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A B S T R A C T

The transformation between "current" quarks and

"constituent" quarks. recently suggested by Melosh is exam-

ined with respect to  its predictions for  pionic decays of

resonances.  It implies the use of  SU(6)w  for classifying

particle  states but  not for  describing  decay processes.

Instead, pion emission proceeds via 6Lz=O,El, where  L
6is the internal ("quark") 6rbital angular momentum.  This.

decay symmetry is called SU(6)W | *Lz =0,*13.  It is· proven
equivalent for any decay A=B +T[.(where A, B are arbi-

trary  q5  gr  gqq  hadrons) to the' 3Po quark-pair creation

model for  such decays, as  formulated by Micu, Colglazier,

Petersen and Rosner. The roles of final orbital angular

momenta  £  and of  SU(3) x SU(3) subgroups of  SU(6)w  are
also  discussed,  and  some new predictions are made for decays

of meson resonances below 1700 MeV.
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INTRODUCTION

The quark model has met with remarkable success in hadronic
1)

physics, both as a "constituent" model for hadrons and as a model for

their weak and electromagnetic currents      „
2),3)

The two quark pictures are associated with two different

SU(6)  algebras of operators.  The algebra SU(6) introduced by
4)

W,strong
' Lipkin and Meshkov seems appropriate for the classification of 'the lowest

*1 lying hadrons: they appear to fall into simple irreducible representations

of this symmetry. Thus, this "constituent" picture places the observed

mesons in 1 and Mi dimensional representations and the observed baryons

in  56  and  12  dimensional representations of  SU(6)W,strongo

A different  SU(6)  algebra introduced by Dashen and

Gell-Mann , which one may call SU(6) is obeyed by the so-5)

W,currents    6)called "good" charges in the infinite momentum limit These charges

are the integrals over local densities which are directly or indirectly

measurable in weak and electromagnetic processes. Moreover, since the iso-

vector axial charge is included in this algebra, and pionic decays of

resonances   A-*B +TE are related  by PCAC  to the matrix element  of  this

axial charge, one expects that SU(6) may provide a description
W,currents

of some purely hadronic processes as well.

Conceptually, constituent quarks and current quarks, and

hence their respective  SU(6)w  algebras, are not necessarily identical.

The success of CVC means that the SU(3) subalgebras are identical, but
an attempt to identify particle states with pure representations of

SU(6)w,currents
leads to a number of difficulties. Notable among these

are the prediction that Adler-Weisberger relations should be well-saturated7)

1+ 3+with the lowest Y and a  baryon resonances.(.which they are not 7),8))   

and that anomalous magnetic moments of baryons should vanish (which they

do not) 5). Moreover, although a proton is well-classified as a state of

49           three "constituent" quarks, it looks considerably more complicated when
6

probed with currents.  In such a description (based on deep inelastic lepton

scattering ) the proton seems to contain additional quark-antiquark pairs9)

3)
and perhaps some neutral "glue" as well Hence, although physically

observable transitions are best described in the language of  SU(6)
W,currents'

the fact that the states themselves are complicated mixtures of representa-

tions of this group has been a substantial obstacle up to now to10)

concrete applications of this symmetry.
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Recently Melosh has constructed the transformation11)

between the two  SU(6)w  algebras in the free quark model.  He finds that
i5

this transformation V, acting on the axial charge F produces a
ri 5         -1    i 5

transformed axial charge   F     E V   F    V with relatively simple properties

in the constituent quark picture.

Abstracting from this "free quark" property, several
12),13) rli. 5

authors have assumed that a similarly simple F exists in the
rli. 5

interacting theory as well. The matrix elements of F between pure

states of SU(6) (corresponding to our idealization of theW,strong
physical particles) are then relatively straightforward to compute, and
imply a number of relations among pionic decays of resonances.

In this paper we examine the general structure of such

predictions.  We find that the SU(6)- introduced in Ref. 4), whilew,strong
perhaps appropriate for classifying particle states, does not follow for

collinear processes such as resonance decays. This "wrong" symmetry will

be referred to as "nayve" SU(6)w. Instead, in the present scheme, some

relatively simple selection rules govern pionic transitions between states

classified according to SU(6) In terms of an abstractly defined
W,strong

internal orbital angular momentum L these transitions turn out to
Z'

involve  only   AL  = 0,  al. This "possibly right" decay symmetry will thus
Z

be referred to as
SU(6)w       [*Lz = 0, :':13.

We find that for any hadronic decay A=B+TC, the

symmetry SU(6)w 1.ALz=0, al], motivated by the work of Ref. 11), is
equivalent to the successful phenomenological

„3·p   ,1     model   of  Micu   1 4) ,

Colglazier and Rosner 15) and Petersen and Rosner 16>. The phenomenological

prescription
14)-19) known as " 2 broken SU(6)w"

16),17) is found to be

equivalent to SU(6)w 1.AI'z =O,f13  for many cases of physical interest,
but a special case of this symmetry (and hence essentially unmotivated

on theoretical grounds) in general.  We have also derived the predictions

of the chiral SU(3) x SU(3) subalgebra of SU(6) and
strong W,strong'                                            b

discuss their relation to other symmetries in some specific mesonic cases.

Various phenomenological applications to decays of the mesons.in the "R"

region (mass around  1700  MeV) are mentioned.
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The paper is organized as follows. Sections 1 and 2

are devoted, respectively, to the constituent and current quark approaches

to  SU(6)w as applied to hadronic vertices. These sections,· as well as   c
the beginning of Section 3 which deals with the explicit expressions for    
decay amplitudes, are expository in nature and follow closely the

treatments  
of Refs. 11)-13).  Then, in the remainder of Section 3, we discuss in some  /

detail all possible pionic decays of meson resonances up  to   L = 2.    This

Section includes predictions of interest to experimentalists.  Section 4

treats the equivalences and differences among the various above-mentioned
43

pictures of hadronic decays.  Finally, in Section 5, we summarize our

results and indicate where further work is needed.

1.  CONSTITUENT QUARKS

Particle states at rest appear to be well described by

the quark model with orbital excitations. By taking all mesons as quark-

antiquark pairs and all baryons as three quarks one can then understand a

number of features of the hadron spectrum.

The symmetry associated with the above classification is

U(6) x U(6) x 0(3) . The first U(6) refers to quarks and the second

to antiquarks, while the  0(3)  describes the orbital angular momentum  L.

A number of multiplets of this group are either entirely filled or well

on their way to being so. There is strong evidence for mesonic states

belonging to  (6,6),  L =0-,1+ and  2- and for the baryonic multiplets

22.6,1), L =0+3,  270,1), L =1-3 and 1316,1), L =2+3. Other

mesonic and baryonic multiplets may exist roughly degenerate with the

L = 2   levels just mentioned.

Clearly this U(6) x U(6) x 0(3) symmetry, which we shall

call the rest symmetry, has to be badly violated in resonance decays since

it forbids, e.g.,  A=NTT or p -*TFU. This is, of course, not surprising
4.4

since decay amplitudes involve moving particles for which the rest symmetry
20)should not hold. Lipkin and Meshkov pointed out that the reflection

and rotation invariance properties of collinear processes, such as two-

body decays, lead.to invariance under    "W  spin"    or   SU(2)w.    For  a
particle moving along the  2  axis, the generators of  W  spin may be

written
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W.   =  res.     3    Wj=   R, sb       i     W,= s, (1.1)

where Pint is the intrins.ic parity of the system. For a single free quark
.

moving in the  z  direction one would thus write the  SU(2)w  generators

as follows

Wx= B 35.
; Wb=Bf» ,

2-22
(1.2)W  5

'

Combining  SU(2)w  with  SU(3)  one is thus led to consider  SU(6)W,strong

as the natural candidate for this "relativistic spin symmetry".   In a

constituent quark model, the generators of this algebra would then be

written

\A / l

JE & +  YV

0,0 1
C-1 .\ \/ -

Wl      T      22       4   B 3.     +    4.   /5 3.
(1.3)

WI     =   7.1    4  Al,    -'  f /' P
9/7t

IA'i ir  N s  + 3, 5VV 2
--

- 1 2 1 2
0,9

These expressions for the generators clearly commute with21 0(_,    which,  for  free  huarks,  is the generator of Lorentz boosts  in  the
q,q  Z
2  direction. ·This last property of SU(6)..: for free quarks suggests

w,strong
that perhaps the physical SU(6) might be an appropriate algebraW,strong
for particles moving along the  2  axis, and, in particular, for decay

amplitudes or for collinear processes. It should be pointed out, however,

that this is an assumption which is not really well motivated. It allows

us to classify moving states knowing their rest frame classification.

In the rest frame both quark spin and  W  spin are well .defined and one
/32,

finds that for
-E> -Al

quarks W=S
(1.4)

antiquarks Wi = 52

W =-S*'3          *'3
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where  S  stands for ordinary quark spin. These relations follow trivially

from A q =+q  and  q =-q.  As is well known, one finds from Eqs. (1.4)
the so-called  W-S flip e.g.,

21)

if (,2.11, -*, lw=l,Wi=l>
but |p (3*=03> .o -|W=o, Wit=o) (1.5)

while
1 Tr, ..J -lwol, W*=O>

Under Lorentz boosts in the  2  direction,  L  does not

remain a good quantum number but  Lz  will continue to be conserved (as

well as W of course).Z'

Even though  SU(6)w  appears to be an approximate symmetry

for the classification of one particle (moving) states it need not be a

symmetry  of the whole Hilbert space. An illustrative example  of a similar

situation is found in the case of the hydrogen atom. The energy levels

of the  H  atom possess an extra degeneracy beyond that of rotational

invariance: states of different angular momentum but the same principal

quantum number have the same enetgy.  It may be shown that tha generators '
of an  0(4)  symmetry commute with the Hamiltonian of the  H  atom 22):

however, the scattering of bound.states does not possess this symmetry.

Thus  0(4)  is only useful for analyzing the spectrum bf isolited states

and not for the dynamics of particle interactions.

If, however, obe does assume SU(6) for collinear
W strong

processes such as three-point functions [ 'naive"   SU(65;1,   one ha;s
separate conservation of  Lz  and  Wz.  It is precisely this restriction -

15),16),18)
which appears to be violated in nature

Hence, we can only conclude that the genarators of

SU(6)_ approximately commute with the strong interaction Hamiltonian
9                                    w, strong

when sandwiched between one-particle states, and that SU(6)- is
w,strong

not, even approximately, a vertex symmetry. For this reason phenomenological

models were proposed several years ago with the intention of relaxing

SU(6) symmetry somewhat.
W,strong
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It was shown by Carlitz and Kislinger that one can23)

construct SU(6)w invariant vertices by working with states of quark spin
but   allowing an additional quark-antiquark  pair  to be produced  with    Lz =0'
P=C=+, and internal quantum numbers of an SU(3) singlet.  This pair

shares its quarks among the two outgoing particles in the decay. On the

basis of this picture, it was guessed that a useful modification of naTve

SU(6)w would result from allowing the pair to have   L  = El   as well  as

Lz =0" 15). This model has come to be called the "3.Po
picture", 14),15)

since the  qq  pair is assumed to have all the quantum numbers of the

vacuum.  Actually the name is somewhat misleading, since  3P   implies a

definite relation between  L  = al and    L   = 0. In contrast, the model
Z                 Z

assumes the relative admixtures of these two states to be arbitrary.

In various practical applications it has been14)-19)

3
shown that the P picture is equivalent to breaking only those naive0

SU(6)W relations which link different final relative orbital momenta  8

between the two resonance decay products.  Those nafve  SU(6)w  predictions

referring to a given 8  are pre served. This scheme is the "£  broken

SU(6)w"  referred to in the Introduction.  As we shall show, the simplest

place where 1 broken SU(6)w  is only a special case of (and not equivalent

to) the 3po picture is in L=2=L=1 +pion decays.

Two subgroups of
SU(6)W,stronf

have also been applied

to hadron decays.  These are the coplanar and chiral versions15),24 12),13)

of U(3)x U(3).

In the picturesque language of constituent quarks, the

possibility of transverse motion of these quarks inside a hadron suggests

that one studies the subset of the generators (1.3) commuting both with a

Lorentz boost along the  2  axis and a transverse boost (say 0£ in the

free quark model).  This gives rise to the coplanar
|3( 3)  x u( 3)3  SY25)

first discussed by Dashen and Gell-Mann This symmetry was explicitly
3                          ·

applied to decays in Ref. 24) and was found to be weaker than the   P0
picture .but consistent with it.

The chiral version  of    U( 3)  x U( 3) generated by Wi
strong

and ·Wl is somewhat better motivated theoretically since in any interacting

quark model these generators should always commute with boosts along the  2

axis.  On the other hand, from the current quark point of view, as will be

seen in the next Section, the chiral   U(3) x U(3) is well established
currents
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while the existence of tensor currents, which can be constructed in a

current quark model and used to extend the chiral algebra tb an  SU(6)
W,currents

algebra, requires an additional assumption.  Hence it is of some intetest

to study the implications and the breaking pattern of the chiral

SU( 3)  x SU( 3) subalgebra of  SU(6)strong W,strong'

2.  CURRENT QUARKS

To discuss current-quark algebraic structures let us

start from the well-known chiral   SU(3) x SU(3) algebra of vector and2)

axial vector charges

F'(f)  = Jdix E'(X)                    (2,1)
is .ir

F  (i)    =   543x  f-o ('0
(2.2)

where the current densities  2- (x) and
.5.,5 cx) are well defined

measurable physical operators in weak and electromagnetic transitions.  In

a "current-quark" model, one would write these vector and axial vector  
current densities as

5'0')    =   2,(,) B> 42  9, tx) (2.3)

--ir('4 =   ('0  '9*)                (2.4)
From these expressions and the canonical anticommutation

relations of the quark fields one derives the equal time commutators:

I.-lig
[Fle), F (,)1   =  i 46 jk F *F) 1  [Fic,),F (,)1  =  ifijk F 9,)

r- ir r-Jf 7
Lk   (f),   r   (01     =   14,j" Fk(+) (2.5)

This   SU(3) x SU(3) algebraic structure is then assumed

for physical vector and axial vector charges independently of any under-

lying quark structure.  As is well known, this algebra leads, with the

help of PCAC, to Adler-Weisberger sum rules.  Insofar as they have been

tested these are remarkably successful. In view of this, one can attempt,

following Dasheri and Gell-Mann, to.enlarge the algebra. With the equal time
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commutation relations of the quark model one can clearly define an  U(12)

algebra generated by 144 charges defined as integrals over the densities

R,(,0 P    c,cx)

where    is one of the 16 Dirac covariants. All these current densities

are in principle directly or indirectly measurable: for example, although

nothing in nature seems to be coupled directly to a tensor current Ejv (x),
represented in the quark model by  q-(x) SV (A i/2)q(x), this current

nevertheless appears on the right-hand side of commutators of more directly

observable operators, e.g., in CE,1 (x), -2)9 F, 15(y)]- - In this
A·0 - yo

sense all 144 current densities could be meaningful physical operators

provided, of course, that the algebraic structure of the current quark

model can be abstracted that far.

It is important,to realize that contrary to the situation

in the constituent quark approach one has here an algebraic structure which

is generated by well defined operators: they are integrals over local current

densities and their Lorentz transformation properties are given "by defi-
nition".    Let  us  go in particular  to the infinite momentum frame. As usual
we define as "good" operators ·those charges whose matrix elements do not

vanish when taken between finite mass states with infinite momentum along,
6)                                             *)say, the  2 direction There are 35 independent good operators

whose quark model expressions are given'by

FF,)      =     fA t'00 -         f"ic   '0,)           ept,)

Ii' <,)     =    f'I'x :Ii,00        =       ,1* x   ,17,)  S«: 1# cft,)
e- 1

5 tt)  =  jix E- Ck)    =    f 'Ii" cl,+b,) 6,15 01,0           (2.6)W31

t   (0       =     fd" Ft,           =          f &'x   '1»)   S  4    0 tk)

*)
Properties of good currents and indeed the Melosh transformation it-

self may be reformulated on a light.-like surface.  This is perhaps a

more exact expression of the infinite momentum limit.
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These charges generate at infinite momentum an  SU(6)

algebra which we will call SU(6) The algebraic similarity
i                W,current

s
between these  F4   or "current-quark generators" and the  Wi   or

"constituent quark generators" defined in the previous section is now

obvious. It is, however, extremely important not to confuse or to identify

too quickly the two sets of generators of these  SU(6)w  algebras.  The

F   i s are explicitly integrals over local expressions with well defined
Lorentz transformation properties, but they have not been assumed to commute

with the strong interaction Hamiltonian.      The     Wi   's,      on the other  hand,
are supposed to commute approximately with the strong interaction Hamiltonian

at least between one-particle states but there is no a priori reason why

they should be integrals over local measurable densities.  (In fact,

as we shall see below, one finds that even in the free quark model
11)

the  F  's  do not commute with the "strong interaction" Hamiltonian and

that  the   Wi  , s    are not local charges.)  Hence one has two sets of possibly

distinct operators which generate the same  SU(6)w  algebraic structure.

A fundamental question is of course the relation, if any, between the two

sets of generators. From the successes of the conserved vector current

hypothesis (CVC) we are forced to identify the Wi  and the Fi,  i.er,
the  generators of ordinary    SU( 3) of strong interactions  and the integrals

of the time components of the vector currents.  To identify the full sets

of generators of SU(6) and SU(6) would, however, be
W,strong W,currents

incorrect. A strong objection to such an identification comes from the

Adler-Weisberger relation which, when saturated with resonances necessarily

implies representation mixing, i.e., particles which belong to different

SU(6)„. representations are connected by the axial charge and thus
w,strong

at least a piece of ·their wave function must lie in the same representation

of SU(6)w
One could argue, perhaps, that if the Adler-Weisberger

,currents
sum rule is saturated with resonances   (N, 6) belonging to the same

SU(6)_ multiplet, the result obtained for -GA/Gv,  5/3,  is notw,strong                                                 5)
too far removed from the correct value. Dashen and Gell-Mann have

shown, however,   that  in  the same approximation,   i. e., classifying the nucleon

octet and 6(1238) decimet in a 56 of SU(6)-, :tas   well   as9, currents       -
ina  2§ of 37(6)W,strong   the ariomalous magnetic moments of all W

1+

baryons and the magnetic transitions between the f octet and a decimet1+ 3+

are predicted to vainish. This is clearly unacceptable. One arrives at the

conclusion that there must be sizeable representation mixing and thus. that

the generators of the two  SU(6)w  algebras cannot be identified.  This

being the case one may try to relate the two algebras by a unitary trans-

formation. In fact there is no compelling argument in favour of such an
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assumption: it is motivated by the feeling that the similarity in these

algebraic structures is a fundamental property of the hadronic world. If to

the quantum numbers corresponding to particle classifications under either

SU(6)w  one adds all necessary quantum numbers to obtain .two bases of the

Hilbert spage, a unitary transformation relating one of these bases to the

other must exist.  This does not imply.that the generators of the two  SU(6)w

algebras are, by themselves, related through a unitary transformation but
11)

it makes such an assumption somewhat more plausible. Furthermore Melosh

showed recently that in the free quark model such a unitary transformation

does in fact exist.  We will postulate that such a transformation exists in

general and write

\A / L , /  -,   1/ -1
VV OL V loc V (2.7)

where .V  is unitary and will be called the Melosh transformation. This

transformation V thus expresses the general idea that hadrons can be

simultaneously described as simple. constituent quark states where strong

interactions are concerned and as rather complicated structures when currents

are involved.  It systematizes in a compact way all  SU(6) W,cukrents
representation mixing for all hadrons.  To make this last point clear let us

recall that W'  and F'  act like quark spin operators for constituent and

current quarks respectively.  Both operators commute with J _  and thus
26)    Zmake it possible to define "orbital" angular momenta    by

L, cw)   =  72  - WI 
and (2.8)

La (F)  =  3-, - Fi
We may theh classify states according to their  SU(6)w  quantum numbers and

angular momentum.  For example the ·SU(6) classification of the
W,strong

lowest lying mesons would be   35 0 1,   Lz(W) =0 while the first excited

states would be   15  e  l,   Lz(W) = -1,0,+1.

The Melosh transformation  V  must obviously be invariant under

rotations around. the 2 axis i.e.,  13,Jz] =0· Let us suppose that

Ev,F  ] / 0 so that F and W are different operators. A state with00
Z           Z

a simple constituent quark spin structure will then in general be expected

to correspond to a mixture of different current quark spin states. Simi-

larly, while the constituent orbital angular momentum  Lz(W)  will be simple,

one will have a mixture of current orbital angular momenta Lz(F) since

Jz = Wt + Lz(W) ='FI + Lz(F),    and Jz commutes with the Melosh transformation.
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To conclude this section on current quarks we recall the explicit

construction of the Melosh transformation in the free quark model. Such

a model is defined by the Hamiltonian

-4 -4

H                =    fdix   (1:'00  f  -i a l.l    +  1& M .   (* (k)                                             (2.9)f-rct

The generators of
SU(6)W,currents

are given, in this model, by the expres-

sions appearing in Eqs. (2.6).  They do not commute with H and hehca
free

cannot be identified with the generators of SU(6)... In this sense,  -
W,strong

the free quark model, although trivial, exhibits some of the complexity of

the full problem. As shown by Melosh with

VA       =        e*p< i       -)
(2.10)

/  D -1' \

and           "il.    =   ·1  faix  fix)  cir'471«  15&3111  1 1'0M

one finds, through Eq. (2.7), the following.set of operators

• .  '  i                                     F,& A..W,    Ak
= -4

.."                                                     f'14   %,ck).ip f..1-  #'1 '       9 h  I  '1' t'<)W .r, eu- = F*1*+ LIt)C

5 -P

W:, Au        =   E., 1.-   + fd'x  1+GO-i- 11.-L-  4it''   -i] Ng t:  i   '  tx)           (2.1 1 )'C  L 1+k

- ID
r*- I

W,1, f„L         =      '.. 1."    +   fll,x   'FF(')  ·Jr f.1-  4 :&  _ i.] 5,  7;3       t, 60K    L i +X       rn

where

IC    =    I l   +  1 Ttfk#

These transformed operators can be shown to commute with H and are thus
free      .·

appropriate as  SU(6)W,strong  generators.  Some of the properties of the

Melosh transformation are worth pointing out. The first remarkable property

of  Vfree  is that it is non-local in the transverse directions and hence,
as shown explicitly by Eqs. (2.11), the symmetries of the Hamiltonian are

generated by non-local operatorst  Introducing the (current) quark spin and

orbital angular momentum operators
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2 ;, A<,      =      f dix   9:4*) <52  94(*)
(2.12)

Li,f"+    =  1 E tik falx  x k 9+(x) af F Ix)

we can· describe the properties  of Y under SU(6)„, x 0(2) as
free vv,currents

follows: Y is the SU(3) singlet member of a 35 with 6 Jz =0,free .-··

AS = f 1. Although Y only changes L       by :1:1  the
z,free free _4 z,free

presence of the power series in  ( 31 · 31 )/m implies that Y can mix
free .

essentially all total angul ar momenta.       Let   us   note    also   that   the      Wl       have
simple algebraic properties under SU(6) x 0(2) : they transform

W,currents

as  the  sum of  a   35   with    /JSz= 6Lz = 0   and  of  a   35   with    6Sz = - 6Lz = fl./4 ,-/

3.        THE   MODEL    AND ITS APPLI CAT IONS TO MESON RESONANCES

a) The SU(6)„, (6]12 =0,11) model-----9--r- W

Given the existence of a unitary transformation between constituent

quarks and current quarks we may now proceed, with the help of PCAC, to a

"theory" of pionic transitions. As hadrons do sedm to fall into irreducible

representations of SU(6).:. this algebra is an approximate symmetry
w,strong

of the strong .interaction hamiltonian (at least for one-particle states).

This does n6t ·imply :that SU(60· can be considered as an approximate
W,strong

symmetry in the whole Hilbert space. Indeed, as discussed in Section 1

one finds that .SU(6) '·· is totally unacceptable as.a vurtex symmetry.W,StFong
On the other hand, the PCAC reiation

.3/' 5:
r

= C-0
,  I

C i=  1, · · · C) (3.1)

allows us to write pionic three-point functions as follows:

<  B mi  I  A')         *      <mIB  -  mt       <    8  1   F i r l   A)                                  (3.2)C

Thus, PCAC reduces ·those hadronic three-point. functions involving at least

one pseudoscalar meson to the matrix elements of the axial charge between

one-particle states for which SU(6) is expected to be a good
W,strong
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i 5approximate symmetry. , But the axial charges F are of course generators

of SU(6)„, and they are assumed to be related by the  (unitary)
w,currents

Melosh transformation to the SU(6)· generators. Hence any assump-
W,strong

tion about the Melosh transformation  V  will reflect itself in pionic decays

of hadrons. Let us formalize this connection by defining the· Melosh

transformation as the unitary transformation of the Hilbert space which   :.

relates the constituent quark representation G.e., in SU(3)x SU(3)
strong

or in SU(6) J  of a hadron state  h  to its curreht quark repre-
W,strong

sentation [ .e., in SU(3)x SU(3) or in SU(6)
W,currents   ;       'currents

   h i  currAnt  rpuark           =        lv          k;   c.6\Agl-ih t,i*- 9»0 rk  (3.3)

i 5
The matrix elements of the axial charges  F· v given by·.

< &2'; curm, t Vark I   F's 1  It ;  curreA, 92ark)
can then be rewritten as

<4' ;  coAsti h•...,Yark|  V-' F<rv  |   k; Cd.f,Htl.,4,9"ork.> (3.4)

As discussed in the previous section, in the free quark model, where
T¥

· was explicitly constructed by Melosh, one finds. that the transformed
free
axial charge has a remarkably simple algebraic structure: it transforms,

under  SU(3) x SU(3) as the sum of the
*)((2,1)0,01 - <(1,2)0,01   andstrong

((1,3)1,.-1] -,03,3)_1,1] representations Equivalently, the . transformed

axial charge transforms, under SU(6) ,      as   the   s.um  of   the        f 3 5,L    =o]W,strong                                                                      -       z
and

I..35,Lz =· =kl   representations.

i   We will assume in this paper that these simple algebraic properties

of the transformed free quark axial charge can be extendod to the physical

axial charge. This is of course an extremely'strong assumption: it can be

somewhat motivated· by  the following argument.

As long as the Melosh transformation is bilinear in quark fields these

algebraic properties of the axial charge are in fact the most general ones.

Indeed, for the axial charges belonging to SU(3) octets with 6 Jz =0,  a
Melosh transformation bilinear in quarks which is an  SU(3)  singlet and

*, We have used the standard notation [(A,B)Sz,Lzl
to label irreducible

representations of   SU(3) x SU(3) at infinite momentum along the   2

axis, corresponding to helicity  SZ+Lz  and to total quark spin  Sz.
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commutes. with  Jz'  can only transform them to octets with 6S =0  and
6sz = fl. This is equivalent to the SU(3)x SU(3) or SU(6)W,strong  ,strong
transformation properties of the free transformed axial charge. The question

then. is of course why V should be bilinear in quarks.  We do not have any

compelling argument in fayour of this assumption except that it is the

simplest way to connect two remarkable properties of hadronic physics:

both currents and hadronic states seem.to behave in some sense like free

quark currents and free quark states respectively.  A bilinear Melosh trans-

formation allows  us to connect these   two "free quark" approximations.

Before ,using Eq. (3.4) to compute pionic decays of hadrons we still

have to connect real hadronic states to free constituent quark states.

Although we know of no satisfactory prescription to make this connection,

especially since we do not know the strong interaction Hamiltonian, it

seems reasonable to.a·hsume that physical, one -partidle states·'can be constructed
by acting with some operator  U on free quark states The success of11)

SU(6)™ .or its subgroup SU(3)x SU(3) in classifying hadronic
w, strong: . , ·  strong

states can thon''bu Understoo  if. U :is assumed to transform as,an .,SU(6)
W, strong

or  SU(3) x SU(3) singlet.
strong

To .summarize, .our model for pionic decays is based on the following

assumptions

1)  PCAC;

2), "fre'e constituent quark" classification of hadrons in SU(6)W,strong or
SU(3) '* SU.(3) (U  transforms as a singlet)strong1-153)  V- F V transforms as the sum of the ((8,1)0,01 - {(1,8)0,0]   and
i(2,3)1,-11 - [(3,3)-1,11 representations of   SU(3) x SU(3)

strong
or equivalently as the sum of the 1:22, Lz=o  and  12, Lz . 9,1 
representations 01  SU(6)

W,strong'

In the remainder of this section we will refer to our model as the

SU(6)w [*Lz =0,&1].  mbdel.

b) Classification according to  U(3) x U(3)  and  SU(6)w

We  shall need the reduction of the (6,6),L states of   U(6) x U(6) x 0(3)
to combinations of u(3) x U(3) x 0(2)Lz or SU(6)wx0(2)Lz states. Once we

reduce the states of given quark spin  S  and  z  component  Sz'  the extension

to states of arbitrary  L  will be trivial.
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The relation between quark-spin and  W-spin states was already

pointed out in Section 1.  In the discussion of  [U(3) x U(3)]S   we need
Z

only recall  that    Gzq = Szq while    Gzq = -Szq· Then Table Ia) shows

the necessary relations between  the rest symmetry, chiral   U(3) x U(3),
and SU(6)w classifications. For simplicity we consider only octets,

avoiding the discussion of nonet couplings except in the context of pheno-

menological interpretations.

States  of  arbitrary   L with given helicity are. theri..expressed  in

terms of those in Table Ia) via Clebsch-Gordan coefficients

|TS LA'> 751    (  5  52   L   L,  1  T A)   1  5 5 2> (3.5)

52+L* C A

The JPC values  of the specific states. considered  here are shown in Table  1 b    .

c)  Predictions for specific processes

The reduced matrix elements within a given set of decays L=L'+Tt·

in chiral  U(3) x U(3)  may be labelled by the initial  L , the final  Lf,
and the total helicity  X . In addition, for reduced matrix elements of

three octets (8,1) -+ (8,1)®(Q,1) and (1,&)-' (1,8)®(1,8), the·relative
phase of the two depends on the product of the charge parities of  A(L),

B(L' )   and TE . In practice for the cases we consider, this leads  to  an

extra. degree of freedom  in  the   Li =L f=X=1 amplitudes, which, will  beZ    Z

expressed via a
parameter  » .

Since chital 'SU(3) x SU(3)  is the weakest of the·symmetries we

consider, our Tables will give its predictions, with a simple "dictionary"

at the end of each table for converting to the stronger symmetries.

LfL 
The reduced matrix elements in chiral   SU(3) x SU(3)·, called

a      are normalized so that in the SU(6)w (ALz=O,El) 1·imit

It is necessary to take some care in choosing 'a consistent set of con-

ventions for the behaviour of [B(3) xu(3)]Sz,Lz]
representations

under charge conjugation and parity. For example, one
((m,1)0-(1,8)0,03

representation represents  a pion with   C = +1 and another, different

£(8,1)0-(1,8)0,01 representation, an helicity  zero    B   with   C = -1.
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4 2
A<IiLt Ll 2 .2<-        -                     (3.6)

except for reduced chiral     SU(3)  x SU(3) matrix elements which   vani sh in this

limit  (  = 0). The helicity amplitudes gx  for A(L) =B(L') + TE in
SU(6)w      [ALz =O, *f       are

9X a  U  f A( X -L i ) ( S A A - C L L, 1 J A A )/2

R fR(A-Lt) ( Sa A-Lt C Lt 13-RA)

,f   25           35-        19    7       f s    El  8  1
1.(8,1Ws.I)     C /,3)   C g., 1 A 17

W
+1,1 la TrlAI (3.7)061                 -02

1+Ii
. (WB A-Lf 1 Lt -Li 1 WA A-L,) 00' 4,

The first two Clebsch-Gordan coefficients in Eq. (3.7) are those

coming from Eq. (3.5).  The next term is an SU(3) scalar factor G Clebsch-

Gordan'coefficient of SU(6) 1 .   The index  « 1   aenotes symmetric or
27 6

antisymmetric coupling of 35=25®35;  it is chosen so that the SU(2)
28 6scalar factor 131ebsch-Gordan coefficient of SU(3) 9 denotes the proper

d  type or f type coupling as dictated by the product of charge parities

of A, B  and TC :

9                             „6(A')6(&)6(Tr) = +  :  TAL =  5-+Jpr
"         u         (3.8)

G (A) C (8) G (Tr)   =  -     :       «i  =      4 - +31".

In the isoscalar factors, we shall  take the specific isomultiplets    A=B=K
04 .*B(the  I=*,  Y=+1  states) for convenience. The phases   and  k

arise from the relation between quark spin and  W spin states Gee, e.g.,
Eg.    (1.5/ ,   And   are

f R/BCS.)    =     + 1 : Sk = +1

= -1 : ov er wise (3.9)

Finally, the last Clebsch-Gordan coefficient in Eq. (3.7) expresses  W  sp*n

con4ervation.    Note  that the value  of Wz
associated with  the  pion   '(W =1)
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need not be zero.  It is zero only in the case of "naive" SU(6)w, where
f· i

&.Lz =Lz-Lz  =O.

The Tables are:

Table II : L=1=L=0
Table III :  L =2=L=0

Table IV : L=1=L=1

Table       V  :     L=2=L·= 1..

We shall discuss the relations among various symmetries implied by

these results in the next section. Meanwhile it is helpful to point out

where comparisons with data may be made.

d)  Applications to experiment

The  case  of. L=1=L=0 decays has. already been studied in a

formalism equivalent  to SU(6)w (ALz =o,:i:1)    15).   The   £JLz = 3:1   tran-
sitions were found to be dominant, as measured in the  B -:9 UO- r decay..

Recently these fits are being repeated with kinematic factors appropriate

to the use of PCAC ; qualitative features are expected. to remain the.
29)

same.

Present information about  L =2=L = 0 decays allows one, to check

some predictions of Table III. It is useful to rewrite these predictions

in terms of the  £= 1  and 1=3 amplitudes  a  and a   (see theP

"dictionary"  at the bottom of the, Table) .   One then obtains the results

shown in Table VI.  We quote here only partial width predictions.  No

decays  (2- - 1--)  have been observed as yet which would allow for compa-

rison with. helicity amplitude rat.Lo predictions (in contrast. to the. c.ase  ,
B=LOTE.)  In constructing. Table VI we have.used the fact that Table III

refers to   "K" =1'K"TF.   These values,are then converted to specific
processes using     SU(3) and (where necessary) a nonet ansatz for couplings.

A convenient table for performing such conversions in general is given in

Ref. 24).                                  '    : ··>

The experimental predictions ha-ve been...obtained by. using the decay

width  (g(1700) = 2 TC) = 40 MeV,    an  ipproximate .value · suggested  by a recent
30)

analysis of the CERN-Munich data. The masses of decaying states are all

taken at the idealized values of 1700 MeV for the purpose of barrier factor

calculations. We use zero-radius forms for these factors, as suggested by
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the successful application of SU(3)  to the known L= 2=L = 0 decays 31) 

In fact, the interested reader is referred to that reference for a quotation

of many  SU(3)  related results which will not be mentioned here, and is

urged to recalculate any partial widths on the basis of exact masses and

various barrier factors. The results quoted are somewhat sensitive to these

choices. For example, the kinematic factor arising from the use of PCAC is

such that

'2(A-,En) p Cint -Mt)1  Cll Cl
-

RA
2 £ (3.10)

where  p  is the final c.m. three-momentum,  al  are the reduced matrix

elements  (a   and  4
for Table VI, as defined in Table III), and the

squares of the  c £ are shown in Table VI.  Use of Eq. (3.10) increases the

prediction for p(g =6>  )    to  26  MeV  and  that  for     (W:3 -4/'Tr )    to  80 Mev.
These values are closer to the fit of Graham and Yoon, Ref. 31), but in our

opinion the data do not yet allow one to decide conclusively in favour of

such a kinematic factor in all cases. Note, for example, that the simple

zero-radius  f  wave barrier factor agrees with  SU(3)  for the ratio

g=KK/g=TUr,  as it seems to do in a number of other cases.

The prediction for A3= /'Tr  (2=3) is notable. No evidence for
this  decay has been found  so far either  in   1= 1 or     £=3.

For L=1=L=1 decays (Table IV) one expects one f wave enplitude

and two independent  p wave amplitudes in £ broken SU(6)w. A partial wave

decomposition of the helicity amplitudes for the various processes, shows

however, that there are no purely  f  wave decays. Hence simple tests ana-

logous to those implied by Table III are not possible. Various processes

which are purely  p  wave  depend on different combinations of  p  wave

amplitudes. However, one does have Gn SU(6)w  12&L„=O,&13  or Z broken
I.

SU(6)iII the following relations

P[ 8 -  T[N (9£0) Tr]                         4-- (3.11)

P [D -* A, rr             3
(11-lik€ Mir,·,3)
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and

-r[  B   -+     A i   Tr]

P[D ---t>  Trht (9&0) T.(1

= 3 (3.12)

(1 .Fwi Milimt)
-

In both equations   stands for the partial width with barrier factors

removed. Since the B is sd close to Al Tr threshold, this leads to a

rather small physical width for   B--Al TE   (a few MeV, based on talcing - 20 MeV

for D =TINTE)· However, the strong intrinsic B-Al-Tr coupling should be
observable  in B exchange processes,   such  as     Trp = A n.     To  date  we  know
of no firm evidence for this process, however.

Table V contains a number of predictions for the  S wave partial

widths in decays that involve higher partial waves  as  well. The mo.St useful

of these can be written as

%=0 [p( r-)  -*   Aa Tr] OS< 200 (3.13)

0,9 [ A 1(2-9 -+ fo K ] 3 05/200 (3.14)

T« I-P'(1'; 1,1) -* A,Tr ]            =           al / 240 (3.15)

fro  Iw'(1-IL=21    -4· B Tr] Qi/160 . (3.16)

If the  A3  is a resonance,   fQTC'  is its dominant -decaj. mode.  Then

'20 [p(r-) - A:,r]      _    4
- - (3.17)

FZ=o [ Al(2-9  -0 to Tr]                            3

implies a considerable value for the numerator.  We hesitate to quote a

predicted partial width since it is not clear whether the whole  £= 0  forr
bump· usually called  A3 is indeed resonant.   It is interesting that there

does  seem  to be evidence  for a TEA2 enhancement around  1700 MeV  28).    A



- 20 -

partial wave analysis of this effect, for example in the channel

7[-+P P-  t  r -,     4   - P ,

(3.18)

4    4-  Tr 0

LA     K-Ko

LA Tr-Tr +

could be performed using multi-particle spectrometers such as Omega at CERN.

There are two  d  wave amplitudes in  Z  broken  SU(6)w  and three

in· SU(6)w  [16Lz=0,=Et]·  In £ broken SU(6)w  [but not in SU(6)w
[AL,= O, flJ  | the following relations hold:

,-'

N

r [ w.(2--). -* 8 7r ]
'   3'    '                1-A,(09 )1:i             (3.1 9)

f  I A. C r*)'-+ rb     Tr 1 = 1      (a'  123      ' (g) --1 .-    160., 1- 10

(3.20)

r [p(2--) »•T (,10)1 ]    =      -1- (Clb) (3.21)40

 [p'(171=2)-4 A,Tr]     =    1 (00 )3 (3.22)
1.,60  :·   - ..'

P i p (r-)     -   A,   Tr 1                       ·i                   _1      (C l b )2 (3.23)
160

2 .1  /rio \1
r[1(2-,1    -4  1[w('to) Trl      ..  9  . .../&.Ii ..LUD J (3.24)160

A selection rule, which holds in SU(6)w [b,Lz = 0, al] - but'iot in chiral
U(3) x U(3) . says

A   »  B TE (3.25)

Normally this decay would be allowed  in  a   d   wave    (X=1    only) .
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4.  EQUIVALENCES

a)  Role of  3P(  model

As mentioned in Secfion.3, the SU(6)w  [*Lz =0,3:13 model is
3

equivalent to the P model. What is meant by this equivalence is that
0                                                              ·

there   is a one·-to -one' correspondence between independent parameters   of

both models. Strictly   speaking   one could argue   that   the two models eanno t

be identical since   in  the     SU(6)w !_ALz=0,al] model each helicity ampli -
tude   for  'a   specific   decay  channel·    A-*B+.TC.     i·s.  proportional.  to     32-m ,

because of PCAC, while this factor is not present in the usual formulation

of the.  3P   model.  However, since the  3P   model is essentially a pheno-

meno168·ical litescriptl·on.to break' .SU(6).., symmetry fet verticus
w,strong

one can always include any function of the external masses in its definition.

The proof of the equivalence between the two models in the above

sense is straightforward and not very illuminating. Let us consider the

decay·· amplitudes

A (L)      -*     B (L')    +    TE

" M
"

-0   . ,K"  +   Tr .
Helicity amplitudes for these decays in the SU(6)W   Lz=o,fl]

model can be rewritten as

Z F L M I if 7 fs Bls)
'A   =L,     1(&,wt,)  (1,11   |  (f,2. vAIi)E          1 8    Tr  |A l

10< i .- J 0(2.

C    14 Li    B
  Ct     (W A-Le 1 61 wAA-L.) (s .A-14 L.4, 13*A)(SBA-1.* C 6 13*A)

4+14    8
+ Cl        ( W A-4-111 < WAA-4)(SAA-4 L L, 1  Al (S -4-112 4.11 JfA 

f C  ' 1,(W'A-4,11-1 'w'A.6)(#A-L, Li.11%(f,-4,1 C 4-113.A) ]
(4.1)

where we have absorbed the factor  m -m   into the reduced matrix elements

aL/,L 2  
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In the  3P   model, on the other hand, the same helicity amplitudes

are parametrized as follows

=r  [ M     u  I M   1   f s  8 1 8 7
i  = t UL'Al) (8,3)|(1•25%1).4, l 8 Tr l A J,

  6   (s'A-4 i OISAA-L,) (CAA-4 LL,IJAA)(51'A-Le l.' L, IT.Al
4 Le

41 1 4

+  6     (dA-4-1111 S A- ) 'SAA-  L |IAA)(#A-4-IL'4*1138 

+     -   (SBA-4,11-1 leA-4)(SAA-4 LL, 3*X)(S A-4+1 114-113'41
j
(4.2)

aL Liz
It is then simple to show that the coefficients of the

L L 
reduced matrix elements are proportional to the coefficients of the  b

reduced matrix elements and that the proportionality fabtor is independent

of  Lz.  One finds that with the correspondences

L. L. b'#"(1           --1)
(4.3)

.  42/4 ,      --4 -   64 + IL,OL
3 1

or

Le Le
--4 644

;
Lgs I Lk

,

3_51 '  b                 ' ·
l,tl.LI

a ----- .--

4                           '   (4.4)

- ..
the helicity amplitudes gA  and  A are identical. The correspondence

of Eq..(403) is to,be used when the coupling

A(ct,wark«,4*,lies,nic) -AB('pa'kie'4*.ip'.*Sle,e) + TE

i·s d type in SU(3)  (i.e., L+L' even) while Eq. (4.4) is to be used
when the same coupling is  f  type in  SU(3)  (i.e.,  L+L'  odd).
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This thus completes the formal proof that the SU(6)w BI,z=o,fl]
model and the  3P   model are identical up to mass factors.

For the case of baryonic decays, the quark spin and  W  spin of the

baryons are the same. The two pictures are manifestly identical for pionic

decays in this case.

b)  RBle of £ broken  SU(6)w

We shall use here the fact that the  3Po  picture and  SU(6)w

11Lz =0,E    have- been proven identical for A(L) =B(L') + TE.   Then let
1'    be the vector difference of   L   and   L'.   One can label amplitudes

either by  £'  and  1 or by Li  and Lf. The relation between the two
'.

descriptions is

61"         =     Z        (L  1-4   t'   LJ- Li  I   C   Ll  )I-  4d                 dd
(4.5)

x     (Q'L f-L i     1     L J-L t   I   e  O)     b

Note that  in the second coefficient  the fact  that the   3.Po.  pair has   L=1
has been used.  This restriction would not be apparent in the  SU(6)w

[ Lz=O,al] language.

In naive  SU(6)w  one has only  L -Lg= £ALz =0· The. amplitudes

al,- £ all vanish in this case since the second Clebsch-Gordan coefficient

is  (£0101 80) =0. Moreover, in naive ·SU(6)w,  the amplitudes  a8, - E *1,8
for various L  have relations among them. These are discarded in 1 .broken.

SU(6)w,  and the amplitudes  al' = 1 &1,£ treated as free parameters. On

the other· hand, one ne.ver acquires amplitudes of the fo:rm a Such
8,    =   8 1  8-

amplitudes are expdcted to be present in the· 3Po  picture, however, and thus

give rise to additional degrees of freedom.

L L6

L Liz
Exceptions occur  in two cases:    1 )    for   L = L',    one  has   b        =

b    .  The sum over L   and L   in Eq. (4.5) then yields no net contri-

bution to a
8,=8,8 even in SU(6)w  [1Lz=O,ff];  2)  for L=O  (L'=0)

one has only  1' =L'  (£' =L) and since  £ =L'*1  (1*1 )  by parity conser'-

vation, the amplitude a cannot occur.
£, = 8, 1

Thus, for decays A(L) =B(L')+T[, 8 broken SU(6)w is always

a special case of the 3Po picture [and hence of SU(6)w /6Lz=0, &111.



- 24 -

It coincides with the latter only when  1)  L=L'  or  2)  L  or L'  is zero.
14)-19)The last case applies to all previous phenomenological studies

0)  SU(3) x SU(3) subgroups

The  predictions of Tables  II-V for chiral   SU(3) x SU(3) relate  only
amplitudes of a given helicity to one another. If one.decomposes helicity

states directly into representations of SU(6)wx 0(2)Lz' , as we have done,
we obtain SU(6)w [*Lz= 0, *11.

There is another way of obtaining the latter symmetry from' the

former.  In the decays L= 1 =L= 0 +TZ  (for mesons)·if one adj·oins the

predictions of the coplanar   U(3) x U(3) to those of chiral   U(3) x U(3)24)                                                             13)
15)one obtains those of SU(6)W   [*Lz =o,fl]

To see this explicitly we compare in Table VII. the predictions of

the two   U(3) x U(3) symmetries, expressed in terms of relations for helicity

amplitudes.  The coplanar symmetry links together predictions of chiral

symmetry for different helicity amplitudes in just such a way as to give

SU(6)W [ALz=o,El].

This relation should be true in general. If we form the algebra

containing both the coplanar generators and the chiral generators, it closes

upon  SU(6)w·  The selection rules for pionic transitions are, moreover, the

same as in SU(6)W  [*Lz=0, El]. Since the pion remains bilinear in quarks, it

must belong to a 1 , while the ALz properties have already· been defined
at the lower symmetry level.

If SU(6)w CALZ=O, *11 turns out not to hold, one may thus be

able. to pin the blame either on coplanar or chiral  SU(3)x SU(3),  with the

other symmetry continuing to hold. Table VII forms the basis for one such

exercise [which is not, however, demanded by present data, since both

SU(3) x SU(3)'s seem vali,El.

5.  CONCLUSIONS

In this paper we have explored some consequences of abstracting

certain algebraic propertids. of the Melosh transformation which relates the

generators of SU(6) and SU(6) When PCAC is used to
W,strong W,currents
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relate pionic decays of resonances to one-particle matrix elements of the

axial charge, one obtains a model for the  SU(6)w  properties of these

pionic transitions.  With this model we have understood why a nafve application

of   SU(6)w to vertices should fail whenever   4Lz 16 0 transitions are possible.
Furthermore, this PCAC model has been shown equivalent to the  3P   model

for decays, which has had some phenomenological success. We note, however,

that the PCAC model is only formulated to apply to vertices involving a

pseudoscalar meson:  the  3P   model has also been applied to transitions
32)

involving vector mesons The application of the Melosh transformation

to such decay processes is an interesting open question.

Another phenomenological version of  SU(6)w,  i  broken  SU(6)w,

has been shown to differ in general from SU(6)w 1[*Lz=o, *1] although in

many simple cases the two prescriptions give the same results.

The application of the Melosh transformation thus provides a

theoretical basis for understanding the successes of the  3P   model.  The

implications of such a transformation for photoproduction processes, vector
dominance, and for current induced processes in general, are presently under

'    investigation.
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TABLE  I

a) Classification of |SSz> states of  (6,2)
according to U(3) x U(3)  and SU(6)w +)

U(3)x U(3) SU(6)w

S=1,    S z= 1 (-3,3)1 (0,3)1

SZ= 0 28,1)0+(1,-8) 0/4
2 -(8,1)0

SZ = -1 (3,3)-1 -(8,3)-1

S =O, SZ= 0 G8,1)-(1,8)0/4 2 -(8,3)0

PC
b) J of states considered here

S=1 S=0

--              -+
L=0                             1                                    0

L=1 2++, 1++, 0++ 1+-

L=2 3--, 2--, 1--        2-+

+   su(6)w representations are written as  [ SU(3)'2W+1 Wz
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TABLE II

L=1=L=O

00           01
X=1 Process a

A=1 a A=1

2++ =  1
- -

+ 3/16 -1/4 /F

1++-,1-- +3/16 1/4 42

1+-= 1 --                    0                  1/4

00           01
A=o a A=0 ap=0

2++ = 0-+ +43-78 -1/2 /5-

1++-41--                 0               1/2 JF

1+ 41-- + 3/8 42                           0

O++ = O-+ -(1/8)/372 -1/2/3-

Dictionary
LfLi LfLi

SU(6)w [*Lz =O,ff]: a.  =a for all X

1  broken  SU(6)w   :  equivalent to

SU(6)w      [41-= 0,:El]
aS E &0 +4 I/ F a01/3      (2=0)

00 -- 01
a D=a    -2 4 2  a   /3      (1=2)

"Nayve"
SU(6)11, :     a     =0,     a 3= %

01
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TABLE III

L=2=L=O

 =1 Process         a               01A=1 a A=1

3--=1
-- -1/2 J36 + (1/4)  4375

2-- + 1
--

-1/4 /F -/3716
....-.-

2- + =  1  - -                                      0                                   -    3/8  /2

1 --= 1 --                -1/4 4/30 -(3/16)  4375

00              01
A-o a *=0 a A= 0

3 ---+0 -+
-(1/4) 4375 + 3/4  410

2-_-1--                      0                    -3/8

2 -+-,1 - '
- 1/4             0

1---,0-+ +    1/2 J·1-0- + (3/4) 43720-

Dictionary

LfLi LfLi

SU(6)111  [bLz=0,aft:  ax   =a -    for all X
8  broken  SU(6)W   :  equivalent to

SU(6)w [ Lz =0,*13
00 - 01

ap - a +   (3/2)   43/2 a (8=1)

%=20   -  5572 21 (£=3)

"Nayve" SU(6)W : a =0, %=%
01
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TABLE IV

L=1=L=1

00           11           10
A=2 Process aA-2 a A=2 a

A=2

2++ + 2++         0         -1/4            0

00           11           10A=1          a A-1 84=1 ax=1
2++ = 2++ . 1/8 .

-1*12 -3/8  /F

2++ -. 1 ++ - 1/8 + /2              0
--....... --

2++ -+ 1+-                  0                  -1/4 J2 + 3/16

1 ++ -*2++ - 1/8 +P/2        0
1++ =1++ - 1/8 -P42 +31 8  $7

1++ = 1+-                  0                  +1/4 /F +3/16

1+-=2                 0
++

-1/4 /F +3/16

1+-=1                         0                   +1/4 /2        ..   +3/16++

1+ - +  1+ -                               0                                -   »                                        0

00 11           10

A= o ax=0 a A=O a A=0

2++41 ++                           0                            -1/4 /3 +(1/4)/372
2+H = 1 +- -1/2 /6              0             - /3/8
1 ++ -42++            0 -1/4/3 + (1/4)  437-2-

4+ -1/2./g - 43/81 ++40                      0

1+-=2               0++           -1/2 fF - 43/8

1+-=0++ +1/4 43           0          -(1/41 $37 
0+1-=1++                   0                    -1/2 4-6     i    -4378

0++ =1+- +1/4 4/3             0            -(1/4)137-2
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Dictionar , Table IV

LfLi  ·LfLi
SU(6)w F L ·=O,313 : a =a for all

po.      .-      z

1  broken SU(6)W :  equivalent to

SU(6)1  Lz =0,*13
0 =a00             10%- -  6 3//F) a two independent

1 11   10 1=1 combinations
a  E a      + (3/2 4-2-) a

00 11         10
aF E a      -, a      +  (3/4/2 )a (1=3)

10          0   1"NaTve" SU(6)W: a =0; ap=ap-ap

.9.
.,

..4

/i':



- 35 -

TABLE   V

L=2=L=1

-  00 -      -  ------   --11 10            01            12
A -2 Process       a A=2

a A=2 a A= 2
a
A=2 a A.2

3--=2++                0             + JT/8                      0                      0                 -1/4 4-3

2--=2++            0         +(1/8)37-2-          0                0            +1/2/6-
2-+ = 2++              0                   0                   0                   0              +  1/4

00           11          10            01            12
A =1 a A=1 a A=1 a A=1 a A= 1 ax=1

----  - -3.21-1-2*-4 -----+3/8 ./-1-0- _ 4-415 +1/4 Ifb -1/2 /15- -1/4 /35.

3---·* 1 +3/8 $1-0- +f# 4/15
++

-1/4 45- -1/2 4-i3       +1/4 /30

3---*1+-                  0              +  1/4 4375 -1/2 /10                0                 -1/4 41-5

2---,2 +3/16·IT   +p/.f12
++ + 1/8 +1/8 /3- +1/4 /6

2 -- +  1 ++
+3/16 /F -21 ·IT€ - 1/8 +1/8 43 -1/4 46

2--=1+-                     0 -/3/16 -1/4 /2-                0               +1/4/3-

2-+ = 2+                    0               +  3/16                          0                      +1/4 42                   0

2- =1                     0             -  3/16                      0                  +1/4 42                0++

2- =  1  -                               0                         -    *                                               0                                         0                                             0

1 -,2 + 3/16  /TE +»/3720 +1/8 /5 +(1/8)4375 -(1/4)3/TE++

1 -- = 1++ +3/16 4/TE     -»/3720           -1/8 45 +(1/8)4375 +(1/4)437TE

1--=1+-   0  -(3/16)4375 -1/44'TE  0   -(1/4)375-
00           11          10           01            12h =O a A=o a

A=0 a A= 0 a A=0 ax=0
3-- =1                     0                                                                      0++

+  3/8 /5 -(1/2)43715                            0

3---* 1 + (3/8)/371-0                  0                                    0
+- -1/245        0

2--=2++            0         +(1/8)4372          0             +1/2 /3           0
2--=0                      0                                                  0++

+ 4378 -1/2  A/K                             0

2 -+ =2++ +4   3/8                                      0                            +1/2  46                                  0                                            0

2-+ + 0++ -(1/814372      0        +1/2,/5         0             0

1--=1++  O  +(3/8)43715 +1/2/5   0    0
1--=1+- -    3/8  45                             0                                         0                                  -(1/2)37:1-0                 0
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Dictionary, Table V
LfLi LfLi

h  ;r =0SU(6)w [2JLz=0,*13: aA =a for all

8  broken  SU(6)    :
10    -     01           2    -a 43+a =a 42

aS E a  +al 1 fT+ ( 8/ 3 ) J 2a10+4 4373  801       ( £ =0)
10

a =a"-(44/F/3) a (two independent

4 - all_(2,/273) a01 1 = 2 combinations)
00        11  - 10 ,--7- 01

aG  E a       -(2/JT) a      +42 a -42/3a (1=4)
"Nafve "  SU(6)w: aol =a10=a12=0;

aS=  4,4,/3 ;         ae - '   - 2/,/3   4



THIS PAGE
WAS INTENTIONALLY

LEFT BLANK



<-I.Ua./..

- 39 -

TABLE VI

SPECIFIC PARTIAL WIDTH PREDICTIONS

FOR    L=2=L=0+ Tr

,.
a)  , MeV b)rProcess type Specific decay 2         2     (fap            ap wave only)

3-=1-.+ TC g =   Tr                            0 1/105 12 (28)

3--=1--+Tr 0      =    R Tr                                                    0                                       1/3 5                                   3 63  1

3---,0-+ +lt g =TEr[                           0 1/140 40 (input)

3--=0-++TC g=KR                                       0 1/280 5.8 (3)

2--=1--+TU p( 2- - )  - WTT 1/100 1/150       8

2- + =  1  --+ , ·r A3-*Plf 1/75 1/50            25

__ __       C)     01 -*1 +TE p'(L =2)= 1.07[ 1/180

c)      1/90        01---,0-++'T[ p'(L  =  2)  =   T[Tr

Notes:
N r1 2 ,-(21+1)

a)  1  = 11'MR(P/Pot where   MR = mass  of the resonance,
p  is the final c.m. three-momentum, and p is some

0

convenient scale factor whose choice of course determines

the magnitude of  a£.
b) Predictions based on assuming    (g= TITT) = 40 Mev

[Ref.  30)] · Experimental numbers, shown in parentheses,

are ba$ed on Graham and Yoon, 13ef. 31 E . Predictions

based on a PCAC kinematic factor are somewhat different and

are discussed in the text.
--

c)  Predictions for the 1 states assume·no mixing with the

L =0   multiplet ("radial excitation") expected near  the

s ame   mas s.



THIS PAGE
WAS INTENTIONALLY

LEFT BLANK



- 41 _

TABLE VII

COMPARISON OF  U( 3) x U( 3) RELATIONS

FOR    L=1=L=0+ TC DECAYS

COPLANAR

gl (2) + g1(1++) = /2-g0(1+-)
gl (2)=(=/2)go(2)
J -g1(1+_  -go(1++)

+-1  a)
42-g0(2)-g (0)  = J--g0(1       ,

CHIRAL

%1(2) +1 %1(1+-) =g1(1++)

gO (2)  + 4RgO(0)  =  -43'g0(1 ++)
4/Fg0(2) -g (0)=43g0(1+-)  a)

SU(6)w   1-4Lz= *1-1   OR 3po PICTURE  OR   1  BROKEN  SU(6)w   b)

gl (2)  =  (3/ /2) D
g0(1 +) =42-(S-D)

  0(2)  = vED g1(1+ ) - (S+D/2)
a (0)=:Bs  0< 1  -)  = S+2000

 1(1+_  = S-D

Notes

a) Relation coinmon to coplanar and chiral  U(3) x U(3)

b)  D  and  S  are conveniently normalized  D wave and

S  wave amplitudes. An equivalent parametrization in

terms of ALz =0,*1 amplitudes is given in Table II.
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