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TWO-GROUP DIFFUSION THEORY FOR A RING 
OF CYLINDRICAL RODS 

by 

R. Avery 

ABSTRACT 

The conditions for cr i t ica l i ty and the resul t ing flux 
distr ibution have been obtained in the two-group diffusion 
theory approximation for a r ing of N equally spaced, ident i ­
cal cyl indr ical rods embedded symmet r i ca l ly in a radial ly 
ba re cyl inder . The sys tem is uniform axially and of e i ther 
finite or infinite height. Ei ther or both of the two media of 
the systena may be multiplying. The method used is a gen­
eral izat ion of the Nordheim-Scale t ta r method for the solution 
of the control rod problem of s imi l a r geomet ry . In sat isfy­
ing each of the various boundary conditions use is made of 
the Bess el function addition theo rems to cen te r a l l t e r m s 
in the genera l solution at the appropr ia te line of symmet ry . 
The r e su l t s a r e obtained in t e r m s of a F o u r i e r expansion of 
the angular dependence of the flux about each rod, which in 
application mus t be cut off after some ear ly t e r m in the in ­
finite s e r i e s . The o rde r of the c r i t i ca l determiinant is equal 
to twice the number of angular t e r m s re ta ined . 

I. INTRODUCTION 

The problem of calculating the effect of a r ing of N equally spaced, 
identical rods embedded in a r eac to r core mos t commonly a r i s e s in con­
nection with a ring of control rods in a t he rma l r e a c t o r . The problem may 
be solved in one- o r two-group diffusion theory by the use of the Nordheim-
Scalet tar method. 

In this method the flux is de termined in the region ex te r io r to the 
rods , subject to the usual boundary conditions, i . e . , vanishing of the flux at 
the outer extrapolated boundary, and, in addition, subject to ce r ta in in te rna l 
boundary conditions imposed by the p r e s e n c e of the the rmal ly black r o d s . 
The essen t ia l fea tures of the Nordhe im-Sca le t ta r method a r e the inclusion 
in the genera l solution of singular t e r m s cen te red at the r o d s , and the use 
of the Besse l function addition theorems to center a l l t e r m s at an a p p r o p r i ­
ate point to satisfy each of the var ious boixndary condit ions. 
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In design work on Argonaut, a low-power r e s e a r c h r eac to r with an 
annular loading reflected internal ly and external ly by graphi te , a fuel a r ­
rangement was considered which consis ted of sec to r s of fuel and sec to r s 
of graphite i n t e r s p e r s e d regular ly in the annulus. Except for the shape of 
the fuel boxes, the geometry was s imi la r to that of the Nordheim-Scale t ta r 
problem. The possibi l i ty of solving the problem with s imi la r mathemat ica l 
techniques was considered and led to the p resen t invest igation. 

The presen t calculation differs from the Nordheim-Scale t tar calcu­
lation in that we consider a ring of rods in which diffusion theory is appl i ­
cable both inside and outside the r o d s . Since the method may be useful in 
a wider var ie ty of r eac to r problems (e.g., in teract ion of seve ra l cyl indrical 
r eac to r s embedded in a common ref lector , r ing of g rey control rods) , we 
pe rmi t e i ther or both of the regions to be multiplying, whereas in the 
Nordheim-Scale t tar method the outside region is of necess i ty multiplying. 
We re ta in the full angular dependence throughout the ent i re fo rmal i sm, so 
that the formal solution is exact for the two-group problem formulated. 
Approximation is involved only in that in prac t ice no m o r e than the f i r s t 
few t e r m s in the Fou r i e r expansion of the flux about each rod would be 
retained. 

II. GEOMETRICAL NOTATION (Figure 1) 

i 

Fig . 1 
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N number of cyl indrical rods in the r ing 

R extrapolated ba re radius of the sys t em 

H extrapolated ba re height of the sys t em 

a radius of a cyl indrical rod 

d rad ius of the ring on which the cen te r s of the rods a r e located 

o-i angle between the line from the or igin to the center of rod 1, and the 

l ine from the origin to the center of rod i = ^^—:̂  

^ i 

N 

TT (i-l)7r 
angle a t which rod 1 s ee s the center of rod i = — + -^—i^— 

(i ' l)7r 
N 

Pjl dis tance f rom center of rod i to center of rod 1 = 2d sin 

r dis tance from the or igin to a field point 

6 angle of a field point a t the origin, m e a s u r e d re la t ive to the line 
frona the or igin to the center of rod 1 

©i angle of a field point a t the origin, m e a s u r e d re la t ive to the l ine from 
the origin to the center of rod i 

Pj^ dis tance f rom the center of rod i to the field point 

(X)^ angle of the field point m.easured at the center of rod i re la t ive to the 
line fromi the or igin to the center of rod i . 

III. TWO-GROUP NOTATION 

Writing the s t eady-s t a t e , two-group diffusion equations for the slow 
and fast fluxes, #g and 0 p , in a genera l form, we have for each homogene­
ous region: 

Dg V20g + Dg Hgg# S + Dg Hgp 0 F = 0 
(1) 

D F V ^ ^ P + DpHFS '^S + D p H p F ^ F = 0 

where Dg and Dp a r e the slow and fast diffusion constants , and the H ' s de ­
fine the t r ans fe r coefficients. 



" ' " ^ i o . s t p ^ 

In the p resen t geometry al l t e r m s in the solution have a factor 

cos (TTZJ (where z i s m e a s u r e d from the center plane) which desc r ibes 

the axial dependence of the flux. Omitting this factor , the solution i s of the 
form: 

(pQ = lu + M ; 

0 p = Si L + S2 M , (2) 

where L and M a r e solutions of 

/ ^ 2 1 a 1 S M / 2 7T2\ ^ 

Va^ + 7 a? -̂  7 apj M + l̂ bi - ^ j M = 0 . 

The bucklings a r e given by: 

bf = i (Hgs + H F F ) + i / (HSS - H F F ) ' ' + 4 HgF H F S 

bf = i ( H s s + H F F ) - i - / ( H s S - H F F ) ' + 4 HgF Hps . (3) 

where bf is the asymptot ic buckling. The group ra t ios a r e given by: 

hi - Hss . 
Si = 

HSF 

In equations of i n t e r e s t in r e a c t o r s not both Hss ^^^ ^ F F ^^^ pos i ­
t ive, f rom which it follows that b | i s always negat ive. 

F o r a medium with mult ipl icat ion constant k̂ x, > 1, bf is posi t ive; 
o therwise it i s negat ive . F o r L. the solution is composed of t e r m s of the 
form: 

n ein^ n̂ (/>f - j ^ 

Jn ( / b f - | J r ) e i - e , (5a) 

TT 2 
if the asymptot ic buckling in the radia l plane, bf - -rr^ is posi t ive , and 

ti 



***^ 

(5b) 

7T' 
i^ M ~ TTT is negative. 

For M, the terms are of the form in Eq. (5b) with b | replacing bf . 

The two possible signs for bf - -rrr in each of the core and reflector 

give r ise to four possible cases . Of these only three are really of interest, 

since obviously the case where bf - rry < 0 in both regions cannot cor re -
H 

spond to a critical system. 
In the subsequent development all the various possibilities are con­

sidered simultaneously, the appropriate choice for each of the cases always 
being obvious. 

IV. GENERAL SOLUTION FOR RING OF RODS 

We refer to the naedium contained in the cylindrical rods as the core 
(designated by subscript C) and the medium exterior to the rods as the r e ­
flector (designated by subscript R). 

We will also use the following notation: 

i^ = îc 
JT 

H' 

,2 -
7T' 

"" = - ^2C + W (6) 

X2 = — 
IR " H^ 

M^ = 
TT' 

^2R + 12 (7) 

where i ^ , m^, X̂  , and /i^ are all positive; i , m, X, ju are to be taken as the 
positive roots. 

We limit the general solution to terms that satisfy the symnaetry of 
the problem. 
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F o r the solution in the ref lector , the singular t e r m s a r e centered, 

a s in the Nordheim-Scale t ta r method, a t the rod c e n t e r s . The regula r 
t e r m s a r e centered at the origin. It is not n e c e s s a r y to center any regu­
l a r solutions at t he rod centers since such t e r m s can be incorpora ted into 
the t e r m s centered at the origin. 

We give the core solution for a typical rod and omit the subscr ip t 
on p and CO . The core solution i s , of course , l imi ted to the regula r t e r m s 
m e a s u r e d re la t ive to the rod cen t e r s . We thus obtain: 

00 N 

R̂ = I Aj I 
j=0 i=l 

Kj(Xpi) 

YjiXpi) 
" cos jcoi + X ^ n 

n=0 

lNn( ?^) 

JNn(^ r ) 
• cosNnS (8) 

N 
M R = Z ^ j Z K:j(MPi) cos ja)i + Y, DnI]^n(Mr) cos Nne 

j=0 i=l n=0 

k=0 

Ik(-^P) 

Jk (^P) I cos koo 

(9) 

(10) 

M f = £_, Fk Ik(mp) cos kco 
k=0 

(11) 

where the A ' s , . . . . F ' s a r e a r b i t r a r y constants to be determined by the 
boundary conditions, i .e . , the fast and slow fluxes vanishing at the outer 
extrapolated boundary, and the fast and slow fluxes and cu r ren t s continu 
ous a c r o s s the rod in te r faces . 

V. ADDITION THEOREMS 

A. To center singular solutions from al l the rods to origin. 

rod f r>d 
Fig. 2 



J. 
In t e r m s of F i g . 2, we h a v e the fol lowing add i t ion t h e o r e m : ( see 

Append ix B ) . 

Yj(Xpi) k=-oo 

K j + k ( X r ) l k ( X d ) 

Y j + k ( ^ r ) Jk(Xd) 
>• e 

ik( 

We u s e a n e x p a n s i o n which i s v a l i d o u t s i d e the r i n g , i . e . , r > d , 
s i n c e i t wi l l be u s e d to s a t i s f y the cond i t ion of the f lux v a n i s h i n g a t t he 
o u t e r r a d i u s of s y s t e m . Us ing : 

^ =aii + a i - 6 

a n d 

0 = 0 - tti 

we ob ta in : 

'K j (Xpi ) 

Yj (Xpi ) 

Tak ing t h e r e a l p a r t 

Kj(A.pi) 

Yj (Xpi ) 

e^jo., v^ 

k ~ o 

K j + k ( ^ r ) l k ( X d ) 

Yj+k(Xr) Jk (Xd) 

^ ei(J+M(0-ai) 

• c o s j OOi = ^ -
k=-oo 

DO 

n=-oo 

K j + k ( X r ) l k (Xd) 

Yj+k(Xr) J k ( A d ) 

Kn(Xr ) In - j (Xd) 

Yn(Xr) Jn_j(Xd)^ 

<- cos (j+k) (0 - -a i ) 

" cos n ( e - a i ) 

S u m m i n g o v e r a l l r o d s a n d u s i n g : 

a n d 

N N, if n i s a m u l t i p l e of N ( inc luding n=0) 
2_^ cos n a j = 

i= l 0, o t h e r w i s e 

N 
2_̂  s i n n CLj^ = 0 

i= l 
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we have: 

N 

I 
i=l 

Kj(XPi) 

Yj(A-Pi) 
«• cos jco^ = N 2_, 

n = - 00 

KNn(^r) iNn-j (^d) 

YNn(^r) JNn-j (^d) 
>• cos Nn Q 

With the notation: 

£ „ = 1, n = 0 

2, n > 0 (12) 

this yields: 

N rKj(Xpi)l ^ e rKNn(^)[ lNn+j(^d)+lNn-j(^)] 
X -̂  ^ cosjffli = N X -f̂  1 . ^ c o s N n e d 
i=l [Yj(Xpi)J n=0 [YNn(^r)[(-l)JjNn+j{Xd) + JNn.j(Xd)]J 

B. To center singular solutions from all the rods to rod 1. 

To satisfy the boundary conditions at the surface of a rod we 
shall center a l l t e r m s a t the center of one of the r o d s . We select rod 1 
and omit the subscr ip ts on P j and oOj . 

rod / 

Fig . 3 

rod I 

In t e r m s of F ig . 3, we have the following addition theorem (which 
is valid at the surface of rod 1, where it will be used to satisfy the i n t e r ­
face conditions): 

Kj(Xpi) 

Yj(Xpi) k=-oo 

Kj+k(Xpil)lk(>^p) 

^Yj+k(Xpil)Jk(^p) 

>• e i k 0 
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Us ing : 
/ / 

^ = /3. + ooi 

and 

we ob ta in : 

kj(xpi) 

Yj( Xpi) 
• e i j ^ i = y 

k=-c 

K j + k ( ^ P i ) l k ( ^ P ) 

Y j + k ( ^ P i ) J k ( ^ P ) 

. e - i [ ( J - k ) ^ i + k a ) ] 

Tak ing the r e a l p a r t a n d s u m m i n g o v e r a l l o t h e r r o d s to c e n t e r a l l t e r m s 
a t r o d 1: 

N 

S 
i=2 

Kj(Xpi ) 

LYj( Xpi)J 

N 
cos j COi = ^ Y, ' 

k= -00 i=2 

K j + k ( X P i l ) l k ( X p )] 

_^Yj+k(Xpil)Jk(^P) 

Kj+k( XP i l ) 

cos( j -k) j3 i cos ko) 

00 g N 

= I r Z 
k=0 i=2 |_ [Yj+k(?^Pii)^ 

+ < 
K j - k ( ^ P i l ) 

( - l ) ^ Y j . k ( X p i i ) 
• cos(j+k)iSi 

^ c o s ( j - k ) ^ i 

I k ( ^ P ) 

J k ( X p ) 
cos kco . 

(14) 

C. To c e n t e r r e g u l a r so lu t i ons f r o m o r i g i n to r o d 1. 

F i g . 4 

In t e r m s of F i g . 4 , we h a v e the fo l lowing add i t i on t h e o r e m 
(which i s va l i d a t the s u r f a c e of r o d 1, w h e r e i t wi l l be u s e d to s a t i s f y the 
i n t e r f a c e cond i t i ons ) : 



In(^) 

Jn(Ar) 
> cos ne = X 

k=-o 

1^ 
'(-l)^In+k(M)Ik(^p) 

/n+k(Xd)Jk( A.p) 
>• cos k0 

From 0 = TT - 00 or cos k0 = (-1)^ cos kO), we have: 

Jn(Xr) 
> cos ne = I 

k= 

In+k(Xd)lk(Xp) 

J-l)^Jn+k(^<i)Jk(^P). 

- cos kO) 

Such t e r m s wil l e x i s t only if n be a m u l t i p l e of N: 

12 

> cos Nn 9 
k=-o. 

cos kO) 

00 G . 

k=0 '^ 

lNn+k(^d)lk(>^P) 

(-l)^JNn+k(^d)Jk(^P) 

[lNn+k( ^d) + iNn-k(^d)] Ik( Xp) 

[(-1)^ JNn+k(^d) + JNn-k{^d)] Ji,(Xp) 
- cos kffi . ( 15 ) 

VI. REFLECTOR SOLUTION WITH ALL TERMS CENTERED AT ROD 1 

C e n t e r i n g a l l t e r m s in E q . (8) a t the o r i g i n by the u s e of E q . (13), 
we ob ta in , for r > d . 

n=0 

flNnt^)] Ne„ [^Nn(^r)l »̂  [iNn+j( ^ ) + iNn-j(^d) 

[jNn(> r̂)J ^ [YN„(Xr)Jj=0 •" [(-1>J JNn+j(̂ <l) +JN„.J( Xd)J _ 
Nne. (16) 

F o r the f a s t and s low f luxes to v a n i s h a t r = R, both L R and Mj^ 
m u s t v a n i s h t e r m by t e r m in the F o u r i e r e x p a n s i o n . T h e r e f o r e , 

N S n -̂  

Bn = 

K N n ( ^ R ) 

LYNn(A.R)j 

2 < 
• iNn(^R) 

J N n ( ^ R ) . 

oo 

ZAJ 
l N n + j ( ' ^ ) + l N n - j ( ' ^ ) 

j - l ) J J N n + j ( ^ d ) + J N n - j ( ^ d ) 

(17) 

We now c e n t e r a l l of the t e r m s in E q . (8) a t the c e n t e r of r o d 1 by 
the u s e of E q s . (14), (15), and (17). We ob ta in for P < P i i , d: 

CO 00 

^RiP'^) = Z Z Aj 
k=0 j=o 

^jk-< 

Kk( Xp) 

r + Tkj -
Ik( ^p) 

J k ( ^ p ) 

COS k CO , 

(18) 
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where 6jk is the Kronecker delta function, and 

N 

1=2 

rKj+k(xpii)| rKj.k(x.Pii) I 
^ cos(j-k)^i + -̂  >• cos(j+k);8i 

[Yj+k(^Pil)J [(-l)^Yj.k(Xpii)J 

rKNn(>^R) [lNn+k( ^d) + lNn-k(^d)] [lNn+j(^d) + lNn-j(^d)] 

_ Nfk J lYNn( ^ ) [(-1)^ JNn+k(^d)+ JNn-k(^d)][(-l>) Jj^^^.j(X d)+ Ji^^.j(Xd)]J 

^ n=0 riNn(^R)"l 

In a s imi la r manner we obtain: 

MR(r .e) = Y, • { D n l N n ( M r ) + ^ KNn(Mr) £ Cj [lNn+j(Md) + lNn-j(Md)]]-cos Nne ; ( 2 0 ) 
n=0 ^ j=0 J 

00 

^ ¥ ^ § ^ f ^ Z Cj[l,,.,j(Md).lNn-j(Md)] 
° n 2lNn(MR) j=0 

(21) 

00 00 

MR(P,CO) = X Z Cj [6jkKk(MP) + Ukj Ik(MP)] COS kco ; 
k=0 j=0 

(22) 

N 

1=2 
Kj+k(MPil) cos ( j -k )P i + K j . k ( M P i l ) c o s (j+k)/3i 

N e k Y £nKNn(MR)[lNn+k(Md) + lNn-k(Md)][lNn+j(Md) + lNn-j(Md)] ( 2 3 ) 
Z^ • • 

n=0 iNn(MR) 

VII. BOUNDARY CONDITIONS AT SURFACE OF ROD - CRITICALITY 
CONDITION 

Equations (2), (10), (11), (18), and (22) define the fluxes in the core 
and ref lector at the interface in t e r m s of a Fou r i e r expansion of the angular 
dependence about each rod. Fo r the fluxes and cu r ren t s to be continuous 
a c r o s s the interface for a l l angles , they mus t do so t e r m by t e r m in the 
F o u r i e r expansion. The following four equations r e su l t for the cos ko) 
t e r m : 



Slow flux "t 
00 

Z A J 
j=o 

^jk" 
kk(Xa)" 

Yk(Xa) 
' + Tkj -

'lk(Xa)" 

Jk(Xa) 
* 

I k ( i a ) 
- Ek K > - Fklk(ma) = 0 

_Jk(^a)J 

+ Z Cj[6jkKk(/ia)+UkjIk(Ma)] 
j=0 

(24a) 

Fas t flux 

S I R Z Aj 
j=o 

^jk-
kk(Xa) 

Yk(Xa)^ 
^ + Tkj ̂  

'lk(Xa)" 

Jk(Xa)^ 
* 

+ S2R Z Cj[6jkKk(Ma)+ UkjIk(Ma)] 
j=0 

- SicEk-^ 
I k ( i a ) 

J k ( i a ) 
y - S 2 c F k I k ( ^ a ) = 0 

Slow cur ren t 

(24b) 

DSR ^ Z Aj 
j=0 

6jk^ 
Kk+i(Aa) + Kk.i(Xa) 

(_Yk+i(Xa).Yk_i(Xa)^ 
r k̂j i 

Ik-l(Xa)+ Ik+i (^a) 

Jk- i (Xa) -Jk+i (Aa) 

+ DgRfi Z Cj[-6jk(Kk+i(Ma) + Kk-i(Ma)) + Ukj(Ik-l(Ma) + Ik+l(Ma))] 
j=0 

- Dgc tek i 
I k . l ( ^ a ) + I k + i ( ^ a ) 

Jk - l ( -^a ) - Jk+ i ( i a )^ 

Dgc m F k ( I k - l ( m a ) + Ik+i(ma)) = 0 

(24c) 
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F a s t cu r ren t 

SlR^FR ^ Z Aj 
j=0 

-6 jk - { 

IS 

kk+i(Xa) + Kk.i(:^a) 

|^Yk+i(Xa)-Yk.i(Aa)J 
> + Tkj-

I k - l ( ^ a ) + I k + i ( X a ) 

J k - l ( ^ a ) - J k + i ( ? ^ a ) 

+ S 2 R D F R / ^ Z Cj [-6jk(Kk+i(Ma) + Kk.i(Ma)) + Ukj(lk-l(/^) + Ik+l<?^a))] 
j=0 

S I C D F C ^ % -

I k - l ( ^ a ) + I k + i ( ^ a ) 

_ J k - l ( - « a ) - J k + i ( ^ a ) j 

S2Cl^FC ^ Fk(lk_i(ma) + Ik+i(ma)) = 0 (24d) 

We may define the v'th o rder approximation as one in which al l cos kco 
t e r m s a r e d iscarded for k > v . We define this independently of the number 
of t e r m s that a r e taken to evaluate the infinite s e r i e s that occur in Tk^ and 
Ukj when the outer radius of the sys tem if finite. It i s a s sumed that in an 
approximation of any o rde r sufficient t e r m s a r e taken to obtain Tkj and 
Uk4 accura te ly . In p rac t i ce , the t e r m s in Tkj and Ukj converge very 
rapidly and in mos t cases the contributions from al l higher o rde r t e r m s 
a r e negligible compared to the t e r m with n = 0. 

We can, if we wish, consider Eqs . (24) as the final resu l t . In the 
V 'th o rder approximation we would have a set of 4 {v + 1) l inear homo­
geneous equations to be solved for 4 {v+ 1) ttnknowns. The cr i t ica l i ty 
condition would cor respond to the vanishing of the determinant of the 
m a t r i x of coefficients. To obtain the flux distr ibution the a r b i t r a r y con­
stants can then be determined, subject to an a r b i t r a r y normal izat ion factor. 

VIII. REDUCTION OF ORDER OF CRITICAL DETERMINANT 

The o rde r of the cr i t ica l determinant can be reduced by a factor of 
two through the following a lgebra ic steps which el iminate the core constants . 

In a s t ra ightforward manner we segregate the A t e r m s from the 
C t e r m s in Eqs . (24) and obtain: 

z 
j=0 

Aj [ ĵk 

/Kk^Xa) ! 

rik(Xa)'l ^ 
\Jk(Xa)J' 

lYk(Xa)J 
Tkj ] = Ek 

J'lk(^a)1 
S I C - S 2 R \ \ j k (^a ) J 
S l R - S 2 R y fIk(Xa)'l 

J k ( X a ) | {̂  
/ S 2 C - S 2 R \ Ik(ma) 

^k V S 1 R - S 2 R ; rik(^a)l 
VkC^a)/ 

(25a) 



)L 
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DO 

Z Cjfajk 
j=o L 

Kk(iUa) 
Ik(iua) + Uki ] = 

rik(^a)-i 
Ek fS lC-SiR>^l jk( ia ) r 

\ S i : 

F k 

.R - S2R/ Ik(M^) 

/S2C - S I R \ Ik (ma) 
\ S i R - SIR) Ik(Ma) 

(25b) 

00 

I 
3=0 

.5 jk 

rKk+i(Xa) + Kk.i(Xa)T 
lYk+i(A,a) - Yk-i(Xa)J 
f Ik - l (Xa) + Ik+l(Xa)-) • 
I j k - l ( X a ) - Jk+i(Xa)J 

Tkj 

= E k Y 

D F C 

LEE. S I C D ^ ^ " ^2R 
£sc 
DSR 

S I R - S2R 

r i k - l U a ) + Ik+l(^a)-) 
U k . K ^ a ) _ J k + i ( ^ a ) ; 
r i k - l ( X a ) + Ik+l (Xa)^ 
\ Jk_i (Xa) - Jk+i(Xa)J 

+ Fk 

c: £ F C ^ Dgc 

S I R - S2R 

Ik-l(ma) + Ik+l(ma) 
r i k - l ( ^ ) + Ik+l(Xa)'l 
\ J k - l ( X a ) - Jk+l(Xa)J 

00 

y r ^ Kk+l(Ma) + Kk-l(Ma) 
jt̂ o •' L" ^^ Ik-l(Ma) + Ik+l(Ma) 

Ukj] 

„ P F C „ i^sc 

I S i c DpR - ^ I R D s R 

^ M S I R - S2R 

f l k _ i ( ^ a ) + Ik+l(^a)1 
I Jk- l ( -ga) - Jk+l(-ga)J 

Ik- l (Ma)+ Ik+l(Ma) 

_ £FC 
m ^2C DpR 

S I R 
DsC 

S I R 

D S R Ik - l (ma) + Ik+l(ma) 
S2R Ik- l (Ma)+ Ik+l(Ma) 

(25c) 

(25d) 

We now subtract Eq. (25c) from Eq. (25a), and Eq. (25d) from Eq. (25b), 
and obtain 

Ak ak ( S I R - S Z R ) = Ek ek + Fk fk 

Ck ck (S2R - S I R ) = Ek gk + Fk hk (26) 



w h e r e 
ly 

a i , = 

K k ( ^ ) Kk+l (Xa) + Kk-i (>^a) 

I k ( ^a ) I k - l ( ^ a ) + I k + l ( ^ a ) 

Y k ( ^ a ) ^ Yk+i(Xa) - Y k - i ( X a ) 
Jk (Aa) J k - l ( X a ) - J k + i ( X a ) 

^ Kk(Ma) ^ Kk+l(Ma) + K k - l ( M a ) 
Ik(Ma) I k - l ( M a ) + I k + l ( p a ) 
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(27a) 

(27b) 

ek = (Sic - S 2 R ) 

rik(ia)] 
IJk(ia) 
'lk(Xa)1 
Jk{Xa)l { 

Tik-
^fc P F C C D S C \ I J k -

fk = (S2C - S 2 R ) 

gk 

hk = 

(S IC ' I R 

Ik (ma) 
f lk(^an 
\Jk(Xa)j-

/lk(^a)T. 
, LJk(-ga)J 
' Ik(Ma) 

P F C 

D F R 
- S 2 R 

tJk-

DSC\ Ik-
DSR/ 

P F C 
D F R 

S I R 
DSRJ ik-

\ Jk -

( i k -
i Jk-

/ c , ^ c, \ Ik (ma) m 
A ^ ' ^ D F R ^ ^ ^ D S R ; Ik. 

i a ) + Ik+l(^a) ' 
i a ) - Jk+l(^a)J ^27c) ii 
Xa)-I- Ik+l(Xa)l 
\ a ) - Jk+lCXa)]" 

ma)+ Ik+i(ma) 
Xa.) + Ik+i(Xa)l 
^a) - Jk+l(>>-a)j 

i a ) + Ik+l(^a) 
i a ) - Jk+i(ia) . 
Ma) + Ik+l(Ma) 

|ma)+ Ik+l(ma) 

i 
Ma) + Ik+l(Ma) 

(27d) 

(27e) 

(27f) 

w h e r e 

We can now so lve E q . (26) for Ek a n d F k in t e r m s of Ak a n d Ck : 

Ek = (- Pk Ak + qk Ck) ( S I R - S 2 R ) 

F k = (- sk Ak + tk Ck) ( S I R - S 2 R ) , (28) 

Pk = - ak h k / ( e k hk - fk gk) 

qk = Ck fk / ( ek hk - fk gk) 

Sk = ak g k / ( e k hk - fk gk) 

tk = - Ck e k / ( e k hk - fk gk) 

(29a) 

(29b) 

(29c) 

(29d) 



We m a y now s u b s t i t u t e back t h e s e e x p r e s s i o n s for Ek and F k in to 
E q s . (25a) a n d (25b), y ie ld ing for o u r f inal r e s u l t t he fol lowing c r i t i c a l i t y 
condi t ion : 
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1-i 'jk 
|Kk(Xa)| 

lYk(^a)l 
+ Pk(SlC-S2R) ' 

Ik(^a)l 
+ sk(S2C - S2R)lk(ma) + Tkj " 

Ck <lk(Slc-S2R) 
r i k ( ^ a ) | 

ljk(^a)J 

^Jk(^a) 

+ tk(S2C - S2R)Ik("ia = 0 

J = 0 3 
/ r ik(^a) 

<5jk |Kk(Ma) + qk(SlC-S2R) j }-+ tk(S2C " SiR)Ik(ma) )+ Ukj Ik(Ma) 

-Ak 
Ik(ia)-

Pk(SlC-SiR)-( ^+ Sk(S2C-SiR)lk(ma) 
rik(^a)>> 

ljk(ia)J 
= 0 

(30a) 

(30b) 

F o r m o s t p r a c t i c a l a p p l i c a t i o n s , t h e s e c o n d - o r d e r a p p r o x i m a t i o n 
s h o u l d s u f f i c e . In p r o b l e m s w h e r e t h e r o d s i z e i s s m a l l c o m p a r e d to t h e 
i n t e r - r o d d i s t a n c e s a n d t o t h e d i s t a n c e t o t h e o u t e r b o x m d a r y , e v e n t h e 
z e r o - o r d e r a p p r o x i m a t i o n m a y b e a d e q u a t e . W h e n t h i s i s n o t t h e c a s e , 
t h e c o s 0) t e r m s h o u l d l a r g e l y a c c o v m t f o r t h e o v e r - a l l r a d i a l d e p e n d e n c e 
of t h e f l u x w h i c h r e s u l t s f r o n a t h e s m o o t h e d - o u t i n t e r a c t i o n w i t h a l l t h e 
r o d s , a n d a l s o t h e o v e r - a l l l e a k a g e e f f e c t s o u t of t h e s y s t e m . T h e c o s 2 (o 
t e r m s h o u l d l a r g e l y a c c o u n t f o r t h e a n g u l a r d e p e n d e n c e r e s u l t i n g f r o m t h e 

i n t e r a c t i o n w i t h n e a r e s t r o d s a n d w h i c h p e a k s a t 'CO 
7T 

= t — (^^angle a t which 

r o d s e e s n e a r e s t n e i g h b o r s if N > > 1 ) . T h e r e i s l i t t l e r e a s o n , h o w e v e r , to 
expec t (in g e n e r a l ) the cos 2 co c o n t r i b u t i o n to be s m a l l c o m p a r e d to the 
cos to c o n t r i b u t i o n . 



1^ 
A P P E N D I X A 

O N E - G R O U P R E S U L T S 

The o n e - g r o u p c a s e i s , of c o u r s e , m u c h s i m p l e r t han t h e t w o - g r o u p 
c a s e . R a t h e r t han r e - d e r i v e t h i s c a s e c o m p l e t e l y , we c a n e x t r a c t the r e ­
s u l t s f r o m t h e p r e v i o u s a n a l y s i s . We a s s o c i a t e L with the c o m p l e t e s o l u ­
t ion , 0 , a n d a and \ wi th t h e r a d i a l b u c k l i n g s i n the c o r e a n d r e f l e c t o r , 
r e s p e c t i v e l y . 

We h a v e , equ iva l en t to E q . (24), the fol lowing two i n t e r f a c e c o n d i ­
t i ons a t t he r o d s u r f a c e : 

» r rKk(Xa)') r ik(^a)^i rik(-ea)i 

j=0 L LYk(Xa)J Ljk(^a)JJ Uk(ia)J 

^ r rKk+l(^a) + Kk-l(Xa)-^ flk-l (Xa)+ Ik+i(Xa)-^ "l 
D R ^ Z Aj -6jkJ U T I , J J U 

j=0 L LYk+l(Xa)-Yk.i(Xa)J Uk-I (^a) - Jk+i ( X )̂J J 

rik-l(-ea)+Ik+l(ia)') 
- D c ^ k ^ 1 = 0 (Alb) 

L jk - l ( ^a ) - Jk+ i (^a ) J 

A 

j=o' 

fKk(Xa)"l / lk(^a) '1 
[• \Yk(Xa)J ] \ j k ( ^ a ) J 

| j k (Xa) J ' \ J k ( ^ a ) J 

rKk+i(Xa)+Kk.l(Xa)l J'lk-l(-«a)+ Ik+l(-«a)"l 
\Yk+i(Xa)-Yk-i(\a); ^ ^ T _ ^ Dc-g Vk- l (-̂ a) - Jk+l(^ a)J 
rik.l(Xa)+ Ik+l(Xa)"l "̂  ̂ l̂ J J = ^^ DR\/ik.i(Xa)+ Ik+l(^a)l 
I J k - l ( ^ a ) - Jk+i(?.a)J (Jk- l (^a)-Jk+i(Xa)J j=o 

Subtracting Eq. (A2b) from Eq. (A2a) and using notation analogous to the 
two-group case we obtain: 

rKk(Xa)'l rKk+i(Xa) + Kk.i(Xa)^ 
\Yk(Xa)/ lYk+i(Xa) - Yk-i(Xa)^ 

-k = r-T-TTTO + r i ^ _ ^ ( ^ , ) , IkH-l(Xa)l ' ^""'"^ 
J k - l ( ^ a ) - Jk+l(?^a)J 

rik(Xa)l r ik - l (Xa)+ Ik+i(Xa)' 
\ j k ( X a ) / \ : '- ' - ' ' 



^o 
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ek 

Ik(ia)-1 
J k U a ) ; 

Ik(Xa)'l 
J k ( X a ) ; 

r ik . l ( i a )+ ik+i(<ea)-i 
Dc-g Vk-l('ga) - Jk+l(^a)J 

r i k - l ( X a ) + Ik+l(A.a)l 
| j k - i ( X a ) - Jk+l(Xa)J 

D R X 
(A3b) 

and 

aic 
Ek = - f Ak = -Pk Ak 

^k 
(A4) 

Substitution of the express ion for Ek into Eq. (Ala) yields the one-group 
cr i t ical i ty condition: 

j=0 
^ j k i 

k(^a)^ r ik( ia)-

Yk(Xa)J Ijk(-ea). 
+ Tk = 0 (A5) 

The o r d e r of the cr i t ica l determinant is jus t equal to the number of 
angular t e r m s re ta ined. 



2J. 
APPENDIX B 

BESSEL FUNCTION RELATIONSHIPS AND ADDITION THEOREMS 

J-n(x) 

I-n(x) 

Y-n(x) 

K.n(x) 

= ( - l ) ^ J n ( x ) 

= In(x) 

= ( - l )nYn(x) 

= Kn(x) 

^ Jn (/ex) = J [Jn-l( 'Cx) - Jn+l('Cx)] 

A I^(K:X) = -1 [ln-l('Cx) + In+l('Cx)] 

/c — YnCcx) = - - [ Y n + i ( / c x ) - Yn_i(«:x)] 
dx 

^ K,(/Cx) = /c - - J t^n+l( 'cx) + Kn-l(/cx)] 

Z > z 

Jn(w) 

In(w) 

Yn(w) 

Kn(w) 

gin^ 

cos ntf/ 

ein^ 

cos n ^ 

ein^ 

cos n •f 

einV' 

^ = Z Jn+k(Z) Jk(z) 
k = -00 

eik0 

cos k 0 

00 \e^^ 0 

- X (-1)^ In+k(Z) lk(^) -
k= -oo cos k 0 

^= Y Yn+k(Z)Jk(z) -
k = -00 

e ik0 

cos k 0 

e ik0 

Y Kn+k(Z) Ik(z) 
cos n ^ k=-00 ( c o s k 0 


