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TENSILE P R O P E R T I E S  O F  GAMMA QUENCHED AND AGED URANIUM-RICII NlOBlUhl AI,I,OYS 

BY ROSS J. JACKSON,  R O N A L D  P. B R U G G E R ,  AND DELMAR V. MILEY 

Tens i le - tes t  d a t a  a re  p resen ted  for uranium-rich niobium a l l o y s  containing 11 ,  15,  17,  and 19 a / o  nio- 

bium in both t h e  solution-quenched and  the  aged condit ions.  T h e  tens i le - tes t  d a t a  a re  correlated 
with. concurrent metallographic and  x-ray s t u d i e s .  T h e  resu l t s  show tha t  a wide variety of mechani- 
ca l  propert ies  a re  ava i lab le  from t h e s e  heat- t reatable ,  corrosion-resis tant ,  high-density a l loys .  . 

Introduction 
T h e  invest igat ion of the uranium-niobium sys tem 

w a s  undertaken as part of a general  program to find a 
uranium-rich al loy p o s s e s s i n g :  (a)  corrosion res i s -  
t a n c e  propert ies ,  (b) heat-treating charac te r i s t i cs  
leading to favorable  mechanical  propert ies ,  (c) form- 
abi l i ty ,  (d) dimensional  s tab i l i ty ,  (e l  low neutron 
capture c ross -sec t ion ,  and (f) high dens i ty .  

A s e a r c h  of open l i terature revealed a number of 
significant research  s t u d i e s  deal ing with uranium- 
niobium a l loys .  A number of uranium-niobium equilib- 
rium diagrams have  been reported.'-' Other a s p e c t s  of 
the sys tem s u c h  a s ' p h a s e  s tab i l i ty  and decomposi- 
t i ~ n , ~ "  metas tab le   phase^,^,'^ and  d i f f ~ s i o n " ~ ' ~  have 
been invest igated.  

Unfortunately, none of the  reported s t u d i e s  are  con- 
cerned with the  mechanical  propert ies  of the uranium- 
niobium sys tem.  I t  i s  the  intent  of t h i s  work to inves- 
t iga te  mechanical  propert ies  a s  a function of hea t  
t reatments ,  and to Jetermine the  optimum tens i le  
propert ies  commensurate with a given appl icat ion.  
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Experimental 
Materials.-The uranium w a s  magnesium-reduced 

derby mater ial .  T h e  niobium w a s  s intered material 
rolled to  120-mil s t r ip .  A part ia l  chemical  a n a l y s i s  
.of both m e t a l s  i s  givcn in T a b l e  I. 

Alloy Preparation.-The component meta l s  were fab- 
r icated into box e lec t rodes .  T h e s e  were arc-melted in 
a consummable-electrode a rc  furnace into a water- 
cooled copper mold. T h e  ingots  were then inverted 

. TABLE I 

CHEMICAL ANAI.YSIS O F  CONSTITUENT METALS 
AND THEIR ALLOYS 

Niobium* Uranium Arc-cast Induction re-cast 
Element (ppm) ( P P ~ )  alloy alloy 

* Brine11 hardness  number of 52  



and a g a i n  arc-melted.  T h e s e  double-arc-cast  ingots  
were homogenized for 2 hours  a t  1 100°C. T h i s  mate- 
r ia l  w a s  then hot  rolled to s h e e t  from which the ten- 
s i l e - t e s t  b lanks  were cut.  A par t ia l  chemica l  analy- 
s i s  of t h e  double a rc -cas t  a l loy  i s  given in Table  I. 

In s o m e  i n s t a n c e s  the rol led,  double a rc -cas t  a l loy  
w a s  induct ion re -cas t  into bar s tock ,  re-homogenized 
2 hours  a t  llOO°C, and then hot  rol led to r o d s  from 
which the  t e n s i l e - t e s t  b lanks  were cut .  T h e  induction 
c a s t  a l loy  general ly  had a higher  inc lus ion  content  
and a n  apparen t  lower niobium conten t  (approximately 
0.5 w/o niobium) than the s ta r t ing  a r c - c a s t  mater ial .  
A par t ia l  chemica l  a n a l y s i s  of t h i s  mater ial  i s  l i s t ed  
in T a b l e  I. 

T e n s i l e  T e s t  B a r  Prepara t ion ,  H e a t  Trea t ing  and 
Test , ing Procedure,-Two t y p e s  of t ens i le  t e s t  bars  
were u s e d ,  and t h e s e  bars  conformed to the  specifica- 
t i o n s  shown in Figure 1. F l a t  s p e c i m e n s  which were 
u s e d  in the  majority of i n s t a n c e s  were cu t  from hot 
rol led,  double a rc -cas t  s h e e t  material. ,  T h e  round bars  
were from hot rol led rods tha t  were previously induc- 
tion c a s t  a s  d e s c r i b e d  ear l ier .  Before ag ing ,  the 
s h e e t  a n d  the  rod b lanks  were hea ted  30 minutes  a t  
850°C a n d  then they were wate r  quenched.  

T h e  blanks were aged  for var ious periods of time 
and a t  various temperatures ,  a i r  cooled to ambient 
temperature, and then machined. It  w a s  believed that  
th i s  procedure would be s imilar  to  that  of a production 
process .  In some ins tances ,  however, the tensi le  
samples  were machined and then aged.  In other 
i n s t a n c e s  the samples  were machined, water quenched 
from 850°C, aged ,  and then tes ted .  In some c a s e s ,  
af ter  machining and h e a t  t reat ing,  but before test ing,  
the spec imens  were electropol ished by the method 
described in RFP-862." T h e  reasons  for the varia- 
t ions w a s  to  eva lua te  their  e f f e c t s  on the resul t ing 
tens i le  propert ies .  

T e n s i l e  t e s t s  were performed a t  room temperature 
in a i r  on a Tinius-Olsen Model Super L tens i le  t es te r  
a t  a s t rain rate  of 0.802 iii./'iil./'iillnure. Exeepr wliere 
noted, two or three spec imens  were tes ted  for each 
Ileal Lreatment. T h e  ho t  t ens i lc  t e s t s  were conducted 
in a s imilar  manner us ing  a vertical-tube-furnace and 
an a i r  a tmosphere.  

(13) R. J.  J a c k s o n .  W .  L .  Johns ,  and A .  E. Calabra, "Simpli- 
fied Metallographic Technique for Uranium Al loys  and Other 
Metals," T h e  Dow Chemical Company, Rocky F l a t s  Division. 
January 20. 1967, RFP-862.  

- 4.911 - - 3.511 - - 

0 - 1 ' '  G.L.- 

LO. 250" 1' 
3/811 R TAPER TO 0.254' 7/32" D 

Figure 1.-Dimensional specifications for the flat plate and the round 
tensilc-tcst  specimens. 



Hardness measurements were taken of the grip area 
before test ing the specimens. These  values are an 
average of four readings: After fracture, longitudinal 
sections of selected specimens were metallographi- ' 

cally examined. These  same longitudinal sec t ions  
then were subjected to x-ray examination using filtered* 
CuKa radiation and a diffractometer. 

Nomenclature.-A number of stable and metastable 
phases  are observed in the composition range of inter- 
est .  A resurrle uf these phases  is given in Table 11. 
Microstructural connotations can be added to the phase 
designations using the subscripts  a,  b, c ,  d, g,  and p; 
referring to acicular, banded, crosshatch, deformation 
bands, granular, and pearlitic connotations, respectively. 

Data concerning the metastable phases  and their 
hardness, a s  a fi.rnction of phase-composition a t  vari- 
ous cooling ra tes  from the,irlarnma region, are shown in 
Figure 2. These  data are from Anagnostidis et aZ.I4 

Similar data have been presented by Tangri and 
Chaudhuri." 

R e s u l t s  
Presentation of Mechanical Data.-The mechanical 

tes t  data are presented in five figures and two tables 
a s  follows: 

Figure 3.-Test da ta  for the quenched and aged 
uranium-11 a /o  niobium alloy. 

Figure 4.-Test da ta  for the quenched and aged 
uranium-15 a /o  niobium alloy. 

(14) S e e  R e f e r e n c e  10. 
(15) S e e  R e f e r e n c e  9. 

Figure 5.-Test data for the quenched and aged 
uranium-19 a /o  niobium alloy. 

Figure 6.-Test data for the uranium-15 a/o 
niobium alloy aged for various times a t  150°C. 

Figure 7.-Hot tensile strengths of quenched and 
aged uranium-15 a/o niobium alloys.  - 

Table 111.-Supplementary mechanical test data 
presented in tabular form for the uranium-11 a/o 
niobium alloy. + I  

Table 1V.-Test data presented in tabular form for 
the uranium-17 a/o niobium elloy. 
The  mechanical tes t  data for the quenched and aged 

11, 15, and 19 a/o niobium alloys are shown in Fig- 
ures 3, 4, and 5, respectively. The samples were a l l  
gamma-quenched flat bars cut from hot-rolled, arc-cast  
~ i~a ta r i a l .  The aged samples were held one hour a t  
the indicated tempcrature and air cooled, and then 
machined. 

The  shape of the curves for the three compositions 
are similar. In general, the al loys show a low strength 
and high ductility in the solution quenched condition. 
Aging a t  350°C or lower results  in a notable strength- 
ening while maintaining reasonably good ductility 
properties. A t  400' to 500°C the alloys, develop a . 
high strength and almost a complete loss  bf ductility. 
Aging above 52S°C shows an improvement, in ductility 
properties with a corresponding lo s s  in strength. 

In the high temperature aging experiments, the' 
550°C treatment yields the toughest material. Yield 
(0.2 percent offset) and ultimate tensile strengths of 
160,000 psi and 200,000 psi, respectively, combined 
with reasonably good ductility properties are obtain- 
able. The major disadvantage of this treatment i s  the 

EQUlLIBRIUM AND TRANSITION P H A S E S  O B S E R V E D  IN T H E  URANIUM-NIOBIUM SYSTEM 

Symbol D e s c r i p t i o n  

C r y s t a l  
s t r u c t u r e  

a Equi l ib r ium a s o l i d  s o l u t i o n  in s t a b l e  o r  m e t a s t a b l e  form. C o n t a i n s  l e s s  than  1  a / o  niobium. Or thorhombic  

p ~ ~ u i l i ~ r i u m  p s o l i d  s o l u t i o n  In s t a b l e  or  m e t a s t a b l e  form. C o n t a i n s  l e s s  than  4  a / o  niobium. Complex  
t e t r a g o n a l  

yl, Yz Both  a r e  b c c  Y s o l i d  s o l u t i o n s ,  wi th  differing p a r a m e t e r s ,  o c c u r r i n g  within t h e  immisc ib i l i ty  loop .  y2 would b e  b c c  

n lob lum rich. 

a '  S ~ ~ e r s a t u r a t e d a - l i k e  t r a n s i t i o n  ~ h a s e  h a v i n g  s a m e  s t r u c t u r e  bu t  d i f fe ren t  p a r a m e t e r s .  T h e r e  i s  a  n o t a b l e  , Orthorhonihic 
c o n t r a c t i o n  of t h e  bo p a r a m e t e r  a s  compared  to  t h e  a, and  c o  p a r a m e t e r s .  (bo c o n t r a c t i o n )  

a" S u p e r s a t u r a t e d  G l i k e  t r a n s i t i o n  p h a s e  h a v i n g  s i m i l a r  p a r a m e t e r  c h a n g e s  a s  a' a n d ,  in addi t ion ,  an i n c r e a s e  in  Monocl iq ic  

a n g l e  y ( b e t w e e n  t h e  a  and  b  a x e s )  t h u s  r e s c l t i n g  in  a  monocl in ic  s t r u c t u r e .  ( h  cnnt racr inn)  
, Y  L BOO) 

Q An o r d e r e d  t e t r a g o n a l  t r a n s i t i o n  p h a s e  c l o s e l y  r e l a t e d  t o  t h e  b c c  y p h a s e .  T h e  s t r u c t u r e  i s  b a s e d  0n .a  b lock  of.', T e t r a g o n a l  

2 x  2 x 1  Y c e l l s  wi th  c / a  <0,5. 

Yl-2 A b c c  y s o l i d  s o l u t i o n  i n t e r m e d i a t e  to the  equi l ib r ium Y1 a n d  yz ~ h a s e ' s .  T h i s  ~ h a s e  o c c u r s  dur ing  t h e  
h o m o g e n e o u s  d e c o m p o s i t i o n  of y1 to y2. 

b c c  
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Figure 2.-Crystallographic phase (upper) and hardness (lower) a s  a function of composition after quenching from the gamma 
region. The data are from Anagnostidis. 

precipi tat ion of a niobium poor a l p h a  uranium p h a s e  
and a corresponding l o s s  in corrosion propert ies .  

T h e  d i scont inu i ty  in  t e n s i l e  and  y ie ld  s t reng ths  in 
the  vicini ty  of a 450°C a g e  for the three composi t ions 
i s  more apparent  than real .  T h e s e  t e n s i l e  b a r s  were . 
bri t t le  and often s l igh t ly  bent.  T h e  combination of 
t h e s e  two f e a t u r e s  makes  t rue t e n s i l e  loading very 
difficult to  approximate, a n d  hence ,  r e s u l t s  in low 
y ie ld  and  t e n s i l e  s t reng ths .  

T h e  most promising hea t  treatment for a l l o y s  where 
corrosion r e s i s t a n c e  i s  paramount i s  the  low tempera- 
ture h e a t  t reatment ,  i.e., below 350°C. At tempera- 
tu res  below 300°C no v i s ib le  decomposi t ion of the 

metas tab le  a" or yo s tructure occurs  during the one- 
hour aging. T h e s e  a l l o y s  show a not iceable strength 
increase  while  maintaining good duct i l i ty  properties. 

Mechanical t e s t  d a t a  for the uranium-15 a / o  niobium 
al loy aged for var ious periods of time a t  150°C a r e  ' 

shown in Figure 6. T h i s  low-temperature h e a t  treat- 
ment r e s u l t s  in a notable  increase  in yield s t r e n g t h ,  
and reduction in a rea ,  whereas  the  ultimate te'nsile 
strength and modulus d e c r e a s e  s l ight ly.  T h u s  aging 
a t  150°C for 6 hours resu l t s  in a near 50 percent  
increase  in yield s t rength and a 40 percent  increase  
in reduct ion of area.  

T h e  hot t ens i le  s t rength d a t a  for the  uranium-15 a/o 
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Figure 3.-Mcchanical tes t  dala for the U-11 a /o  Nb alloy at  ambient temperatures. The samples  were aged one hour a t  
the indicated temperature and air  cooled. All the samples  were flat bars which were water quenched from 850°C, aged, and 
then machined. The  blanks were cut from hot rolled,  arc-cast  material. 

niobium alloy tested a t  various temperatures are shown 
in Figure 7. F la t  bars were machined from hot rolled 
sheet ,  then solution treated 15 minutes a t  850°C and 
water quenched. After being water quenched the sam- 
p les  were aged 2 hours a t  the indicated temperature, 
and then air  cooled. The samples were tested a t  2 4 O ,  
100°, 300°, and 600°C. A decrease in tensile strength 
with an increase in the t e s t  temperature was noted for 
al l  heat treatments. A relation between. the aging tem- 
perature and the tensile strength i s  a lso  noted, with 
the as-quenched condition having the lowest yield 

strength, and the. 600°C aged condition having the 
highest yield strength. 

Supplementary mechanical t e s t  data for the uranium- 
11 a/o niobium and uranium-17 a70 niobium alloy are 
shown in Tables  I11 and IV, respectively. Round ten- 
si le-test  blan-ks were cut from induction-cast (previ- 
ously double-arc-cast) hot-rolled bar stock.  The 
blanks were then heated 30 minutes a t  850°C and then 
they were water quenched. The significance of the 
data presented in Tables  I11 and I V  i s  presented in 
the Discussion section of this report. 
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Figure 4.-Mechanical test data for the U-15 a/o Nb alloy at ambient temperaLures. The salllples were aged one hour at  
the indicated temperature and air cooled. All the samples were flat bars which were water quenEhed from 8 G 0 c ,  aged, and 
then machined. The blanks were cut from hot rolled, arc-cast material. The YS and UTS values for samples after water 
quenching from 850°C were slightly l e s s  than those shown for the 150°C age. The YS and U'l'S values for the samples air 
cooled from 850°C were 37,000 and 130,000 psi, respectively. 

Metallographic and X-Ray Resul ts . -The r e s u l t s  of 
metal lographic and  x-ray examina t ions  of the three 
pr inciple  composi t ions a re  shown in T a b l e s  V, VI 
and VII. 

In genera l ,  x-ray examinat ion revea led  no s tructural  
c h a n g e  af ter  a g i n g  for one hour below 350°C. T h u s  
the  a l l o y s  c a n  be  aged  and  s t reng thened  a t  low tem- 
pera tures  (below 350°C) without a n y  readi ly.apparent  

x-ray or microstructural changes ,  and hence,  without 
any la rge  l o s s  in corrosion r e s i s t a n c e .  ,. 

T h e  changes  in microstructure af ter  one hour a t  
400°C were incomplete and resu l ted  in diffused x-ray 
diffractions. After one hour a t  500°C the precipi tated 
a p h a s e  w a s  c l o s e  t o  equilibrium composition and gave 
very sharp  x-ray diffractions. T h e  accompanying Y 
phase  had diffuse p e a k s  and the  intensi ty  and  posi t ion 
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Figure 5.-Mechanical test data for the U-19 d o  Nb alloy at ambient temperatures. The samples were aged one hour at 
the indicated temperature and air cooled. All the samples were flat bars which were water quenched from 900°.C, aged, and 
then machined. The blanks were cut fro@ hot rolled, arc-cast material. The YS and UTS value's for samples hater  
quenched from 900°C were 113,000 and 125,000, respectively. The YS and UTS values for samples air cooled from 900°C 
were 79,000 and 125,000 psi, respectively. 

of the p e a k s  showed the  matrix to be niobium poor. 

T h e  a l l o y s  were c loser  to y, in composition than they 
were to y,. Longer  t imes  a t  t h e s e  aging temperatures  
would undoubtedly r e s u l t  in the formation of the equi- 
librium y, phase.  

- T h e  metallographic observa t ions  for the 11 a /o  and 
15 a / o  Nb al loy agreed  well with the x-ray observa-  

t ions.  No decomposi t ion w a s  de tec ted  after aging for 

one hour a t  350°C or below [See Figures  8(a)  and 
9(a)l. After one hour a t  400°C a discont inuous precipi- 

t a te  formed a t  the  grain boundaries  and inc lus ions  
[Figure 9(b)I. T h e  inclusions a re  primarily Nb,C and 
UC. :\t 400°C, del ineat ion of banding w a s  pronounced 
indicat ing that  precipitation may a l s o  occur  a t  the 

band interfac.es [F igure  9(b)l. At 500°C the micro- 
s t ructure cons i s ted  of a n  unresolvable matrix (a + y,;) 
and i s lands  of the transformed metas tab le  

parent-phase [Figure 9(c)l.  At 600°C the microstruc- 

ture cons i s ted  ent i rely of the unresolvable ( a  + y,_;)  
matrix. The  ear l ier  y grain boundaries  which were ' 



- - 

- 0 UTS . - 

A  0.2O/OYS - - 

- - 
- A H A  A 

&/ f I I I I I 

I 1 I I 1 I 
- - 
- 0 - 

, - .  O 
< - 

C A A- A- A A  - 
- 0 O/o R/A - 
- A '10 ELONG. , - 

I I I I I I 

1 1 I I I I i 

A MODULUS - 
- - 
A- A - A - A  - 

A 
I I I I I I 

0 I 2 3 4 5 6 7  
TIME (hr.) 

h'igure 6.-Mechanical tes t  data for the U-15 a/o Nb 
alloy aged at  150°C. The test  w a s  conducted at ambient 
temperatures. The samples were aged in oil a t  150°C and 
air cooled. All the samples were flat bars which were 
water quenched from 850°C, machined, and then aged. 
The blanks were cut from hot rolled, arc-cast material. 

observed  af ter  t h e  lower h e a t  treatments-aging treat- 
ments  were a l s o  v i s ib le  a f te r  the  500° and 600°C 
a g i n g  t rea tments .  

Metal lographic observa t ions  of the  U-19 a / o  Nb 
a l loy  were difficult t o  interpret.  Quenching t h i s  a l loy 
from 850°C r e s u l t e d  in a duplex  s tructure c o n s i s t i n g  
of l ight  g r a i n s  a n d  dark grains .  Quenching from 900°C 
resu l ted  in a s t ruc ture  appear ing  to be s ingle-phase.  

' Aging t h e  al loy a t  250°C resu l ted  a l s o  in a duplex 
s t ruc ture  of l ight  g ra ins  a n d  dark gra ins  [Figure 10(a)l.  

After aging a t  350' and 400°C the dark grains  became 
progressively darker [Figure 10(b)I. I t  i s  believed 
that  the  duplex appearing s tructure i s  because  of a 
s l ight  niobium enrichment of cer tain grains  a t  the 
expense  of others .  T h i s  would al low the niobium rich 
gra ins  to be  a t t acked  by the e tchan t  a t  a different ra te  
than the  niobium poor grains .  

After aging a t  500° and 600°C, the U-19 a/o Nb 
alloy appears  s imilar  to  the other  two composi t ions 
s tudied.  At 500°C the  microstructure cons i s ted  of an 
unresolvable matrix and  i s l a n d s  of the  partially trans- 
formed metas tab le  ~ a r e n t - p h a s e  [Figure 10(c)I. At 
600°C the microstructure cons i s ted  entirely of the  
unresolvable matrix. 

d 

T h e  s ta r t ing  y grain s i z e  was approximately 0.04, 
0.03 and 0.02 mm for the 11, 15 and  19 a / o  Nb.al loys,  
respect ively.  A s  would 'be expec ted ,  no growth of the 
prior )r g a i n s  rvas o b s c r v ~ d  on aging. T h e  11 a/o and 
15 a /o  Nb al loy had a uniform grain s t ructure (F igures  
8 and 9). T h e  aged  19 a /o  Nb al loy had a duplex 
grain structure. T h e  light g ra ins  averaged 0.015 mm 
whereas  t h e  dark "grains" were about  0.03 mm in 
s i z e  ( F i g w e  10). 

T h e  fractures  for solut ion quenched spec imens  and 
spec imens  aged below 350°C were predominantly trans- 
crystal l ine.  T h e  spec imens  aged for one hour a t  
350°C showed a mixture of t ranscrystal l ine and 'inter- 
crystal l ine fractures .  T h e  spec imens  aged for one 
hour above 350°C had f rac tures  that  were predominantly 
intercrystal l ine.  Photomicrographs sho,wing the change 
from transcrystal l ine to  intercrystal l ine fracture with 
increase  in aging temperature a re  shown in F igures  
11,  12 and 13. The. change from t ranscrys ta l l ine  to  - 
intercrystal l ine fracture i s  a t t r ibuted to  loca l ized  pre- 
c ipi ta t ion which occurs  a t  grain boundaries af ter  aging 
the  specimen for one hour near  350°C. 

T h e  microhardness  va lues  a t  the grip a r e a  and the  
fracture are,a a re  shown in T a b l e s  V, VI and V I ~ .  The 
fracture hardness  w a s  taken a t  the  center  of the bar 
60 microns from the break us ing  a 25  gram load. A 
similar  load  w a s  used  for the grip a rea .  ,As would be 
expedted,  the duct i le  s a m p l e s  showed a work harden- 
ing effect, T h e  apparent  s t ra in  softening affect for 
the  s a m p l e s  aged a t  the  higher temperatures  i s  
quest ionable.  

Discussion 
I t  i s  not surpris ing that  the re ta ined  metas tab le  yu 

phase  i s  s o f t e r  than the  a phase  of pure uranium; even 
though the  s t ructure i s  modified from bcc. What i s  
surpris ing i s  the  extraordinary softening that  occurs  
a s  t h e  niobium content  i n c r e a s e s  from 11 a / o  to 15 
d o  until  the  a" phase  i s  sof ter  than pure uranium. 
The  a" p h a s e  i s  monoclinic a n d  thus  the number of 
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Figure 7.-Hot mechanical  tes t  data for the U-15 a /o  Nb alloy. The flat bars  were machined from hot rolled shee t ,  then 
solution treated 15 minutes a t  850°C and water quenched. The samples  were then aged 2 hours a t  the indicated tempera- 
ture and air cooled.  The samples  were then tested hot at  100, 300, or 600°C. One tens i le  bar per data point. 

TABLE I11 

S U P P L E M E N T A R Y  MECHANICAL T E S T  DATA F O R  T H E  URANIUM-11 a / o  NIOBIUM ALLOY.  ROUND B L A N K S  WERE C U T  
FROM H O T - R O L L E D ,  INDUCTION-CAST BAR STOCK.  T H E  B L A N K S  W E R E  T H E N  H E A T E D  30 MINUTES A T  8 5 0 ' ~  

AND WATER QUENCHED.  TWO T E N S I L E  B A R S  P E R  DATA P O I N T .  

H e a t  t r e a t m e n t  U T S  0.2% Y S  % Elone .  M n r l n l n ~  
Specimen p r e ~ a r a t i n n  (OC p e r  1 hr)  ( k s l )  ( k s ~ )  % R/A ( i n  1  inch)  ( p s i  x 

Aged, then  m a c h i n e d  
Machined ,  then  a g e d  
Aged, t h e n  m a c h i n e d  
Machined ,  t h e n  a g e d  
Aged, then  m a c h i n e d  
Machined ,  then  a g e d  

TABLE I V  

S U P P L E M E N T A R Y  MECHANICAL T E S T  DATA F O R  T H E  URAI\IIURI-L'I a / o  NIOBIUM ALLOY.  ROUND B L A N K S  WERE CUT* 
FROM H O T - R O L L E D ,  INDUCTION-CAST BAR STOCK.  T H E  B L A N K S  WERE T H E N  H E A T E D  3 0  MINUTES A T  9 0 0 ~ ~  AND 

WATER QUENCHED.  

Sp,ec imen 
p r e p a r a t i o n  

H e a t  t rea tment  0 .2% Y S  % Elong.  
(OC p e r  1 hr) U T S  ( k s i )  % R/A ( in  1  inch)  E  

Machined ,  then  a g e d  , ' 250 127 6 4  46  2 1 .  6 . 5  
de Machined ,  then  aged , ,0 .004  in. removed on  e l e c t r o p n l i s h i n g  260 117 9 5 5 1 ' 3 1  6 .5  

Machined ,  then  aged ,  0 . 0 0 1  in. removed on e l e c t r o p o l i s h i n g  250 . 117 . 5 3  52 '  28  6 .5  
Machined ,  then  W.Q. from 8 5 0 ° c ,  t h e n  aged ,  l i g h t  el 'ectropolish 250 118 30 



T A B L E  V 

History X-ray 
(OC) p h a s e s  

METALLOGRAPHIC AND X-RAY RESULTS FOR T H E  U-11 a /o  Nb ALLOY 
WHOSE MECHANICAL P R O P E R T I E S  ARE SHOWN IN FIGURE 3. 

Microstructure a t  
grip fracture 

water  Q. 850  
1-hr a t  150 
1-hr a t  250 
1-hr a t  300 
1-hr a t  350 
1-hr a t  400 

'a" 1-phase banded t ranscrys ta l l ine ,  e longated gra ins  
a" 1-phase banded t ranscrys ta l l ine ,  elongated gra ins  
a" I-phase banded t ranscrys ta l l ine ,  e longated gra ins  
a" 1-phase banded t ranscrys ta l l ine .  e longated gra ins  
a" 1-phase banded trans.  p l u s  in tercrys ta l l ine ,  no elong. gra ins  

a" + y (w)  %const i tuents :  (a"),  ( a  + Y); in tercrys ta l l ine ,  no elong. gra ins  
ppt. a t  grain boundary and inc lu s ions  

a (s) yu (b) i s l a n d s  in fine a + Yu matrix in tercrys ta l l ine  
U ( S )  yu (b)  fine + Yu matrix in tercrys ta l l ine  

b  = broad, s = sharp ,  w = weak 

METALLOGRAPHIC AND X-RAY RES1ST.TS FOR T H E  U-15 a /o  Nb ALLOY 
WHOSE MECHANICAL P R O P E R T I E S  ARE SHOWN IN FIGURE 4. 

His tory  
(O C) 

water  Q. 850  
I-hr a t  150 
1-hr a t  250 
1-hr a t  300 
I-hr a t  350 
1-hr a t  400 

X-ray 
p h a s e s  

Microstructure a t  
grip fracture 

1-phase banded t ranscrys ta l l ine ,  e longated gra ins  
1-phase  banded t ranscrys ta l l ine ,  elongated gra ins  . 
1-phase banded t ranscrys ta l l ine ,  elongated gra ins  
1-phase banded t ranscrys ta l l ine ,  e longated gra ins  
1-phase banded trans.  p l u s  in tercrys ta l l ine ,  no elong. gra ins  

some  ppt. a t  grain boundary and  in tercrys ta l l ine  
i nc lu s ions ,  %const i tuents  

i s l a n d s  in fine a + YU matrix in tercrys ta l l ine  
fine a + yu matrix in tercrys ta l l ine  

b  = broad, s = sharp ,  and w = weak 

T A B L E  VII 

METALLOGRAPHIC AND X-RAY RESULTS FOR T H E  U-19 ' a /o  Nb ALLOY 
WHOSE MECIIANICAL P R O P E R T I E S  ARE SHOWN I N  FIGURE 5. 

His tory  
P C )  

a i r  0. YOU 
' water  Q. 900 

I-hr a t  250 
1-hr a t  350 
1-hr a t  400 
1-hr a t  500 
1-hr a t  575 

X-ray 
p h a s e s  

Microstructure a t  
fracture 

1-phase  
1-phase  banded t ranscrys ta l l ine ,  e longated gra ins  

l ight  and dark duplex gra ins  t ranscrys ta l l ine .  elongated gra ins  
l ight  and  dark duplex gra ins  trans.  p l u s  intercrystalli l le,  no elong. 

l ight  and dark duplex gra ins .  2  s h a d e s  of dark ' in tercrys ta l l ine  
i s l a n d s  in fine (I + YL2 rnntrix in tercrys ta l l ine  

fine + Yu matrix in tercrys ta l l ine  

b  = broad, s = sha rp ,  t  = trace, w = weak 

deformation modes  compared to t h o s e  of pure a- 
uranium should  be  l e s s  by a factor  of two. In s p i t e  
of t h i s ,  t h e  a " - p h a s e  showing t h e  la rges t  ang le  of 
monocl inici ty  a l s o  s h o w s  t h e  maximum ductility. '  
B a s i n s k i  and  Christian16 have  shown that  the bounda- 

(16) 2. S. Bas in sk i  and J. W. Chris t ian ,  Acto hlet., 2, 101-116 
(1954).  

D.P.N. a t  
grip fracture 

D.P.N. a t  
grip fra'cture 

D.P.N. a t  
grip,  fracture 

- 
306 . 
333  283 

gra ins  306 317 
3 5 1  297 
560 503 
483 429 

r i e s  between twinned a r e a s  of a cer tain type of mar- 
t ens i t i c  transformation product may be very mobile, 
and that  large deformations may be  accommodatecl by a 
boundary movement to  a d j u s t  the  i e la t ive  amounts  of 
each  type of twin. T h i s  w a s  not  observed in t h i s  work 
but the transformation prorl~~ct had, i n  most c a s e s ,  
very fine twinned a r e a s  that  were not opt ical ly  resolv- 
ab le  in a n  individual transformation band. In any c a s e ,  



Figure 8.-Microstmctures of aged U-11 a/o Nb alloys: (a) sample aged 
one hour at  350°C showing absence of decomposition of a" structure, (b) sam- 
ple aged one hour a t  400°C showing localized precipitation at  grain boundaries 
and inclusions. Both 5OOX. 

Figure 9.-Microstr~ctures of aged. U-15 a/o Nb alloys: (a) sample aged one hour at 350°C showing absence of decom- 
position of a" structure, (b) sample aged ane hour at 400°C: showing some localized precipitaLion at grain boundaries and 
darkening of bands, (c) sample aged one hour at SOO°C showing unresolvable matrix and islands of partly decomposed meta- 
stable parent phase. All SOOX. 



Figure 10.-Microstructures of aged U-19 a/o Nb alloys: (a) sample aged one hour at 250°C showing duplex structure, 
(b) sample aged one hour at  350°C showing duplex structure and darkening of grains, (c) sample aged one how at  500°C 
showing unresolvable matrix and islands of partly transformed metastable parent phase under polarized light. All 500X. 

Figure 11.-Microstructures illustrating change in fracture appearance for the U-11 a/a Nb alloy with increase in aging 
temperature: (a) sample aged one hour at 250°C showing elongated grains and transcrystalline fracture, (b) sample aged nne 
hour at 350°C showing mixed transcrystalline and intercrystalline fracture. (c) sample aged one hour a t  400°C showing inter- 
crystalline fracture. A11 250X. 



Figure 12.-Microstructures illustrating change in fracture appearance for the U-15 a/o Nb alloy with increase in aging 
temperature: (a) sample aged one hour at 250°C showing elongated grains and transcrjrstalline fracture, (b) sample aged 
one hour at 350°C showing mixed transcrystalline and intercrystalline fracture, (c) sample aged one hour at 400% showing ,: % 4 
intercrystalline fracture. All 250X. I L: 

i I 

Figure 13.-Microstruct~es illustrating change in fracture appearance for 
the U-19 d o  Nb alloy with increase in aging temperature: (a) sample aged 
one hour at 250°C showing elongated mains and transcrvstalline fracture. 
(b) sample age14 one hour a; 350'6 ohowing mixed Lra and inter- 
crystalline fruo~ure. All 250X. 

_ ,. .. I - - 
b - -  



if such a mechanism applied, the effect of niobium 
content would stil l  have to be explained. 

A noticeable feature shown in Figures 3, 4, and 5 i s  - 
the strength minimum for the solution quenched uranium- 
15 a/o niobium alloy a s  compared to the other two 
compositions. The uranium-15 a/o niobium composi- 
tion lies very close to the a"-yo phase boundary (see 
Figure 2). When samples of this composition were 
entirely single-phase a" the yield strengths averaged 
30 ksi (Figure 4). It was not unusual to encounter 
alloys consisting of a coherent mixture of a" + yo. It 
i s  believed that these mixtures are the result of nio- 
bium micro-segregation resulting in regions where the 
niobium content exceeds that of the a"-ya metastable 
phase boundary. The a"  + yo alloys had the lowest 
yield strengths and averaged 20 ksi (Figure 6). This 
indicates that the misfit energy between the two meta- 
stable phases must be very low. 

A curious feature of the results was that the tensile 
strength of the martensitic a "  phase was higher in the 
airquenched condition (Figure 4), whereas for the 
metastable yo- phase it was higher in the water- 
quenched condition (Figure 5). For the metastable 
y-structure, the greater degree of ordering given by 
rapid quenching, and the higher quenching stresses, 
may be responsible for the higher strengths observed. 
For the a "  structure, an early state of precipitation 
possibly occurs during the slower quench, giving rise 
to the greater strength. A similar behavior i s  observed 
in the uranium-molybdenum system." 

The increase in yield strength on aging at 150°C 
(Figure 6 )  was first noted in a uranium-7.5 a/o niobium- 
2.5 a/o zirconium ternary alloy and was pre- 
sented to relate this to an ordering phenomenon.18 A 
similar explanation perhaps applies for the uranium-15 
aiio niobium alloy, even though a different phase i s  
being considered, i.e., a" a s  compared to y or yo in 
the ternary alloy. The diffusion of interstitial impuri- 
t ies a t  1 S 0 C  to dislocations resulting in making them 
less  mobile could also cause an increase in yield 
strength. 

Mechanical test data for a uranium-7.5 a/o niobium- 
2.5 a/o zirconium alloy has been presented else- 
 here.'^,^' Certain similarities can be drawn between - 

(17) R. F. Hills,  B. R. Butcher, and B. W. Howlett, J .  Nucl. 
Materials. 11 ,  149-162 (1964). 

(18) C. A. W. Peterson and W. E. Elkington, "Physical and 
Mechanical Properties of U-7.5 Nb-2.5 Zr Alloy," Lawrence 
Radiation Laboratory, 1966, UCRL-14724. 

(19) See Refetenoe 18. 
(20) C. A. W. Peterson and R. R. Vandervoort. "Properties 

of a Metastable Gamma-Phase Uranium-Bass Alloy: U-7.5 
Nb-2.5 Zr." Lawrence Radiation Laboratory, 1964, UCRL-7869. 

this ternary alloy and the uranium-niobium binary alloy. 
The aging trends observed in this study correlate well 

1 

with those reported on the one ternary alloy. 
Table I11 shows mechanical test data for aged 

uranium-11 a/o niobium alloys. It was intended to 
determine the strength difference for machined and 
then aged alloys a s  opposed to aged and then machined 
alloys. A s  can be seen from the data, no direct cor- 
relation i s  obvious. 

Table IV shows that the effect of electropolishing 
i s  to lower the strength properties and increase the 
ductility. This i s  perhaps related to removal of an 
oxide film or a surface residual stress resulting in a 
dislocation sink at the surface rather than a barrier. 
It was also desirous to see if samples could be 
machined, solution quenched, then aged, and satis- 
factorily tested. The one test (Table IV) indicated 
that this could be done. 

The low extensions and relatively high reductions . - 
of area that occur in the uranium-19 a/o niobium alloy 
(Figure 5), and in the uranium-15 a/o niobium alloy 
aged at various times at 150°C (Figure 6), are worthy 
of note. This suggests that once deformation has 
started, it i s  easier to continue deforming in that area 
than to initiate deformation elsewhere. It seems rela- 
ted to an upper yield point phenomenon, but not analo- 
gous to it, since nothing similar to Luders bands was 
found. It i s  interesting that the yo structure i s  an 
ordered structure2' and that the 150°C age may result 
in an ordered a" structure. Thus, the severe necking 
may be related to a strain softening phenomenon that 
i s  a result of the ordered arrangement of atoms. 

Microstructural examlnatlon revealed no evidbncc! af 
c~rcumferential cracking. At similar compcrsitions in 
the uranium-molybdenum system,PD severe eir~umfer- 
ential cracking was observed and was attributed to 
stress-corrosion in air. This phenomenon has limited 
the use of uranium-molybdenum alloys. It i s  note- 
worthy that wanium-niobium alloys, at least in the 
range of study, did IIUL ehow stress-eorroaioa cracking. 
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