shA NDG,-/T42 ¢

LONF-F70118 =3
STATISTICAL VALIDATION OF SYSTEM MODELS

Patrick Barney
Experimental Structural Dynamics Department
Sandia National Laboratories
Albuquerque, New Mexico

Carlos Ferregut .

Luis E. Perez (R Wl
"FAST Center for Structural Integrity of Aerospace Systems 828103
The University of Texas at El Paso : L buc9

El Paso, Texas @ S T ﬂ
Norman F. Hunter
Engineering Science and Analysis Division
Los Alamos National Laboratory
Los Alamos, New Mexico
Thomas L. Paez
Experimental Structural Dynamics Department
Sandia National Laboratories
Albuquerque, New Mexico

~ MASTER

It is common practice in system analysis to develop mathematical models for system
behavior. Frequently, the actual system being modeled is also available for testing and
observation, and sometimes the test data are used to help identify the parameters of the
mathematical model. However, no general-purpose technique exists for formally,
statistically judging the quality of a model. This paper suggests a formal statistical
procedure for the validation of mathematical models of systems when data taken during
operation of the system are available. The statistical validation procedure is based on the
bootstrap, and it seeks to build a framework where a statistical test of hypothesis can be run
to determine whether or not a mathematical model is an acceptable model of a system with
regard to user-specified measures of system behavior. The approach to model validation
developed in this study uses experimental data to estimate the marginal aﬁd joint confidence
inte?vals of statistics of interest of the system. These same measures of behavior are
estimated for thB}@?ﬁﬁB%—%&l model. The statistics of iﬁterest from the mathematical model
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are located relative to the confidence intervals for the statistics -obtained from the
experimental data. These relative locations are used to judge the accuracy of the
mathematical model. An extension of the technique is also suggested, wﬁerein randomness
may be included in the mathematical model through the introduction of random variable and
random process terms. These terms cause random system behavior that can be compared to
the randomness in the bootstrap evaluation of experimental system behavior. In this
framework, the stochastic mathematical model can be evaluated. A numerical example is

presented to demonstrate the application of the technique.

Introduction

Decisions based on any system analysis depend, naturally, on the mathematical model
which is set up to predict the behavior of the system. However, if careful real life decisions
are to be made, it is necessary that considerations about the validity of the model itself be
taken into consideration. The validity of a model can be assessed by comparisons with
other more involved, proven models that exhibit a closer representation of the physical
system, or by comparisons with measures of collected data from the field or the labomtory.
These so called real data of system behavior, however, contain in one way or another a
certain degree of uncertainty, because any data collection and data processing scheme is
never error free, and real systems have features that are unaccounted for in measurements
and models. Real systems exhibit test-to-test variations, unit-to-unit variations (between

units that are nominally identical), and measurement uncertainty.

Development of a system model is commonly guided by a balance between two
requirements: (1) the need to represent reality, reflected by the measured data, and (2) the
pragmatic need for a relatively simple mathematical model. Therefore, the validation of a
model would depend on the degree of uncertainty associated with the measured data of

system behavior and the number of basic variables, parameters and complexity of their
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interrelationships that have been included m the model. It is obvious from this that it is not
particularly helpful to try to validate a model by calculating the differences of the results
from the measured data. However, any alternative validation scheme shbuld have a level
of sophistication which does not alter the pragmatic level of complexity that characteri.zes
the model. Further, it would be convenient if the model validation scheme makes full use of

the information provided by the measured data.

Using the concept that the "real" behavior of the system in any measured behavior space is
a random realization within the measured space, which is supposed to be represented by the

model, a validation methodology based on statistical significance tests may be devised.

The bootstrap is a method for assessing the accuracy of arbitrary-statistics of measured
data. It was developed by Efron (1979) and is clearly explained in a text by Efron and
Tibshirani (1993). It provides a means for estimating.the standard error, confidence
intervals, and bias in statistical estimates. It was developed for situations in which the
underlying data are non-Gaussian, and the statistics of interest are non-Gaussian and not
Gaussian-related. It can be used in the system analysis/system modeling framework to
assess the accuracy of measures of system response and characteristics of systems, for
example, response spectral density, cross-spectral density, frequency response function,
modal parameters, and other measures of ﬁnear and nonlinear system response. The
procedures for using the bootstrap to perform these statistical analyses are described in

Hunter and Paez (1995), and Paez and Hunter (1996).

We propose in this paper a framework for statistical validation of system models when
experimental data are available. The procedure includes the following steps. First, identify
one or more measures of system character as the basis for validation of the mathematical

model. (These measures might be quantities to be considered individually, or quantities to
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be considered jointly. For example, the sgc_ond eige'nfrequenéy of a linear system might be
a quantity to be considered individually. The three individual average values of system
response spectral density in three critical frequeﬁcy ranges might be' quantities to be
considered jointly.) Next, using the bootstrap and the experimental data from the phys.ical

system, estimate the confidence intervals and the joint confidence intervals (as appropriate)

for the measures of system character, say at the (1-0)x100% level. Then evaluate these

same measures of system character from the mathematical model. Locate the measures of
system character from the mathematical model relative to the confidence intervals of
measures of system behavior from the bootstrap analysis. Now make a statistical
hypothesis: the measures of system character from the mathematical model are accurate
representations of the corresponding measures from the actual system. Perform a statistical
test of hypothesis. If the measures of system character from the r;;athematical model fall

within the confidence intervals of the measures of system character from bootstrap
analysis, then the hypothesis is accepted at the level of significance oc.. Otherwise, the

hypothesis is rejected. The mathematical statistics of this framework are developed in this

paper and a numerical example is presented to demonstrate use of the technique.

The development described above assumes that the model for the system under
consideration is deterministic, in the sense that all its parameters are deterministic variables.
However, it is clear that under certain circumstances it may be desirable to include
parameters in the mathematical model that are random variables and random processes.
After all, there are features of the system under consideration that cause the measures of its
behavior to display the random variation to be characterized with the bootstrap analysis. In
view of this, we describe in the following how mathematical models with mdom variable
and random process parameters might be validated using a simple extension of the present

technique.
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It is possible to think of situations in which a model may be said to be validated in a
“limited sense.” Two of these situations may occur: 1) when the model predicts only a
certain aspect of the system behavior, and 2) when only a subset of the vaﬁables
representing that aspect of system behavior fall within the specified confidence intervals. In
the first case, the argument can be made that if the predicted behavior is what the engineer

was looking for, then the model could be satisfactorily valid under the constraint of this

pragmatic condition, and as long as the predicted measurements fall within the defined .

confidence regions. However, the second situation immediately introduces the need for

defining a scalar index that could be used to quantify the degree of validation.

In the following we first introduce the bootstrap - what it is, how it is used, how it is
computed. Next, we show how the bootstrap can be used to compute confidence regions
for measures of system behavior. We provide a simplé example of the. application of the
bootstrap. Then we develop the framework for statistical validation of mathematical
models. Finally, we present the results of an experimental example, demonstrating how the

finite element model of an aluminum beam might be validated.

The Bootstrap

The bootstrap is a technique for the assessment of the accuracy of estimates of parameters
of probability distributions. These estimates are statistics of measured data and their
accuracy is estimated in terms of standard error, confidence intervals, and/or bias. To
perform a bootstrap analysis, we measure data from a random source and assume that the
observed data represent the source. The source is assﬁmed to generate realizations with an
unknown probability distribution. Each observed data point is assigned a probability of
occurrence of 1/n, where n is the total number of data points measured. A bootstrap sample

of the data is created by selecting at random, with replacement, n elements from the
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measured data set. This process is illustrated in Figure 1.. The procedure is ‘readily
implemented using a uniform random number generator which selects, with equal
probability, integer values in the range 1 to n. Sampling is done with rcphlacement, o each

bootstrap sample may have several occurrences of some data values and other data values

may be absent.

F=X=(x,%,..%16) (Samples have equal probability)

Creationof bootstrap sample is accomplished
throughrandomselection among elementsof X.

l For example, let X = (xy, ..., X16). A potential

bootstrap sample is shown below. (The sample
contains 16 elements.)

X" = (%2, %7, %4, X1 1> X4)

Figure 1. Obtaining a bootstrap sample.

In a bootstrap analysis, numerous bootstrap samples are created. The statistic of interest is
computed from each bootstrap sample; the resulting quantities are known as bootstrap
replicates of the statistic of interest. Standard error, confidence intervals, and bias of the
statistic of interest are computed using standard techniques and formulas on the bootstrap

replicates of the statistic of interest. For example, let B denote the number of bootstrap

samples used in an analysis, and let 6" (b),b =1,...,B, denote the bootstrap replicates of the

statistic of interest. Then the standard error of the statistic of interest is estimated with
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,A- I'BA* . 12 ' _
sef[B—iz(G (b)-6 (.)) ] (1)

~ b=l

B
where 0*(.) = %29* (b).
b=1

In one type of bootstrap analysis, the two-sided, (1-0)x100% confiderice interval is

obtained by sorting the bootstrap replicates of the statistic of interest, and identifying (or

interpolating) the (0/2)x100% percentile value and the (1-0/2)x100% percentile value in the

sorted list, and using the identified values as the limits of the confidence interval. Another

more advanced method for confidence interval estimation is discussed in Efron and

Tibshirani (1993).

The number of bootstrap samples, B, used in an analysis, ranges from 25 to several
thousand. The standard error of a parameter estimate may be computed using 25 to 50
bootstrap samples. Accurate computation of the confidence intervals of an estimated

parameter requires analysis of a thousand or more bootstrap samples.

Bootstrap sampling provides an optimal estimate of the probability density function which
characterizes the data source given that our knowledge of the source is limited to the
measured data. Computation of a statistic from the bootstrap samples simulates
computation of the same statistic on samples drawn from the real world distribution.

Properties of the “real world” distribution are estimated in the “bootstrap world” as

illustrated in Figure 2.
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Real World Bootstrap World

Unknown Probability Observed Observed Bootstrap
Distribution Sample Distribution Samples
F — X =(x1,%3,..,X,) - Foxt = (x:f,x;,...,x:)
9=S(X) é*=s(X*)
Statistic
of Interest Bootstrap Replicates
of Statistic of Interest

Figure 2. The bootstrap approximation to the real world. The observed distribution is our
best estimate of the true distribution. The observed sample i X, and the statistic of interest

6= 5(X) can be computed based on this. In the bootstrap world the observed data are used
to generate as many bootstrap samples X * as we wish. Each bootstrap sample is used in

the formula §° = s(X*) to compute a bootstrap replicate of the statistic of interest. The
bootstrap replicates are used to analyze the standard error, confidence intervals and bias of

the statistical estimator.

Confidence Regions for Measures of Mechanical System Behavior

We showed in the previous section that the bootstrap is a technique for the accuracy
analysis of statistics of random data. Among other things, it can be used to estimate
standard error and the confidence intervals of statistical estimators. Figures 1 and 2 and the
text in the previous section make it clear that in order to use the bootstrap we need to build
up an ensemble of bootstrap replicates of the statistic of interest. In this section we seek to
demonstrate that a general approeich to the generation of bootstrap replicates can be

developed in a very practical framework.
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To commence the development we assume that measured inputs (if required) and outputs
from the system to be characterized are available. Denote these (X,Y) = (xl,.:.,x,,, b P y,,)

where y: is an output corresponding to input x;. We assume that one or more statistics of
these data are the measures of system behavior or parameter estimates of interest.- To keep

this discussion general, we denote the statistics of interest as the vector of quantities
{é} = s(X,Y) )

where the function s(.) yields a vector output. These parameter estimates or measures of

system behavior can be any quantities that are mathematically describable in terms of the

measured input and response data (X,Y). There are hundreds, perhaps thousands, of
examples in different fields of interest of what these parameters might represent. In general,
for example, they might be: ‘
Constant coefficients or parameters of variable coefficients of linear or nonlinear
parametric algebraic equations
Constant coefficients or parameters of variable coefficients of linear or nonlinear
parametric ordinary differential equations
Constant coefficients or parameters of functional coefficients of partial differential
equations
Measures of behavior that assume a framework for system operation like impulse
response functions of transfer functions or frequency response functions
Eigenvalues or eigenfunctions of systems of equations assumed to govern the
measured data
Quantities that characterize nonlinear or possibly ‘chaotic systems, like Lyapunov

exponents, fractal dimensions of chaotic attractors, and other measures.
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Given that the parameters of interest can be estimated using an expression with the form of
Eq. (2), they can also be estimated using a bootstrap sample of the data. A bootstrap

replicate of the statistics of interest can be denoted
~k * *
{0} =s(x".Y) . ®

where the X*,Y* are bootstrap samples of the measured data (X,Y). To perform the
P

computation in Eq. (2) or (3) using measured data in a practical way may require some
imagination in dealing with the data, but it can usually be done directly. (See Hunter and
Paez, 1995, or Paez and Hunter, 1996, for specific descriptions of how bootstrap
replicates of such quantities as estimates of autospectral density, cross-spectral density,

frequency response function, eigenvalues, and eigenvectors can be obtained from measured

data.)

Any number of bootstrap replicates {éz }, b=1,..,B, can be generated using the approach

and the formulas described above. These replicates can be used to compute the accuracy
statistics of interest. The descriptor of special interest in the present application is the

confidence interval (if there is only one parameter, or if we are interested only in the

marginal behavior of the individual quantities in {é}) or the joint confidence region for
multiple parameters in {é} The reason is that these will be used later as the basis for a test

of hypothesis. When there is only one parameter in the vector {é} then its confidence

interval can be obtained as described in the previous section. When there are multiple

parameters, their confidence region can be obtained as follows.




Each of the bootstrap replicates {é;}, b=1,..,B, occupies a point in the space whose

coordinates are defined by the elgments of {é} That is, if the vector {é} has N elements,

then each of the bootstrap replicates has N corresponding elements, and these replicates
are, in general, different. The collection of bootstrap replicates constitutes a measured

ensemble from the random process source that has the sampling distribution of the vector

{é} When the ensemble of generated bootstrap replicates is large enough it can be used to

empirically infer the characteristics of the sampling distribution of {é} Among other

things, the limits of the measured ensemble can be used to infer confidence regions for the

parameter estimates.

The manner in which the confidence regions are constructed using the ensemble of
generated bootstrap replicates is open to the discretion of the analyst. However, there are
two general approaches for obtaining confidence intervals. These are the parametric and
nonparametric approaches. With nonparametric approaches the analyst seeks to define a
confidence region that accurately reflects the shape of the joint probability density function
(pdf) of the source of the bootstrap replicates. The methods for accomplishing this are so
varied that we will not pursue their description here. The idea behind parametric approaches
is that a parametric form for the confidence region that approximately reflects the contours
of the joint pdf can be specified and its parameters identified. For example, a
multidimensional ellipsoid might be appropriate in many applications for the specification

of the confidence region of multiple statistics of measured data.

Example. Let X be a random variable defined as

X=U%2+02Z ‘ (a)
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where U is a uniform(0,1) random variable, and Z is a standard normal random variable,
independent of U. Create 20 realizations of the random variable X, and from these
realizations create 1000 bootstrap samples. From each bootstrap sample create a bootstraia
replicate of the mean estimator of X and a bootstrap teplicate of the skewness estimator of
X. The skewness estimator replicates are plotted versus the corresponding mean estimator
réplicates in Figure 3, and clearly show some degree of correlation. For this ex;a.mple the

mean estimator random variable and the skewness estimator random variable are the two

elements of the vector {é} The bootstrap replicates of the mean estimator and the

skewness estimator are the bootstrap replicates {é;}, b=1,...,1000. We assume that joint

confidence regions of the mean and skewness estimators can be defined using ellipsoids.
Therefore, to define the 95% joint confidence region for the mean and skewness
estimators, we identify the ellipsoid that encompasses 95% of the points in'_Figure 3; the
ellipsoid matches the general shape of the distribution of the replicates. This is the region

enclosed by the ellipsoid in Figure 3.

0.06

0.04r
0.02¢
ot
-0.02¢

Skewness estimate

-0.04;¢

-0.06 : O a
0 0.2 0.4 0.6

Mean estimate

Figure 3. Joint bootstrap replicates (shown by circles) of the mean and skewness

estimators based on 20 realizations of the random variable defined in Eq. (a), and the
estimated 95% confidence region.
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Validation of Mathematical Models

The procedure for validation of mathematical models is based on the concept of statistical
hypothesis testing. We assume that a mathematical model for the system under
consideration has been constructed, and that characteristics of the mathematical model that
correspond to the characteristics of the actual system can be obtained. The characteristics of

the mathematical model that correspond to the paraméters evaluated for the experimental
system will be denoted {ém } These model parameters must be obtained in a manner

compatible with the specification of the model. For example, eigenvalues and
eigenfunctions of a linear model can be obtained directly from the model. On the other
hand, nonlinear mathematical models may require the use of measured inputs to compute

simulated outputs, followed by the use of the measured inputs with the simulated outputs in

Eq. (2) to evaluate the model parameters.

To perform a model validation, we first make the hypothesis that the mathematical model is

a satisfactory representation of the actual system with respect to the parameters in the vector

{é}. We test this hypothesis at the 1000% level of significance by estimating the

(1-0)x100% confidence region for {é} We can use the bootstrap to accomplish this.

Denote this region Rl_a(é). If

{6moa} € Ri-a(8) @

then we accept the hypothesis and consider the model validated with respect to the

parameters {é} Otherwise, we reject the hypothesis and consider the model invalid with

respect to the parameters {é}
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Figure 4 shows a schematic representation of the model validation procedure. Recall that
model validation is performed from two ends. From one enci, a confidence region is
specified for statistics of data measured from an experimental system. From the other end,
the parameters of interest are computed from the mathematical model. In the middle, the
parameters from the mathematical model are located w1th respect to the confidence region,

and the accuracy of the mathematical model is confirmed or rejected.

The validation procedure described here can be applied to any individual measure or sets of
measures of model characteristics. It is anticipated that in practical applications a good
mathematical model will be validated with respect to some measures and will not be
validated with respect to other measures. The only way that a mat.herna.tical model might be
validated with respect to all measures of system performance_is that it perfectly incorporates
every bit of information in the experimentally measured inputs and rcsponseé‘ (X,Y). Even
if this could be done, the mathematical model would likely fail if it were tested with
reference to other sets of experimentally measured inputs and responses. Therefore, in
practical applications it should only be hoped that a mathematical model might be validated

with respect to some fundamental set of parameters or measures of system response.

Numerical Example

The system to be considered in this example is a simple, elastic, aluminum beam. Its
dimensions are 24 x1x 0.25 inches. The beam was suspended from one end by a string to
simulate free boundary conditions. A piezoelectric accelerometer was mounted at the end
opposite the string attachment point to measure the system’s response. An additional mass
was added to the beam during each experiment; specifically, an acceler.ometer was mounted
to the beam at a random location. The purpose of this was to simulate the random variation

in a complex system. The parameters of interest in the beam are its linear model parameters,



POYIaiN

IJeA Sl [opoWl
Pl 1I9P deansisoog

[edijewiaylew ay) EE
(4) O sieowieled J

f

=)

S5
spd

1 wna N:—.>> £ w.—.>> QU:Q—.QW.—”:QU Q&ma
siojoweled wWoalsAs .

1 ans N>> £ _.>>
uonewnsy el o slajowieled WolsAg

19JPUBACY E

asuodsoy /W,

wysdy 1~
aanseolN EriE

mhm\sbow sisfjeuy eleq
[OPON [eOljewisylE N [BPOY WOISAS |

uoneplie  [9poy [ednewayiey)
*} 2aN3[




and in particular, its eigenfrequencies or modal frequencies. These can be estimated by ﬁrs-t

estimating the frequency response function of the beam, then fitting a linear model to the

frequency response function, and finally inferring the modal frequencies from the linear

model.

The experiments performed on the beam to obtain its dynamic characteristics are impact
tests. During each experiment the beam is excited by impacting it with an inst.rumented
hammer near the string attachment end; ;hc input force and the response (near the free end)
are measured. The impact experiment was repeated 10 times with one input and one
respons¢ measurement during each experiment. This time history information was then
used in the manner outlined in Hunter and Paez (1995) to estimate the system frequency
response function. The first three modal frequencies of the bearm were inferred from the
frequency response function. The beam frequency response function is shown in Figure 5.

This is an average based on the 10 experimental measurements.

10°

Mag {g/bl)
a

0F

10

200 4C0 €CO 800 1000 1260 14C0
Freq (Hz)

Figure 5. Frequency response function of the beam used in the experiment.

One thousand bootstrap samples of the input/response data were formed by sampling

among the 10 input/response pairs, and a bootstrap replicate of the frequency response
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function was formed from each bootstrap sample. There is substantial variation among the
bootstrap replicates of the frequency response function, and this variation is depicted near
the first modal frequency in the shade density diagram of Figure 6. The figure is lightly
shaded in regions where many replicates of the frequency response function lie, and it is
darkly shaded where there are few replicates. The first three modal frequencies of the
system were inferred from each frequency response function, thereby creating 1000
bootstrap replicates of the beam modal frequencies. The kemel density estimators
(estimators of the pdf’s) of the first three beam modal frequencies are shown in Figure 7.
(See Silverman, 1986, for a description of the kernel density estimator.) It is apparent from
the kernel density estimators that the sampling distributions of the modal frequencies are
skewed, and that they are not all skewed in the same direction. Further, the dispersion in
modal frequency values increases as the mode number increases. The ‘percentage points of
the cumulative distribution function estimators that are the integrals of the kemel density
estimators of the beam modal frequencies are used directiy to establish the confidence

intervals for the modal frequencies. For example, the 99% marginal confidence intervals

for the first three modal frequencies are ‘

(81.58,83.27) Hz, (228.12,231.37) Hz, (446.85,455.30) Hz ®))
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Figure 6. Shade diagram showing the density of bootstrap replicates of frequency response
function near the first modal frequency of the system described above.
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Figure 7. Kernel density estimators for the sampling distributions of the first, second, and
third modal frequencies of the experimental system.




The mathematical model of the beam used in this experiment is a finite element model
created in the computer code ALGOR using three dimensional beam elements. Twenty-four
elements were used to model the beam. Accelerometers were modeled as lumped masses;
the second Iumped mass was located at the center of the beam. Because the code cannot
simulate free-free boundary conditions, the boundary coﬁdiﬁons were modeled using
rotational and translational springs with very small elastic constants. The modal frequencies

of the beam model can be computed directly in the finite element code, and the first three

modal frequencies are
83.37 Hz, 232.92 Hz, 447.60 Hz 6)

Comparing the modal frequencies from the finite element model in Egs. (6) to the 99%
confidence intervals in Eqgs. (5) indicates that the finite -element model would not be
validated with respect to the first and second modal frequencies at the one percent level of
significance, and it would be validated with respect to the third modal frequency. Note that
no attempt was made to reconcile the finite element model to the experimentally measured
data or to the computed modal frequencies. In this particular case, the analyst could
reasonably modify parameters in the mathematical model to cause the first, second, and
perhaps the third, modal frequencies to match the measured data. This is one of the

important points in the model validation framework described here.

Extension of the Validation Concept to Stochastic Mathematical Models

The model validation concept described in the previous sections acknowledges the presence
of randomness in statistics of data measured from an expeririental system. This is the
reason why we can develop confidence regions fo; parameters and measures of system

performance. It is assumed that the mathematical models used to simulate the actual




systems are deterministic in the sense that the mathematical form.of the model is prescribed,

and the parameters of the model are deterministic constants.

To extend this concept we might seek to introduce the potential for randomness in th;a
mathematical model through the introduction of model terms that are random variables or
random processes. Such a mathematical model is known as a stochastic model. This
requires that we know specifically where randomness might arise in the mathematical
model, or that we be able to introduce generic terms whose influence on the model output
mimics the behavior of the actual system even though it does not precisely match the
system phenomenology. Either way, the effect of the introduction of randomness into the
mathematical model is to create random variation in the behavior of the simulated system.
This random variation may be quite difficult to analyze in most Systems and requires the
execution of probabilistic system analysis. A probabilistic system analysis might be
performed using a Monte Carlo approach, a semi-analytic api)roach, or a hybrid approach.
For descriptions of these types of analyses, see for example Madsen, Krenk, and Lind

(1986). These analytic approaches cannot be described in detail here for lack of space.

However the stochastic model is analyzed, the net objective with regard to model validation
is that we seek to identify regions in the space of the vector of parameters {é} where the
parameters are most likely to fall. Such regions are equivalent to the confidence region

Ry, (é) defined above. Denote the region obtained from the stochastic model where the

parameters have a probability of 1-¢ of occurring as M;_, (5) Our effort in validating the

stochastic model is to determine whether the regions Rl_a(é) and Ml_a(é) are

equivalent. We can do this using any of at least three methods.
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- First, note that the region My_,, (é) can be established based on realizations from the

stochastic model in the same way that the region Rj_,, (é) was established based on the

bootstrap replicates 6, ,b=1,...,B. Using Monte Carlo techniques we can generate B
1% b g

realizations of the.vector {é} from the stochastic maihemaﬁcal model. The difference

between each realization and a corresponding bootstrap replicate from the experirriental data

can be computed, creating an ensemble of vectors

{D}={Bmoap} {65} b=1...B )

A

where {emod,b} is the b* realization from the stochastic model. The bootstrap method can

then be used to establish whether or not the average of the random vector- {D,} can be

accepted as equal to zero.

A second method for judging the equivalence between the regions Rj_, (é) and My_, (é)

is to use the bootstrap replicates {é; }, b=1,...,B, 10 identify a transformation to a space of

uncorrelated, standard normal random variables, use the transformation on realizations
from the stochastic model, and use a test of hypothesis to determine whether or not the

transformed stochastic model realizations belong to the standard normal space. This is

accomplished by first using the bootstrap replicates to approximate the pdf of {é} A good
framework for writing the approximate joint pdf of the elements in {é} based on the

bootstrap replicates {0 ,b=1,..,B, is the kemel density estimator, described in
p ICp b :

Silverman (1986). From the approximate joint pdf, the conditional pdf’s of the elements in

W



{é} can be written, and based on these, a transformation ﬁom the space of {é} to the

space of uncorrelated, standard normal random variables can be written. The

transformation that accomplishes this is known as the Rosenblatt transform. (See

Rosenblatt, 1952.) Now if realizations {émod,b }, b=1,...,B, from the stochastic model are

operated on with the Rosenblatt transform, and if the regions Ri_, (é) and My_, (é) are

~

equivalent, then the realizations {Gmod,b}, b=1,...,B, will appear normal in the transform

space. A chi squared test can be used to test the appropriate hypothesis.

A third method for assessing the equivalence between the regions Ry_, (é) and M_,, (é)
is a simple visual inspection and comparison of projections of the two regions into two
dimensional spaces of pairs of coordinates in {é} Even if one of the previous two

methods for comparing the regions is adopted this approach is a prudent double check on

the results.

Conclusions

We have developed in this paper an approach to statistical model validation that is based on
the bootstrap method for statistical analysis. The approach accounts for randomness in real
system characteristics and the data measured from real systems, and can be extended to
account for randomness in the characteristics of the mathematical model. The approach is
formal and systematic in that it is based on a well established statistical analysis procedure,
and it provides an objective measure of the interval that a model parameter must occupy in
order to be considered representative of the actual system at a particular level of
significance. The approach is computer intenéive; that is, it is time consuming to generate
bootstrap samples and replicates of the statistics of interest. However, its advantag¢ is that

it properly accounts for the non-Gaussian nature of arbitrary statistics of interest.

e e
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It must be emphasized that the analyst who uses the proposed procedure for statistical
model validation must be judicious in his or her choice of the specific rne’asures and the
number of measures of model performance used to validate the model. The number of
measures should be neither too great nor too small, and should reflect the importance of the
application. The specific measures of performance used should reflect the analyst’s
expectations of the model. Some measures of performance (like average measures of
system behavior over a broad region) will be easier to validate than others. However, when
detailed model behavior is validated, model performance in the simulation of detailed

behavior will be anticipated to be accurate.
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