S S

poo- (764177

Ref,TH:1659-CERN

CURRENT QUARKS, CONSTITUENT QUARKS, AND
SYWMETRIES OF RESONANCE DECAYS

: *) +)
A, J.G. Hey y J.L. Rosner '’ and J. Weyers

CERN - Geneva

ABSTRACT

The transformation between "current" quarks and
"coustituent" quarks.recently suggested by Melosh is exam-

ined with respect to its predictions for pionic decays of

resonances, It implies the use of SU(6)w for classifying .

particle 'states but not for describing decay processes,

. Instead, pion emission procéeds via -ISLZ==O;£1, where_»L

is the internal ("quark") érbital angular momentum. This.

decay symmetry is called S‘U(6)w EA.LZ =0,:t:1:1. It iS»-p'roW{en

equivalent fbr any decay A-3B+TC. (where A, B are arbi-

3

trary q§ or qaqq hadrons) to the- PO quark-pair creation

model for such decays, as formulated by Micu, Colglazier,

. Petersen and Rosner., The roles of final orbital angular

momenta £ and of SU(3) xSU(3) subgroups of SU(6)w are
also discussed, and some new predictions are made for decays

of meson resonances bélow 1700 MeV.
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INTRODUCT ION

The quark model has met with remarkable success in hadronic
physics, both as a "constituent" model for hadrons ! and as a model for

their weak and electromagnetic currents 2)’3)0

The two quark pictures are associated with two different
W, strong introduced by

su(6) algebras of ogerators. The algebra SU(6)
seems appropriate for the classification of ‘the lowest

. " Lipkin and Meshkov *
-) . lying hadrons: they appear to fall into simple irreducible representations
. of this symmetry. Thus, this "constituent" picture places the observed
mesons in ] and 32- dimensional representatibns and the observed baryons
in 26 and 7Q dimensional representations of SU(6)W,strong'
A different SU(6) algebra introduced by Dashen and

Gell-Mann 5), which one may call SU(6) is obeyed by the so-

W,currents’
called "good" charges in the infinite momentum limit . These charges

are the integrals over local densities which are directly or indirectly
measurable in weak and electromagnetic processes. DMoreover, since the iso-
vector axial charge is included in this algebra, and picaic decays of
resonances A—B+TU are related by PCAC to the matrix element of this

axial charge, one expects that SU(6) may provide a description

W,currents
of some purely hadronic processes as well.

Conceptually, constituent quarks and current quarks, and
hence their respective SU(6)W algebras, are not necessarily identical.
The success of CVC means that the SU(B) subalgebras are identical, but
an attempt to identify particle states with pure representations of
SU(6) leads %o a number of difficulties. Notable among these

W,curxrents 7
are the prediction that Adler-Weisberger relations should be well-saturated

with the lowest %+ and %+ baryon.resonances (which they are not 7)’8)),

——

and that anomalous magnetic méments of baryons should vanish (which they

db not) 5). Moreover, although a profon is well-classified as a state of

<G three "constituent" quarks, it looks comsiderably more4complicated when
probed with currents. In éuch a description (based on deep inelastic 1epton'
scattering 9)) the proton seems to contain additional quark-antiquark pairs
and pefhaps some neutral "glue'" as well 3). Hence, although physicaily
observable transitions are best described in the language of SU(6)W,currents’
the fact that the states themselves are complicated mixtures of representa-
tions of this group 10) has been a substantial obstacle up to now to

concrete applications of this symmetry.



-2 -

1)

between the two SU(6)W "algebras in the free quark model. He finds that

this traasformation V, acting on the axial charge F15, produces a

r~. X
Fl5 = V"1F15

Recently Melosh ! has constructed the transformation

transformed axial charge V with relatively simple properties

in the constituent quark picture.

Abstracting from this "free quark" property, several
r~.

have assumed that a similarly simple F15

~.
interacting theory as well. The matrix elements of F15 between pure
states of SU(6)W,strong (corresponding to our idealization of the .

physical particles) are then relatively straightforward to compute, and

12),13)

authors exists in the

imply a number of relations among pionic decays of resonances.
In this paper we examine the general structure of such

predictions. We find that the SU(6)y (. oo
1

perhaps appropriate for classifying particle states, does not follow for

introduced in Ref. 4), while

collinear processes such as resonance decays. This "wrong" symmetry will
be referred to as '"nalve" SU(6)W. Instead, in the present scheme, some
relatively simple selection rules govern pionic transitions between states

classified according to SU(6) In terms of an abstractly defined

W,strong®
internal orbital angular momentum Lz’ these transitions turn out to
involve only ZSLZ:=O, +1. This "possibly right" decay symmetry will thus

be referred to as SU(6)y I:ALZ=O,:!:1:|.

We find that for any hadronic decay  A—B+TC, the
symmetry SU(6)w [Z&Lz:zo,iﬂj, motivated by the work of Ref. 11), is

equivalent to the successful phenomenological "3PO" model of Micu 14),

Colglazier and Rosner 15) and Petersen and Rosner 16), The phenomenological
14)-19) known as "4 broken SU(6)W” 16),17)

equivalent to SU(6) [l}LZ:=O,i1] for many cases of physical interest,

prescription is found to be

but a special case of this symmetry (and hence essentially unmotivated

on theoretical grounds) in general. We have also derived the predictions .
of the chiral SU(3) xSU(B)StrOng subalgebra of SJ(6)W,strong’ and >
" discuss their relation to other symmetries in some specific mesonic casese. .
Various phenomenological applications to decays of the mesons. in the "R"

regioan (mass around 1700 MeV) are mentioned.
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The paper is organized as follows. Sections 1 and 2
are devoted, respectively, to the constituent and current quark approaches
to SU(G)W as applied to hadronic vertices. These sections, as well as ‘
the beginning of Section 3 which deals with the explicit expressions for
decay amplitudes, are expository in nature and follow closely the treatments
"~ of Refs. 11)-13). Then, in the remainder of Section 3, we discuss in some
detail all possible pionic decays of meson resonances up to L=2. This
Section includes predictions of interest to experimentalists. Section 4
treats the equivalences and differences among the various above-mentioned
« pictures of hadronic decays. Finally, in Section 5, we summarize our

results and indicate where further work is needed.

1. CONSTITUENT QUARKS

Particle states at rest appear to be well described by
the quark model with orbital excitations. By taking all mesons as quark-
antiquark pairs and all baryons as three quarks ohe can then understand a

number of features of the hadron spectrum.

The symmetry associated with the above classification is
U(6) xU(6) x0(3). The first U(6) refers to quarks and the second
to antiquarks, while the 0(3) describes the orbital angular momentum L.
A number of multiplets of this group are either entirely filled or well
on their way to being so. There is strong evidence for mesonic states
velonging to (6,5), If=07,1%
O56,1), t°=0v1, [70,1), t¥=1"] ana [I36,1), L' =2"]. Other

mesonic and baryonic multiplets may exist roughly degenerate with the

and 2~ and for the baryonic multiplets .

L=2 1levels just mentioned.

Clearly this U(6) xU(6) x0(3) symmetry, which we shall
. call the rest symmetry, has tc be badly violated in resonance decays since
it forbids, e.g., l&—eNTT or /3-a1(1(. This is, of course, not surprising

4t
since decay amplitudes involve moving particles for which the rest symmetry

should not hold. Lipkin and Meshkov 20) pointed out that the reflection
and rotation invariance properties of collinear processes, such as two-
body decays, lead.to invariance under "W spin" or SU(Z)W. For a
particle moving along the 2 axis, the generators of W spin may be

written



-BeS. s We= RS, 5 W,-S, oo

where P is the intrinsic parity of the system. For a single free quark

. Tint
moving in the Zz direction one would thus write the SU(Z)W generators
as follows
W-—' S \ _IBS' : S.
= = 3 = =Y ) = =2 1,2 .

W =83 Wy=83 W, = 2 (12) A
Combining SU(2)w with SU(3) one is thus led to consider SU(G)W’Strong
as the natural candidate for this "relativistic spin symmetry". In a

constituent quark model, the generators of this algebra would then be

W = =

written

1>
+
P!

- "N . Y .
We = Z 3AF T 2PE
Y9 (1.3)
¢ = i—‘ \ St
‘va 2. %} ﬁgéé +-TT7FS§;=

| 3
W, = 2>
Y

These expressions for the generators clearly commute with

'gi -+ )\\ GQ
2 A2

M

=,
Qrq %
% direction. This last property of SU(6)w,sfrong

might be an appropriéte algebra‘

which, for free quarks, is the generator of Lorentz boosts in the

for free guarks suggests

that perhaps the physical SU(6)W,Strong
for particles moving along the 2 axis, and, in particular, for decay
amplitudes or for collinear processes. It should be pointed out, however,
that this is an assumption which is not really well motivated. It allows
us to classify moving states knowing their rest frame classification.

In the rest frame both quark spin and - W spin are well defined and one

. [P0 I
finds that for .

(1.4)

antiquarks

i

!
n Y

=
quarks VV
W,
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where 3 stands for ordinary guark %pln. These relations folilow trivially
fromf /3q,-+q and ﬁaq =-0. As is well known, one finds from Egs. (1. 4)

the so-called W-S flip 21), €eoy

p %=V o~ (Wel, We= 1
but l/o (3e=03> ~ - |W=AO,W§=O> o (1.5)

while \ T('> [ —]Wcl, Wz.=o>

Under Loréntz boosts in the 2 direction, I does not
remain a good gquantum number but LV' will continue to be conserved (as '

well as Wz’ of course).

Even though SU(6)W appears to be an approximate symmetry
for the classification of one particle (moving) states it need not be a
symmetry of the whole Hilbert space. An illustrative example of a similar
situation is found in the case of the hydrogen atom. The energy levels
of the H atom possess an extra degeneracy beyond that of rotational
invariance: states of different angular momentum but the same principal
quantum number have the same energy. It may be shown that the generatofs
of an 0(4) symmetry commute with the Hamiltonian of the H atom 22):
however, the scattering of bound - states does hob possess this symmetry.
Thus 0(4) is only useful for analyzing the spectrum of isolsated states

and not for the dynamics of particle interactions.

If, however, one does assume SU(6)w strong for collinear

processes such as three-pOLnt fuqctlons [:naive" SU(6 WJ’: one has

IR

sepa”ate conservation of L and W . It is pre01sely this reStTlCulOﬂ;

ate zZ
which appears o be v1olated in nature 15),16), 18)

Hence, we can only conclude that the gépératoré of
SU(6)W , strong approximately commute with the strong interaction Hamiltonian
when sandw1ched between one-particle states, and that SU(6)W,strong is
not, even approximately, a vertex symmetry. For this reason pnenomenological
models were proposéd several years ago with the intention of relaxing

su(6) symmetry somewhat.

W,strong
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It was shown by Carlitz and Kislinger 23) that one can
construct SU(6)W invariant vertices by working with states of quark spin
but allowing an additional gquark-antiquark pair to be produced with Lz:=0,
P=C=+, and internal quantum numbers of an SU(3) singlet. This pair
shares its quarks among the two outgoing particles in the decay. On the
basis of this picture, it was guessed that a useful modification of naive
SU(6)w would result from allowing the pair to have L7==i1' as well as
L,=90 15). This model has come to be called the "BP; picture", 14),15)
since the qg pair is assumed to have all the quantum numbers of the
vacuum. Actually the name is somewhat misleading,‘since 5Po implies a
definite relation between LZ==i1 and LZ =0. 1In contrast, the model
assumes the relative admixtures of these two states to be arbitrary.

14)-19) it has been

In various practical applications
shown that the 3Po picture is equivalent ‘o breaking only those naive
SU(6)W relations which link different final relative orbital momenta £
between the two resonance decay products. Those naIve SU(G)W predictions
referring to a given £ are preserved. This scheme is the "4 Tbroken
SU(6)y" referred to in the Introduction. As we shall show, the simplest
place where £ . broken SU(6)W is only a special case of (and not equivalent
to) the 3Po picture is in L:¥2—+L =1 + pion decays.

Two subgroups of SU(6)W,stron have also been applied

' 12
to hadron decays. These are the coplanar 15),24 and chiral )513

of U(3) xU(3).

versions

In the picturesque language of constituent quarks, the
possibility of transverse motion of these guarks inside a hadron suggests
that one'studies the subset of the generators (1.3) commuting both with a
Lorentz boost along the £ axis and a transverse boost (say le in the
free quark model). This gives rise to the coplanar Lﬁ(3)><U(3XI/3¢;
first discussed'by Dashen and Gell-Mann 25). This symmetry was expligitly

%p

applied to decays in Ref, 24) and was found to be weaker than the o

picture but consistent with it.

The chiral version of U(3)><U(3)Strong generated by W*
and -Wz is somewhat better motivated theoretically since in any interacting
quark model these generators should always commuté with boosts along the 2
axis. On the other hand, from the current quark point of view, as will be

seen in the next Section, the chiral U(3)><U(3)currents is well established
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while the existence of tensor currents, which can be comstructed in a
current quark model and used to extend the chiral algebra to an SU(6)
algebra, requires an additional assumptlon. Hence it is of some 1nterest
to study the implications and the breaxlng pattern of the chiral

su(3) x su(3) subalgebra of SU(6)

strong w strong

CURRENT QUARXS

To discuss current-quark algebraic structures let us
start from the well-known chiral SU(3) xSU(3) algebra 2) of vector and
axial vector charges - '

Fi(fr) “ (2.1)

i
—
-
R
ol
E

Yy ~< ) | . , | ,
Fo = Jd§w | (2.2)

o~ - —
where the current densities %;3 (x) ana &‘lS(X) are well defined
measurable physical operators in weak and electromegnetic transitions. In
a "current-quark" model, one would write these vector and axial vector’

current densities as

gt(x) = Fp(x) X/,)_D\: 9,09 : o | (2.3)

i$ > i
Ny = Y (X
Fa = YOL¥eA Y0 (2.4)
From fhese expreesions and the canohical’anticommutation

relations of the quark fields one derives the equal time commutators:

[Fio, Fo] = n‘. ik Fho | [F ), w] = .,F <+)

[F ®, F *)] = i“eth(Q | | (2.5)

-,

This SU(S))(SU(S) algebraic structure is then assumed
for physical vector and axial vector charges independently of any under-
lying quark structure. As is well known, this algebra leads, with the
help of PCAC, to Adler-Weisberger sum rules. Insofar as they have been
tested these are remarkably successful, In view of this, one can attempt,

following Dashen and Gell-Mann,.tolenlarge the algebra. With the equal time

W, currents
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commutation relations of the quark model one can clearly define an U(12)

aigebra generated by 144 charges defined as integrals over the densities
-, \ .
9,09 "2 Cp(x)
2 .

where [1 is one of the 16 Dirac covariants. All these current densities
are in principle directly or indirectly measurable: for example, althoubﬁ
nothing in nature seems to be coupled directly to a tensor current Ta:' (x),
represented in the quark model by a(x) s, SV (A /Z)q(x), this current '
nevertheless appears on the right-hand side of commutators of mbre directly
observable operators, e.g., in [F/l,\ (x), > F‘)iS(y):[ony;). In this
sense all 144 current densities could be meaningful physical operators
provided, of course, that the algebraic structure of the current quark

model can be abstracted that far.

' It is important to realize that contrary to the situation
in the coastituent quark approach'one has here an algebraic structure which
is generated by well defined operators: they are integrals over local current
densities and their Lorentz transformation properties are given "by defi-
nition". ILet us go in particular to the infinite momentum frame. As usual
we define as "good" operators those charges whose matrix elements do not
vanish when taken between finite mass states with infinite momentum along,
say, the 2 direction 6 « There are 35 1ndependent good operators

whose quark model expressions are glven by

Fo = [&Fw = [ado 39w
E'® = [ E;(x) = fd‘ ‘V(x‘),BG‘ LY
i = "Jasng(b - J e V(x) 'BG',L Cv(x) e

iy - fagTo = foc g0 s g0

s : =
) Properties of good currents and 1ndeed the Melosh transformatlon it-
self may be reformulated on a light-like surface. Thls is perhaps a

more exact expression of the infinite momentum limit.
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These charges generate at infinite momentum an SU(6)

algebra which we will call SU(6)W currents”®
. ’

i
or "current-quark generators'" and the Wy or

The algebraic similarity
between these Fi .
"constituent quark generators" defined in the previous section is now

obvious. It is, however, ektremely important not to coafuse or to identify

too qﬁickly the two sets of generators of these SU(6)W algebras. The

Ei 's are explicitly integrals over local expressions with well defined
Lorentz transformation properties, but they have not been assumed to commute

with the strong interaction Hamiltonian. The Wi ts, on the other hand,

are supposed to commute approximately with the strong interaction Hamiltonian
at least between one-particle states but there is no a priori reason why

they should be integrals over local measurable densities. (In fact,

as we shall see below, one finds that even in the free quark model

the Fi
that the Wi 's are not local charges.) Hence one has two'éets of possibly

's do not commute with the "strong interaction" Hamiltonian and
distinct operators which generate the same SU(6)W algebraic structure.

A fundamental question is of course the relation, if any, between the two
sets of generators. From the successes of the conserved vector current
hypothesis (CVC) we are forced to identify the W' and the Fi, ieey,

the generators of ordinary SU(3) of strong interactions and the integrals
of the time components of the vector currents., To identify the full sets

r
W, strong and SJ(6)W,currents
incorrect. A strong objection to such an identification comes from the

of generators of SU(6) would, however, be '
Adler-Weisberger relation which, when satﬁrated with resonances necessarily
implies representation mixing, i.e., particles which belong to different

SU(6)W,strong
at least a piece of their wave function must lie in the same representation

of SJ(6)W,currents'
sum rule is saturated with resonances (N,A) belonging to the same

; . . o .
SJ(6)W,strong multiplet, the result obtained for 2/ Gy 5/2, is not
too far removed from the correct value. Dashen and Gell-Mann have

representations are connected by the axial charge and thus

One could argue, perhaps, that if the Adler-Weisberger

shown, however, that in the same approximation, i.e., classifying the nucleon
octet and O (1238) decimet in a 56 of SU(6)W,currents [as well as

in a 35 of SU(6)W,strong:] the anomalous magnetic moments of all 37
baryons and the magnetic transitions between the %+ octet and %+ decimet
are predicted to vanish. This is clearly unacceptable. One arrives at the
conclusion that there must be sizeable representation mixing and thus. that
the generators of the two SU(6)W algebras cannot be identified. This
being the case one may try to relate the two algebras by a unitary trans-

formation. In fact there is no compelling argument in favour of such an
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assumption: it is motivated by the feeling that the similarity in these
algebraic structures is a fundamental property of the hadromnic world. If to
the quantum numbers corresponding to particle classifications under either
SU(6)w one adds all necessary quantum numbers to obtain two Bases of the
Hilbert space, a unitary transformation relating one of these bases to the
other must exist. This does not imply that the génerators of the two SU<6)w
algebras are, by themselves, related through a unitary transformation but
it makes such an assumption somewhat more piausible._ FurthermorevMelosh 1)
showed recently that in the free quark model sﬁch a unitary fransformation
does in fact exist. We willlﬁostulate that such a transformation exists in

general and write
. ' . - . .
We = VR VT (2.

where .V is unitary and will be called the Melosh transformation. This
transformation V thus expresses the general idea that hadrons can be
simultaneously described as simple. constituent quark states where sfrong
interactions are concerned and as rather complicated structures when currents
are involved. It systematizes in a compact way all SU(6)W,ourrents '
representation mixing for all hadroas. To make this last point clear let us
recall that. Wg and FZ act like quark spin Qpergtors for.constituent and
currentzquarks respectively. Both opergtors commute with‘ JZ and thus

make it possible to define "orbital angular momenta 26) by

Latw) = T, — w2
L(F) = T - F2

We may then classify states according to their SU(6)W quantum numbers and

and - (2.85

angular momentum. For example the -SU(6) classification of the

W,étrong'
lowest lying mesons would be 2? ® lﬂ LZ(W)=:O while the first excited

states would be 35 @ 1, Lz(w)=.4,o,+1.

The Melosh transformation V must obviously be invariant under
rotations around;the 2 axis i.e., [y,JZ:]:=O. Let us suppose that 4
[V,F0 J# 0 so that F, and W, are different operators. A state with
a simple constituent quark spin structure will then in general be expected
to correspond to a mixturé of different current quark spin states. Simi-
larly, while the constituent orbital angular momentum LZ(W) will be simple,
one will have a mixture of current orbital angular momenta LZ(F) since

JZ:=W2—+LZ(W) =F;-+LZ(F), end J_ commutes with the Melosh transformation.
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To conclude this section on current quarks we recall the explicit

construction of the Melosh transformation in the free quark model. Such

a model is defined by the Hamiltonian

H o= fd‘x %*(x){f-i;~-§ +,8M}C1/_(§<) S (2.9)

free

The generators of SU(6)y currents 2re given, in this model, by the expres-
, .

free

sions appearing in Egs. (2.6). They do not commute with H and hence
In this sensesfuﬂ

cannot be identified with the generators of SU(6) .
W, strong
the free quark model, although trivial, exhibits some of the complexity of

the full problem. As shown by Melosh with

vfm- - 2xp( Yh%)

(2.10)

and | Ym + (d‘x <L+(x) archan (&‘;t) °[,(X)

one finds, through Eq. (2.7), the following.set of operators

W,((m = F e

.

¢ i ' + . . .
Wo s = P + [0 V5L (R 82 -] kX 900
1 : > .
Wi bee = R e + [ Foog (i &2 -y X Lo (2

aber = P pe [0 G0 (L 6E _-(}ej;’; NCARY

where
K = [l + (Za?&f]'h

These transformed operators can be shown to commute with H and are thus

appropriate as SU(6)W,strong generators. ‘Some of the proiZEEieéfof-%hé*
Melosh transformation are worth pointing out. The first remarkable property
of .Vfree is that it is noa-local in the transverse directions and hence,
as shown explicitly by Egs. (2.11), the symmetries of the Hamiltonian are
generated by non-local operators! Introducing the (current) quark spin and

orbital angular momentum operators



12 -

=i = (& qv"(x)gc 9 (x)

(2.12)
L = L€ a3 X 9700 9; (X))
) J R Jd
we can- describe the properties of Y, = under SU(6)W,currents><o(2) as
foléow§: Yo oo 1S the SU(3) singlet membgr of a '35 with AJZ=O,
AN  free =+ 1+ Although Yo .. only changes D, ... by # the

- >
presence of the power series in ( ). 34 )/m implies that Yfree can mix
essentially all totél angular momenta. Let us note also that the W;. have
W,currents’<o(2): they transform

as the sum of a 35 with NS =AL =0 and of a 35 with OS =-AI =+,
~~ Z Z . A~ E .2 2

simple algebraic properties under SU(6)

THE MODEL AND ITS'APPLICATIONS TO MESON RESONANCES

a) The_SU(6)y_ (AL, =0,%1) model

Given the existence of a unitary transformation between constituent
quarks and curreut quarks we may now proceed, with the heip of PCAC, to a
"theory" of pionic trensitions. As hadrons do seem to fall into irreducible

representations of  SU(6); this algebra is an approximate symmetry

W, strong’
of the strong interaction hamiltonian (at lgast for one-particle states). -
This does not-.imply :that SU(6)W,sfrdng
symnetry in the whole Hilbert space. Indeed, as discussed in»SectiQn 1
one finds that ”SU(6)Wgétrbng'

On the other hand, the PCAC relation

B./“E:g = L¢,l‘ (i=z1,... €) - (an)

can be considered 'as an approximate

is totaily unaédeptable as_ a vertex syumetry.

allows us to write pionic three-point functions as follows:
R ~. 2 el 1Sy .
<BTAY < (mEoeh) <BIFTIAY (.2
C— .

Thus, PCAC reduces those hadronic three-point functions involving at least
one pseudoscalar meson to the matrix elements of the axial charge between

one-particle states for which SU(6) is expected to be a good

W,strong
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approximate symmetry.  But the axial charges FlS are of course generators

of SU(6)W,currents

Melosh transformation to the SU(6)W strong-'generators. Hence any assump-
b

tion about the Melosh transformation V will reflect itself in pionic decays

- and they are assumed to be related by the (unitary)'

of hadrons., Let us formalize this connection by defining the Melosh
transformation as the unitary transformation of the Hilbert space which .
relates the constituent quark representation [i.e., in SU(B))(SU(B)Strong.
or in SU{6), -] of a hadron state h to its current quark repre-

W,stfong
senta“ion |i.e., in SU(3)><SU(3)C or in SU(6)

urrents W,currents:]’

l h» y current Q,Mafl(\) = v Ih ; ;(.NSP(Putr;PCVAd"k) ) (3.3)
The matrix elements of the axial charges Fis, given by-

< h'; Current quark l F“S‘I» h , wrreat %uék> |

can then be rewritten as :

<H';chsPi+uent—q¢Aurk(V-‘F‘:VlI'UC““‘""*““‘"W‘“,"‘} )

As discussed in the previous section, in the free quark model, where
yfree ‘was explicitly constructed by Melosh, -one finds that the transformed
axial charge has a remarkably simple algebraic structure: it transforms,

a ] _ { } :

under SU(3) xSU(3)gy,. ., s the sum of the {8,101 - {(1,8) 0} ama
{(2,2)1,51}-—‘{ﬁé,é)_1,1} representations ‘. Equivalently, the. transformed
axial chargg transforms, under SU(G)W,strohg"AaS the sum of the {éé?Lzz(ﬂ
and {ég,Lzz:ij} representations. : : i

We will assume in this paper that these simple algebraic properties
of the transformed free quark axial charge can be extended to the physical
axial charge. This is of course an extremely strong assumption: it can be

somewhat moiivated by the following argument.

As long as the Melosh transformation is bilinear in querk fields these
algebraic properties of the axial charge are in fact the most general ones,
Indeed, for the axial charges belonging to SU(3) octets with [>Jz:=0, a
Melosh transformation bilinear in quarks which is an SU(3) singlet and
e e e 2t b o m e e o o e ot o e e e e e e o e e e

*) .
We have used the standard notation {(é,g)SZ,LZ} to label irreducible
representations of SU(3) x SU(3) at infinite momentum along the 2

axis, corresponding to helicity SZ+LZ and to total quark spin S _.
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commutes_with .Jz’ can only transform them to octets wrth £§S =0 and

DS, =+£1. This is equivalent to the su(3) xSU(B)Strong or SU(6)W strong
transformation propertles of the free transformed axial charge. The question
then is of course why V should be bilinear in quarks. We do not have any
compelling argument in favour of fhis assumption except tnat it is the.
simplest way to comnnect two remarkable properties of hadronic physics:

both currents and hadronic states seem to behave in some sense like free
quark currents and‘izgg quark states respectively. A bilinear Melosh trans-‘

formation allows us to comnect these two "free quark" approximations.

_ Before us1ng Eq. (3 4) to compute plOnlC decays of hadrons we still
have to connect real hadronlc states to free constltuent quark states.
Although we know of no satisfactory prescription to make this connection,
especially since we do not know the strong interaction Hamlltonlan, it
seems reasonable to assume that physical: one-partlcle ‘states can be constructed

by acting with some operator U on free quark states 11). The success of

SU(G)W ,strong - °F its subgroup SU(3)><SU(3)strong _
states can thén’ beé tnderstood if. U :is assumed to transform as .an SU(6)

or SU(3) xsu(3)

in classifying hadronic

W, strong
singlet.

strong
. To summarize,. our model for pionic decays is based on the following
assumptions
1)  PCAC;
L 2). "free constltuent quark" classification of hadrons in SU(6)
SU$335st(3)str0ng
3) VTP’V transforms as the sum of the {(g,l)o,o} - {(1,§)O,o} and
§§2,2)1,-1} - {Ké,é _1,1} representations of SU(3)><SU(3)strong
or equivalently as the sum of the {2_5, LZ=O-} and {2’5, Lz =:t1}

representations of SU(6)

s
or’,

.

W,strong
(U transforms as a s1n01et)

W, strong’

In the remainder of this section we will refer to our model as the

sU(6),[[AL, =0,%7] model.
b) Classification according to U(3) xU(3) and SU(6)

We shall need the reduction of the (6,8),IL states of U(6) xU(6) x0(3)
to combinations of U(3) xU(3) xO(Z)LZ or SU(6)W?<O(2)LZ states. Once we
reduce the states of given quark spin S and 2z component Sz’ the extension

to states of arbitrary L will be trivial.
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The relation between quark-spin and W-spin states was already
pointed out in Section 1. In the discussion of [?(3)><U(3X]S we need
only recall that &,a=S,q while : S'ZE: —Szti. Then Table Ia) shows
the necessary relations between the rest symmetry, chiral U(3)><U(3),
and SU(G)W classifications. For simplicity we consider only octets, -
avoiding the discussion of nonet couplings except in the context of pgeno—

menological interpretations.

States of arbltrary L with glven he11c1ty are. -then. expressed in

terms of those in Table Ia) via Clebsch Gordan coeff1c1ents:'

ITsLY) = 2= (Ss LL :r>\)l332> (3.5)
‘l : N . S .pL! x - B

. . ) *
The JPC values of the specific states considered here are shown in Table 1b ).

¢) Predictions for specific processes

The reduced matrix elements within a given set of decays L-L!'+ TC.
in chiral U(3) xU(3) may be labelled by the initial Liz, the final Li,
and the total helicity A . In addition, for reduced matrix elements of
three octets (8,1)—(8,1)®(g,1) and (1,8)-(2,8)®(1,8), the relative
phase of the two depends on the product of the charge parities of A(L),
B(L') and TC. 1In practice for the cases we consider, this leads %o an
extra.  degree of freedom in the Li::Li::)\::1 amplitudes,_which“will be
expressed via a parameter /h\. ' )

Since chiral 'SU(S) xSU(S) is the weakest 6f‘the‘symﬁefries we
consider, our Tables will give its predictions, with a simple "dictionary"

at the end of each table for converting to the stronger symmetries.

fLi The reduced matrix elements in chiral SU(3) xSU(S), called
a ? “, are normalized so that in the SU(6), (AL, =0,%1) limit

It is necessary tolfake some care ih chdbsing'a consistent set of con-
ventions for the behaviour of {Ip(3)><U(3X]SZ,LZ representations
under charge conjugation and parity. For example, one {(Q,l)o-(l,ﬁ)oﬂg
representation represents a pion with C =41 and another, different

{(Qtl)o’(l’§)o’o] representation, an helicity zero B with C=-1.
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$ :
Le Ly L L
Q = . ° o
. = - (3.6)
except for reduced chiral SU(3) xSU(3) matrix elements which vanish in this

limit (/V 0). The helicity amplltudes g for A(L)-3B(L') + T in
SU(G)W I—AL —O :tﬂ are . ' -

‘ Y S ; . |
9 = Z 5O (SAa-L LLYITM)

5
x £80n- L,) (s*3- LT
(3 as 35"8_&;
(8, awsl) (8,3) B T[A oy (3D

. D 4,1
(W 1 wia-l) ot

The first two Clebsch-Gordan coefficients in Egq. (3.7) are those

comi-h:g from Eq. (35) The next term is an SU(3) scalar factor I:a. Clebsch-

Gordan ‘coefficient of SU(6) 27)]. The index X denotes symmetric or
antisymmetric coupling of 35-32@33; it is chosén so that the SU(2)
scalar factor [_Clebsch Gordan coefficient of su(3) 28):] denotes the proper:

d type or f ‘type coupllng as dictated by the product of charge parities
‘of A, B and TC:

G(A)C(B)G(‘T) = + .‘" s(z = “df-*:‘;g

(3.8)

M ERGHM) = — : oLy = “'(‘+3P‘l"

In the isoscalar factors, we shall take the specific isomultiplets A=B=K
(the I=2, Y=41 states) for convenience. The phases gA and gB
arise from the relation between quark spin and W spin states [see, €.8ey

(1.5Y], and are

§2%) = 4+l Sy =+l

- © oWherwise o (3.9)

Pinally, the last Clebsch-Gordan coefficient in Eq. (3.7) expresses W spin

conservation. Note that the value of W, associated with the pion (W=1)
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need not be zero. It is zero only in the case of naIve" 'SU(6)W, where
f . s

A'Lzsz'Lz=o‘.
‘The Tables are:
Table II : L=1-L=0
Table IIT : L=2-L=0
Table IV : L=1-L=1
Table V: L=2-L=1.
We shall discuss the relatiens among various symmetries implied by
these results in the next section. Meanwhile it is helpful to point out

where comparisons with data may be made.

2) Applications to_experiment

The case of. L=1-L=90 decays has. already_ been studled 1n a .
fo*‘mallsm equivalent to SU\G)W (A.LZ=O,i_1) 15). The ALZ=:§1 tran- ‘
sitions were Lound to be QOminant, as measured in the 'Bfeuoﬂ(' decay.
Recently these fits are being repeated with kinematic factors appropriate
to the use of PCAC 29); qualitative features are expected to remain the .

same.

Present information about L:=2—+L%=O'»deeays allows Oheuto check
some predictions of Table IIL. It is useful to rewrite these predictions ‘
in terms of the £=1 and £=3 amplitudes a, and ap {see the
"dictionary" at the bottom ofAthe‘Table)ﬂl One then obtains the results
shown in Table VIL We quote here ouly partial{width p;edictions. Nq
decays (Z-i—+17_) _have been observed as yef'whieh would a119w>for compa-
rison with helicity amplitude :etio,pred;ctioﬁe (in contrast to jhe:case
B-»&uTt.) :InvconstruetingATable VI we have used the'facf that Table iil
refers to "K' -UK"TC. These values are then coaverted to specific, A«
processes using -SU(B) and (wne“e necessary) a nonet ansauz for coupllngs.e 
A convenient table for performing such coaversions in general is given in
Ref. 24). A T '

The experiﬁental predictions have been“p‘_‘p"_c'aine‘q ;by;-ﬁsing the decay
width [(g(1700) >27C) = 40 MeV, - an éppir.o:::im'ajel,y%l.ue‘» éuégeéted by a receant
analysis 20 of the CERN-Munich data. The mésses 0f decaying states are all
taken at the idealized values of 1700 eV for the purpose of barrier factor

calculations. We use zero-radius forms for these factors, as suggested by
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the successful application of SU(3) to the known L=2-L=0 decays 31).

In fact, the interested reader is referred to that reference for a quotation
of many SU(S) related results which will not be mentioned here, and is
urged to recalculate any partial widths on the basis of exact masses and
various barrier factors. Tﬁe results quoted are somewhat sensitive to these
choices. For example, the kinematic factor arising from the use of PCAU is

such that

_ v 2\t 9 o
IZ(A*E'Q = P (Mﬁ ,—M.&) QQ C'Q (3.10)
™Ma
"where p 1is the final c.m. three-momentum, a, are the reduced matrix
elements (aP and ay for Table VI, as defined in Table III), and the
squares of the c, are shown in Table VI. Use of Egq. (3.10) increases the
prediction for Ap(g—wo‘n') to 26 MeV and that for | (wB-elo'rr) to 30 MeV.
These values are closer to the fit of Graham and Yoon, Ref. 31), but in our
opinion the data do not yet allow one to decide conclusively in favour of
such a kinemafic factor in all cases. Note, for example, that the simple
zero-radius f wave barrier factor agrees with SU{3) for the ratio

g-KK/g— T, as it seems to do in a number of other cases.

The prediction for A3—>/0‘IT '(.(7,:3) is notable. WNo evidence for

this decay has been found so far either in £=1 or £=3.

For L=1-L=1 decays (Table IV) one expects one f wave amplitude
and two independent p wave amplitudes in £ broken SU(6)W. A partial wave
decomposition of the helicity amplitudes for the various processes, shows
however, that there are no purely f wave decays. Hence simple tests ana-
logous fo those implied by Table III are not possible. Various processes
which are pureiy p wave depend on different combinatidns 6f b wave
amplitudes, However, one does nave l:in SU(G)W [Aiz=d,i1:[ or £ broken
SU(6)&] the following relations o

ﬁ [ 8 —= TZN (ng)T(]

~ = _ZJ:_ .(3.11)
P[D"“?QN‘]". L 3 '

(4-1ike Mixing)
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F‘[B """-Al TT']
r-‘[D T(('\Yso)T‘J

(11 like MW"‘S)

1l

3

(3.12)

s
In both equations Tﬂ stands for the partial width with barrier factors

removed. Since the 3 1is s6.close to A1Tt threshold, this leads to a
rather small physical width for B-#A1Tt (a few MeV, based on taking~ 20 MeV
for DneT(NT(). However, the stroag intrinsic B-A1-Tt coupling should be
observable in B exchange processes, such as Tt’p—eA$n. To date we know

of no firm evidence for this process, however,

Table V contains a number of predictions for the S wave partial
widths in decays that involve higher partial waves as well. The most useful

of these can bé written as

ig[‘/b(l")-—v Ao] = Qg/a00” - ()

I

MY ERS Y 30g/200

(3.14)

I

,;0 [/D'(l":. 1=2) — A.IT(] Q.Z /240 (3.15)

['i (7)) =B Coag/160T L G

If the A3 is' a resdﬂance, foTt" is its dominant~decay,m0de;1 Then

b Lp@Y ~hed -y

= I S (3.17)

':=o.[ A3(T+) —f,m] | 3

implies a considerable value for the numerator. We hesitgte to quote a-
predicted partial width since it is not clear whether the whole £=0 f Tt
bump- usually called A3 is indeed resonant. It is 1nterest1ng that there

does seem t0 be evidence for a T['A9 enhancement around 1700 MeV 28). A
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partial wave analysis of this effect, for example in the channel

L_; H{“o .' (3.

could ve performed using multi-particle spéctrome’fers' such as Omega at CERW.

There are two d wave amplltudes in £ broken SU(S)W and three
in- SU(6) [AL =0, :H_] In .é broken SU(6) [but not 1n SU(G)W
I_AL =0, i1:| i] the following relatlons hold: ' .

r [W(T-) = B ], CT oL _3" (0‘;)1: (5

... Tbo
LA =D, ] - léO D) v

Mlpe) —mmon] . =

r‘[ﬁfﬁ!}"“?):“ haml =

o}
B
.0 0

o

r_ﬂ[/a(-i‘»'),:-b A, ) = (@) 6

=
G

||

f‘[’q () — T[ (ﬁ%o)T(] (Uo\ (3

A selection rule, which holds in SU(6) I:AL _O iﬂ but ‘ot in chiral
U(3) ><U(3) - says -

Normally this decay would be allowed in a d wave (>\=1 only).

(3.

s +«> B S o

18)

.19)

.20)

21)

22)

.23)

.24)

25)
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EQUIVALENCES

a) RBle of 3PO model

As mentioned in Sectlon 3, the SU(6) [ZSL .-O i{] model is
equivalent to the 3Po model. What is meant by this equivalence is that
there is a one to -one’ cocrespondence between 1ndependent parametero of
both models. Strictly speaking one could argue that the two models cannot
be 1dentlcal since in the SU(6) leL =0, if] model each hellClty ampll—
tude for a SpeCLfIC decay channel Ar*B+aTt is. proportlonal to m--mB,
because of PCAC, while this factor is not present in the usual formulation
of the, JBPO‘ model. However,.since the 3Po model is essenti%lly a pheno-

menologlca“iprebcrlptLon to break’ SU(6)W stroné symmetry for vertices

one can always include any function of the external masses in its definition.

The proof of the equivalence between the two models in the above
sense is stfaightforward and not very illuminating. Let us consider the

decay~émplituQes: 4 . . _ ‘
ALY — B(Y) + T

[\ " : “w "

Helicity amplltudes for these decays in the SU(6)W [ZSLZ:=O,if]

model can be rewritten as L B
q =2 [ ¥ 38 | o3 g g8
SA L (gawk) (&Y | (g 2w+:) 1B (A ]d
g SOy YT wha<Ly) (-.,s“? AL Leg,_a.l,;r“x\(fs‘x_-u L Lo [T2A)

Cf (w x-u—n [ (w )H;)(S alle] :l"x) (S A et L el lJ‘A)

(w“,\ L;,+|l llw A~u) SA-L\LLQIT‘A)(SR)\ LQHL'IQ nl:r‘m }

(4.1)

wn%re we nave absorbed the factor ‘mi-mB into the reduced matrix elements
IzLZ
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In the 3P0 model, on the other hand, the same helicity amplitudes-

are parametrized as follows
o~ 3¢ 3¢ | x¢ R 8|8
3>\ = 2 {(gmn (8,3) (%as‘M)L {3 T Ip‘}p
2

ib ($*-la lols“ A-Ly) (S“A—L‘. Ll | T (©te L' L \:r‘A)

Lalls |

b

(s'x-L. \ ||\s M) (S Ma LLalT )(S‘A “ta- |L'Lunlx°/\3

-t ' o ’
b (A 11| A1) (-l L [T (S e Kleet] J‘A) 2

(4.2)
il
It is then simple to show that the coefflclents of the a Lf1i
z7z

reduced matrix elements are proportlonal to the coefflclents of the b
reduced matrix elements and that the proportlonallty factor is independent

of L_. One finds that with the correspondences

. b
ity 4 bnitu; (4.3)
or Q 3&
Ble L
Wt s B
I i VRN 1) S Ao SR
4 (4.4)

the helicity amplitudes 5N aﬁd g& are-identical. ‘The correspendence
of Eé.‘(§33) is to be used when the coupllng . B '. ,
A (q,mrk &pmhp\n.l- shk) —=R (cvsmk SpiA l-np\u— §n\e) + (C

is d type in SU(3) (i.e., I+L' even) while Eq. (4.4) is to be used
when the same coupling is T +type in su(3) (i.e., L+Li 0dd).
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This thus completes the formal proof that the SU(6), [ALZ=o,i1:].
3

model and the PO model are identical up to mass factors.

For the case of baryonic decays, the quark spin and W spin of the
baryons are the same, The two pictures are manifestly identical for pionic

decays in this case.

We shall use here the fact that the 3Po picture and su(s)w
I]SLZ:=O,if] have-been proven identical for A(L)—-B(L') +TC. Then let
4' be the vector difference of I and IL'. One can label amplitudes

either by 4! and £ or by Li» and Lf. The relation between the two

= 2 (Lo d-i|v )

2 - . :
’ L;L-! ‘ L{L; .
(Rl tdagleo) b @

descriptions is

Note that in the second coefficient the fact that the 3Po, pair has L =1
has been used, This restriction would not be apparent in the SU(6)w

[ALZ=O,d:1j language. -

In naive SU(G)W - one has only L —L AJJ =0. The. amplitudes
I TI) all vanish in this case since the second Clebsch-Gordan coefficient

is (£010|£0) =0. Moreover, in naive 'SU(6)W, the amplitudes Bpi g a8

for various {4 have relations among them. These are discarded in £ ~broken.
SU(6)y, and the emplitudes a, S Li1,4

the other hand, one never acqulres amplltudes of the form B2 g0t Such

amplitudes are expected to be present in the: BPd picture, however, and thus

treated as free parameters. On

give rise to additional degrees of freedom.

: Lint
f1d Exceptions occur in two cases: 1) for L=L', one has ‘b e
22 .
b . The sum over Li and Li in Eq. (4.5) then yields no net contri-

bution to a even in SU(6)W [ALZ=O,£I:|; 2) for L=0 (L'=0)

)
one has only 4£'=L!' (#'=L) and since £=L'#1 (L#1) by parity conser-
vation, the amplitude Q51 2 9.2 cannot occur.
- 9

Thus, for decays A(L)-B(L!')+T{, £ broken SU(6)w is always
) 3 .
a special case of the “P_  picture [énd hence of SU(6)w [}§Lz==0,ifI].
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It coincides with the latter only when 1) L=L' or 2) L or L' is zero.’
14)-19) '

c) sSU(3) xsu(3) subgroups

The predictions of Tables II-V for chiral SU(3) xSU(3) relate only
amplitudes of a given helicity to one another. If one decomposes helicity
states directly into representations of SU(6)W><O(2)LZ, as we have done,
we obtain SU(6), [AL,=0,+].

There is another way of obtaining the latter symmetry from the
former. In the decays L=1-L=0+TC (for mesons) if one adjoins the
predictions of the coplanar U{3) x U(3) 24) to those of chiral U(3) x U(3) . 13
. 15
one obtains those of SU(6)W [:ALZ =O,:t1] .

)

To see this explicitly we cbmpare in Table VIIfthp'prediétions of
the two U(3) x U(3) symmetries, expressed in terms of relations for helicity
amplitudes. The coplanar symmetry links ﬁogetﬁer‘predictions of chiral
symmetry for different helicity amplitudes in ju;t such a way as to give

SU(6)y [ALZ =0,%1].

This relation should be true in general. If we form the algebra
containing both the coplanar generators'and the chiral generators, it closes
upon SU(G)W. The selection rules for pionic transitions are, moreover, the
same as in SU(6)w [;;Lz==o,i[]. Since the pion remains bilinear in quarks, it
must belong to a 22, while the Z&LZ properties have already been defined
at the lower symmetry level.

If SU(6)w EZ\LZ==O’ii]‘ turns out not to hold, one may thué be
able to pin the blame either on coplanar or chiral SU(3)><SU(3), with the
other symmetry continuing to hold. Table VII forms the basis for one such.
exercise [@hich is not, however, demanded by present data, since both

SU(3) xSU(3)'s seem vali@].

CONCLUSIONS

In this paper we have explored some conseduences of abstracting
certain algebraic properties of the Melosh transformation which relates the

generators of SU(6)W,strong and SU(6)W,currents' Whea PCAC is used to
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relate pionic decays of resonances to one-particle matrii elements of the

-axial charge, one obtains a model for the SU(6)w properties of these

pionic transitions. With this model we have understood why a naIve application
of SU(6)W to vertices should fail whenever L;széo transitions are possible,
Furthermore, this PCAC model has beéen shown equivalent to the 3Po model

for decays, which has had some phenomenblogical success. We note, however,

that the PCAC model is only formuléted to apply to vertices involving a

pseudoscalar meson: the 3Po model has also been applied to transitions

32)

involving vector mesons « The application of the Melosh transformation

to such decay processes is an interesting open question.

. Another phenomenological version of SU(6)W, £ broken SU(6)W,
has been shown to differ in general from SU(6)w EALZ=O,i1j although in

many simple cases the two prescriptions give the same results.

The application of the Melosh transformation thus provides a
theoretical basis for understanding the successes of the 3Po model. The
implications of such a transformation for photoproduction processes, vector
dominance, and for current induced processes in general, are presently under

investigation.
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TABLE I

(6,5)

according to U(3) xU(3) and SU(6)W +)

U(3) x U(3) su(6)y’

S=1A1- Sz= 1 (2,3_)1 (8’3)1
5,= 0 [:(g,l)o%(l_,g)c;]/w -(8y1),
oo | G (8,3).,

s=0, s,=0 | [81)-(1,8)IW 2 -(8,3),

p) . 3¢

of stafes -considered here

ST -
L=0 177 o™t
L= 2++', 1++,'o++ 1+
L=2 377, 277, 177 2=t

+) SU(6) representations are written as s 2W+1
L u(3) We




THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



- 29 -

TABLE II
L=1-1L=0
I A=1 Process aO£= 1 N ao;\ =1
2++_,{" +3/16 -Vw‘f
(RS +3/16 /4472
, (N T 0 1/4
)\=;~ ao?\:o ao;=0
- ' . 2++_)O—+ +ﬁd =
| 1;+—» 1l"' i 0 | /2T
, N T
| oo | e | vedE

Dictionary ) Lel, LeL
‘ £y bebi
su(6)y [AL,=0,%1]: ay ~=a for all A

£ Dbroken SU(6)W : equivalent to

su(6)y [AT,=0,%1]
asza00+4;/’2‘a°1/3 (£=0)

a 2202703 (4=2)

"NaTve" SU(6)W : a01=0, ag = ap

D
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£ broken

sU(6),y »EALZ =0,%1]

_ .00
aP=a +(

SU(6)W :

3/2) J3/2 a

o EaOO -«/_37-2— aO’l

"Natve" SU( 6)w

01

equivalent to

(£=1)

(£=3)

01

a =0,

=%

TABLE III
L=2-L=0
A =1 Process aO(‘;\___ a01\=1
377177 -1/2./10 +(1/4) V375
R e -1/4.J72 3716
PRI R 0 - 3/8./2
177 517" -1/4./70 -(3/16) ./ 3/5
\ 00 01
A =0 a X"-—'O aA A=O
37" 507" -(1/4) V3/5 +3/4 /10
27T 5177 0 -3/8
o™t g7 - 1/4 0
177507t + 1/2./70 +(3/4) 43720
Dictionarx
LeLy Ll
sU(6) (D1, =0,%T]: ay "~ =a for all A
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VTALBLE IV
" L=1-L=1
A=2 Process ' aO;)‘ -2 a1;\=2 a1§= >
PN 0 -1/4 0
A= | S S
ot ot - 1/8 7“/2 ) ':3/'8A/"2"v B
i ottt - 1/8 + M2 .' o
ottt 0 /4T |+ 3/16
gL ot - 1/8 1/#/2 0 |
ERAIEE b - 1/8 = M2 +3/8J7 -
H_F;“—w*‘ ''''' 0 +1/4f2" +3/‘16 |
| R 0 RYIWes +3/16
-T"1+—J{++ . 0 +1/4 72 +3/16
g e - -
| 00 11 10
"A=0 Ex=0 2x=0 g N=0 g
| 2ttt 0 /a3 L (/) 77
a1t | /2 o | -3
1+ ot 0 /a3 | +(1/8) 377
1++_)63f+ R /2.8 T :
ottt -1/2./6 0 - J3/8
1“",—»0;:+ +1/4.3 0 -(1/4) 372
T B Ry T
A /43 0 (1/4)/372
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Dictionary, Table IV

: B i I'fI-’i ALfLi
())W C LZ‘=0,i1] : a =a for all
4 broken 'SU(6')w . : equivalent to

su(e)y [A1,=0,+1].

su(6

ag =220 (3/ 2 )a'® . two independent

ajp Ea“ +(3/2.J3) a0 £=1 conmbinations
y .

ap=a’0-a 4 (320 (4=3)

_— . 10 _ 4. _ .0 1
"NaTve" SU(6)y: a  =0; ap = 2p - ap
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TABLE  V
L=2-L=1
Process | a0 _, | aa.z | 2aes ), 2'2
Tt 0 + J/3/8 0 0 -1/4J3
A 0 +(1/8)3/2 0 0 +1/2,/€
oot 0 .0 0 0 + 1/4
2 h= 1 @' na 2%\ 2N 2 Xz
"o L 43/8)T0 | oM/ ETS | +1/445 -1/2/T5 | -1/430 .
R +3/8./70 | +]/ 4775 -1/4J5 -1/2J75 | +1/4./30
Tt 0 £ /44375 | -1/2470 0 -1/4.J75
Lt +3/16/2 | + W/ T2 + 1/8 i /83 | +1/4.€
ottt a31602 | W TE - 1/8 L +1/8Y3 | -1/4JF
Tt 0 | -J/3/16 -1/472 o +1/4.3
—+ o L 3/16 0 +1/4./72 0
gt 0 - 3/16 | 0 +1/4.2 0
toate 0 - 0 : 0 0
o2 43/164T0 | 4a/E/20 | 1/8)5 +(1/8)/375 | - (1/4)43/79
ot L3160 |-/ | -1/ +(1/8)W375 | +(1/4)/3/70
Lt 0 ~(3/16)y375 | -1/4 70 0 ~(1/40575
| R0 | aac0 | Reo N =0 *'5=0
R R 0 + 3/8.J5 -(1/2)/3/710 0 0
ot L a(3/8)/3710 o 0 -1/2%5 0
T Lott 0 +(1/8)./3/2 0 +1/2./3 0
"ot 0 |+ .38 0. -1/2./% 0
“t,ott +/ 3/8 0 +1/2.)6 0 0
.ot -(1/8)372 0 +1/2./3 0 0
ot 0 +(3/8)3770 | +1/2./3 0 0
Tt - 3/84J5 0 0 -(1/2)3719 0
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Dictionary, Table V

Leli  Lels
su(6), [AD, =0,#]: an L2 T for a1 A P M =0

£ broken SU(6)W
2

a0 /5l a2 y7

ag = a%4a1" J3+(8/3) J—2a1 0,4 NEYE] 207 (2=0)

0 ano—(4ﬁ/3)a1o (two independent

p

a;J—Z-a“—(Zﬁ/B)am £=2 combinations)
aGano_(Z/ﬁ)a11+ﬁa1o_ 575,01 (1-2)

"Nafve" SU(G)W: ao1 = a10 = a1 2.

as=ag+a11)‘/—; aG=a%-2/“/—3 a113
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Process type

3
3
3
3

2
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TABLE VI

SPECTFIC PARTIAT WIDTH PREDICTIONS
. FOR L=2-L=0+TC

Specific decay

-1 "4+ TC g WTT
-1+ T wB_,/o'n:
BTSN , g-TT
éb-++Tt g — KK
-17" +.T\' -/0(2“)—»m'ﬂ‘
177 4r : Az pTC
=177 4T P (L=2)->wT
07T 4+ P (L =2)- T
Notes:

b)

.C)

p 1is the final c.m. three-momentum, and 1

c)
c)

1/100

1/75
1/180

1/90

R

a)

1/105
1/35

1/140

1/280
1/150
1/50

T‘, MeV ®)

(f wave only)

12 (28)

36

40 {(input)
5.8 (3)
8

25

2% :
a) \'z = IZME(p/pO)_(zz“) where Mp=mass of the resonance,

is sone

convenient scale factor whose choice of course determines

the magnitude of ai.

Predictions based on assuming f’(g-ef[1r)==40>MeV

[Bef. BOX]. Experimental numbers, shown in parentheses,
are based on Graham and Yoon, [?ef. 31{1. Predictions

based on a PCAC kinematic factor are somewhat different and

are discussed in the text

Predictions for the 17~

states assume no mixing with the

L=0 multiplet ("radial excitation") expected near the

same mass.
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TABLE VII

COMPARISON OF U(3) xU(3) RELATIONS

FOR L=1-L=04+ TC DECAYS

COPLANAR

g,(2) +g,(1*"") =/Zg (177)
g,(2) = (V3/2)g (2)

S, (1) =g, (1)

S, (2) - £y(0) = Fgg(1*T) ¥

CHIRAL

g1(2) +‘\/§g1(1+—) =g1(1++)
8,(2) +28,(0) = /35, (177)
Ve (2) - £4(0) =g (1*T)

su(6), AL, =+i]_oR 31>u PICIURE OR_ ¢ BROKEN SU(6), b)
g,(2) = (3//2)D g,(1"") =2(s-D)
8,(2) =./6D g, (177) = /2(s+1/2)
85(0) = -/3s go(177) =s+2D

g,(177) =s-D

Notes
a) Relation common to coplanar and chiral U(3) xU(3)

b) D and S are conveniently normalized D wave and
S wave amplitudes. An equivalent parametrization in

terms of [&LZ:=O,i1 amplitudes is given in Table II.
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