                                                                  | 0.15 RESRAD default value                                            |
| bulk density of building foundation =                                                                                                                                                                 | 2.4 (g/cm**3) RESRAD default value                                   |
| total porosity of the building foundation =                                                                                                                                                           | 0.1 RESRAD default value                                             |
| volumetric water content of the foundation =                                                                                                                                                          | 0.3 RESRAD default value                                             |
| diffusion coefficient for radon gas (m/s)                                                                                                                                                             |                                                                      |
| in foundation material =                                                                                                                                                                              | 3.00E-07 RESRAD default value                                        |
| in contaminated zone soil =                                                                                                                                                                           | 2.00E-06 RESRAD default value                                        |
| radon vertical dimension of mixing (m) =                                                                                                                                                              | 2 RESRAD default value                                               |
| average annual wind speed (m/s) =                                                                                                                                                                     | 3.4 (Culp and Howard, 1995)                                          |
| average building air exchange rate (1/hr) =                                                                                                                                                           | 0.51 RESRAD default value                                            |
| height of the building (m) =                                                                                                                                                                          | 2.51 RESRAD default value                                            |
|                                                                                                                                                                                                       |                                                                      |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 5 of 24)**

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 6 of 24)**

|                                                                                                                                                                                                                                                                                                   |                                                 |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|
| Calculations of RESRAD source terms:                                                                                                                                                                                                                                                              |                                                 |                   |
| Assume the Pu-239/240 activity = 500 pCi/g, the activity of all isotopes is calculated as follows:                                                                                                                                                                                                |                                                 |                   |
| The activity in the Pu+Am mix = 500 g/(fraction of total due to Pu-239/240) =                                                                                                                                                                                                                     | 1243.256                                        |                   |
| The activity for all other Pu+Am isotopes can be calculated from their fraction of the Pu+Am mix.                                                                                                                                                                                                 |                                                 |                   |
| If the Pu-239/240 activity is 200 pCi/g, the same method is used, Pu+Am activity =                                                                                                                                                                                                                | 497.3024                                        |                   |
| Then each isotope in the Pu+Am mix can be calculated by multiplying its fraction by the total pCi<br>e.g. for Pu-238, if the total activity when Pu-239/240 = 500 pCi/g is 1243.256 pCi, the Pu-238<br>activity is $1.003728 \times 1243.256 = 4.634244$ pCi/g of soil                            |                                                 |                   |
| The U isotopic activity = (Pu+Am fraction/total Pu+Am) x total U x isotopic U activity fraction.                                                                                                                                                                                                  |                                                 |                   |
| If Pu239/240 = 500 pCi/g, then Pu+Am fraction = 500 pCi/g + Pu-238,241,242, + Am =                                                                                                                                                                                                                | 1243.256                                        |                   |
| e.g., U-234 activity = $(1243 \text{ pCi/g}) / (4.4E+7 \text{ pCi/g}) \times 1000 \text{ pCi/g} \times 0.084192 = 0.002358$                                                                                                                                                                       |                                                 |                   |
| If Pu-239/240 activity fraction = 200 pCi/g, then the total Pu+Am activity =                                                                                                                                                                                                                      | 497.3024                                        |                   |
| The U-234 activity = $(497.3024 / 4.4E+7) \times 1000 \times 0.084192 = 0.000943$                                                                                                                                                                                                                 |                                                 |                   |
| Pu-239/240 is emphasized because in-situ monitoring is based upon Am-241/Pu-239/240 activity<br>ratios using the 59.5 keV Am-241 photon. For the W-79 project in-situ monitoring may not be<br>used, but if it is used it will be helpful to have the guideline in terms of Pu-239/240 or Am-241. |                                                 |                   |
| isotopic activity if<br>principal the Pu-239/240                                                                                                                                                                                                                                                  | isotopic activity if the<br>Pu-239/240 activity |                   |
| Isotope activity = 500 pCi/g                                                                                                                                                                                                                                                                      | is 200 pCi/g                                    |                   |
| U-234 0.002358                                                                                                                                                                                                                                                                                    | 0.000943                                        |                   |
| U-235 0.000409                                                                                                                                                                                                                                                                                    | 0.000164                                        |                   |
| U-238 0.025238                                                                                                                                                                                                                                                                                    | 0.010095                                        |                   |
| Pu-238 4.634244                                                                                                                                                                                                                                                                                   | 1.853698                                        |                   |
| Pu-239 456.6077                                                                                                                                                                                                                                                                                   | 182.6431                                        |                   |
| Pu-240 43.39231                                                                                                                                                                                                                                                                                   | 17.35693                                        |                   |
| Pu-241 716.7174                                                                                                                                                                                                                                                                                   | 286.687                                         |                   |
| Pu-242 0.00092                                                                                                                                                                                                                                                                                    | 0.000368                                        |                   |
| Am-241 21.90354                                                                                                                                                                                                                                                                                   | 8.761414                                        |                   |
| Total 1243.284                                                                                                                                                                                                                                                                                    | 497.3136                                        |                   |
| Calculate the activity and mass fraction of each isotope for Table B-1 in Appendix B:                                                                                                                                                                                                             |                                                 |                   |
| isotope                                                                                                                                                                                                                                                                                           | mass fraction                                   | activity fraction |
| U-234                                                                                                                                                                                                                                                                                             | 4.55E-06                                        | 1.9E-06           |
| U-235                                                                                                                                                                                                                                                                                             | 0.002277                                        | 3.29E-07          |
| U-238                                                                                                                                                                                                                                                                                             | 0.90681                                         | 2.03E-05          |
| Pu-238                                                                                                                                                                                                                                                                                            | 3.26E-06                                        | 0.003727          |
| Pu-239                                                                                                                                                                                                                                                                                            | 0.088449                                        | 0.367259          |
| Pu-240                                                                                                                                                                                                                                                                                            | 0.002293                                        | 0.034901          |
| Pu-241                                                                                                                                                                                                                                                                                            | 8.38E-05                                        | 0.576471          |
| Pu-242                                                                                                                                                                                                                                                                                            | 2.82E-06                                        | 7.4E-07           |
| Am-241                                                                                                                                                                                                                                                                                            | 7.68E-05                                        | 0.017617          |
|                                                                                                                                                                                                                                                                                                   |                                                 |                   |
|                                                                                                                                                                                                                                                                                                   |                                                 |                   |
|                                                                                                                                                                                                                                                                                                   |                                                 |                   |
|                                                                                                                                                                                                                                                                                                   |                                                 |                   |
|                                                                                                                                                                                                                                                                                                   |                                                 |                   |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 7 of 24)**

| Calculation of isotopic mass and activity fractions when mass fractions of Pu = 0.0001 |                                                 |                                 |                                |                      |
|----------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------|--------------------------------|----------------------|
| Isotope                                                                                | Mass fraction<br>if Pu mass<br>fraction = .0001 | specific<br>activity<br>(TBq/g) | activity per<br>100 g<br>(pCi) | activity<br>fraction |
| U-234                                                                                  | 0.0005                                          | 2.31E-04                        | 3123027                        | 0.001854             |
| U-235                                                                                  | 0.250427                                        | 8.00E-08                        | 541522.5                       | 0.000322             |
| U-238                                                                                  | 99.73907                                        | 1.24E-08                        | 33429745                       | 0.019851             |
| Pu-238                                                                                 | 3.58E-07                                        | 0.6341                          | 6139937                        | 0.003646             |
| Pu-239                                                                                 | 0.009729                                        | 2.30E-03                        | 6.05E+08                       | 0.359178             |
| Pu-240                                                                                 | 0.000252                                        | 8.43E-03                        | 57481664                       | 0.034133             |
| Pu-241                                                                                 | 9.22E-06                                        | 3.81                            | 9.49E+08                       | 0.563786             |
| Pu-242                                                                                 | 3.1E-07                                         | 1.45E-04                        | 1218.489                       | 7.24E-07             |
| Am-241                                                                                 | 8.45E-06                                        | 0.127                           | 29015546                       | 0.01723              |
| Total                                                                                  | 100                                             |                                 | 1.68E+09                       | 1                    |
| Pu-239/240 % of the total activity when total Pu is 0.01% of the mass =                |                                                 |                                 |                                |                      |
| Pu percent of the total activity when Pu is 0.01% of the mass =                        |                                                 |                                 |                                |                      |
| When DU is 99.99% of the mass its percent of the total activity =                      |                                                 |                                 |                                |                      |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 8 of 24)**

RESRAD, Version 5.61 T<sup>1/2</sup> Limit = 0.5 year 09/10/96 16:26 Page 1  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79 DU 5.DAT

## Table of Contents

## Part I: Mixture Sums and Single Radionuclide Guidelines

|                                                            |    |
|------------------------------------------------------------|----|
| Dose Conversion Factor (and Related) Parameter Summary ... | 2  |
| Site-Specific Parameter Summary .....                      | 6  |
| Summary of Pathway Selections .....                        | 12 |
| Contaminated Zone and Total Dose Summary .....             | 13 |
| Total Dose Components                                      |    |
| Time = 0.000E+00 .....                                     | 15 |
| Time = 1.000E+01 .....                                     | 16 |
| Time = 5.000E+01 .....                                     | 17 |
| Time = 1.000E+02 .....                                     | 18 |
| Time = 2.500E+02 .....                                     | 19 |
| Time = 5.000E+02 .....                                     | 20 |
| Time = 8.000E+02 .....                                     | 21 |
| Time = 1.000E+03 .....                                     | 22 |
| Time = 5.000E+03 .....                                     | 23 |
| Time = 1.000E+04 .....                                     | 24 |
| Dose/Source Ratios Summed Over All Pathways .....          | 25 |
| Single Radionuclide Soil Guidelines .....                  | 26 |
| Dose Per Nuclide Summed Over All Pathways .....            | 28 |
| Soil Concentration Per Nuclide .....                       | 30 |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 9 of 24)**

RESRAD, Version 5.61    T Limit = 0.5 year    09/10/96 16:26    Page 2  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79\_DU\_5.DAT

Dose Conversion Factor (and Related) Parameter Summary  
File: DCSFAC.BIN

| Menu | Parameter                                                 | Current                             | Parameter |
|------|-----------------------------------------------------------|-------------------------------------|-----------|
|      |                                                           | Value                               | Default   |
| B-1  | ° Dose conversion factors for inhalation, mrem/pCi:       | ° 6.720E+00 ° 6.720E+00 ° DCF2( 1)  | ° ° °     |
| B-1  | ° Ac-227+D                                                | ° 4.440E-01 ° 4.440E-01 ° DCF2( 2)  |           |
| B-1  | ° Am-241                                                  | ° 5.400E-01 ° 5.400E-01 ° DCF2( 3)  |           |
| B-1  | ° Np-237+D                                                | ° 1.280E+00 ° 1.280E+00 ° DCF2( 4)  |           |
| B-1  | ° Pa-231                                                  | ° 2.320E-02 ° 2.320E-02 ° DCF2( 5)  |           |
| B-1  | ° Pb-210+D                                                | ° 3.920E-01 ° 3.920E-01 ° DCF2( 6)  |           |
| B-1  | ° Pu-238                                                  | ° 4.290E-01 ° 4.290E-01 ° DCF2( 7)  |           |
| B-1  | ° Pu-239                                                  | ° 4.290E-01 ° 4.290E-01 ° DCF2( 8)  |           |
| B-1  | ° Pu-240                                                  | ° 8.250E-03 ° 8.250E-03 ° DCF2( 9)  |           |
| B-1  | ° Pu-241+D                                                | ° 4.110E-01 ° 4.110E-01 ° DCF2(11)  |           |
| B-1  | ° Pu-242                                                  | ° 8.600E-03 ° 8.600E-03 ° DCF2(12)  |           |
| B-1  | ° Ra-226+D                                                | ° 5.080E-03 ° 5.080E-03 ° DCF2(13)  |           |
| B-1  | ° Ra-228+D                                                | ° 3.450E-01 ° 3.450E-01 ° DCF2(14)  |           |
| B-1  | ° Th-228+D                                                | ° 2.160E+00 ° 2.160E+00 ° DCF2(15)  |           |
| B-1  | ° Th-229+D                                                | ° 3.260E-01 ° 3.260E-01 ° DCF2(16)  |           |
| B-1  | ° Th-230                                                  | ° 1.640E+00 ° 1.640E+00 ° DCF2(17)  |           |
| B-1  | ° Th-232                                                  | ° 1.350E-01 ° 1.350E-01 ° DCF2(18)  |           |
| B-1  | ° U-233                                                   | ° 1.320E-01 ° 1.320E-01 ° DCF2(19)  |           |
| B-1  | ° U-234                                                   | ° 1.230E-01 ° 1.230E-01 ° DCF2(20)  |           |
| B-1  | ° U-235+D                                                 | ° 1.250E-01 ° 1.250E-01 ° DCF2(21)  |           |
| B-1  | ° U-236                                                   | ° 1.180E-01 ° 1.180E-01 ° DCF2(22)  |           |
| B-1  | ° U-238+D                                                 | ° ° °                               |           |
| D-1  | ° Dose conversion factors for ingestion, mrem/pCi:        | ° ° °                               |           |
| D-1  | ° Ac-227+D                                                | ° 1.480E-02 ° 1.480E-02 ° DCF3( 1)  |           |
| D-1  | ° Am-241                                                  | ° 3.640E-03 ° 3.640E-03 ° DCF3( 2)  |           |
| D-1  | ° Np-237+D                                                | ° 4.440E-03 ° 4.440E-03 ° DCF3( 3)  |           |
| D-1  | ° Pa-231                                                  | ° 1.060E-02 ° 1.060E-02 ° DCF3( 4)  |           |
| D-1  | ° Pb-210+D                                                | ° 7.270E-03 ° 7.270E-03 ° DCF3( 5)  |           |
| D-1  | ° Pu-238                                                  | ° 3.200E-03 ° 3.200E-03 ° DCF3( 6)  |           |
| D-1  | ° Pu-239                                                  | ° 3.540E-03 ° 3.540E-03 ° DCF3( 7)  |           |
| D-1  | ° Pu-240                                                  | ° 3.540E-03 ° 3.540E-03 ° DCF3( 8)  |           |
| D-1  | ° Pu-241+D                                                | ° 6.850E-05 ° 6.850E-05 ° DCF3( 9)  |           |
| D-1  | ° Pu-242                                                  | ° 3.360E-03 ° 3.360E-03 ° DCF3(11)  |           |
| D-1  | ° Ra-226+D                                                | ° 1.330E-03 ° 1.330E-03 ° DCF3(12)  |           |
| D-1  | ° Ra-228+D                                                | ° 1.440E-03 ° 1.440E-03 ° DCF3(13)  |           |
| D-1  | ° Th-228+D                                                | ° 8.080E-04 ° 8.080E-04 ° DCF3(14)  |           |
| D-1  | ° Th-229+D                                                | ° 4.030E-03 ° 4.030E-03 ° DCF3(15)  |           |
| D-1  | ° Th-230                                                  | ° 5.480E-04 ° 5.480E-04 ° DCF3(16)  |           |
| D-1  | ° Th-232                                                  | ° 2.730E-03 ° 2.730E-03 ° DCF3(17)  |           |
| D-1  | ° U-233                                                   | ° 2.890E-04 ° 2.890E-04 ° DCF3(18)  |           |
| D-1  | ° U-234                                                   | ° 2.830E-04 ° 2.830E-04 ° DCF3(19)  |           |
| D-1  | ° U-235+D                                                 | ° 2.670E-04 ° 2.670E-04 ° DCF3(20)  |           |
| D-1  | ° U-236                                                   | ° 2.690E-04 ° 2.690E-04 ° DCF3(21)  |           |
| D-1  | ° U-238+D                                                 | ° 2.690E-04 ° 2.690E-04 ° DCF3(22)  |           |
| D-34 | ° Food transfer factors:                                  | ° ° °                               |           |
| D-34 | ° Ac-227+D, plant/soil concentration ratio, dimensionless | ° 2.500E-03 ° 2.500E-03 ° RTF( 1,1) |           |
| D-34 | ° Ac-227+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | ° 2.000E-05 ° 2.000E-05 ° RTF( 1,2) |           |
| D-34 | ° Ac-227+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | ° 2.000E-05 ° 2.000E-05 ° RTF( 1,3) |           |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 10 of 24)**

RESRAD, Version 5.61    T<sub>1</sub> Limit = 0.5 year    09/10/96 16:26    Page 3  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79\_DU\_5.DAT

Dose Conversion Factor (and Related) Parameter Summary (continued)  
File: DOSFAC.BIN

| Menu | Parameter                                               | Current   | Value     | Default   | Parameter | Name |
|------|---------------------------------------------------------|-----------|-----------|-----------|-----------|------|
| D-34 | Am-241, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | RTF( 2,1) | RTF( 2,1) |      |
| D-34 | Am-241, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 5.000E-05 | 5.000E-05 | RTF( 2,2) | RTF( 2,2) |      |
| D-34 | Am-241, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 2.000E-06 | 2.000E-06 | RTF( 2,3) | RTF( 2,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Np-237+D, plant/soil concentration ratio, dimensionless | 2.000E-02 | 2.000E-02 | RTF( 3,1) | RTF( 3,1) |      |
| D-34 | Np-237+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-03 | 1.000E-03 | RTF( 3,2) | RTF( 3,2) |      |
| D-34 | Np-237+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 5.000E-06 | 5.000E-06 | RTF( 3,3) | RTF( 3,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pa-231, plant/soil concentration ratio, dimensionless   | 1.000E-02 | 1.000E-02 | RTF( 4,1) | RTF( 4,1) |      |
| D-34 | Pa-231, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 5.000E-03 | 5.000E-03 | RTF( 4,2) | RTF( 4,2) |      |
| D-34 | Pa-231, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 5.000E-06 | 5.000E-06 | RTF( 4,3) | RTF( 4,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pb-210+D, plant/soil concentration ratio, dimensionless | 1.000E-02 | 1.000E-02 | RTF( 5,1) | RTF( 5,1) |      |
| D-34 | Pb-210+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 8.000E-04 | 8.000E-04 | RTF( 5,2) | RTF( 5,2) |      |
| D-34 | Pb-210+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 3.000E-04 | 3.000E-04 | RTF( 5,3) | RTF( 5,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pu-238, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | RTF( 6,1) | RTF( 6,1) |      |
| D-34 | Pu-238, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | RTF( 6,2) | RTF( 6,2) |      |
| D-34 | Pu-238, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 1.000E-06 | 1.000E-06 | RTF( 6,3) | RTF( 6,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pu-239, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | RTF( 7,1) | RTF( 7,1) |      |
| D-34 | Pu-239, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | RTF( 7,2) | RTF( 7,2) |      |
| D-34 | Pu-239, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 1.000E-06 | 1.000E-06 | RTF( 7,3) | RTF( 7,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pu-240, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | RTF( 8,1) | RTF( 8,1) |      |
| D-34 | Pu-240, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | RTF( 8,2) | RTF( 8,2) |      |
| D-34 | Pu-240, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 1.000E-06 | 1.000E-06 | RTF( 8,3) | RTF( 8,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pu-241+D, plant/soil concentration ratio, dimensionless | 1.000E-03 | 1.000E-03 | RTF( 9,1) | RTF( 9,1) |      |
| D-34 | Pu-241+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-04 | 1.000E-04 | RTF( 9,2) | RTF( 9,2) |      |
| D-34 | Pu-241+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 1.000E-06 | 1.000E-06 | RTF( 9,3) | RTF( 9,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Pu-242, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | RTF(11,1) | RTF(11,1) |      |
| D-34 | Pu-242, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | RTF(11,2) | RTF(11,2) |      |
| D-34 | Pu-242, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 1.000E-06 | 1.000E-06 | RTF(11,3) | RTF(11,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Ra-226+D, plant/soil concentration ratio, dimensionless | 4.000E-02 | 4.000E-02 | RTF(12,1) | RTF(12,1) |      |
| D-34 | Ra-226+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-03 | 1.000E-03 | RTF(12,2) | RTF(12,2) |      |
| D-34 | Ra-226+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 1.000E-03 | 1.000E-03 | RTF(12,3) | RTF(12,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Ra-228+D, plant/soil concentration ratio, dimensionless | 4.000E-02 | 4.000E-02 | RTF(13,1) | RTF(13,1) |      |
| D-34 | Ra-228+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-03 | 1.000E-03 | RTF(13,2) | RTF(13,2) |      |
| D-34 | Ra-228+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 1.000E-03 | 1.000E-03 | RTF(13,3) | RTF(13,3) |      |
| D-34 |                                                         |           |           |           |           |      |
| D-34 | Th-228+D, plant/soil concentration ratio, dimensionless | 1.000E-03 | 1.000E-03 | RTF(14,1) | RTF(14,1) |      |
| D-34 | Th-228+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-04 | 1.000E-04 | RTF(14,2) | RTF(14,2) |      |
| D-34 | Th-228+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 5.000E-06 | 5.000E-06 | RTF(14,3) | RTF(14,3) |      |
| D-34 |                                                         |           |           |           |           |      |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 11 of 24)**

RESRAD, Version 5.61    T Limit = 0.5 year    09/10/96 16:26    Page 4  
Summary : Dose to Resident, CAU 430, 0.77 pCi/s DU, 1376 pCi/g Pu-239/240  
File : W79\_DU\_5.DAT

Dose Conversion Factor (and Related) Parameter Summary (continued)  
File: DOSFAC.BIN

| Menu | Parameter                                               | Current   | Value     | Default   | Parameter    |
|------|---------------------------------------------------------|-----------|-----------|-----------|--------------|
| D-34 | Th-229+D, plant/soil concentration ratio, dimensionless | 1.000E-03 | 1.000E-03 | 1.000E-03 | RTF(15,1)    |
| D-34 | Th-229+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d) | 1.000E-04 | 1.000E-04 | 1.000E-04 | RTF(15,2)    |
| D-34 | Th-229+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)  | 5.000E-06 | 5.000E-06 | 5.000E-06 | RTF(15,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | Th-230, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | 1.000E-03 | RTF(16,1)    |
| D-34 | Th-230, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | 1.000E-04 | RTF(16,2)    |
| D-34 | Th-230, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 5.000E-06 | 5.000E-06 | 5.000E-06 | RTF(16,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | Th-232, plant/soil concentration ratio, dimensionless   | 1.000E-03 | 1.000E-03 | 1.000E-03 | RTF(17,1)    |
| D-34 | Th-232, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)   | 1.000E-04 | 1.000E-04 | 1.000E-04 | RTF(17,2)    |
| D-34 | Th-232, milk/livestock-intake ratio, (pCi/L)/(pCi/d)    | 5.000E-06 | 5.000E-06 | 5.000E-06 | RTF(17,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | U-233, plant/soil concentration ratio, dimensionless    | 2.500E-03 | 2.500E-03 | 2.500E-03 | RTF(18,1)    |
| D-34 | U-233, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)    | 3.400E-04 | 3.400E-04 | 3.400E-04 | RTF(18,2)    |
| D-34 | U-233, milk/livestock-intake ratio, (pCi/L)/(pCi/d)     | 6.000E-04 | 6.000E-04 | 6.000E-04 | RTF(18,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | U-234, plant/soil concentration ratio, dimensionless    | 2.500E-03 | 2.500E-03 | 2.500E-03 | RTF(19,1)    |
| D-34 | U-234, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)    | 3.400E-04 | 3.400E-04 | 3.400E-04 | RTF(19,2)    |
| D-34 | U-234, milk/livestock-intake ratio, (pCi/L)/(pCi/d)     | 6.000E-04 | 6.000E-04 | 6.000E-04 | RTF(19,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | U-235+D, plant/soil concentration ratio, dimensionless  | 2.500E-03 | 2.500E-03 | 2.500E-03 | RTF(20,1)    |
| D-34 | U-235+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)  | 3.400E-04 | 3.400E-04 | 3.400E-04 | RTF(20,2)    |
| D-34 | U-235+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)   | 6.000E-04 | 6.000E-04 | 6.000E-04 | RTF(20,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | U-236, plant/soil concentration ratio, dimensionless    | 2.500E-03 | 2.500E-03 | 2.500E-03 | RTF(21,1)    |
| D-34 | U-236, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)    | 3.400E-04 | 3.400E-04 | 3.400E-04 | RTF(21,2)    |
| D-34 | U-236, milk/livestock-intake ratio, (pCi/L)/(pCi/d)     | 6.000E-04 | 6.000E-04 | 6.000E-04 | RTF(21,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-34 | U-238+D, plant/soil concentration ratio, dimensionless  | 2.500E-03 | 2.500E-03 | 2.500E-03 | RTF(22,1)    |
| D-34 | U-238+D, beef/livestock-intake ratio, (pCi/kg)/(pCi/d)  | 3.400E-04 | 3.400E-04 | 3.400E-04 | RTF(22,2)    |
| D-34 | U-238+D, milk/livestock-intake ratio, (pCi/L)/(pCi/d)   | 6.000E-04 | 6.000E-04 | 6.000E-04 | RTF(22,3)    |
| D-34 |                                                         | .         | .         | .         | .            |
| D-5  | Bioaccumulation factors, fresh water, L/kg:             |           |           |           |              |
| D-5  | Ac-227+D, fish                                          | 1.500E+01 | 1.500E+01 | 1.500E+01 | BIOFAC( 1,1) |
| D-5  | Ac-227+D, crustacea and mollusks                        | 1.000E+03 | 1.000E+03 | 1.000E+03 | BIOFAC( 1,2) |
| D-5  |                                                         | .         | .         | .         | .            |
| D-5  | Am-241, fish                                            | 3.000E+01 | 3.000E+01 | 3.000E+01 | BIOFAC( 2,1) |
| D-5  | Am-241, crustacea and mollusks                          | 1.000E+03 | 1.000E+03 | 1.000E+03 | BIOFAC( 2,2) |
| D-5  |                                                         | .         | .         | .         | .            |
| D-5  | Np-237+D, fish                                          | 3.000E+01 | 3.000E+01 | 3.000E+01 | BIOFAC( 3,1) |
| D-5  | Np-237+D, crustacea and mollusks                        | 4.000E+02 | 4.000E+02 | 4.000E+02 | BIOFAC( 3,2) |
| D-5  |                                                         | .         | .         | .         | .            |
| D-5  | Pa-231, fish                                            | 1.000E+01 | 1.000E+01 | 1.000E+01 | BIOFAC( 4,1) |
| D-5  | Pa-231, crustacea and mollusks                          | 1.100E+02 | 1.100E+02 | 1.100E+02 | BIOFAC( 4,2) |
| D-5  |                                                         | .         | .         | .         | .            |
| D-5  | Pb-210+D, fish                                          | 3.000E+02 | 3.000E+02 | 3.000E+02 | BIOFAC( 5,1) |
| D-5  | Pb-210+D, crustacea and mollusks                        | 1.000E+02 | 1.000E+02 | 1.000E+02 | BIOFAC( 5,2) |
| D-5  |                                                         | .         | .         | .         | .            |
| D-5  | Pu-238, fish                                            | 3.000E+01 | 3.000E+01 | 3.000E+01 | BIOFAC( 6,1) |
| D-5  | Pu-238, crustacea and mollusks                          | 1.000E+02 | 1.000E+02 | 1.000E+02 | BIOFAC( 6,2) |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 12 of 24)**

RESRAD, Version 5.61 T<sup>1</sup> Limit = 0.5 year 09/10/96 16:26 Page 5  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79\_DU\_5.DAT

Dose Conversion Factor (and Related) Parameter Summary (continued)  
File: DOSFAC.BIN

| Menu | Parameter                           | Current     | Value       | Default        | Parameter | Current     | Value       | Default        | Name |
|------|-------------------------------------|-------------|-------------|----------------|-----------|-------------|-------------|----------------|------|
| D-5  | ° Pu-239 , fish                     | ° 3.000E+01 | ° 3.000E+01 | ° BIOFAC( 7,1) | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC( 7,2) | °    |
| D-5  | ° Pu-239 , crustacea and mollusks   | °           | °           | °              | D-5       | ° 3.000E+01 | ° 3.000E+01 | ° BIOFAC( 8,1) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC( 8,2) | °    |
| D-5  | ° Pu-240 , fish                     | ° 3.000E+01 | ° 3.000E+01 | ° BIOFAC( 9,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° Pu-240 , crustacea and mollusks   | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC( 9,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 3.000E+01 | ° 3.000E+01 | ° BIOFAC(11,1) | °    |
| D-5  | ° Pu-241+D , fish                   | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(11,2) | D-5       | ° 2.500E+02 | ° 2.500E+02 | ° BIOFAC(12,1) | °    |
| D-5  | ° Pu-241+D , crustacea and mollusks | °           | °           | °              | D-5       | ° 5.000E+01 | ° 5.000E+01 | ° BIOFAC(12,2) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 5.000E+01 | ° 5.000E+01 | ° BIOFAC(13,1) | °    |
| D-5  | ° Pu-242 , fish                     | ° 2.500E+02 | ° 2.500E+02 | ° BIOFAC(13,2) | D-5       | ° 2.500E+02 | ° 2.500E+02 | ° BIOFAC(14,1) | °    |
| D-5  | ° Pu-242 , crustacea and mollusks   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(14,2) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(15,1) | °    |
| D-5  | ° Ra-226+D , fish                   | ° 5.000E+01 | ° 5.000E+01 | ° BIOFAC(15,2) | D-5       | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(16,1) | °    |
| D-5  | ° Ra-226+D , crustacea and mollusks | ° 2.500E+02 | ° 2.500E+02 | ° BIOFAC(16,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(17,1) | °    |
| D-5  | ° Ra-228+D , fish                   | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(17,2) | D-5       | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(18,1) | °    |
| D-5  | ° Ra-228+D , crustacea and mollusks | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(18,2) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(19,1) | °    |
| D-5  | ° Th-228+D , fish                   | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(19,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-228+D , crustacea and mollusks | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(20,1) | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(20,2) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(21,1) | °    |
| D-5  | ° Th-229+D , fish                   | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(21,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-229+D , crustacea and mollusks | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(22,1) | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(22,2) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(23,1) | °    |
| D-5  | ° Th-230 , fish                     | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(23,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-230 , crustacea and mollusks   | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(24,1) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(24,2) | °    |
| D-5  | ° Th-232 , fish                     | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(25,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-232 , crustacea and mollusks   | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(25,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+02 | ° 1.000E+02 | ° BIOFAC(26,1) | °    |
| D-5  | ° Th-232 , fish                     | ° 5.000E+02 | ° 5.000E+02 | ° BIOFAC(26,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-233 , fish                     | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(27,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-233 , crustacea and mollusks   | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(27,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(28,1) | °    |
| D-5  | ° Th-234 , fish                     | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(28,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° Th-234 , crustacea and mollusks   | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(29,1) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(29,2) | °    |
| D-5  | ° U-233 , fish                      | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(30,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-233 , crustacea and mollusks    | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(30,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(31,1) | °    |
| D-5  | ° U-234 , fish                      | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(31,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-234 , crustacea and mollusks    | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(32,1) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(32,2) | °    |
| D-5  | ° U-235+D , fish                    | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(33,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-235+D , crustacea and mollusks  | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(33,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(34,1) | °    |
| D-5  | ° U-236 , fish                      | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(34,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-236 , crustacea and mollusks    | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(35,1) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(35,2) | °    |
| D-5  | ° U-238+D , fish                    | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(36,1) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-238+D , crustacea and mollusks  | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(36,2) | D-5       | °           | °           | °              | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(37,1) | °    |
| D-5  | ° U-238+D , fish                    | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(37,2) | D-5       | °           | °           | °              | °    |
| D-5  | ° U-238+D , crustacea and mollusks  | °           | °           | °              | D-5       | ° 1.000E+01 | ° 1.000E+01 | ° BIOFAC(38,1) | °    |
| D-5  | °                                   | °           | °           | °              | D-5       | ° 6.000E+01 | ° 6.000E+01 | ° BIOFAC(38,2) | °    |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 13 of 24)**

RESRAD, Version 5.61      T' Limit = 0.5 year      09/10/96 16:26      Page 6  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary

| Menu                                                   | Parameter | User        | Input       | Default | Used by RESRAD<br>(If different from user input) | Parameter<br>Name |
|--------------------------------------------------------|-----------|-------------|-------------|---------|--------------------------------------------------|-------------------|
| RO11 ° Area of contaminated zone (m**2)                |           | ° 1.820E+02 | ° 1.000E+04 | °       | ---                                              | ° AREA            |
| RO11 ° Thickness of contaminated zone (m)              |           | ° 4.572E+00 | ° 2.000E+00 | °       | ---                                              | ° THICKO          |
| RO11 ° Length parallel to aquifer flow (m)             |           | ° 1.524E+01 | ° 1.000E+02 | °       | ---                                              | ° LCZPAQ          |
| RO11 ° Basic radiation dose limit (mrem/yr)            |           | ° 1.000E+02 | ° 3.000E+01 | °       | ---                                              | ° BRDL            |
| RO11 ° Time since placement of material (yr)           |           | ° 0.000E+00 | ° 0.000E+00 | °       | ---                                              | ° TI              |
| RO11 ° Times for calculations (yr)                     |           | ° 1.000E+01 | ° 1.000E+00 | °       | ---                                              | ° T( 2)           |
| RO11 ° Times for calculations (yr)                     |           | ° 5.000E+01 | ° 3.000E+00 | °       | ---                                              | ° T( 3)           |
| RO11 ° Times for calculations (yr)                     |           | ° 1.000E+02 | ° 1.000E+01 | °       | ---                                              | ° T( 4)           |
| RO11 ° Times for calculations (yr)                     |           | ° 2.500E+02 | ° 3.000E+01 | °       | ---                                              | ° T( 5)           |
| RO11 ° Times for calculations (yr)                     |           | ° 5.000E+02 | ° 1.000E+02 | °       | ---                                              | ° T( 6)           |
| RO11 ° Times for calculations (yr)                     |           | ° 8.000E+02 | ° 3.000E+02 | °       | ---                                              | ° T( 7)           |
| RO11 ° Times for calculations (yr)                     |           | ° 1.000E+03 | ° 1.000E+03 | °       | ---                                              | ° T( 8)           |
| RO11 ° Times for calculations (yr)                     |           | ° 5.000E+03 | ° 0.000E+00 | °       | ---                                              | ° T( 9)           |
| RO11 ° Times for calculations (yr)                     |           | ° 1.000E+04 | ° 0.000E+00 | °       | ---                                              | ° T(10)           |
| RO12 ° Initial principal radionuclide (pCi/g): Am-241  |           | ° 6.023E+01 | ° 0.000E+00 | °       | ---                                              | ° S1( 2)          |
| RO12 ° Initial principal radionuclide (pCi/g): Pu-238  |           | ° 1.276E+01 | ° 0.000E+00 | °       | ---                                              | ° S1( 6)          |
| RO12 ° Initial principal radionuclide (pCi/g): Pu-239  |           | ° 1.256E+03 | ° 0.000E+00 | °       | ---                                              | ° S1( 7)          |
| RO12 ° Initial principal radionuclide (pCi/g): Pu-240  |           | ° 1.194E+02 | ° 0.000E+00 | °       | ---                                              | ° S1( 8)          |
| RO12 ° Initial principal radionuclide (pCi/g): Pu-241  |           | ° 1.971E+03 | ° 0.000E+00 | °       | ---                                              | ° S1( 9)          |
| RO12 ° Initial principal radionuclide (pCi/g): Pu-242  |           | ° 2.530E-03 | ° 0.000E+00 | °       | ---                                              | ° S1(11)          |
| RO12 ° Initial principal radionuclide (pCi/g): U-234   |           | ° 6.500E-03 | ° 0.000E+00 | °       | ---                                              | ° S1(19)          |
| RO12 ° Initial principal radionuclide (pCi/g): U-235   |           | ° 1.130E-03 | ° 0.000E+00 | °       | ---                                              | ° S1(20)          |
| RO12 ° Initial principal radionuclide (pCi/g): U-238   |           | ° 6.947E-02 | ° 0.000E+00 | °       | ---                                              | ° S1(22)          |
| RO12 ° Concentration in groundwater (pCi/L): Am-241    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1( 2)          |
| RO12 ° Concentration in groundwater (pCi/L): Pu-238    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1( 6)          |
| RO12 ° Concentration in groundwater (pCi/L): Pu-239    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1( 7)          |
| RO12 ° Concentration in groundwater (pCi/L): Pu-240    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1( 8)          |
| RO12 ° Concentration in groundwater (pCi/L): Pu-241    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1( 9)          |
| RO12 ° Concentration in groundwater (pCi/L): Pu-242    |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1(11)          |
| RO12 ° Concentration in groundwater (pCi/L): U-234     |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1(19)          |
| RO12 ° Concentration in groundwater (pCi/L): U-235     |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1(20)          |
| RO12 ° Concentration in groundwater (pCi/L): U-238     |           | ° not used  | ° 0.000E+00 | °       | ---                                              | ° W1(22)          |
| RO13 ° Cover depth (m)                                 |           | ° 0.000E+00 | ° 0.000E+00 | °       | ---                                              | ° COVERO          |
| RO13 ° Density of cover material (g/cm**3)             |           | ° not used  | ° 1.500E+00 | °       | ---                                              | ° DENSCV          |
| RO13 ° Cover depth erosion rate (m/yr)                 |           | ° not used  | ° 1.000E-03 | °       | ---                                              | ° VCV             |
| RO13 ° Density of contaminated zone (g/cm**3)          |           | ° 1.500E+00 | ° 1.500E+00 | °       | ---                                              | ° DENSCZ          |
| RO13 ° Contaminated zone erosion rate (m/yr)           |           | ° 1.442E-03 | ° 1.000E-03 | °       | ---                                              | ° VCZ             |
| RO13 ° Contaminated zone total porosity                |           | ° 3.000E-01 | ° 4.000E-01 | °       | ---                                              | ° TPCZ            |
| RO13 ° Contaminated zone effective porosity            |           | ° 3.000E-01 | ° 2.000E-01 | °       | ---                                              | ° EPCZ            |
| RO13 ° Contaminated zone hydraulic conductivity (m/yr) |           | ° 1.000E+03 | ° 1.000E+01 | °       | ---                                              | ° HCCZ            |
| RO13 ° Contaminated zone b parameter                   |           | ° 4.050E+00 | ° 5.300E+00 | °       | ---                                              | ° BCZ             |
| RO13 ° Humidity in air (g/cm**3)                       |           | ° not used  | ° 8.000E+00 | °       | ---                                              | ° HUMID           |
| RO13 ° Evapotranspiration coefficient                  |           | ° 6.800E-01 | ° 5.000E-01 | °       | ---                                              | ° EVAPTR          |
| RO13 ° Precipitation (m/yr)                            |           | ° 1.270E-01 | ° 1.000E+00 | °       | ---                                              | ° PRECIP          |
| RO13 ° Irrigation (m/yr)                               |           | ° 1.530E+00 | ° 2.000E-01 | °       | ---                                              | ° RI              |
| RO13 ° Irrigation mode                                 |           | ° ditch     | ° overhead  | °       | ---                                              | ° IDITCH          |
| RO13 ° Runoff coefficient                              |           | ° 2.000E-01 | ° 2.000E-01 | °       | ---                                              | ° RUNOFF          |
| RO13 ° Watershed area for nearby stream or pond (m**2) |           | ° 1.824E+02 | ° 1.000E+06 | °       | ---                                              | ° WAREA           |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 14 of 24)**

RESRAD, Version 5.61    T Limit = 0.5 year    09/10/96 16:26    Page 7  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

**Site-Specific Parameter Summary (continued)**

| Menu | Parameter                                      | User | Input     | Default   | (If different from user input) | Used by RESRAD | Parameter    |
|------|------------------------------------------------|------|-----------|-----------|--------------------------------|----------------|--------------|
| RD13 | Accuracy for water/soil computations           |      | 1.000E-03 | 1.000E-03 |                                | ---            | EPS          |
| RD14 | Density of saturated zone (g/cm**3)            |      | 1.500E+00 | 1.500E+00 |                                | ---            | DENSAQ       |
| RD14 | Saturated zone total porosity                  |      | 3.000E-01 | 4.000E-01 |                                | ---            | TPSZ         |
| RD14 | Saturated zone effective porosity              |      | 3.000E-01 | 2.000E-01 |                                | ---            | EPSZ         |
| RD14 | Saturated zone hydraulic conductivity (m/yr)   |      | 1.000E+03 | 1.000E+02 |                                | ---            | HCSZ         |
| RD14 | Saturated zone hydraulic gradient              |      | 1.000E-04 | 2.000E-02 |                                | ---            | HGWT         |
| RD14 | Saturated zone b parameter                     |      | 4.050E+00 | 5.300E+00 |                                | ---            | BSZ          |
| RD14 | Water table drop rate (m/yr)                   |      | 1.000E-04 | 1.000E-03 |                                | ---            | VWT          |
| RD14 | Well pump intake depth (m below water table)   |      | 1.000E+01 | 1.000E+01 |                                | ---            | DWIBWT       |
| RD14 | Model: Nondispersion (ND) or Mass-Balance (MB) |      | ND        | ND        |                                | ---            | MODEL        |
| RD14 | Well pumping rate (m**3/yr)                    |      | 2.796E+02 | 2.500E+02 |                                | ---            | UW           |
| RD15 | Number of unsaturated zone strata              |      | 1         | 1         |                                | ---            | NS           |
| RD15 | Unsat. zone 1, thickness (m)                   |      | 8.000E+01 | 4.000E+00 |                                | ---            | H(1)         |
| RD15 | Unsat. zone 1, soil density (g/cm**3)          |      | 1.500E+00 | 1.500E+00 |                                | ---            | DENSUZ(1)    |
| RD15 | Unsat. zone 1, total porosity                  |      | 3.000E-01 | 4.000E-01 |                                | ---            | TPUZ(1)      |
| RD15 | Unsat. zone 1, effective porosity              |      | 3.000E-01 | 2.000E-01 |                                | ---            | EPUZ(1)      |
| RD15 | Unsat. zone 1, soil-specific b parameter       |      | 4.050E+00 | 5.300E+00 |                                | ---            | BUZ(1)       |
| RD15 | Unsat. zone 1, hydraulic conductivity (m/yr)   |      | 1.000E+03 | 1.000E+01 |                                | ---            | HCUZ(1)      |
| RD16 | Distribution coefficients for Am-241           |      |           |           |                                | ---            |              |
| RD16 | Contaminated zone (cm**3/g)                    |      | 1.900E+03 | 2.000E+01 |                                | ---            | DCNUCC( 2)   |
| RD16 | Unsaturated zone 1 (cm**3/g)                   |      | 1.900E+03 | 2.000E+01 |                                | ---            | DCNUCU( 2,1) |
| RD16 | Saturated zone (cm**3/g)                       |      | 1.900E+03 | 2.000E+01 |                                | ---            | DCNUCS( 2)   |
| RD16 | Leach rate (/yr)                               |      | 0.000E+00 | 0.000E+00 |                                | 4.007E-05      | ALEACH( 2)   |
| RD16 | Solubility constant                            |      | 0.000E+00 | 0.000E+00 |                                | not used       | SOLUBK( 2)   |
| RD16 | Distribution coefficients for Pu-238           |      |           |           |                                | ---            |              |
| RD16 | Contaminated zone (cm**3/g)                    |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCC( 6)   |
| RD16 | Unsaturated zone 1 (cm**3/g)                   |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCU( 6,1) |
| RD16 | Saturated zone (cm**3/g)                       |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCS( 6)   |
| RD16 | Leach rate (/yr)                               |      | 0.000E+00 | 0.000E+00 |                                | 1.384E-04      | ALEACH( 6)   |
| RD16 | Solubility constant                            |      | 0.000E+00 | 0.000E+00 |                                | not used       | SOLUBK( 6)   |
| RD16 | Distribution coefficients for Pu-239           |      |           |           |                                | ---            |              |
| RD16 | Contaminated zone (cm**3/g)                    |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCC( 7)   |
| RD16 | Unsaturated zone 1 (cm**3/g)                   |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCU( 7,1) |
| RD16 | Saturated zone (cm**3/g)                       |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCS( 7)   |
| RD16 | Leach rate (/yr)                               |      | 0.000E+00 | 0.000E+00 |                                | 1.384E-04      | ALEACH( 7)   |
| RD16 | Solubility constant                            |      | 0.000E+00 | 0.000E+00 |                                | not used       | SOLUBK( 7)   |
| RD16 | Distribution coefficients for Pu-240           |      |           |           |                                | ---            |              |
| RD16 | Contaminated zone (cm**3/g)                    |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCC( 8)   |
| RD16 | Unsaturated zone 1 (cm**3/g)                   |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCU( 8,1) |
| RD16 | Saturated zone (cm**3/g)                       |      | 5.500E+02 | 2.000E+03 |                                | ---            | DCNUCS( 8)   |
| RD16 | Leach rate (/yr)                               |      | 0.000E+00 | 0.000E+00 |                                | 1.384E-04      | ALEACH( 8)   |
| RD16 | Solubility constant                            |      | 0.000E+00 | 0.000E+00 |                                | not used       | SOLUBK( 8)   |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 15 of 24)**

RESRAD, Version 5.61      T<sup>1/2</sup> Limit = 0.5 year      09/10/96 16:26      Page 8  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary (continued)

| Menu | Parameter                                     | User        | Input        | Default | (if different from user input) | Used by RESRAD | Parameter      | Name |
|------|-----------------------------------------------|-------------|--------------|---------|--------------------------------|----------------|----------------|------|
| RD16 | Distribution coefficients for Pu-241          | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCC( 9)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCU( 9,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCS( 9)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 1.384E-04      | ° ALEACH( 9)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK( 9)   |      |
| RD16 | Distribution coefficients for Pu-242          | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCC(11)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCU(11,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 5.500E+02 | ° 2.000E+03  | °       | °                              | ---            | ° DCNUCS(11)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 1.384E-04      | ° ALEACH(11)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK(11)   |      |
| RD16 | Distribution coefficients for U-234           | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCC(19)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCU(19,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCS(19)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 2.169E-03      | ° ALEACH(19)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK(19)   |      |
| RD16 | Distribution coefficients for U-235           | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCC(20)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCU(20,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCS(20)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 2.169E-03      | ° ALEACH(20)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK(20)   |      |
| RD16 | Distribution coefficients for U-238           | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCC(22)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCU(22,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 3.500E+01 | ° 5.000E+01  | °       | °                              | ---            | ° DCNUCS(22)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 2.169E-03      | ° ALEACH(22)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK(22)   |      |
| RD16 | Distribution coefficients for daughter Ac-227 | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 4.500E+02 | ° 2.000E+01  | °       | °                              | ---            | ° DCNUCC( 1)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 4.500E+02 | ° 2.000E+01  | °       | °                              | ---            | ° DCNUCU( 1,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 4.500E+02 | ° 2.000E+01  | °       | °                              | ---            | ° DCNUCS( 1)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 1.691E-04      | ° ALEACH( 1)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK( 1)   |      |
| RD16 | Distribution coefficients for daughter Np-237 | °           | °            | °       | °                              | °              | °              | °    |
| RD16 | Contaminated zone (cm**3/g)                   | ° 5.000E+00 | ° -1.000E+00 | °       | °                              | ---            | ° DCNUCC( 3)   |      |
| RD16 | Unsaturated zone 1 (cm**3/g)                  | ° 5.000E+00 | ° -1.000E+00 | °       | °                              | ---            | ° DCNUCU( 3,1) |      |
| RD16 | Saturated zone (cm**3/g)                      | ° 5.000E+00 | ° -1.000E+00 | °       | °                              | ---            | ° DCNUCS( 3)   |      |
| RD16 | Leach rate (/yr)                              | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | 1.492E-02      | ° ALEACH( 3)   |      |
| RD16 | Solubility constant                           | ° 0.000E+00 | ° 0.000E+00  | °       | °                              | not used       | ° SOLUBK( 3)   |      |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 16 of 24)**

RESRAD, Version 5.61    "T" Limit = 0.5 year    09/10/96 16:26    Page 9  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary (continued)

| Menu                                                 | Parameter | User Input  | Default     | Used by RESRAD (if different from user input) | Parameter Name |
|------------------------------------------------------|-----------|-------------|-------------|-----------------------------------------------|----------------|
| R016 ° Distribution coefficients for daughter Pa-231 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 5.500E+02 | ° 5.000E+01 | ---                                           | ° DCNUCC( 4)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 5.500E+02 | ° 5.000E+01 | ---                                           | ° DCNUCU( 4,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 5.500E+02 | ° 5.000E+01 | ---                                           | ° DCNUCS( 4)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 1.384E-04                                     | ° ALEACH( 4)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK( 4)   |
| R016 ° Distribution coefficients for daughter Pb-210 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 2.700E+02 | ° 1.000E+02 | ---                                           | ° DCNUCC( 5)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 2.700E+02 | ° 1.000E+02 | ---                                           | ° DCNUCU( 5,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 2.700E+02 | ° 1.000E+02 | ---                                           | ° DCNUCS( 5)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 2.819E-04                                     | ° ALEACH( 5)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK( 5)   |
| R016 ° Distribution coefficients for daughter Ra-226 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCC(12)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCU(12,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCS(12)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 1.522E-04                                     | ° ALEACH(12)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK(12)   |
| R016 ° Distribution coefficients for daughter Ra-228 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCC(13)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCU(13,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 5.000E+02 | ° 7.000E+01 | ---                                           | ° DCNUCS(13)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 1.522E-04                                     | ° ALEACH(13)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK(13)   |
| R016 ° Distribution coefficients for daughter Th-228 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCC(14)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCU(14,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCS(14)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 2.379E-05                                     | ° ALEACH(14)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK(14)   |
| R016 ° Distribution coefficients for daughter Th-229 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCC(15)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCU(15,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCS(15)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 2.379E-05                                     | ° ALEACH(15)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK(15)   |
| R016 ° Distribution coefficients for daughter Th-230 |           | °           | °           | °                                             | °              |
| R016 ° Contaminated zone (cm**3/g)                   |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCC(16)   |
| R016 ° Unsaturated zone 1 (cm**3/g)                  |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCU(16,1) |
| R016 ° Saturated zone (cm**3/g)                      |           | ° 3.200E+03 | ° 6.000E+04 | ---                                           | ° DCNUCS(16)   |
| R016 ° Leach rate (/yr)                              |           | ° 0.000E+00 | ° 0.000E+00 | 2.379E-05                                     | ° ALEACH(16)   |
| R016 ° Solubility constant                           |           | ° 0.000E+00 | ° 0.000E+00 | not used                                      | ° SOLUBK(16)   |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 17 of 24)**

RESRAD, Version 5.61 T Limit = 0.5 year 09/10/96 16:26 Page 10  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary (continued)

| Menu | Parameter                                         | User | Input     | Default | (If different from user input) | Used by RESRAD         | Parameter       |
|------|---------------------------------------------------|------|-----------|---------|--------------------------------|------------------------|-----------------|
| R016 | Distribution coefficients for daughter Th-232     | °    | °         | °       | °                              | °                      | °               |
| R016 | Contaminated zone (cm**3/g)                       | °    | 3.200E+03 | °       | 6.000E+04                      | ---                    | ° DCNUCC(17)    |
| R016 | Unsaturated zone 1 (cm**3/g)                      | °    | 3.200E+03 | °       | 6.000E+04                      | ---                    | ° DCNUCU(17,1)  |
| R016 | Saturated zone (cm**3/g)                          | °    | 3.200E+03 | °       | 6.000E+04                      | ---                    | ° DCNUCS(17)    |
| R016 | Leach rate (/yr)                                  | °    | 0.000E+00 | °       | 0.000E+00                      | 2.379E-05              | ° ALEACH(17)    |
| R016 | Solubility constant                               | °    | 0.000E+00 | °       | 0.000E+00                      | not used               | ° SOLUBK(17)    |
| R016 | Distribution coefficients for daughter U-233      | °    | °         | °       | °                              | °                      | °               |
| R016 | Contaminated zone (cm**3/g)                       | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCC(18)    |
| R016 | Unsaturated zone 1 (cm**3/g)                      | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCU(18,1)  |
| R016 | Saturated zone (cm**3/g)                          | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCS(18)    |
| R016 | Leach rate (/yr)                                  | °    | 0.000E+00 | °       | 0.000E+00                      | 2.169E-03              | ° ALEACH(18)    |
| R016 | Solubility constant                               | °    | 0.000E+00 | °       | 0.000E+00                      | not used               | ° SOLUBK(18)    |
| R016 | Distribution coefficients for daughter U-236      | °    | °         | °       | °                              | °                      | °               |
| R016 | Contaminated zone (cm**3/g)                       | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCC(21)    |
| R016 | Unsaturated zone 1 (cm**3/g)                      | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCU(21,1)  |
| R016 | Saturated zone (cm**3/g)                          | °    | 3.500E+01 | °       | 5.000E+01                      | ---                    | ° DCNUCS(21)    |
| R016 | Leach rate (/yr)                                  | °    | 0.000E+00 | °       | 0.000E+00                      | 2.169E-03              | ° ALEACH(21)    |
| R016 | Solubility constant                               | °    | 0.000E+00 | °       | 0.000E+00                      | not used               | ° SOLUBK(21)    |
| R017 | Inhalation rate (m**3/yr)                         | °    | 6.372E+03 | °       | 8.400E+03                      | ---                    | ° INHALR        |
| R017 | Mass loading for inhalation (g/m**3)              | °    | 9.860E-06 | °       | 2.000E-04                      | ---                    | ° MLINH         |
| R017 | Dilution length for airborne dust, inhalation (m) | °    | 3.000E+00 | °       | 3.000E+00                      | ---                    | ° LM            |
| R017 | Exposure duration                                 | °    | 3.000E+01 | °       | 3.000E+01                      | ---                    | ° ED            |
| R017 | Shielding factor, inhalation                      | °    | 1.000E+00 | °       | 4.000E-01                      | ---                    | ° SHF3          |
| R017 | Shielding factor, external gamma                  | °    | 7.000E-01 | °       | 7.000E-01                      | ---                    | ° SHF1          |
| R017 | Fraction of time spent indoors                    | °    | 6.792E-01 | °       | 5.000E-01                      | ---                    | ° FIND          |
| R017 | Fraction of time spent outdoors (on site)         | °    | 2.797E-01 | °       | 2.500E-01                      | ---                    | ° FOTD          |
| R017 | Shape factor flag, external gamma                 | °    | 1.000E+00 | °       | 1.000E+00                      | 1 shows circular AREA. | ° FS            |
| R017 | Radii of shape factor array (used if FS = -1):    | °    | °         | °       | °                              | °                      | °               |
| R017 | Outer annular radius (m), ring 1:                 | °    | not used  | °       | 5.000E+01                      | ---                    | ° RAD_SHAPE( 1) |
| R017 | Outer annular radius (m), ring 2:                 | °    | not used  | °       | 7.071E+01                      | ---                    | ° RAD_SHAPE( 2) |
| R017 | Outer annular radius (m), ring 3:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 3) |
| R017 | Outer annular radius (m), ring 4:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 4) |
| R017 | Outer annular radius (m), ring 5:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 5) |
| R017 | Outer annular radius (m), ring 6:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 6) |
| R017 | Outer annular radius (m), ring 7:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 7) |
| R017 | Outer annular radius (m), ring 8:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 8) |
| R017 | Outer annular radius (m), ring 9:                 | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE( 9) |
| R017 | Outer annular radius (m), ring 10:                | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE(10) |
| R017 | Outer annular radius (m), ring 11:                | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE(11) |
| R017 | Outer annular radius (m), ring 12:                | °    | not used  | °       | 0.000E+00                      | ---                    | ° RAD_SHAPE(12) |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 18 of 24)**

RESRAD, Version 5.61 T Limit = 0.5 year 09/10/96 16:26 Page 11  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary (continued)

| Menu | Parameter                                          | User Input  | Default     | Used by RESRAD (If different from user input) | Parameter Name |
|------|----------------------------------------------------|-------------|-------------|-----------------------------------------------|----------------|
| R017 | ° Fractions of annular areas within AREA:          | ° not used  | ° 1.000E+00 | ---                                           | ° FRACA( 1)    |
| R017 | ° Ring 1                                           | ° not used  | ° 2.732E-01 | ---                                           | ° FRACA( 2)    |
| R017 | ° Ring 2                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 3)    |
| R017 | ° Ring 3                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 4)    |
| R017 | ° Ring 4                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 5)    |
| R017 | ° Ring 5                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 6)    |
| R017 | ° Ring 6                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 7)    |
| R017 | ° Ring 7                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 8)    |
| R017 | ° Ring 8                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA( 9)    |
| R017 | ° Ring 9                                           | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA(10)    |
| R017 | ° Ring 10                                          | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA(11)    |
| R017 | ° Ring 11                                          | ° not used  | ° 0.000E+00 | ---                                           | ° FRACA(12)    |
| R017 | ° Ring 12                                          | ° not used  | ° 0.000E+00 | ---                                           | °              |
| R018 | ° Fruits, vegetables and grain consumption (kg/yr) | ° 4.949E+01 | ° 1.600E+02 | ---                                           | ° DIET(1)      |
| R018 | ° Leafy vegetable consumption (kg/yr)              | ° 4.130E+00 | ° 1.400E+01 | ---                                           | ° DIET(2)      |
| R018 | ° Milk consumption (L/yr)                          | ° not used  | ° 9.200E+01 | ---                                           | ° DIET(3)      |
| R018 | ° Meat and poultry consumption (kg/yr)             | ° not used  | ° 6.300E+01 | ---                                           | ° DIET(4)      |
| R018 | ° Fish consumption (kg/yr)                         | ° not used  | ° 5.400E+00 | ---                                           | ° DIET(5)      |
| R018 | ° Other seafood consumption (kg/yr)                | ° not used  | ° 9.000E-01 | ---                                           | ° DIET(6)      |
| R018 | ° Soil ingestion rate (g/yr)                       | ° 3.650E+01 | ° 3.650E+01 | ---                                           | ° SOIL         |
| R018 | ° Drinking water intake (L/yr)                     | ° 5.110E+02 | ° 5.100E+02 | ---                                           | ° DWI          |
| R018 | ° Contamination fraction of drinking water         | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FDW          |
| R018 | ° Contamination fraction of household water        | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FHHW         |
| R018 | ° Contamination fraction of livestock water        | ° not used  | ° 1.000E+00 | ---                                           | ° FLW          |
| R018 | ° Contamination fraction of irrigation water       | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FIRW         |
| R018 | ° Contamination fraction of aquatic food           | ° not used  | ° 5.000E-01 | ---                                           | ° FR9          |
| R018 | ° Contamination fraction of plant food             | °-1         | °-1         | ° 0.910E-01                                   | ° FPLANT       |
| R018 | ° Contamination fraction of meat                   | ° not used  | °-1         | ---                                           | ° FMEAT        |
| R018 | ° Contamination fraction of milk                   | ° not used  | °-1         | ---                                           | ° FMILK        |
| R019 | ° Livestock fodder intake for meat (kg/day)        | ° not used  | ° 6.800E+01 | ---                                           | ° LF15         |
| R019 | ° Livestock fodder intake for milk (kg/day)        | ° not used  | ° 5.500E+01 | ---                                           | ° LF16         |
| R019 | ° Livestock water intake for meat (L/day)          | ° not used  | ° 5.000E+01 | ---                                           | ° LW15         |
| R019 | ° Livestock water intake for milk (L/day)          | ° not used  | ° 1.600E+02 | ---                                           | ° LW16         |
| R019 | ° Livestock soil intake (kg/day)                   | ° not used  | ° 5.000E-01 | ---                                           | ° LSI          |
| R019 | ° Mass loading for foliar deposition (g/m**3)      | ° 3.656E-03 | ° 1.000E-04 | ---                                           | ° MLFD         |
| R019 | ° Depth of soil mixing layer (m)                   | ° 0.000E+00 | ° 1.500E-01 | ---                                           | ° DM           |
| R019 | ° Depth of roots (m)                               | ° 9.000E-01 | ° 9.000E-01 | ---                                           | ° DROOT        |
| R019 | ° Drinking water fraction from ground water        | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FGWDW        |
| R019 | ° Household water fraction from ground water       | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FGWHH        |
| R019 | ° Livestock water fraction from ground water       | ° 1.000E+00 | ° 1.000E+00 | ---                                           | ° FGWLW        |
| R019 | ° Irrigation fraction from ground water            | ° not used  | ° 1.000E+00 | ---                                           | ° FGWIR        |
| C14  | ° C-12 concentration in water (g/cm**3)            | ° not used  | ° 2.000E-05 | ---                                           | ° C12WTR       |
| C14  | ° C-12 concentration in contaminated soil (g/g)    | ° not used  | ° 3.000E-02 | ---                                           | ° C12CZ        |
| C14  | ° Fraction of vegetation carbon from soil          | ° not used  | ° 2.000E-02 | ---                                           | ° CSOIL        |
| C14  | ° Fraction of vegetation carbon from air           | ° not used  | ° 9.800E-01 | ---                                           | ° CAIR         |
| C14  | ° C-14 evasion layer thickness in soil (m)         | ° not used  | ° 3.000E-01 | ---                                           | ° DMC          |
| C14  | ° C-14 evasion flux rate from soil (1/sec)         | ° not used  | ° 7.000E-07 | ---                                           | ° EVSN         |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 19 of 24)**

RESRAD, Version 5.61    T<sup>1/2</sup> Limit = 0.5 year    09/10/96 16:26    Page 12  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Site-Specific Parameter Summary (continued)

| Menu | Parameter                                          | User         | Input        | Default                          | Used by RESRAD<br>(if different from user input) | Parameter<br>Name |
|------|----------------------------------------------------|--------------|--------------|----------------------------------|--------------------------------------------------|-------------------|
| C14  | ° C-12 evasion flux rate from soil (1/sec)         | ° not used   | ° 1.000E-10  | °                                | °                                                | ° REVSN           |
| C14  | ° Fraction of grain in beef cattle feed            | ° not used   | ° 8.000E-01  | °                                | °                                                | ° AVFG4           |
| C14  | ° Fraction of grain in milk cow feed               | ° not used   | ° 2.000E-01  | °                                | °                                                | ° AVFG5           |
| STOR | ° Storage times of contaminated foodstuffs (days): | °            | °            | °                                | °                                                | °                 |
| STOR | ° Fruits, non-leafy vegetables, and grain          | ° 1.400E+01  | ° 1.400E+01  | °                                | °                                                | ° STOR_T(1)       |
| STOR | ° Leafy vegetables                                 | ° 1.000E+00  | ° 1.000E+00  | °                                | °                                                | ° STOR_T(2)       |
| STOR | ° Milk                                             | ° not used   | ° 1.000E+00  | °                                | °                                                | ° STOR_T(3)       |
| STOR | ° Meat and poultry                                 | ° not used   | ° 2.000E+01  | °                                | °                                                | ° STOR_T(4)       |
| STOR | ° Fish                                             | ° not used   | ° 7.000E+00  | °                                | °                                                | ° STOR_T(5)       |
| STOR | ° Crustacea and mollusks                           | ° not used   | ° 7.000E+00  | °                                | °                                                | ° STOR_T(6)       |
| STOR | ° Well water                                       | ° 1.000E+00  | ° 1.000E+00  | °                                | °                                                | ° STOR_T(7)       |
| STOR | ° Surface water                                    | ° 1.000E+00  | ° 1.000E+00  | °                                | °                                                | ° STOR_T(8)       |
| STOR | ° Livestock fodder                                 | ° not used   | ° 4.500E+01  | °                                | °                                                | ° STOR_T(9)       |
| R021 | ° Thickness of building foundation (m)             | ° 1.500E-01  | ° 1.500E-01  | °                                | °                                                | ° FLOOR           |
| R021 | ° Bulk density of building foundation (g/cm**3)    | ° 2.400E+00  | ° 2.400E+00  | °                                | °                                                | ° DENSFL          |
| R021 | ° Total porosity of the cover material             | ° not used   | ° 4.000E-01  | °                                | °                                                | ° TPCV            |
| R021 | ° Total porosity of the building foundation        | ° 1.000E-01  | ° 1.000E-01  | °                                | °                                                | ° TPFL            |
| R021 | ° Volumetric water content of the cover material   | ° not used   | ° 5.000E-02  | °                                | °                                                | ° PH20CV          |
| R021 | ° Volumetric water content of the foundation       | ° 3.000E-02  | ° 3.000E-02  | °                                | °                                                | ° PH20FL          |
| R021 | ° Diffusion coefficient for radon gas (m/sec):     | °            | °            | °                                | °                                                | °                 |
| R021 | ° in cover material                                | ° not used   | ° 2.000E-06  | °                                | °                                                | ° DIFCV           |
| R021 | ° in foundation material                           | ° 3.000E-07  | ° 3.000E-07  | °                                | °                                                | ° DIFFL           |
| R021 | ° in contaminated zone soil                        | ° 2.000E-06  | ° 2.000E-06  | °                                | °                                                | ° DIFCZ           |
| R021 | ° Radon vertical dimension of mixing (m)           | ° 2.000E+00  | ° 2.000E+00  | °                                | °                                                | ° HMIX            |
| R021 | ° Average annual wind speed (m/sec)                | ° 3.400E+00  | ° 2.000E+00  | °                                | °                                                | ° WIND            |
| R021 | ° Average building air exchange rate (1/hr)        | ° 5.000E-01  | ° 5.000E-01  | °                                | °                                                | ° REXG            |
| R021 | ° Height of the building (room) (m)                | ° 2.500E+00  | ° 2.500E+00  | °                                | °                                                | ° HRM             |
| R021 | ° Building interior area factor                    | ° 0.000E+00  | ° 0.000E+00  | ° code computed (time dependent) | °                                                | ° FAI             |
| R021 | ° Building depth below ground surface (m)          | ° -1.000E+00 | ° -1.000E+00 | ° code computed (time dependent) | °                                                | ° DMFL            |
| R021 | ° Emanating power of Rn-222 gas                    | ° 2.500E-01  | ° 2.500E-01  | °                                | °                                                | ° EMANA(1)        |
| R021 | ° Emanating power of Rn-220 gas                    | ° 1.500E-01  | ° 1.500E-01  | °                                | °                                                | ° EMANA(2)        |

Summary of Pathway Selections

| Pathway                     | User Selection |
|-----------------------------|----------------|
| 1 -- external gamma         | ° active       |
| 2 -- inhalation (w/o radon) | ° active       |
| 3 -- plant ingestion        | ° active       |
| 4 -- meat ingestion         | ° suppressed   |
| 5 -- milk ingestion         | ° suppressed   |
| 6 -- aquatic foods          | ° suppressed   |
| 7 -- drinking water         | ° active       |
| 8 -- soil ingestion         | ° active       |
| 9 -- radon                  | ° active       |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 20 of 24)**

RESRAD, Version 5.61 T<sup>1/2</sup> Limit = 0.5 year 09/10/96 16:26 Page 13  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79.DU\_5.DAT

| Contaminated Zone Dimensions |                      | Initial Soil Concentrations, pCi/g |           |
|------------------------------|----------------------|------------------------------------|-----------|
| Area:                        | 182.00 square meters | Am-241                             | 6.023E+01 |
| Thickness:                   | 4.57 meters          | Pu-238                             | 1.276E+01 |
| Cover Depth:                 | 0.00 meters          | Pu-239                             | 1.256E+03 |
|                              |                      | Pu-240                             | 1.194E+02 |
|                              |                      | Pu-241                             | 1.971E+03 |
|                              |                      | Pu-242                             | 2.530E-03 |
|                              |                      | U-234                              | 6.500E-03 |
|                              |                      | U-235                              | 1.130E-03 |
|                              |                      | U-238                              | 6.947E-02 |

Total Dose TDCSE(t), mrem/yr  
Basic Radiation Dose Limit = 100 mrem/yr

Total Mixture Sum  $M(\tau)$  = Fraction of Basic Dose Limit Received at Time ( $\tau$ )

| $t$ (years):  | 0.000E+00 | 1.000E+01 | 5.000E+01 | 1.000E+02 | 2.500E+02 | 5.000E+02 | 8.000E+02 | 1.000E+03 | 5.000E+03 | 1.000E+04 |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| TDOSE( $t$ ): | 9.809E+01 | 9.920E+01 | 9.973E+01 | 9.824E+01 | 9.352E+01 | 8.708E+01 | 8.083E+01 | 7.727E+01 | 2.743E+01 | 1.166E+01 |
| M( $t$ ):     | 9.809E-01 | 9.920E-01 | 9.973E-01 | 9.824E-01 | 9.352E-01 | 8.708E-01 | 8.083E-01 | 7.727E-01 | 2.743E-01 | 1.166E-01 |

Maximum TDOSE(t): 9.993E+01 mrem/yr at t = 32.92 ± 0.03 years

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
As mrem/yr and Fraction of Total Dose At t = 32.92 years

#### Water Independent Pathways (Inhalation excludes radon)

| Ground            | Inhalation        | Radon             | Plant             | Meat              | Milk              | Soil              |           |        |           |        |           |        |           |       |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------|--------|-----------|--------|-----------|--------|-----------|-------|
| Radio-<br>Nuclide | mrem/yr<br>fract. | mrem/yr<br>fract. | mrem/yr<br>fract. | mrem/yr<br>fract. | mrem/yr<br>fract. | mrem/yr<br>fract. |           |        |           |        |           |        |           |       |
| Am-241            | 1.634E+00         | 0.0164            | 1.249E+00         | 0.0125            | 0.000E+00         | 0.0000            | 1.227E+00 | 0.0123 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.323E+00 | 0.013 |
| Pu-238            | 1.049E-03         | 0.0000            | 1.893E-01         | 0.0019            | 7.164E-08         | 0.0000            | 1.852E-01 | 0.0019 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.997E-01 | 0.002 |
| Pu-239            | 2.452E-01         | 0.0025            | 2.641E+01         | 0.2643            | 0.000E+00         | 0.0000            | 2.612E+01 | 0.2614 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 2.817E+01 | 0.281 |
| Pu-240            | 1.229E-02         | 0.0001            | 2.505E+00         | 0.0251            | 1.398E-15         | 0.0000            | 2.478E+00 | 0.0248 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 2.672E+00 | 0.026 |
| Pu-241            | 1.448E+00         | 0.0145            | 1.266E+00         | 0.0127            | 0.000E+00         | 0.0000            | 1.247E+00 | 0.0125 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.344E+00 | 0.013 |
| Pu-242            | 2.265E-07         | 0.0000            | 5.101E-05         | 0.0000            | 1.915E-20         | 0.0000            | 4.999E-05 | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 5.390E-05 | 0.000 |
| U-234             | 1.716E-06         | 0.0000            | 3.940E-05         | 0.0000            | 1.242E-06         | 0.0000            | 2.266E-05 | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.092E-05 | 0.000 |
| U-235             | 5.200E-04         | 0.0000            | 6.522E-06         | 0.0000            | 0.000E+00         | 0.0000            | 4.174E-06 | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.868E-06 | 0.000 |
| U-238             | 5.599E-03         | 0.0001            | 3.762E-04         | 0.0000            | 4.088E-10         | 0.0000            | 2.302E-04 | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.108E-04 | 0.000 |
| Total             | 3.348E+00         | 0.0335            | 3.162E+01         | 0.3164            | 1.314E-06         | 0.0000            | 3.126E+01 | 0.3128 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 3.370E+01 | 0.337 |

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 21 of 24)**

RESRAD, Version 5.61      T" Limit = 0.5 year      09/10/96 16:26      Page 14  
Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
File : W79\_DU\_5.DAT

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
As mrem/yr and Fraction of Total Dose At t = 32.92 years

Water Dependent Pathways

| Radio-<br>Nuclide | Water<br>mrem/yr | Fish<br>mrem/yr<br>fract. | Radon<br>mrem/yr<br>fract. | Plant<br>mrem/yr<br>fract. | Meat<br>mrem/yr<br>fract. | Milk<br>mrem/yr<br>fract. | All Pathways*    |
|-------------------|------------------|---------------------------|----------------------------|----------------------------|---------------------------|---------------------------|------------------|
| Am-241            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0544 |
| Pu-238            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0058 |
| Pu-239            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.8100 |
| Pu-240            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0767 |
| Pu-241            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0531 |
| Pu-242            | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0000 |
| U-234             | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0000 |
| U-235             | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0000 |
| U-238             | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 0.0001 |
| Total             | 0.000E+00        | 0.0000                    | 0.000E+00                  | 0.0000                     | 0.000E+00                 | 0.0000                    | 0.000E+00 1.0000 |

\*Sum of all water independent and dependent pathways.

R. Dubiskas

September 5, 1996

Attachment B-1  
 Parameter Values Used as RESRAD Input for CAU No. 430  
 (Page 22 of 24)

RESRAD, Version 5.61 "T" Limit = 0.5 year 09/10/96 16:26 Page 15  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

| Ground                           | Inhalation       | Radon            | Plant            | Meat             | Milk             | Soil             |
|----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Radio-<br>Nuclide mrem/yr fract. | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   |
| Am-241                           | 1.725E-00 0.0176 | 1.318E+00 0.0134 | 0.000E+00 0.0000 | 1.295E+00 0.0132 | 0.000E+00 0.0000 | 0.000E-00 0.0000 |
| Pu-238                           | 1.367E-03 0.0000 | 2.466E-01 0.0025 | 0.000E+00 0.0000 | 2.413E-01 0.0025 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| Pu-239                           | 2.466E-01 0.0025 | 2.655E+01 0.2707 | 0.000E+00 0.0000 | 2.627E+01 0.2678 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| Pu-240                           | 1.239E-02 0.0001 | 2.525E+00 0.0257 | 0.000E+00 0.0000 | 2.498E+00 0.0255 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| Pu-241                           | 2.448E-02 0.0002 | 2.015E-01 0.0082 | 0.000E+00 0.0000 | 7.964E-01 0.0081 | 0.000E+00 0.0000 | 0.000E-00 0.0000 |
| Pu-242                           | 2.276E-07 0.0000 | 5.125E-05 0.0000 | 0.000E+00 0.0000 | 5.022E-05 0.0000 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| U-234                            | 1.740E-06 0.0000 | 4.229E-05 0.0000 | 0.000E+00 0.0000 | 2.433E-05 0.0000 | 0.000E+00 0.0000 | 0.000E-00 0.0000 |
| U-235                            | 5.580E-04 0.0000 | 6.850E-06 0.0000 | 0.000E+00 0.0000 | 3.991E-06 0.0000 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| U-238                            | 6.013E-03 0.0001 | 4.040E-04 0.0000 | 0.000E+00 0.0000 | 2.472E-04 0.0000 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
| Total                            | 2.016E-00 0.0206 | 3.145E+01 0.3206 | 0.000E+00 0.0000 | 3.110E+01 0.3170 | 0.000E+00 0.0000 | 0.000E+00 0.0000 |
|                                  |                  |                  |                  |                  |                  | 3.353E+01 0.3418 |

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Dependent Pathways

| Water                            | Fish             | Radon            | Plant            | Meat             | Milk             | All Pathways*    |
|----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Radio-<br>Nuclide mrem/yr fract. | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   | mrem/yr fract.   |
| Am-241                           | 0.000E+00 0.0000 | 5.735E+00 0.0585 |
| Pu-238                           | 0.000E+00 0.0000 | 7.494E-01 0.0076 |
| Pu-239                           | 0.000E+00 0.0000 | 8.139E+01 0.8297 |
| Pu-240                           | 0.000E+00 0.0000 | 7.729E-00 0.0788 |
| Pu-241                           | 0.000E+00 0.0000 | 2.482E+00 0.0253 |
| Pu-242                           | 0.000E+00 0.0000 | 1.559E-04 0.0000 |
| U-234                            | 0.000E+00 0.0000 | 8.008E-05 0.0000 |
| U-235                            | 0.000E+00 0.0000 | 5.708E-04 0.0000 |
| U-238                            | 0.000E+00 0.0000 | 6.783E-03 0.0001 |
| Total                            | 0.000E+00 0.0000 | 9.809E+01 1.0000 |

\*Sum of all water independent and dependent pathways.

R. Dubiskas

September 5, 1996

**Attachment B-1**  
**Parameter Values Used as RESRAD Input for CAU No. 430**  
**(Page 23 of 24)**

RESRAD, Version 5.61    T<sup>1/2</sup> Limit = 0.5 year    09/10/96 16:26    Page 16  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_5.DAT

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

| Radio-<br>Nuclide | Ground<br>mrem/yr | Inhalation<br>mrem/yr | Radon<br>mrem/yr | Plant<br>mrem/yr | Meat<br>mrem/yr | Milk<br>mrem/yr | Soil<br>mrem/yr |        |           |        |           |        |           |        |
|-------------------|-------------------|-----------------------|------------------|------------------|-----------------|-----------------|-----------------|--------|-----------|--------|-----------|--------|-----------|--------|
| Am-241            | 1.697E+00         | 0.0171                | 1.297E+00        | 0.0131           | 0.000E+00       | 0.0000          | 1.274E+00       | 0.0128 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.374E+00 | 0.0138 |
| Pu-238            | 1.261E-03         | 0.0000                | 2.276E-01        | 0.0023           | 2.134E-09       | 0.0000          | 2.226E-01       | 0.0022 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 2.401E-01 | 0.0024 |
| Pu-239            | 2.1462E-01        | 0.0025                | 2.651E+01        | 0.2672           | 0.000E+00       | 0.0000          | 2.622E+01       | 0.2643 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 2.827E+01 | 0.2850 |
| Pu-240            | 1.236E-02         | 0.0001                | 2.519E+00        | 0.0254           | 4.118E-17       | 0.0000          | 2.492E+00       | 0.0251 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 2.687E+00 | 0.0271 |
| Pu-241            | 7.270E-01         | 0.0073                | 1.038E+00        | 0.0105           | 0.000E+00       | 0.0000          | 1.027E+00       | 0.0104 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.107E+00 | 0.0112 |
| Pu-242            | 2.273E-07         | 0.0000                | 5.118E-05        | 0.0000           | 1.669E-22       | 0.0000          | 5.015E-05       | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 5.407E-05 | 0.0000 |
| U-234             | 1.712E-06         | 0.0000                | 4.139E-05        | 0.0000           | 1.171E-07       | 0.0000          | 2.381E-05       | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.147E-05 | 0.0000 |
| U-235             | 5.461E-04         | 0.0000                | 6.729E-06        | 0.0000           | 0.000E+00       | 0.0000          | 4.037E-06       | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.900E-06 | 0.0000 |
| U-238             | 5.884E-03         | 0.0001                | 3.954E-04        | 0.0000           | 1.179E-11       | 0.0000          | 2.419E-04       | 0.0000 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 1.165E-04 | 0.0000 |
| Total             | 2.690E+00         | 0.0271                | 3.159E+01        | 0.3185           | 1.192E-07       | 0.0000          | 3.124E+01       | 0.3149 | 0.000E+00 | 0.0000 | 0.000E+00 | 0.0000 | 3.368E+01 | 0.3395 |

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Dependent Pathways

| Radio-<br>Nuclide | Water<br>mrem/yr | Fish<br>mrem/yr | Radon<br>mrem/yr | Plant<br>mrem/yr | Meat<br>mrem/yr | Milk<br>mrem/yr | All Pathways* |        |
|-------------------|------------------|-----------------|------------------|------------------|-----------------|-----------------|---------------|--------|
| Am-241            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 5.641E+00     | 0.0569 |
| Pu-238            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 6.915E-01     | 0.0070 |
| Pu-239            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 8.125E+01     | 0.8191 |
| Pu-240            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 7.710E+00     | 0.0777 |
| Pu-241            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 3.900E+00     | 0.0393 |
| Pu-242            | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 1.556E-04     | 0.0000 |
| U-234             | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 7.850E-05     | 0.0000 |
| U-235             | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 5.588E-04     | 0.0000 |
| U-238             | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 6.638E-03     | 0.0001 |
| Total             | 0.000E+00        | 0.0000          | 0.000E+00        | 0.0000           | 0.000E+00       | 0.0000          | 9.920E+01     | 1.0000 |

\*Sum of all water independent and dependent pathways.

R. Dubiskas

September 5, 1996

Attachment B-1  
 Parameter Values Used as RESRAD Input for CAU No. 430  
 (Page 24 of 24)

RESRAD, Version 5.61 T Limit = 0.5 year 09/10/96 16:26 Page 17  
 Summary : Dose to Resident, CAU 430, 0.77 pCi/g DU, 1376 pCi/g Pu-239/240  
 File : W79\_DU\_S.DAT

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 5.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

| Ground                           | Inhalation                       | Radon                            | Plant                            | Meat                             | Milk                             | Soil                             |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Radio-<br>Nuclide mrem/yr fract. |
| Am-241 1.589E-00 0.0159          | 1.214E+00 0.0122                 | 0.000E+00 0.0000                 | 1.193E+00 0.0120                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.286E+00 0.0129                 |
| Pu-238 9.148E-04 0.0000          | 1.650E-01 0.0017                 | 2.400E-07 0.0000                 | 1.614E-01 0.0016                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.741E-01 0.0017                 |
| Pu-239 2.445E-01 0.0025          | 2.633E+01 0.2641                 | 0.000E+00 0.0000                 | 2.605E+01 0.2612                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 2.808E+01 0.2816                 |
| Pu-240 1.224E-02 0.0001          | 2.495E+00 0.0250                 | 3.991E-15 0.0000                 | 2.468E+00 0.0247                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 2.660E+00 0.0267                 |
| Pu-241 1.617E-00 0.0162          | 1.305E+00 0.0131                 | 0.000E+00 0.0000                 | 1.284E-00 0.0129                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.384E+00 0.0139                 |
| Pu-242 2.260E-07 0.0000          | 5.089E-05 0.0000                 | 1.001E-19 0.0000                 | 4.987E-05 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 5.377E-05 0.0000                 |
| U-234 1.777E-06 0.0000           | 3.798E-05 0.0000                 | 2.821E-06 0.0000                 | 2.185E-05 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.052E-05 0.0000                 |
| U-235 5.015E-04 0.0000           | 6.407E-05 0.0000                 | 0.000E+00 0.0000                 | 4.289E-06 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.854E-06 0.0000                 |
| U-238 5.395E-03 0.0001           | 3.626E-04 0.0000                 | 1.402E-09 0.0000                 | 2.218E-04 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.068E-04 0.0000                 |
| Total                            | 3.470E+00 0.0348                 | 3.151E+01 0.3160                 | 3.062E-06 0.0000                 | 3.115E+01 0.3124                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 |
|                                  |                                  |                                  |                                  |                                  |                                  | 3.359E+01 0.3368                 |

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)  
 As mrem/yr and Fraction of Total Dose At t = 5.000E+01 years

Water Dependent Pathways

| Water                            | Fish                             | Radon                            | Plant                            | Meat                             | Milk                             | All Pathways*                    |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Radio-<br>Nuclide mrem/yr fract. |
| Am-241 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 5.283E+00 0.0530                 |
| Pu-238 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 5.014E-01 0.0050                 |
| Pu-239 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 8.071E+01 0.8093                 |
| Pu-240 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 7.635E+00 0.0766                 |
| Pu-241 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 5.591E+00 0.0551                 |
| Pu-242 0.000E+00 0.0000          | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 1.548E-04 0.0000                 |
| U-234 0.000E+00 0.0000           | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 7.495E-05 0.0000                 |
| U-235 0.000E+00 0.0000           | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 5.141E-04 0.0000                 |
| U-238 0.000E+00 0.0000           | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 0.000E+00 0.0000                 | 6.086E-03 0.0001                 |
| Total                            | 0.000E+00 0.0000                 | 9.973E+01 1.0000                 |

\*Sum of all water independent and dependent pathways.