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RADIATION DAMAGE TO GRAPHITE 
FROM 30 C TO 185 C 

INTRODUCTION 

The  effect of r eac to r  i r rad ia t ions  on polycrystall ine graphite a t  
room t empera tu re  or  sl ightly higher has  been thoroughly studied. (1, 2) 

Changes in  proper t ies  with neutron exposure are now reasonably predictable.  
Although the fundamental p rocesses  are far f r o m  being w e l l  understood, 
considerable p r o g r e s s  has  been made in this area, and a descr ipt ion of 
radiation damage  in graphite h a s  been developed. (l) The  effect of i r r a d i a t -  

ing graphite a t  different t empera tu res  is much less w e l l  known. With the 
c u r r e n t  t rend  - toward higher r eac to r  t empera tu res  it is important  t o  know 
how graphi te  w i l l  behave under these  conditions. 
of the effects  of i r rad ia t ing  graphite a t  both high and low t empera tu res  will  
aid in developing a mre detailed description of radiation damage. Th i s  
study w a s  undertaken to  l ea rn  m o r e  about the behavior of graphi te  above 
30 C with the hope that the r e su l t s  would contribute to the understanding 
cf r a m i o n  damage E d  yield data of engineering value. 

~-- - - - - - - . - - . , ,&=.  ---------. -__. - -__ 

u 
F u r t h e r m o r e ,  a knowledge 

---- 
- - -  

SUMMARY AND CONCLUSIONS 

P r o p e r t y  changes in polycrystall ine graphite resu l t ing  f r o m  r e a c t o r  
i r r ad ia t ions  a t  t empera tu res  up to  185 C and over a range  of exposures  up 

to 1135 MD/CT have been determined. Changes in s to red  energy, t he rma l  
conductivity, s ample  length, and Co in te r layer  c rys ta l l i t e  spacing are 
markedly decreased as exposure  t empera tu re  is increased.  
res i s t iv i ty  changes are  a l s o  less a t  higher exposure t empera tu res ,  but th i s  
proper ty  change does not depend as s t rongly on t empera tu re  as the others .  

_i 

Elec t r i ca l  

I so thermal  annealing s tudies  of Co changes w e r e  conducted on a 

The  r e s u l t s  are 

number  of i r rad ia ted  samples .  
number  of p r o c e s s e s  distributed in activation energy. 
summar ized  in activation energy  s p e c t r a  in which the distribution of C o  

The  data  w e r e  analyzed assuming a large 

UNC LASSIFXED 
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damage is given as a function of the activation energy  requi red  fo r  annealing. 
It is found that not only does a higher exposure t empera tu re  d e c r e a s e  the 
total  amount of proper ty  change, but also the distribution of damage accumu- 
la ted is considerably different. 

Resul ts  are discussed in terms of the radiation damage model sug-  
gested by Hennig and Hove.(l)  This  model is compatible with the  exper i -  
mental  r e s u l t s  presented. 

EXPERIMENTAL 

The  samples  studied in these  experiments  w e r e  s tandard g rade  
(CSF) graphite in the f o r m  of right c i r cu la r  cyl inders  0.426 inches in 
d iameter  and nominal lengths of three inches. 
v e r s e  cut'! f r o m  graphite b a r  stock in such  a manner  that the p r e f e r r e d  
orientation of the  Co axis  coincided with the ax i s  of the cylinder; i. e,,  the 

platelets  in the graphite c rys ta l l i t es  tended to  be ' 's tackedg8 para l le l  to the 
ends  of the cylinder. 

The cyl.inders w e r e  ' ' t r ans -  

P r i o r  t o  i r radiat ion the lengths of the samples  w e r e  measu red  with 
a ve rn ie r  micrometer .  
ined by  the Kohlrausch method(3) and the la t t ice  C o  spacings w e r e  determined 
b y  X- ray  diffractometry.  

T h e r m a l  and e l ec t r i ca l  conductivities w e r e  determ- 

Two graphite s amples  w e r e  sea led  in an aluminum can one-half 
inch in diameter. Severa l  such  cans  w e r e  irradiated in a s sembl i e s  l ike 

that shown in Figure 1. 

wound heater .  
in a jointed aluminum housing. The  completed a s sembly  w a s  then i r r ad ia t ed  
in an "annulus tube" facil i ty (F igu re  1) consis t ing basical ly  of two concentr ic  
tubes extending through the reactor, The  experimental  a s sembly  w a s  
i n se r t ed  in a d r y  cen t r a l  tube, and cooling w a t e r  flowed in the annulus 
between the two tubes. 

Each sample can w a s  inser ted  in a tubular w i r e -  

F o u r  of these  hea ter  and sample  a s sembl i e s  w e r e  mounted 

Sample t empera tu res  during i r rad ia t ion  w e r e  controlled by varying 
the e lec t r ica l  power supplied to  the h e a t e r s  through the control  s y s t e m  

UNCLASSIFIED 
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H E A T E R S  v / 

/ COOLING WATER 

ANNULUS TUBE FACILITY 

\ 
THERMOCOUPLE 

FIGURE 1 

Sample and Heater  Details of the Experimental  Faci l i ty  

M U LTI  PO I N T 
RECORDER 

RECORDER 1 CONTROLLER 

I I I I------ - 
I - 

AUTOTRANSFORMER - 
115 VAC - 

HEATERS 

*I # 2  "3 44 

I I I 1 

FIGURE 2 
Tempera tu re  Control Sys tem 

I 
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shown schematical ly  in Figure 2. 

given assembly  w a s  wound with a different,  predetermined e l ec t r i ca l  resist- 

ance. 
e l ec t r i ca l  power through a Variac au to t ransformer .  
in series with the h e a t e r s  attenuated the voltage applied to the  hea ters .  
shunt around the rheos ta t  w a s  opened and closed by the cont ro l le r ,  giving a 

Each of the four h e a t e r s  installed in a 

The four  h e a t e r s  w e r e  connected in para l le l  and w e r e  supplied with 
A rheos ta t  connected 

A 

high-low" modulation of hea te r  power. The high'! and I t  low" hea te r  powers  
T h r e e  s e p -  could b e  adjusted by varying se t t ings  of the Variac and rheostat .  

arate i r rad ia t ions  of the above type w e r e  per formed to  produce the data  
discussed herein.  

IRRADIATION HISTORY 

Irradiat ion h i s to r i e s  of the graphi te  s amples  are summar ized  in 
Table  I. (4) The sample  exposures  are given in t e r m s  of IDmegawatt days 
p e r  cent ra l  tonts (-). 
radiation received by the sample  during the t ime  requi red  for  a ton of u r a n -  
ium in the cen t r a l  region of a r e a c t o r  to genera te  one megawatt-day of 
f iss ion energy. 
t h e  equivalent exposures  which the samples  would have received,  during 

, as given, MWD the s a m e  per iods,  in a "s tandards '  test hole position. One - C T  
is equivalent to an  integrated neut rm flux of approximately 6. 5 x 10l7 neutrons 
p e r  s q u a r e  cent imeter .  

MWD 
CT This  unit is defined as the amount of neutron 

The exposure f igures  shown have been normalized to  give 

Absolute values of the sample  exposures  are a c c u r -  
ate within f 20 p e r  cent. (5 )  

The exposure t empera tu res  shown are mean values  over  the course 
of the i r radiat ion.  
t u r e s  w e r e  used to  control  hea te r  powers,  the uncertainty in t empera tu re  is 
less than f 5 C. 
trolled,  w e r e  sens i t ive  to  s m a l l  differences in heat leakage r a t e s  and to 
ex terna l  influences.  
m o r e  during i r radiat ion.  However, the mean t empera tu re  values as shown 
fo r  all s amples  are accura t e  within f 15 C. 

In the c a s e  of the sPcontrol" samples ,  whose t empera -  

Tempera tu res  of the o the r samples ,  not being d i rec t ly  con- 

The t empera tu res  of these  samples  var ied  considerably 

UNCLASSIFIED 
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Sample No. 

SAMPLE IRRADIATION HISTORY 

MWD Exposure  - C T  Temp. OC 
(* 15 C )  

93-95) 
93-16 ) 
93-23) 
93-14 ) 

93-17 ) 
93-18 ) 

93 -139) 
93-42) 

93-62) 
93-61) 
96-22) 
96-97) 
96-84 ) 
96 112) 
96-29) 
96 -60) 
96 -14 ) 
96 92)  

93-99 ) 

93-39) 

19 3 

19 3 

19 3 

4 64 

4 64 

4 64 

113 5 

1135 

113 5 

113 5 

111 

139 

164 

12 7 

158 

185 

135 

13 7 

123 

11 8 
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A l a r g e  number of proper ty  changes have been measured  on 
graphi te  i r rad ia ted  a t  room tempera ture .  These  include 2, c r y s t a l  s i z e  
and unit ce l l  dimensions,  s to red  energy, e lec t r ica l  res is t ivi ty ,  t he rma l  
conductivity, s ample  length, e las t ic  modulus , Hall coefficient, susceptibil i ty,  
magneto-resis tance,  thermoelec t r ic  power, paramagnet ic  resonance,  neutron 
t ransmiss ion ,  and chemical  propert ies .  Since any radiation damage model 
must  be compatible with the observed proper ty  changes, i t  is important  t o  
de t e rmine  radiation effects on as many proper t ies  as possible. 
p roper t ies  may be m o r e  useful in this  r e spec t  due to  a be t te r  fundamental  
understanding of a proper ty  change or the availabil i ty of a sensi t ive exper i -  
mental  tool. 
p rac t ica l  i n t e re s t  in the construction and operation of r e a c t o r s  containing 
graphite. We have measu red  four proper t ies  in this  study: s tored  energy  
(SE), length (L), the rma l  conductivity ( K )  and in te r layer  spacing (Co). 
E lec t r i ca l  res i s t iv i ty  measurements  w e r e  a l so  made but i t  w a s  found that 
t h i s  proper ty  does not depend s t rongly on i r radiat ion tempera ture .  The  
slight d e c r e a s e  in damage a t  higher t empera tu res  w a s  not much g r e a t e r  
than the experimental  e r r o r  of measurement  and so th is  proper ty  h a s  not 
been included here .  

Certain 

In addition, a f e w  property changes are of considerable  

A s  a r e su l t  of r eac to r  i r radiat ion theene rgy  content of graphi te  
increases. 
ta l l ine sample  and a sample  containing c rys ta l l ine  defects  is termed s to red  

mergy.  
measu remen t s  f r o m  which total  s to red  energy  is obtained, or as an apparent  
d e c r e a s e  in the specific heat  from which the  s to red  energy  release r a t e  may 
b e  obtained as a function of annealing temperature .  The  total  s tored  energy  
as a function of i r radiat ion t empera tu re  f o r  193 MD/CT and 464 MD/CT 
samples  is given in F i g u r e  3. 

as exposure t empera tu re  is increased  from 30 C to 185 C. 

The difference between the energy  content of a perfect ly  c r y s -  

It may be measured  through conventional heat of combustion 

The  s to red  energy  d e c r e a s e s  v e r y  markedly 

UNCLASSIFIED 
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The  dimensional stabil i ty of graphite exposed a t  30 C has  been 

determined as a function of neutron exposure.  ( 2 )  In general ,  a r t i f ic ia l  
graphite cut t r a n s v e r s e  to  the extrusion ax is  expands in a r e a c t o r  a t  r o o m  
t empera tu re  while paral le l  cut graphite cont rac ts  slightly. 
highly crystal l ine the sample,  the m o r e  pronounced is the expansion of t r a n s -  
v e r s e  samples .  
changes fo r  t r a n s v e r s e  samples  exposed to  193 MD/CT and 1135 MD/CT. 
An e r r o r  w a s  made  in measur ing  the or iginal  lengths of s amples  in the 464 
MD/CT series and these  r e su l t s  w e r e  discarded. Length changes are con- 
s iderably  reduced a t  the higher exposure tempera tures .  

The m o r e  

Figure 4 shows the effect of exposure t empera tu re  on length 

The  the rma l  conductivity of graphite is decreased  by r eac to r  i r r a d i a -  
tion. , as  determined by the 

Kohlrausch method,(3) has  been plotted in F igu re  5 fo r  s amples  with 193, 
464, and 1135 MD/CT exposure. KO values var ied f r o m  2.10 to 2. 65 with 
an average  of 2.37 c a l / c m  s e c  OC. 

The  r a t io  of init ial  to  f inal  conductivity, 
K 

Irradiat ion damage to  graphite causes  an inc rease  in the C spacing, 
0 

the  dis tance between a l te rna te  carbon layer  planes within the crystal .  
These  changes, calculated f r o m  the shift  of the 002 X- ray  reflection peak, 
are shown in Figure 6. The pre- i r radiat ion Co spacing fo r  these  samples  
w a s  6 .  70 A. This  increased  to  7. 23 Aaf t e r  an exposure of 1135 MD/CT a t  
30 C. 

0 0 

0 
At 185 C the inc rease  is only to 6. 78 A. 

LATTICE SPACING ANNEALING 

Radiation damage in graphite may b e  reduced by the rma l  annealing. 
I t  h a s  been found that fo r  s amples  exposed a t  about 30 C, damage is removed 
beginning a t  about 75 C and continuing to  v e r y  high tempera tures ,  even 
approaching graphitization t empera tu res  of 2500 to  3000 C. 
been made to  ex t rac t  fundamental information f r o m  the annealing kinetics 
which would aid in developing a model f o r  radiation damage in graphite. 
number  of fundamental quantit ies govern the rate  of annealing of a par t icu lar  
proper ty  but in most  c a s e s  the number of experimental  quantit ies determined 

Attempts have 

A 
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is not sufficient to  obtain accu ra t e  values  for  any of these,  
which seems to  be most  useful is that used by Vand(') in which the concept 
or a l a r g e  number of p rocesses  distributed in activation ene rg ie s  w a s  in t ro-  
duced. N e ~ b e r t ( ~ )  l a t e r  applied this idea to  annealing of radiation damaged 
graphite. Pr imak(8)  has  recent ly  generalized the Vand t rea tment  and a 
br ief  review of this  work is necessa ry  to d iscuss  the graphi te  annealing 
experiments . 

One approach 

By measur ing  the r a t e  of change dP0 dt of s o m e  physical property,  
P( t ) ,  during an anneal, a function, p (E), may b e  calculated which shows 
the way damage is distributed among the activation energies .  
po(E) v s  E is t e rmed  the activation energy  spectrum. 
ing the i so thermal  annealing p r o c e s s  is 

0 
A plot of 

The equation govern- 

where  

1 i- 1- 
en(E, t )  = 1 - (1-n)Bt exp 1 

in which B = A(f/po)  '-' 
= init ial  concentration of possible  kinetic p r o c e s s e s  90 

f = change in the proper ty  accompanying one kinetic p r o c e s s  
n = kinetic o r d e r  
A = collisional constant of the Arrhenius  equation 
E = the activation energy  
R = gas constant 
T = annealing temperature .  

UNCLASSIFIED 
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If the activation energy spec t rum extends over  a range  many t imes  
nRT, 8 (E, t) ,  the charac te r i s t ic  annealing function, may be  approximated 
by a s t ep  function. 
s t rong  dependence of B(E, t )  on E, the dependence on B and f may be t rea ted  
as a second o r d e r  effect. For i so thermal  annealing under these  conditions, 

Also, i f  the annealing behavior is dominated by the 

where  

and 

Eo = R T l n B t  

- t dP( t )  
Po(Eo) - RT dt 

* 

The effect of making the mathematical  approximation to  Qn (E, t )  
is to  d e c r e a s e  the slresolution91 of the activation energy  spec t rum so  that 
any s h a r p  peaks w i l l  be broadened out to  a width the o r d e r  of nRT. This  
is s t i l l  quite sat isfactory when dealing with a distribution over  a range  
many t i m e s  this.  In o r d e r  to  use  the above equations, B must  be known or  
estimated. 
spec t rum w i l l  not f i t  together and this may s e r v e  as  a t e s t  f o r  an es t imated  
value of B.  

If B is incor rec t ly  chosen the p a r t s  of the activation energy  

Figure 7 gives an activation energy  spec t rum obtained for a series 
of i so thermal  anneals  of Co spacing damage on a sample  exposed to 556 
MD/CT at about 30 C.(') Dotted lines are drawn through the experimental  
points fo r  a single i so thermal  anneal. 
shows the way Co damage w a s  distributed among activation energ ies  before  
any annealing w a s  done. 
activation energ ies  studied, f r o m  26 to 80 kcal/g-atom, contributed to  the 
observed annealing rate. 
3 3  kcal/g-atom, but the height is not w e l l  defined. 

The  envelope of these  dotted l ines  

Kinetic p r o c e s s e s  involving the total  range  of 

It is clear that t he re  is a s h a r p  peak a t  about 
This  peak is a l so  found 

in s p e c t r a  f r o m  other  proper ty  changes. (7 )  

UNCLASSIFIED 



UNCLASSIFIED -15 - HW-47776 REV 

E kcol /g-atom 

FIGURE 7 

Activation Energy  Spec t rum - 556 -at 30 C MD 
C T  
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E kcol / g - otom 

FIGURE 8 
Activation Energy  Spectrum-556 cTand MD 2 3 3  - F; at 30 C 
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-1 A constant value of B = 7. 5 x 1013 s e c  
However, th i s  method of determining B is not par t icu-  

w a s  used and s e e m s  to  
give sa t i s fac tory  fit. 
l a r l y  sens i t ive  and r equ i r e s  p rec i se  experimental  data  to be useful. For 
th is  r eason  a somewhat pess imis t ic  approach w a s  taken when drawing the 
envelope of the annealing cu rves  and the '#fine s t ructure"  w a s  averaged out. 
The extent to  which this  w a s  done w a s  a l so  governed by the reproducibil i ty 
of s p e c t r a  on duplicate s amples  and an  e s t ima te  of the resolution of th i s  
method. It is believed that the genera l  f ea tu re s  of the s p e c t r a  as shown 
are rea l ,  although the t r u e  shape of s o m e  peaks may be  considerably s h a r p e r  
than shown because  of the l imited resolution. 

The  amount of proper ty  annealed i so thermal ly  a f t e r  any t ime  t may 
b e  calculated f r o m  

which may b e  obtained f r o m  the area under the activation energy  spec t rum 
out t o  Eo. 
of the cha rac t e r i s t i c  annealing function as it moves a c r o s s  the activation 
energy  spec t rum f r o m  left  to  right,  sweeping out the damage behind it. 

Annealing of damage may be  considered to occur  by the advance 

If the r a t e  data and the assumptions made in calculating the act iva-  
tion energy  spec t rum are sufficiently accura te ,  i t  should be possible  to  
cbtain o ther  p a r a m e t e r s  (such as the o rde r ,  m, ) which m o r e  accura te ly  
desc r ibe  the annealing process .  No at tempt  has  been made  to  calculate  

these o ther  p a r a m e t e r s  s ince  i t  w a s  fe l t  that  the method of de te rmining  B, 
when combined with uncertaint ies  in the  experimental  data,  is not sufficiently 
sensi t ive to  war ran t  this. 

Aside f r o m  the value of activation energy  s p e c t r a  and any fundamental  
p a r a m e t e r s  in giving information concerning the annealing mechanism,  
activation energy  s p e c t r a  give a v e r y  convenient method of descr ib ing  the 
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damaged s ta te .  
been t o  plot damage removed v s  annealing tempera ture .  
exper iments  are corrparable only i f  the annealing t imes  are the s a m e  and 
so are of l imited value. 
able,  within the l imitations of the Vand method, s ince  the t ime  fac tor  is 
included. 
annealing a t  T1 OC fo r  tl seconds as is annealed a t  T2 O C  f o r  t2  seconds 
when the t empera tu re  and t ime  are chosen so as to  give the same Eo. This 

par t icu lar  r e s u l t  of the Vand theory  has  not been sufficiently tes ted,  but 
in the f ew c a s e s  f o r  which w e  have data the theory p red ic t s  th i s  c h a r a c t e r -  
i s t i c  of the annealing behavior v e r y  sat isfactor i ly .  
th i s  point, th i s  w i l l  offer a convenient method of predict ing the amount of 
radiation damage  annealed under a wide range  of t empera tu re  - t ime conditions. 

One method which h a s  been commonly used in the pas t  has 

However, different 

Activation energy  plots should b e  direct ly  compar -  

For  example, the same amount of damage should b e  removed by 

If fu ture  s tud ies  confirm 

DISCUSSION 

(1) T h e  description of radiation damage in graphi te  by Hennig and Hove 
is the most  detailed one yet  suggested. 
p rope r ty  changes occurr ing  between -190 C and  30  C. 
possible  p rocesses ,  s o m e  of which are represented  by the following set :  

The i r  model w a s  developed f r o m  
They d iscussed  s e v e r a l  

neutron - Graphi te  flux >c 

C-. + vacancy 5Graphi te  ( 2 )  

C2 + vacancy .-Graphite (4 1 

c + cn > 'n+l (5)  
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The paramagnet ic  and other  p rope r t i e s  of i r r ad ia t ed  graphite suggest  
that a f te r  a carbon atom slows down to near the ave rage  kinetic energy of 
the la t t ice  i t  picks up an  e lectron f r o m  the conduction band to  become a 

carbon ion, C- ,  as represented  by (1). 
these  r e in t eg ra t e  with the la t t ice  a t  a r a t e  dependent upon the t empera tu re  
(2) .  Carbon ions may a l so  combine to  f o r m  C2 molecules  (3); the activation 
energy  fo r  which is apparent ly  such that i t  occu r s  concurrent ly  with (2) .  

Reintegration of C2  molecules  (4 )  may a l so  occur  with a somewhat higher 
activation energy. 
are formed,  as represented  by (5),  which are progress ive ly  m o r e  difficult 
to  anneal. 
t r ave l  ea s i ly  becomes  blocked by l a r g e r ,  less mobile defects,  and i t  becomes  
increasingly more  difficult fo r  p r o c e s s e s  such as (2),  (3 ) ,  and (4)  to occur .  

In the t empera tu re  range  100 to 200 C 

At high neutron exposures  m o r e  complex damage c e n t e r s  

A s  the damage builds up the path along which in te rs t i t i a l s  may 

.18 - HW-47776 R E V  

Diffusion of vacancies  has  been considered,  but i t  s e e m s  likely that 
such p r o c e s s e s  r equ i r e  much higher  activation ene rg ie s  than s t e p s  (1) through 
(5 )  and can  be  neglected a t  low t empera tu res .  
(2), (3 ) ,  and (4)  can be  made to  occur  a t  a much higher r a t e  than polymer iza-  
tion reac t ions  (5), radiation damage w i l l  be  considerably reduced. The 
damage accumulated a t  185 C is only 10 to  20 p e r  cent that  accumulated at 
30 C. If reac t ions  such as (2), (3) ,  and (4) have act ivat im ene rg ie s  of s o m e  
30 to 40 kca l /g-a tom,  they would b e  considerably acce le ra t ed  at 185 C. 
React ions such as (5)  which  form higher complexes must occur  n e a r  room 
tempera ture .  It is probable that they are activated to a l a r g e  extent by hot 
carbon a toms  which s t i l l  c a r r y  s o m e  kinetic energy  in e x c e s s  of the la t t ice  
energy. 

Thus,  if p r o c e s s e s  such  as 

c* + cn ’ ‘n+l 

It may not be n e c e s s a r y  fo r  the hot carbon a toms  to  actual ly  s t r ike  
Cn, but if a l a r g e  amount of energy  is t r a n s f e r r e d  to  the la t t ice  immediately 
surrounding a C - Cn pair ,  they may have s e v e r a l  opportunities to  r e a c t  

before  t empera tu re  equi l ibr ium with the la t t ice  is establ ished.  Another 
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type of hot carbon reaction, in  which a Cn complex r e in t eg ra t e s  with a 
vacancy to  f o r m  graphite and the lower complex, s e e m s  n e c e s s a r y  to  explain 
the phenomenon of i r radiat ion annealing. 

m o r e  dependent on flux and less on t empera tu re  than ( 2 ) ,  ( 3 ) ,  and (4) .  

These  types of reac t ions  would b e  

The  mobility of defects depends upon the i r  environment with the 
The  Co activation energy  r e su l t  that  the annealing kinetics is complex. 

s p e c t r a  ( F i g u r e s  7-10) show that many overlapping p r o c e s s e s  contribute to  
the  annealing rate. 
to  re integrat ion reac t ions  such as (2 )  and (4). 
changes a l m s t  l inear ly  with exposure out to  about 1000 MD/CT at 3 0  C, it 

The peak a t  about 33 kcal in F igu re  7 is usually a t t r ibuted 
Because  the  C o  l a t t i ce  constant 

has  been suggested(') that ( 3 )  has  l i t t le  effect on Co. Stored energy  releas e(10) 

a l s o  shows a maximum a t  3 0 - 3 5  kcal. The  p r o c e s s e s  assoc ia ted  with higher  
activation ene rg ie s  are not w e l l  defined but are due to  annealing of more and 
m o r e  complex types of defects.  

In F i g u r e s  8-10 the band envelope f o r  the i so thermal  anneals  of s e v e r a l  
different s amples  are compared. 
in F i g u r e  8.  

v e r y  l i t t le  damage has  accumulated a t  high activation energ ies .  
n e c e s s a r y  that  lower activation energy  damage  build up f i r s t .  
such as ( 5 )  are la rge ly  flux dependent and r e q u i r e  a C - Cn collision o r  a 

C - Cn pa i r  c lose  to  a hot pa r t  of the latt ice,  then the r a t e  of formation of 
higher  complexes w i l l  b e  proport ional  to the  concentration of l o w e r  com-  
plexes.  Also, as low activation energy  damage builds up, mobility of C -  

and C2 becomes  less and the chance f o r  polymerization reac t ions  inc reases .  

The  effect of t h ree  exposure  t empera tu res  a t  the s a m e  neutron 

The  effect of exposure a t  3 0  C is shown 
The  build up of a 33 kcal  peak has begun in the 2 3 3  MD/CT, but 

I t  seems 
If reac t ions  

exposure is shown in Figure 9. 

maximum is found a t  39 kcal. 
annealed fo r  s e v e r a l  months at 127 C, the  cha rac t e r i s t i c  annealing function 
would have moved to about 3 9  kcal. 
below 39 kcal. 

At the lowest t empera tu re  of 127 C a s m a l l  
Had the s a m p l e  been exposed a t  3 0  C, then 

A s m a l l  amount of damage  remained  
While graphi te  was  i r r ad ia t ed  at 127 C, damage  w a s  a l so  
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FIGURE 9 

CT Activation Energy  Spectrum - 464 at 127 C, 158 C and 184 C 
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FIGURE 10 

Activation Energy  Spec t rum 1135 - MD at 118 C and 137 C C T  
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being produced a t  lower activation energ ies  so that a s m a l l  t a i l  may ex is t  
below 39 kcal, the cha rac t e r  of which depends on both flux and tempera ture .  
A t  higher exposure t empera tu res  of 158 C and 185 C, damage is again d i s -  
t r ibuted a lmost  uniformly although the total amount is less. 

F i g u r e  10 shows that a f te r  1135 MD/CT a t  118 C and 137 C graphi te  
is much m o r e  ser ious ly  damaged. 
area under the curve)  of the 556 MD/CT sample  exposed a t  30 C is not much 
g r e a t e r  than the 1135 MD/CT sample  exposed a t  118 C, the distribution of 
damage is considerably different. The grea t ly  over  -simplified series of 
reac t ions  (1)-(5) indicate that i f  C- ions could re in tegra te  immediately a t  
high t empera tu res ,  no high activation energy  damage would be formed. 
However, s o m e  c lose  inters t i t ia ls  w i l l  combine, a few c lose  C -  - C, p a i r s  
w i l l  r eac t ,  and so on. Also, t he re  are cer ta in ly  other important  ways of 
accumulating damage of high activation energy such  as multiple vacancy 
formation which have not been discussed.  
exposure t empera tu res  considerably less high activation energy  damage and 
much less low activation energy  damage accumulates.  

While the total  damage (given by the 

The r e su l t  is that at higher  

. 
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