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TWO-GROUP DIFFUSION THEORY FOR A RING
OF CYLINDRICAL RODS

by

R. Avery

ABSTRACT

The conditions for criticality and the resulting flux
distribution have been obtained in the two-group diffusion
theory approximation for a ring of N equally spaced, identi~
cal cylindrical rods embedded symmetrically in a radially
bare cylinder. The system is uniform axially and of either
finite or infinite height. Either or both of the two media of
the system may be multiplying. The method used is a gen-
eralization of the Nordheim-~Scalettar method for the solution
of the control rod problem of similar geometry. In satisfy-
ing each of the various boundary conditions use is made of
the Bessel function addition theorems to center all terms
in the general solution at the appropriate line of symmetry.
The results are obtained in terms of a Fourier expansion of
the angular dependence of the flux about each rod, which in
application must be cut off after some early term in the in-
finite series. The order of the critical determinant is equal
to twice the number of angular terms retained.

I. INTRODUCTION

The problem of calculating the effect of a ring of N equally spaced,
identical rods embedded in a reactor core most commonly arises in con-
nection with a ring of control rods in a thermal reactor. The problem may
be solved in one~ or two-group diffusion theory by the use of the Nordheim-
Scalettar method.

In this method the flux is determined in the region exterior to the
rods, subject to the usual boundary conditions, i.e., vanishing of the flux at
the outer extrapolated boundary, and, in addition, subject to certain internal
boundary conditions imposed by the presence of the thermally black rods.
The essential features of the Nordheim-Scalettar method are the inclusion
in the general solution of singular terms centered at the rods, and the use
of the Bessel function addition theorems to center all terms at an appropri-
ate point to satisfy each of the various boundary conditions.



In design work on Argonaut, fl:)W-power research reactor with an
annular loading reflected internally and externally by graphite, a fuel ar-
rangement was considered which consisted of sectors of fuel and sectors
of graphite interspersed regularly in the annulus. Except for the shape of
the fuel boxes, the geometry was similar to that of the Nordheim-Scalettar
problem. The possibility of solving the problem with similar mathematical
techniques was considered and led to the present investigation.

The present calculation differs from the Nordheim-Scalettar calcu-
lation in that we consider a ring of rods in which diffusion theory is appli-
cable both inside and outside the rods. Since the method may be useful in
a wider variety of reactor problems (e.g., interaction of several cylindrical
reactors embedded in a common reflector, ring of grey control rods), we
permit either or both of the regions to be multiplying, whereas in the
Nordheim-Scalettar method the outside region is of necessity multiplying.
We retain the full angular dependence throughout the entire formalism, so
that the formal solution is exact for the two-group problem formulated.
Approximation is involved only in that in practice no more than the first
few terms in the Fourier expansion of the flux about each rod would be
retained.

II. GEOMETRICAL NOTATION (Figure 1)

Fig. 1
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—s
number of cylindrical rods in the ring
extrapolated bare radius of the system
extrapolated bare height of the system
radius of a cylindrical rod
radius of the ring on which the centers of the rods are located

angle between the line from the origin to the center of rod 1, and the

line from the origin to the center of rodi = Li-l%?.ﬂ
: . 1, (i-1)m
angle at which rod 1 sees the center of rodi = > + N

distance from center of rod i to center of rod 1 = 2d sin [:(1‘113'”]

distance from the origin to a field point

angle of a field point at the origin, measured relative to the line
from the origin to the center of rod 1

angle of a field point at the origin, measured relative to the line from
the origin to the center of rod i

distance from the center of rod i to the field point

angle of the field point measured at the center of rod i relative to the
line from the origin to the center of rodi .

TWO-GROUP NOTATION

Writing the steady-state, two-group diffusion equations for the slow

and fast fluxes, ¢g and ¢ F in a general form, we have for each homogene-
ous region:

Dg V%¢g + Dg Hgs® s + Dg Hsf ¢F

"
o

(1)
DpV*¢p + DpHps % + DpHpr ¢F = 0,

where Dg and Dy are the slow and fast diffusion constants, and the H’s de-
fine the transfer coefficients.
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In the present geometry all terms in the solution have a factor
m
cos ('ﬁ ) (where z is measured from the center plane) which describes

the axial dependence of the flux. Omitting this factor, the solution is of the
form:

L+ M ;

tl

s

SIL‘I’SzM M (2)

F

where L. and M are solutions of

02 1 98 1 i) o2 :
(arz + T ar + 1‘2 592 L + <bf - Hz) L =0 s
Q% 1 o 1 9% 2 Ez_) }

(Brz + - ar + rz aez> M + (bz - Hz M=20

The bucklings are given by:

b} =% (Hgg + Hpp)+ % /(Hss - Hpr)® + 4 Hgy Hpg 3

o
N
n

+Hgg + Hpp) -+ /(Hgs - HFr)® + 4 Hgy Hpg & (3)

where b is the asymptotic buckling. The group ratios are given by:

bf - Hgg
Sl = et H
Hg g
b5 - Hsg
SZ = (4)
Hgp

In equations of interest in reactors not both Hgg and Hpp are posi-
tive, from which it follows that b} is always negative.

For a medium with multiplication constant k, > 1, bf is positive;
otherwise it is negative. For L the solution is composed of terms of the

form:
)
vy (ot - Tz x) en®
. — ;
Jn ( bé - = r) eln , (5a)

2

] T
if the asymptotic buckling in the radial plane, b? - T is positive, and



K, Ibf - '7;? r) eind
T2 |
I, lbf - 3| T einf | (5b)

2
. e,
if b} - He is negative.

For M, the terms are of the form in Eq. (5b) with b replacing b} .

2
The two possible signs for b - %z in each of the core and reflector
give rise to four possible cases. Of these only three are really of interest,
. ) .
since obviously the case where bf - = < 0 in both regions cannot corre-
spond to a critical system.
In the subsequent development all the various possibilities are con-

sidered simultaneously, the appropriate choice for each of the cases always
being obvious.

IV. GENERAL SOLUTION FOR RING OF RODS
We refer to the medium contained in the cylindrical rods as the core
(designated by subscript C) and the medium exterior to the rods as the re-

flector (designated by subscript R).

We will also use the following notation:

2% = |b] —”Iéi
cC " H
m?s bl o+ (6)
rE = biR'%;l
uzz-bZzRJf—S-:- , (7)

where £ 2 . m?

positive roots.

, A, and p? areall positive; £, m, A, M are to be taken as the

We limit the general solution to terms that satisfy the symmetry of
the problem.
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For the solution in the reflector, the singular terms are centered,
as in the Nordheim-Scalettar method, at the rod centers. The regular
terms are centered at the origin. It is not necessary to center any regu-
lar solutions at the rod centers since such terms can be incorporated into
the terms centered at the origin.

We give the core solution for a typical rod and omit the subscript
on Ppand® . The core solution is, of course, limited to the regular terms
measured relative to the rod centers. We thus obtain:

00 N [%;j(xp;5) % INn( 2r)
LR = z A cos juy + z B, cos Nn 6 (8)
j=0 =1 | Y5(xp;) n=0 Inn(2r)

sy N 00
Mg = Z C; Z K;( upj) cos jwj + z Dy Inp(ur) cos Nn 6 (9)

j:O i=1 n=0
o Ix(£p)

Lg = 2 Ex cos kw (10)
k=0 |J(4p)
(o]

Mg = Z Fi Ix(mp) cos kw , (11)
k=0

where the A’s, ..., F’s are arbitrary constants to be determined by the

boundary conditions, i.e., the fast and slow fluxes vanishing at the outer
extrapolated boundary, and the fast and slow fluxes and currents continu
ous across the rod interfaces.

V. ADDITION THEOREMS

A. To center singular solutions from all the rods to origin.

Fig. 2
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In terms of Fig. 2, we have the following addition theorem: (see

Appendix B).
K:{ Ap; 00 K; Ar) I (Ad
s Ly D RO
Yj( 2p4) k== |Yjpk(Ar) Jx(2a)
We use an expansion which is valid outside the ring, i.e., r>d,

since it will be used to satisfy the condition of the flux vanishing at the
outer radius of system. Using:

Y =W taj- 6
and

® =6 - ay )
we obtain:

K;i(Apj) jo; _ o |Kjik(rr) I (Ad)

Yi(rp3) k== Y4 (Ar) Je(2d)

RUTSICEET)

Taking the real part

Kj (A1) o [Kjn(Ar) I (ha)
cos j ay Z < cos (j+k) (6-ai)
Y;(xp i) k=-oo LYj+k(>\1') Ji (1d)

o [Kn(ir) Iooj(rd)

Z < cos n(6-aj)
n=-o \Yn(Ar) Jn_j(kd)

Summing over all rods and using:

N N, if n is a multiple of N (including n=0)
z cos n o
i=1

0, otherwise

and

N

z sinn a3 =

i=1

|
o
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we have:

N [Kj(*03) © |KNn(*r) INn-j(2d)

cos j®; = N cos Nn 6

i=1 Yj(Xpi) n=-o| YNn(?r) JNn_j(Xd)
With the notation:

€np =1, n=20

=2, n>0 (12)

this yields:

>

i=1

Kj(2pi) ) Knn () [Inpg (1) + Ing-j( 2d)]
e cos joj = N z %E- N N+.J Na-j cos Nn 6 (13)
Yj()\.pi) n=0 YNn( Ar) [(-1)-‘JNn+j(>\.d)+JNn_j(>\.d)]

B. To center singular solutions from all the rods to rod 1.
To satisfy the boundary conditions at the surface of a rod we

shall center all terms at the center of one of the rods. We select rod 1
and omit the subscripts on p; and w; .

rod i/

Fig. 3

rod !

In terms of Fig. 3, we have the following addition theorem (which
is valid at the surface of rod 1, where it will be used to satisfy the inter-
face conditions):

Kj(rpi)| o Kkl ps1)l (X o)
iV =
Y5(1pi) k== | Y53k (X pi1)Tk( 2 p)
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Using:
Y= By twj
and
=By ~w )
we obtain:
Kj(2pi) 0 Ky 2p3) Iii(Ap)
SR QT JHE o-il(G-K)B; + ko]
¥5( 2p;) k=00 | Y45 Apg) T (A P)

Taking the real part and summing over all other rods to center all terms
at rod 1:

N Kj(rpi) o N |Kjk(reil)Ik(rp)
cos jwi = cos(j-k)pj cos kw
i=2 | ¥;(py) k=-0 i=2 | Yj4(rpil Wk(rp)
© & N Kj+k(pi1)
k J 1
= Z B z cos(j-k)ﬁi
Kjx(rpi1) I ()
+ N cos(j+k)B; cos kw .
(-1)° Yj_x( 2pi1) Ix(Xp)

(14)

C. To center regular solutions from origin to rod 1.

Fig. 4

In terms of Fig. 4, we have the following addition theorem
(which is valid at the surface of rod 1, where it will be used to satisfy the
interface conditions):




| 2.
In(ar) © (-1 )k Intk (Ad) Ic(Xp)
cos nf = z cos ko
Tn(2r) k*Zw | Intk(Ad) Ix( o)

From ¢ = mw~- w or cos k¢ = (-l)k cos kw, we have:

In(Ar) o |Intk(2d) Ix(rAp)
cos nB = cos kw
Jn(rr) k== | (-1 )% T4 (2d) T (2p)

Such terms will exist only if n be a multiple of N:

Inp(2r) ® INntk(Ad) Ik (X 0)
cos Nn9 = z cos kw
INn(Ar) k=m0 | (-1} TN (A Q) T (X p)

e e |INntk(2d) + Inp_k(2d)] I(2p)
= z —k{ )}coska) . (15)

k=0 2 [(-1 0% Tnm4sc(2d) + TNn-k(Xd)] Ty 2o

VI. REFLECTOR SOLUTION WITH ALL TERMS CENTERED AT ROD 1

Centering all terms in Eq. (8) at the origin by the use of Eq. (13),
we obtain, for r>d,

o INn(2r) KNn(Ar) INn+j{ Ad) +InNp-i(2d)
In(r,6) = z B, N + Ngn N i Aj N *:J o=y cos Nnb . (1 6)
n=0 | |Snn(2r) Tan(he) | 350 | (19 TNn (M) + Ty (M)

For the fast and slow fluxes to vanish at r = R, both LR and MR
must vanish term by term in the Fourier expansion. Therefore,

KNn(XR)
NEn
1 (Ad) + Inpos{ Ad
B - . YNn(AR) i Ay Nn+j(2d) + INn-j( Ad) 17)
n = INn(AR)] . - '
2 Nn( ) J=O (-I)JJNn+J(>\. d) + JNn_j(Kd)
JNn(XR)

We now center all of the terms in Eq. (8) at the center of rod 1 by
the use of Eqs. (14), (15), and (17). We obtain for p<pj], d:

© Ki( 2p) Ix( Ap)
Lr(p®) = D 2 A8k + Tgkj coskw ,
k=0 j=o Yy (20) Jr(rp)

(18)

12
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where 0jk is the Kronecker delta function, and

N | [Ki+k(rpi1) Ki-k(rpi1)
Kj = —; z " ' cos(j~k)Bi + Ik A0 cos (j+k) By
i=2 | | Yy (Mo i1) (1Y k(rpi1)

{KNna R) [INntic(Ad) + INn-k(A@)] [Inn 4§02 @) + Inp (1 )] }
_Neg i YNn(AR) [(-1 ) Innk(24)+ Inp-x (M) [(-1) Inn+j* d)+ Inp-5(2d)]
4 n=0 {INn(XR)

Inn{AR) (1 9)

In a similar manner we obtain:

]
MR(r,0) = Zb {DnINn(I»L!')’I-N—:n KNn(pr) i C; [INn+J(pd)+INn_J(pd)]}cos Nnoe ;  (20)
n= 3=0
_ =Nep KNn(uR) .
Dn = —1Na(uR) JZO Cj [INn+j(Hd) + INp-j(pd)] ; (21)
[+ (o]
r(p,0) = Z Z Cj [6jxKk(pup) + Ukj Ix(pp)] cos kw ; (22)
k=0 j=0

N
kj = Tk > i:Kj+k(iiPil) cos (j-k)Bi + Kj-k(#pil) cos (j+k)ﬁi:l
i=2

- Nek z €nKNn(HR) [INn+k (4 d) + INn-k(4d)] [INn+j(# d) + INn-j(1d)] , (23)
n=0 INn(MR)

VII. BOUNDARY CONDITIONS AT SURFACE OF ROD - CRITICALITY
CONDITION

Equations (2), (10), (11), (18), and (22) define the fluxes in the core
and reflector at the interface in terms of a Fourier expansion of the angular
dependence about each rod. For the fluxes and currents to be continuous
across the interface for all angles, they must do so term by term in the
Fourier expansion. The following four equations result for the cos kw
term:



'+
Slow flux

s Kk(2a) Ix(Xa) 0
2. Aj Ojk + Ty 3 Cjl &jxK (a) + Uk jIk (1a)]
j=0 Yi(ra) Jk(ra) §=0

Ix(4a)
- Ex - Fka(ma) =0 (24a)
Jr(£a)

Fast flux

s Ki(ra) Ix(ra)
is z AJ éjk + Tkj
j=0 Yk(>»a) Jk(ra)

+ SR D, CjlojcKi(ra) + Ukjlx(pa)]
j=0
Ix( fa)
Jk(£a)

Slow current

o Kit+1(2a)+Kg_1(ra) Ik-100a)+ Ixyp(ra)
Dsgr * Z Ajl- 6jk + Tkj
j=0 Yyry1(2a)- Yr_1(2a) Jk-1(a) - Jxs1(Aa)

+ DsR ¢ _ZE) Cj[- Ojk (K1 (1a)+Kk-1(Ha))+ Uy;j(l-1 (Ka) + Ixy g (1a))]
J:

{Ik-l(ﬂa)+ I+l (ﬁa)}
- DSC ,@Ek
Jk-1(4a)- Jg+1(La)

(24c)
- DSC m Fy (Ix-1(ma)+Ix41 (ma)) = 0

14
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Fast current

SIRDFR ™ 2, Aj|- ik t T

j=0 Yk+l(>‘a)'Yk-1 (Aa) Jk_l(Ka)-J'k+1(Ka)

+ SorDFRH 2 Cj [- b5 (Ki1(ka)+Ky_1(Ka))+ Uy (Fa)+ Iy (a))]
j=0

Ix-1(fa)+Ixt+1(La)
- S1cDFc PEK
Jk_l(ﬂa) - Jk+l (.Z a)

- ScPpcm Fk(Ik_l(ma) + Ig41(ma)) = 0 (244)

We may define the v’'th order approximation as one in which all cos k®
terms are discarded for k>V. We define this independently of the number
of terms that are taken to evaluate the infinite series that occur in Ty; and
Ukj when the outer radius of the system if finite. It is assumed that in an
approximation of any order sufficient terms are taken to obtain Tkj and
Ukj accurately. In practice, the terms in Tkj and Ukj converge very
rapidly and in most cases the contributions from all higher order terms
are negligible compared to the term with n = 0.

We can, if we wish, consider Eqs. (24) as the final result. In the
V’th order approximation we would have a set of 4 (v + 1) linear homo-
geneous equations to be solved for 4 (v + 1) unknowns. The criticality
condition would correspond to the vanishing of the determinant of the
matrix of coefficients. To obtain the flux distribution the arbitrary con-
stants can then be determined, subject to an arbitrary normalization factor.

VIII. REDUCTION OF ORDER OF CRITICAL DETERMINANT

The order of the critical determinant can be reduced by a factor of
two through the following algebraic steps which eliminate the core constants.

In a straightforward manner we segregate the A terms from the
C terms in Eqgs. (24) and obtain:

{Ik(ﬁ a)
Jk(,g a)

S ~-S Ik(ma
+Fk(zc 2R> k(ma)

SIR-S2R/) [Ik(ra)
Jk(2a)

SlC-SZR)
+ Tyi | = Ep | =—=—=2=
Kj ] k<SlR-SZR

(25a)



xe

0 Ik(ﬁa)
Kik(ua) (SIC - SIR) Ji(La)
Ci| djk ==L + Upi | = -E
Jgo J[ Ik T(ua) kJ] “\S1r - S2r/ T(pa)
S2C - SlR) Ik(ma)
-F 25b
k (SIR - S2R/ Iklua) (25D)
°° Kk+1g>»a) + Kk-lgka)
Yi41(ra) - Y 1(%a)
A + T
z °jk Ik-1(Aa) + Ix41(ra) kj
j= Jk-1(*a) - Jx+1 (2 a)
s, DEC o Dsc {Ik-1(ﬂa) + Igt1(£a)
. g L 28DFR - PR DsR Uie1(2) - Jien (f2)
A SIR - S2R Ik-1(Aa) + Ik+1(*a)
Jr-1(2a) - Jx41(ra)
5, DEC o  Dsc
f R R 2C Dpg " °2R Dgp  Ik-1(ma) + Ik+](ma) (25¢)
A S1R - S2r Ix-1(72) + Ixt1(ra)
Jk-1(ra) - Jk+1(ra)
(20}
Z [ Kk+1(pa) + Kk-1 ua) ]
=0 e 1 (pa) + Ter1(pa)
5, . DFc . Dsc {Ik ﬂa) + Ixt1(£a)
g L1 Drpr "R Dsp g - ki1 (fa)
n S1R - S2R Ik-l(ua) + Ik+1(pa)
S Drc S Dsc
m ~2C Dpr ~ PR Dgp  Ik-1(ma) + Ixs+](ma)
-Fx — (254)
7 S1R - S2R Iy (pa) + Ieyq (na)

We now subtract Eq. (25c) from Eq. (25a), and Eq. (25d) from Eq. (25b),
and obtain

Ayx ax (S1Rr - S2R) Ek ex + Fi fi ;

Ck ck (S2R - S1R) = Ek gk + Fk hk , (26)

16
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(K (2a) N Kie+1(1a) + K1 (Ma) |
Ik(2a)  Ix.1(ha) + Ix+1(ra)
ajp = > (27a)
Yi(ra) | Yyii(ra) - Yro1(ra)
Jk(da) = Jk-1(Xra) - Jk+1(>»a)j

where

\

cx = Kr(pa) . Kk+l(2a) + Ki-1(pa)
I(pa) = Ik-1(Ha) + Ig4+1(p2)

(27b)

ek = (S1¢c - S2r)

. . {Ik-1%a;+ Ik+1%a)l}
) sc) LJk-1(fa) - Jk+1(ba

- K-(Slc 1—)% - S2r DSR) Ik-1(2a) + Ik:l(xa) (27¢)
{J'k(Xa) {Jk-l(Xa) - Jk+1(>~a)}

_ Ik(ma) m DFC _ DsCc \ Ik-1(ma)+ Ix4+)(ma)
fic = (S2¢ - S2r) Ry © % (SZC Drr 2R Dgg /Tl (08) * Tt 1(0a) (27d)
Jk(2ra) Jr-1(ra) - Tk+1(2a)

{Ik(m {Ik-lgﬁa; + Ik+1%a;
- } Je(fa)) &_( DFC _ D§C) Jk-1(fa) = Jei1{fa 2
e = B1c - Sir) ia) ~ w\SLC DR TSR Dgr ) heor(pa) ¥ Dkai(pa) O7O)

Ix(ma) _ _r:_(s?_c B§C _ s Dsc) Le-l(ma)t bepi(ma) )0y

he = (S2c¢ -
k = (S2¢c - 51R) Tx(pa) Dgr/ Ik-1{pa)+ Igxyi(ua)

We can now solve Eq. (26) for Ex and Fy in terms of A and Cy:

Ex = (-pk Ak + 9k Ck) (S1R - S2R)

Fk = (-sk Ak + tx Ck) (S1R - S2rR) (28)
where

Pk = -ak hi/(ek hk - fk gk) (292)

ak = ck fii/(ex hx - fx gk) (29b)

sk = ak gx/(ex hy - fi gk) (29¢)

tk = -ck ex/(ek hx - fi &) - (294)
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We may now substitute back these expressions for Ex and Fy into
Eqs. (25a) and (25b), yielding for our final result the following criticality
condition:

[\/]8

Ky(ra) Ix(£a) I(Ma)
+ pk(S1C - S2R) + sk(S2¢ - S2R Ik(ma) } + Tk;j
k(ra) Ji(£a) Jr(ra)

e
]
(o]

18

Ix(£a)
-Cx ["ik Sic- SZR){ } +tx(Sac - SZR)Ik(ma)] (30a)

& I{fa)
2 C Ojk (Kk(ua) + ak(S1C - SZR){ } + ti(S2c - SlR)Ik(ma)> + Ukj Ix(ua)
j=0 Jk(4a)

Ik(Za)
'Ak[Pk(SIC is){ }+ sk(S2¢c- SIR)Ik(ma)] 0 . (30b)

For most practical applications, the second-order approximation
should suffice. In problems where the rod size is small compared to the
inter-rod distances and to the distance to the outer boundary, even the
zero-order approximation may be adequate. When this is not the case,
the cos w term should largely account for the over-all radial dependence
of the flux which results from the smoothed-~out interaction with all the
rods, and also the over-all leakage effects out of the system. The cos 2w
term should largely account for the angular dependence resulting from the
interaction with nearest rods and which peaks at ~w =1 72T (~angle at which
rod sees nearest neighbors if N>>1). There is little reason, however, to
expect (in general) the cos 2 ® contribution to be small compared to the
cos w contribution.



19

19

L —
APPENDIX A

ONE-GROUP RESULTS

The one-group case is, of course, much simpler than the two-group
case. Rather than re-derive this case completely, we can extract the re-
sults from the previous analysis. We associate L with the complete solu-
tion, ¢, and 4 and )\ with the radial bucklings in the core and reflector,

respectively.

We have, equivalent to Eq. (24), the following two interface condi-
tions at the rod surface:

® Ki(}a) Ix(ra) Ix(4a)
Z Aj | bjk + Ty }] - Ej } =0 (Ala)
j=0 Yi(ra) J(ra) Jr(la)
) Kk+1(*a)+Kk-1()\a) Ik-1(Aa)+ Ix+1(ra)
DR ) Aj ,:_53- { }+ Ty { }]
j=0 Yie1(A2a)- Yy 1 (2a) Jk-1(ra)~ Jk+1(2a)

Ix-1(4a)+ Ix+1(La)
Jk-1(%a)- Jxy1(a)

or

w {Kk(xa) {xk(za)
Yi(ra) Jk(fa)
) [ i +ma ey e
j=0 {Jk(ka) {Jk(ka.)
o {Kku(xa)mk-l(xa) {Ik 1(42)+ Ixs1(£a)
Yie1(ha)- Ye-1(2a) D4 WUk-1(4a) - Ji41(£2)
kj (A2b)

A [- Jk {Ik-l(ka)+ Ix+1(ra)

Fk DR’\{Ik -1(2a)+ Ix+1(ra)
Ig-1(ra)~ Jx41(2a)

j=0 Jk-1(Aa) - Tr+1(ra)

Subtracting Eq. (A2b) from Eq. (A2a) and using notation analogous to the
two-group case we obtain:

{Kk(xa> {Kk+1(la)+'Kk-1(Xa)
Yi(Xa) Yi+1(ra) - Yr_1(2a)

€T M) Te-1(ra) + Tpp(na)
Jk(ra) Jr-1(ra) - Jr+1(ra)

(A3a)
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Ix(£a) Ik-1( fa) + Ix+1(fa)
{Jk(ﬂa) Dcz Jk_l(,ea) - Jk+1(£a)

k= ()N  Drx {Ik-1<xa)+ a1 (1a) (A3p)
Jr(ra) Jr-1(2a) = Je1(2a)

and

I

a
Ek % Ax = -px Ak . (A4)

Substitution of the expression for Ej into Eq. (Ala) yields the one-group
criticality condition:

® k(xa) Ix(4a) Ix(ra)
Z Aj | djk + P + Tkj =0 . (A5)
j=0 Yr(na) Jk(£a) Jx(ra)

The order of the critical determinant is just equal to the number of
angular terms retained.
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APPENDIX B

BESSEL FUNCTION RELATIONSHIPS AND ADDITION THEOREMS

IJ_n(x) = (-1)* In(x)

In(x) = In(x)

Yon(x) = (-1 Yn(x)

K_n(x) = Kp(x)

c% Jn (Kx) = % [Tn-1(kx) - Jn41(cx)]
;; In(kx) = L;— [In-1(cx) + In+1( £x)]
E:i? Yn(kx) = ‘%[Ynﬁ(/cx)- Yn.1(cx)]
dix Kn(fx) = “% [Kn+l<KX)+ Kpn-1(kx)]

o3

"

reingb ] o0 : eikd
Tn(w) 1 = D Tnek(Z) J(z)

cos ny/| k=~ cos k ¢

(einy ® eik ¢
(-10 In4x(2) Ig(z)
g k= = cos k¢
eim// 5] elkd)
Yn(w) = > Ynuk(Z) Tk(2)
cos n k== cos k¢

ein?¥ o elk @
Kp(w) = Y Kni(2) LK(z) { }
cos nY k= - cos k¢

fa—
B
£
A
0
0
[/2]
5
-
—y
i
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