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Pulsed Electron Beam Calorimetry Ut i l i z ing  

S t ress  Wave Measurements i n  Sol id  Absorbers 

INTRODUCTION 

Pulsed-electron-beam machines which produce currents of thousands of amperes 

-8 and current  durations of the  order of 10 sec a r e  avai lable  f o r  t rans ien t  energy 

deposition s tudies .  Although extremely shor t  pulse durations a r e  the  most charec- 

t e r i s t i c  fea tu re  of these beams, current ly  ava,ilable methods f o r  calorimetry 

measurements on t he  beam are  adaptations of methods previously employed f o r  steady 

s t a t e  sources. These methods include the  passive technique of recovering blue 

cellophane which have been exposed' t o  the  beam as well as temperature 

2 
measurements on t h i n  metal l ic  d iscs .  It is t he  object  of t h i s  paper t o  propose 

- a new method of calorimetry based on measurements of t he  s t r e s s  pulses vhich 

result when t he  beam i s  absorbed i n  t h i ck  e l a s t i c  absorbers. I n  a recent conlrnuni- 

ca t ion we b r i e f l y  described some of the  propert ies o f .  these thexxbelast ic s t r e s s  

 pulse^.^ ' The s t r e s s  pulses c a n  be used t o  determine the  in tens i ty ,  end-point 

range, and duration of t h e  e lect ron beam. 

Previous  measurement^^-^ of s t r e s s  pulses produced by radiant  energy iources 

have been accomplished i n  rod-shaped absorbers with geometrically l imi ted rise-time 

ct1p~h3l.ities. The m~asurernents by White4j5 were obtained f o r  conditions i n  which 

long duration e lect ron pulses ( - 2  w e c )  were absorbed on t he  surface of a rod. 

PIERMOELASTIC S W S S  WAVES 

To understand the  operation of t h e  calorimeter we must f i r s t  consider the  

proper t ies  of t he  s t r e s s  pulse which r e su l t s  from the  absorption of the  beam. The 

th ick  e l a s t i c  .absorber i s  considered t o  be e'xposed t o  an e lect ron beam of uniform 

a r e a l  i n t ens i t y  such t h a t  the  energy of the beam i s  deDosited within the  absorber. 

If the  duration of t he  incident e lect ron gulse i s  very shor t  com?ared t o  duration 



of t he  resu l tan t  s t r e s s  pulse, the  absorption can be assumed t o  'occur ins tanta-  

neously. From the  constant volume conditions which r e s u l t  from.the instantaneous 
. . 

deposition it follows immediately t h a t  

where ~ ( x )  i s  the  absorbed energy ( t h e  x-direction taken normal t o  the  d i sc  face),  

and t he  resu l t ing  normal s t r e s s  component i n  the  x-direction i s  ox. The thermo- 

e l a s t i c  constant, rX, i s  defined a s  T y J ~  ' ( ~ u J ~ E ) ~  where V i s  the  spec i f ic  
X 
8 .  volume and y i s  the  Gruneisen's r a t i o .  Thus, i f  .the thermoelastic constant of 

t he  absorber material  is  known, a measurement of the  s t r e s s  a s  a function of 

posi t ion a t  deposition time provides a d i r ec t  evaluation of the  energy as a 

function of posit ion.  This energy d i s t r ibu t ion  evaluation gives t he  maximum 

absorb& energy, t he  e lect ron end-point range, and' an  absorption coeff ic ient .  
. . 

If t h e  du ra t i ono f  t he  e lect ron beam pulse i s  f i n i t e  but  s t i l l  shor t  com- 

pared t o  t he  duration of t he  s t r e s s  pulse, the  s t r e s se s  i n  the  immediate 

v i c i n i t y  of t he  exposed surface a r e  a l t e r ed  from t h a t  predicted by Eq. (1): 

Normally, however, the  s t r e s se s  a t  posit ions remote from the  exposed surface 

are unaf f scted,  . . 

Once t he  energy is .absorbe& a plane compressive s t r e s s  pulse propagates along 

t he  x-direction and immediately forms a t e n s i l e  s t r e s s  t a i l  t o  maintain zero t o t a l  

momentum. (The incident e lect rons  have negligible momentum. ) While progressing 

through t he  disc,  the  pulse lengthens i n  time an'd t he  peak compressive s t r e s s  

decreases i n  amplitude. I f  t he  absorber'  i s  e l a s t i c ,  however, these changes i n  

pulse amplitude and duration can be analyzed as an e l a s t i c  wave propagation pro- 

blem, Hence, the  s t r e s s  pulse a t  sone posi t ion renoved from the  or iginal  



deposition s i t e  is  d i r ec t l y  re la ted  t o  the  or iginal  s t r e s s  dis t r ibut ion,  and 

t h i s  propagated s t r e s s  pulse is  the  bas i s  f o r  the proposed calorimeter. 

A measurement of t he  s t r e s s  pulse requires exceptional time resolution 

-8 s ince s ign i f ican t  changes i n  s t r e s s  w i l l  occur i n  times. of t h e  order of 10 sec. 

9 The Sandia quartz gauge produces an output current d i r ec t l y  re la ted t o  the  , 

instantaneous s t r e s s  a t  the input elec.trode. The time-resolution is  l imited only 

by t he  p lanar i ty  of the  wave the  .rise-time of the recording equipment. With t h i s  

gauge it apgears f ea s ib l e  t o  obtain precise measurements of the  s t r e s s  pulses 

resu l t ing  from absorption of the  e lectron beam. The proposed calorimeter, shown 

i n  Fig,  1, consis ts  of t h i s  gauge and an absorber disc  of large diameter-to- 

thickness ra t io .  The thickness of the  absorber is .chosen t o  be greater than the  

end-point range of the  electrons. One plane surface of the  disc  i s  exposed t o  

the  beam and the  resu l t ing  s t r e s s  pulse i s  detected by t h e .  gauge located a t  the  

opposite surface of t h e  disc ,  

" EXPERIMEXTAL 

Experiments t o  study the  f e a s i b i l i t y  of t he  proposed calorimeter have.been 

performed u t i l i z i n g  40 nsec duration e lectron pulses from a 2 MeV pulsed-electron- 

beam machine.' Absorber discs 25 m i n  diameter and 6.35 mm th ick  were exposed 

t o  a 12.7 mm diameter segment of the  e lectron beam i n  separate experiments i n  which 

t he  nominal character,lstics of the  beam were unchanged. The experiments were con- 

ducted with the  absorber 7.6 cm from the window of the  machine which was s e t  on a 

charging voltage on 30 KV, The quartz gauges used were X-cut discs  12.7 mm i n  

diameter and 6.35 mm thick.  The r e l a t i ve  s t r e s s  amplitudes were measured with an 

accuracy of + 5$. 



A t yp i ca l  s t r e s s  pulse record obtained on an aluminum absorber is  shown i n  

Fig. 2. It i s  apparent from t h i s  reconl t h a t  t he  s t r e s s  p r o f i l e  can be measured 

i n  considerable de t a i l .  The noise encountered a t  deposit ion time serves as a 

convenient marker f o r  deposition time which i n  t h i s  case occurs 960 nsec before 

a r r i v a l  of t he  peak c o m ~ r e s s i v e ~ s t r e s s .  ' The shape observed is t h a t  which would 

be expected f o r  a radiation-induced thermoelastic s t r e s s  pulse. 

A wide va r i e ty  of absorber materials  were investigated;  a l l  were .potent ia l ly  

useful  calorimeter absorbers. These materials  and t h e i r  .per t inent  proper t ies  a r e  

sho~m i n  t h e  f i r s t  f i v e  columns of Table I. The mater ia ls  include d i e l ec t r i c s ,  

semiconductors, and 'metals with a range of thermoelastic constants of a f ac to r  

of about s i x .  The d i l a t a t i ona l  wave ve loc i t i es ,  C o ,  and the  dens i t i e s  cover a 

range which var ies  about a f a c t o r  of three .  All mater ia ls  have e l a s t i c  l i m i t s  

high enough such t h a t  they remain e l a s t i c .  f o r  the  conditions of the  experiment. 

As previously mentioned, t he  40 nsec pulse duration of t h e  e lec t ron  beam 

w i l l  cause peak s t r e s s  ,amplitudes t o  be reduced .below t h e  values predicted by 

Eq. (1).  The extent  of t h i s  reduction f o r  a given e lec t ron  pulse duration w i l l  

depend upon t h e  s t r e s s  pulse duration i n  t h e  absorber. That is, very shor t  s t r e s s  
C- 

' 

pulses w i l l  be reduced i n  amplitude more than long duration pulses because the  

e lec t ron  pulse deposit ion time i s  a l a r e e r  f r ac t i on  of t he  shor t  pulse. A calcu- 

l a t e d  value f o r  t he  i n i t i a l  s t r e s s  pulse duration, To, resu l t ing  from the  energy 

absorption can be obtained by  dividing the  e lect ron range (expressed a s  the  depth 

of penetrat ion) by t h e  d i l a t a t i ona l  wave veloci ty .  To values a r e  calculated f o r  

1.9 MeV elect rons  i n  t h e  various absorbers and shown i n  Table I. The 40 nsec 

e lec t ron  pulse duration should be compared t o  t h e  To values noting t h a t  the  value 
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RESULTS 

From records a s  shown i n  Fig ,  2 obtained on t he  various absorbers t he  

r e l a t i v e  amplitudes of  the  peak compressive s t r e s se s  may be  coinpared t o  t h a t  

calculated from Eq. (1) .  Both obserfed and calculated s-iress amplitudes a r e  

nonnalized t o  a value of 1 .00 . fo r  X-cut quartz. This comparison i s  shown i n  t he  

s i x t h  and seventh columns of Table I. t l i th  the  exception of t h e  germanium and 

sapphire absorbers, t he  measurements show a 520% spread i n  amplitudes between 

observed and calculated values ( 5 %  of the  spread is due ' t o  experimental e r ro r ) .  

This ind ica tes  a shot-to-shot var ia t ion  i n  t h e  beam of *15$ which i s  consis tent  

with other  measurements. The lowered values obtained i n  the  sapphire and 

germanium absorbers r e f l e c t  t he  influence of t he  40 nsec e lec t ron  pulse duration 

on these mater ia ls  with t he  shor te r  To values of 200 nsec and 300 nsec respec- 

t ive ly .  These measurements, as well as repeated experiments on t he  same absorber 

at. various t ines ,  show t h a t  the  measured s t r e s s  pu l s e s ' s ens i t i ve ly  r e f l e c t  the  

i n t ens i t y  of t he  beam. . . . 

Some d i f f i c u l t y  might be expected f o r  the  absorption of t he  energy of charged 

p a r t i c l e s  i n  d i e l e c t r i c s  congared t o  those absorbed i n  a conductor.. The po t en t i a l  

accompanying the  i n i t i a l  e lec t ron  deposit ion may decelera te  e lect rons  which.arrive 

some~rhat l a t e r .  I n  the  case of t h e  quar tz  and sapphire absorbers, no e f f e c t  was 

observed on t he  absorption compared t o  t h a t  i n  the  conductors. Two o ther  

d i e l ec t r i c s ,  tourmaline and a low t h e m a l  expansion glass,'' were observed t o  

su f f e r  d i e l e c t r i c  breakdown which caused major changes i n  t he  s t r e s s  wave prirf i les.  

The indium antimonide record. showed t h e  t e n s i l e  s t r e s s  peak t o  be abno=rally 

reduced i n  amplitude. Examination of t h e  sample showed t h a t  the  exposed surfecc 

hacl suffered a t e n s i l e  s t r e s s  f a i l u r e  which \.!auld cause the  chanze i n  vave p ro f i l e .  



I n  add i t ion  t o  t he  s t r e s s  a q l i t u d e  data  which r e f l e c t s  the  i n t ens i t y  of 

t he  e lec t ron  pulse, t he  data  on t he  duration of the  s t r e s s  pulse r e f l e c t s  both 

t h e  e lec t ron  end-point range and t he  duration of t h e  beam. The i n i t i a l  s t r e s s  

pulse duration is  d i r e c t l y  proportional  t o  t h e  electron'end-point  range and 

inversely  proportional  t o  t he  d i l a t a t i ona l  wave veloci ty .  The observed s t r e s s ,  

pulse durations Irere used t o  ca lcu la te  t he  range r e l a t i ve  t o  t h a t  observed f o r  

X-cut quar tz  trith a 1.9 MeV elect rons .  The r e su l t s  of these  ranee neasureinents 

a r e  shown i n  Table 11, Experimental r e su l t s  a r e  shown f o r  X-cut quartz absoToers 

a t  various e lec t ron  energies and other  absorbers a t  an energy of '1.9 MeV. The 

observed range values agree v i t h  those calculated from t h e  nominal e lec t ron  energy 

within t10$. With the pulses  reported here it is possible  t o  measure the  pulse 

length within k5$. The remainder of t h e  var ia t ion  i s  thought t o  be t h e  shot- to-  

shot  va r i a t i on  i n  t h e  energy of the  beam. These measurements show t h a t  t he  end- 

point  rane;e of t h e  e lect rons  can be measured without d i f f i cu l t y .  

Numerical ca lcula t ions  shov t h a t  the  duration of t h e  e lec t ron  beam i s  

e x p l i c i t l y  shown i n  t he  measured s t r e s s  pulse. The time dif ference between t he  

peak compressive s t r e s s  and the  zero s t r e s s  value immediately following the  peak 

is equal t o  th.e beam duration. The record shotm i n  Fig. 2 shows t h i s  time t o  be 

P 35 nsec. The pulse duration measurements published by t he  manufacturer .shosr 

t he  main por t ion of t he  ~ u l s e ,  t o  l a s t  about 40 nsec with a longer low amplitude 

t a i l  l a s t i n g  u~ t o  100 nsec. Our measurements on t he  e lec t ron  pulse do not show 

any ind ica t ion  of t h e  long duration t a i l .  Apgarently, the  long durati.on t a i l  i s  

associated with low energy e lect rons  which are a'osorbed by t he  t h i n  alwninu. 

f i l t e r  placed i n  f ron t  of the  absorber. 



S m Y  AND CONCLUSIONS 
/' * * 

These measurements show tha t  the s t r e s s  pulses resul t ing from the absorption 

of intense pulsed-electron-beams can be measured i n  considerable detai l .  The 

s t r e s s  p&se anplitudes and durations a re  observed t o  scale quantitatively 
. . .  

with the intensi ty  and energy character is t ics  of the beams absorbed i n  various 

absorbers. I n  addition, the electron-pulse duration i s  shown as a d i s t inc t  feature 

of the  s t ress  pul.se. It is concluded from t h i s  investigation tha t  measurements of 

the s t r e s s  pulses i n  thick e l a s t i c  absorbers can provide a . b a s i s  f o r  calorimetry ' 

of.'pulsed electron beams. Presently, the measurements are  limited t o  relat ive 

values which can be calibrated by more conventional means. Computer solutions of 
. . 

the complex e l a s t i c  wave propagation problem ' . w i l l  pennit absolute values t o  be 

recovered from these same measked pulses. 12 

It appears tha t  aluminum and X-cut quartz are  the  best absorber materials f o r  

a calorimeter. Aluminum has . a  much la rger  thermoelastic constant than quartz 

which gives it a superior signal,-to-noise rat io .  Thus, .aluminum is preferable 

fo r  absorbed erareies  l e s s  ,than about 8 ~ a l / ~ r a m .  However, the e l a s t i c  constants 

of aluminum a r e  sensi t ive t o  the kemperature r i s e  and absorbed energies greater 

than 8 ' ~ a l / ~ r a m  .will cause some nonlinearit ies '  i n  the response of the calorimeter. 

The temperature independent properties of X-cut"quartz absorbers make quartz a 

be t t e r  material f o r  higher in tens i ty  pulses. 

Present measurements show tha t  the moet' desirable gauge f o r  the s t r e s s  pulse 

9 measurements is  a guard-ring gauge 31.8 ,mm i n  diameter and 6.35 mm thick with 

an act ive center electrode diameter of 12.7 mm. I n  addition, improvements have 

led t o  a cokiderable  reduction i n  the noise level  which can be observed by 

c o w a r i n g  the record i n  Fig. 2 wi than  ea r l i e r  published rec0rd.j 



The s t r e s s  pulse calorimeter is a unique and new device f o r  the  

study of t h e  charac te r i s t i cs  of pulsed e lect ron beams. I n  f ac t ,  t h e  ca lo r i -  

meter seems f a r  more precise  and sens i t ive  than needed f o r  presently avai lable  

sources. Since the  physical bas i s  f o r  t h e  opexation of t he  calorimeter i s  

d i f f e r en t  from t h a t  employed i n  other  calorimeters, it i s  now possible t o  

obtain independent measurements of beam propert ies.  This capabi l i ty  should 

g rea t ly  improve our understanding of puls,ed-electron-beam machines. 

The.autllors a r e  pleased t o  acknowledge analysis  of t he  wave propagation 

problem by J. A. Mogford and helpful  discussions with t h e i r  Sandia Corporation 

colleagues and C. M. ~e r c ' i va l . .  



Table I 

Absorber Propert ies  and Peak S t ress  Amplitudes 

Absorber Propert ies  Relat ive S t ress  Amplitudes 

7x (a  Co (b) . p (4 To (d l  3 Absorber bar gramlcal irrm/psec gram/cm nsec ca lcula ted  Observed ( e  

X -Cut Quartz 82 5.72 2.65 590 1.00 1.00 

Z -Cut ' ~ u a r  t z  66 6.36 2.65 530 0.80 0.65 

Z -Cu t Sapphire 237 11.1 3-99 200 2.80 1.60 

[I111 S i l i con  42 9.36 2.33 410 0.51 0.61 

[I001 InSb 115 3.44 5.8 s 460 2.3 1.8 
!I11 1 Germanium 162 5 65 5.35 300 2.0 1.4 

6061 T-6  Aluminum 236 6-32 . 2.70 520. 2.9 3 .2  

( a )  The component of the thermoelastic constant ,  I-, i n  the  X-direction i s  computed 
8 using the  analys is  of S. W. Key. 

(b )  Co i s  t h e  diLatat i ,onal  wave ve loc i ty  along the ax i s  of the d isk .  

( c )  p is  the  densi ty .  

( d )  T i s  the  i n i t i a l  .pulse l e n g t h o f  the  s t r e s s  pulse ca lcula ted  a s  the range f o r  
0 

2 MeV electrons1' divided by C o .  

( e )  The observed. s t r e s s  amplitudes a r e  corrected f o r  the acoust ic  impedance mismatch 

between the  absorber and the gauge. 
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Table I1 

Elect ron  Range Measurements 

Absorber Electron Energy Range, mm 
MeV Measured Calculated ( a )  

X-Cut Quartz 

X-Cut Quartz 

X-Cut Quartz 

X -Cu t Quartz 

2'-Cu t Quartz 1.9 3-55  3 - 5 6  

Z -Cut Sapphire 

[111] S i l i c o n  

Aluminum Alloy 

( a )  These va lues  a r e  ca lcu la ted  from conventional energy vs .  range 

r e l a t i o n s .  10  

( b )  This value i s  assumed t o  be 3.36 mm i n  agreementwi th  the  

c a l c u l a t e d  va lue .  Measured value's f o r  the  o the r  absorbers  a r e  

computed from the  measured pulse lengths  r e l a t i v e  t o  t h a t  

assumed f o r  X-cut quar tz  with 1 .9  MeV e l e c t r o n s .  
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FIGURF: CAPTIONS 

Figure 1 Electron calorimeter consis t ing of a th ick  e l a s t i c  absorber and 

a quartz s t r e s s  gauge. The thickness of t h e  absorber i s  grea te r  

than t he  e lec t ron  end-point range. The beam i s . e x t r a c t e d  i n  a 

vacuum and impinges 'on t he  upper surface of the  absorber through 

an aluminum f i l t e r  0.33 mm th ick.  This calorimeter has been used 

t o  study t he  charac te r i s t i cs  of a 2 MeV pulsed-electron-beam 

machine. 

Figure 2 Stress-t ime p r o f i l e  f o r  an aluminum absorber 6.10 mm th ick ,  Time 

increases from l e f t  t o  r i g h t  with a sca le  of 200 nsec per  major 

d iv l s  ion. The e l e c t r i c a l  noise accompanying t h e  deposit ion i s  
, , 

shown on t h e  extreme l e f t .  The v e r t i c a l  sca le  i s  0.5 v o l t  pe r  

major divis ion.  The peak c~mprese ive ,~  s t r e s s  indicated by t he  

gauge ie 0.54 kbar. Such date. can be used t o  study t h e  in tens i ty ,  

energy, and pulse duration of pulsed e lect ron beams. 
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