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ABSTRACT 

Starting with partial wave amplitudes for TTN -*• NIT and TTN -*• sev­

eral isobar model states of Nine, we are able to apply the constraint of 

unitarity (using the K-matrix). This permits the removal of the overall 

phase ambiguity of the isobar amplitudes at each energy. The K-

matrix fits generated a smooth prescription for the T-matrix amplitudes, 

enabling UB to search the complex energy plane for poles. The uniquen-

ness of these poles was demonstrated by doing Breit-Wigner refits to 

the fitted T-matrix amplitudes. The success of the refits and the ob­

vious interpretation justified a simple determination of coupling signs 

for which there can be checks with theory. This thesis correspond** 

closely to a forthcoming paper submitted to Physical Review except 

that here the K-matrix is based on a 1972 solution "A" isobar-model 

fits to NTTTT data, and in the final paper we use solution "B. " 

^Present address: D. Ph. P. E. , CEN Saclay, 91 Gif -Sur -Yvette, France, 

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 



1. INTRODUCTION 
1.1 Recently partial wave amplitudes in the context of the isobar 

1 modei have become available for the reaction TTN -» NTTTT. Here we 

present the results of a K-matrix fit to both these amplitudes and the 

elastic amplitudes, ' trN -*• TTN. In addition we extract from the ampli­

tudes of the K-matrix fit resonance parameters (mass, widths* 

couplings, poles). 

Nirrr partial wave analysis spans the center-of-mass ( c m . ) 

energy range 1300 < E < 2000 MeV, except for a 100-MeV gap 

1540 < E < 1650 MeV, where the data are not yet available to UB. We 

utilize the data in the most efficient manner, making simultaneous 
4 

maximum likelihood fits to the three major channels at each energy: 
+ -

TT p - * TT IT n , 

7 r ~ p -»• i r " i r 0 p , 

+ 0 TT p - » IT TT p . 

The inelastic partial wave cross sections we obtain are in excellent 

agreement with the predictions from elastic phase shift analyses 

(EPSA). 2 , ° 

The isobar final Btates that we have specifically considered are 

TTN — TTA 

- p N 
s 

- eN. 

The subscript s refers to the spin of the pN system (s = l /2 or 3/2), 

referred to as p. or p, . Since between the energies 1.3 to 2.0 GeV Nrnr 

is the rnoflt important inelastic reaction, it is fruitful to use unitarity 

to describe both elastic and inelastic processes together. For this 

purpose a coupled channel K-matrix equation was used. We assumed 

one could describe the resonant states as poles in the. K-matrix and 



then fit for the pole position and residues. Where the data indicated 

the need for large additional contributions, wc added the appropriate 

poles, thus providing additional evidence frjr poorly established reso­

nance states. 

Another motivation for doing the K-matrix fits was to determine 

the one overall phase at each energy of the isobar amplitudes. Once 

this phase is determined, Argand diagrams are then possible and we 

can establish the relative 3igns of the couplings for different channels 

and resonances from resonance region to resonance region. 

Finally the problem of deterrning reliable resonance parameters 

from the amplitudes of the K-matrix fit is discussed. Several different 

ways of estimating resonance parameters, notably the widths, are con­

sidered. 

1.12 Relation between this thesis and a forthcoming paper: 

This thesis is the same as the Physical Review paper except for input 

isobar amplitudes, some tables, and appendices. The input isobar 

amplitudes for this thesis come from unpublished LBL/SLAC partial 
1.4.5 wave analysis references. 

2. K-MATRIX FORMALISM 

In this section we will discuss how three-particle cross sections 

can be described in terms of the isobar model amplitudes. We also 

diacuBS how an integral K-matrix equation can be reduced to an alge-

bratic equation. Furthermore we introduce the parametrization of our 

K-matrix which is used to describe, simultaneously r4tr -* Ntr and 

NTTTT -*• NTTTT partial wave amplitudes. 

The cross section for 2 -* 3 particle processes in our normaliza­

tion is 



a -£3±4[lT |2B 4,P Sql-i— ^ 5 £!S £ 5 . m 
ff " 4 F ^ I T 2 3 l B ( f q i ' ( 2 l r ) 9 ^ 7 ^ T T i p ( 1 ) 

where P ia overall four-momentum and q. is the four -momentum of 

the ith particle in the final state: 

q 4 = < V qi>. (2) 

F is the Miller invariant flux factor: 

F = IQJVS . (3) 

Here Q. is the c. m. momentum of the beam particle and *sfi is the 

cm. energy of the system. Finally T , 3 is the invariant matrix ele­

ment for the 2 -*• 3 particle process. 

We are interested in the croaB section of an incoming angular mo­

mentum state and want to use the isobar model amplitudes determined 

in Ref. 1. We follow the notation of Ref. 1. The three-particle final 

state has four independent variables at each value of s. Let us choose 

them to be two diparticle masses (squared) (s and s ) and two angles 

(0 and tf}- We will denote these variables as a vector ui. We then 

assume T2a(i*0 to be a sum of contributions from isobar partial wave 

amplitudes, 
T 2 3 {w ) = S t j j S ) . {4) 

where the subscripts include both isobars (A,p,e) and partial wave 

indices. For details see Ref. 5. Inserting this partial wave 

decomposition into Eq. (1) and integrating over the angles 0, *K we find 

0 -_JL Y 1

( j + i / 2 ) r E [jT.J (. , 8 ) | 2 ^ V b l 

(5) + £ r f/T * (s , s)<3>J T * (s . a )d s ds 
n m | | In n m.i lm' m n m 
^ 



w h e r e n i s the value of k which i s fed by a s ingle incoming wave J , 

Q. i s the b e a m m o m e n t u m , Q the i soba r m o m e n t u m , and Q the 

m o m e n t u m of the i s o b a r decay p roduc t s . (Q-» Q a r e in the cen te r of 

m a s s , but q i s eva lua ted in the i sobar r e s t f r a m e ) , F ina l ly the 4* — 

a r e the usua l recoupl ing coefficients (Ref. 6 and Appendix C in Ref. i3 ) . 

We have comple te ly changed the subsc r ip t s and in t roduced the following 

nota t ion: T , r e p r e s e n t s the pa r t i a l wave ampl i tude f r o m the NIT s ta te 

( labeled 1) to a final s t a t e n, fo rmed by an i s o b a r (the nth i s o b a r ) and 

r ema in ing p a r t i c l e . Notice that we have not ye t i n t eg ra t ed over the 

7 
We now int roduce a K - m a t r i x r e p r e s e n t a t i o n for T. G r a v e s M o r r i s 

h a s shown that given an ampl i tude T. _{p. , q f ), w h e r e i i s the i n ­

coming s ta te of up to t h r e e p a r t i c l e s (a £ 3), f i s the outgoing s ta te of 

up to t h r e e p a r t i c l e s (P ^ 3 ) , and p , q a r e the f o u r - m o m e n t a of the 

p a r t i c l e s , one can wr i t e a function K. ,(p. , q , ) which iB f ree f r o m al l 

two p a r t i c l e cuts and iB r e l a t ed to T. f (p . , q , ) by an i n t e g r a l equat ion. 
xa p 

i r" d 3 p k 
T. ,(p. , q , ) - K. ,(p. , q. ) = T 2 , f TT , — - - T. , (p. , P , ) 

4 ° X K , , (F , , q , ) S ' ( P - S P . ) • (6) 

If K. Ap. ,qf ) iB H e r m i t i a n then T.Ap. ,q. ) is un i t a ry . [ T h i s i s shown 
Q J P " ' „ ' p 

f rom Eq. (13)] . If we expand T. . in a pa r t i a l wave decompos i t ion as 

we did above, we obtain {y = two-body; j , k = t h r e e - b o d y s t a t e s ; 

i -* s e v e r a l n i soba r ; and f -» seve ra l m i soba r for a given ^T s tate) 

T J - K J = ' i S T J - l K J 

nm nm 2 ny 4 > ^ j ym 

i /" T J . Q. q .K^ 

J J WS 4-JT J 2 | k / " J J | C k m J k 



If we include the stable two-body states and also the diagonal elements 

of the three-body states in $ j . we may rewrite Eq. (7) as 

i 2 ( T J * J . K? T J - K J = 4 - 2 f T i , ®-5x K i L d B „ d s x i <B) 
nm nm 2 , / ny 7* ta 7 A. ' ' 

here the stable two-body $ * are 

V = 7F V 6 ( V f l ) 6 ( 3 ^ e ) • ( 9 > 

Ws" 

For the diagonal three-body states we will still use the subscript 7, 

and they become 

• J

x = X X ? X ? ^ . ( 1 0 ) 

Henceforth we shall discuss a single partial wave* so we will drop the 

superscript J-

As it stands, Eq. (8) is an integral equation. We shall now make 

certain factorization assumptions that will reduce Eq. (8) to a matrix 

equation. It is clear that a matrix equation will be easier for practical 

calculations (i.e. , fitting the isobar amplitudes). Indeed the factoriza­

tion assumptions we make are already inherent in the iaobar model. As 

in the iBobar model, we assume T _ to factor, 
op 

T a(3 = T « p < V <"> 
where f depends on barrier factors and final state factors of the iso­

bar decay and T _ is only a function of s. 

In addition we assume K R can be factored in the same way: 

K . = k a f*f- , (12) 
ap ap a (3 v ' 

where k Q drpends only upon s and is free from all branch points. In 

the spirit that the isobar model is describing particle states, we shall 

take k f fo to be a real function of s (or W = *J~B). If the several final 
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s ta te r e sonance bands did not over lap , then a r e a l k - m a t r i x impl i e s a 

s y m m e t r i c T - m a t r i x . 

We can reduce the in teg ra l Eq. (8) to a m a t r i x equation by subs t i t u ­
t ion of K . and T „; we thus obtain 

<*p o-p 

T a - k a ~ 4 S T A . k , _ , (13) 

op arp 2 . cry 7 * \ p ' ' 

w h e r e for s table two-body s t a t e s 

A y x = -X— . (14) 
4 V s 

i . e . , d iagonal with value p ropor t iona l to Q t i m e s b a r r i e r , and for t h r e e -

body s t a t e s ,* 
•yA. ~Y"A V 

. f i d s da . . (15) 
X v X v X 

one e a s i l y shows that Eq. (13) imp l i e s the usua l un i ta r i ty r e l a t ion 

T - T = i r A T ; see Appendix I. 

We now d i s c u s s the b a r r i e r factor f̂ . F o r the t e r m s which only 
i r 2 8 

involve s table p a r t i c l e s , we a s s u m e that |f^| is the Blat t -WeiBskopf 
b a r r i e r factor . Our confidence in these fac tors has recen t ly been in -

Q 

c r e a s e d by Von Hippel and Ouiqq, who showed that they can be de r i ved 

f rom g e n e r a l p r o p e r t i e s of s p h e r i c a l h a r m o n i c s and a r e not l imi t ed to 

s q u a r e wel l s , But s ince our i s o b a r does not have a fixed m a s a , we have 

T o be cons i s t en t with the i s o b a r mode l used to obtain the amp l i t udes , 

we d e s c r i b e the final s t a t e i n t e rac t ion by the Watson final s ta te i n t e r a c -
io . . /-

t ian (e sin fi /q ' )W . The 6 i s the phase shift for the e l a s t i c 

s ca t t e r i ng ampli tude A , r e p r e s e n t i n g the a i soba r (irN-* TTN or TTTT -* TTTT), 

whe re q ' i s approx imate ly the squa re root of: q t imes the b a r r i e r 

for the e las t i c s ca t t e r ing . F a r a comple te s - channe l d i a g r a m showing 

a l l impor tan t f ac to r s see F i g . 1. T h e r e f o r e , the fo rm of f b e c o m e s 



f = W B (Q , L ). (16) 

a a a a a 

w'nere B is the square root of the Blatt-Wcisskopf barrier, L. the 

production angular momentum of the isobar, and Q the c m . production 

momentum of the isobar. 
For the stable two body, f is equal to B and W is equal to one. J a a a 

In the case of the isobar, W becomes 

A (e ) a a 

q 1 / / 2 B ( q , i ) 

(•Vs-m,) 
f i 

I a ' 
, 2 , , 

>2 

B (q , i ) 4^7" 

' (ii^+m.,) 

where A is the elastic scattering Argand amplitude [0< | A [ < 1 ] , 

B {q , i ) is the square root of the Blatt-Weisskopf barrier for forma-

tion, q ia the c m . momentum of particles that make up the isobar, and 

I is the angular momentum of the particles that make up the isobar. 

The normalization is done because we treat W as a weighting function. 

For the A we take a Breit-Wigner form, 

-> 
q V B (q ,i ) 

A (s ) = a " ° " ° = . (18) 
" " Er - %/T" -iv q B (q ,1 ) 

If we define 

A (E ) 

W =-17177—- • < 1 9 ' 

vs then f becomes 



T (E ) B (Q , L ) 

I ( 2 * ^ 
I W I # d E « 

In our Breit-Wigner form [Eq. (18)] Er and v are constants given in 

units of pion masses. See Table I for a list of values used. 

The diagonal terms of the A matrix become for isobar a, 
n/"s-m3 

/ | T ( E , |2 5 ^ 2 B

2 d E 

A = —t i S: — . (21) 
4 *J1T _//"s -in, 

! T (E ) I £ ^ dE 

We see that the normalization was choBen so that A is essentially an 
aa ' 

average of Q B /(4-v/*s), which is a dimensionless quantity. Therefore 

K _ in Eq. (13) is a dimensionless number, and in fact the whole 

Eq. (13) is dimensionless. 

In this paragraph we give an alternative prescription for A which 

we did not use. This prescription will only change th« K-matrix pa» 

rameteri: and not the T-matrix which we fit to. One can think of the 

isobar being described by a relativistic Breit-Wigner resonance where 

the " typical" momentum of the isobar is given by 

*/s-m™ 

;

 ( a R - E

0 ' + r t o t a l 
m,+m™ 



The Breit-Wigner is normalized all the way out to "/B = « such that 

1 R a1 total 
dE = N. (23) 

_J 
4Vs 

NTS-TI 

R a' total 
^ B 2 d E . 

1 £ 
(24) 

Ln making this assumption one is relying on the fact that ae the width of 

the Breit-Wigner goes to zero it becomes a delta function. We have 

chosen our particular definition of A. , Eq. (21), because it depends 

on the measured Argand amplitudes and is independent of model assump­

tions, unlike Eq. (24). 

We assume that k is real with no branch points and can be des­

cribed by simple factorizable poles (which represent the formation of 

N resonance) plus nonfactorizable background terms which are poly­

nomials in *J~s. The K-matrix program Kanal which was written to do 

the fits had the possibility for three regular poles and a background 

linear in *fs (which from now on we will call W). That is, 

•M + C « P + w B * P • (Z5> 

r = i 
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We may e x p r e s s the c r o s s si't:tion in t e r m s of the reduced a m p l i ­

tudes T. . S tar t ing with Eq. (5) and taking only one pa r t i a l wave and 

i s o b a r , we obtain 

, f , Qqffi 
ffln*W'=4^W<J+l»J l Tl„'W' En»l - W ^ 

(26) 

By subst i tu t ion of Eq. (11) and (20) into Eq. (26), we get 

| T ( W ) | f i JS^B'B' | T (E ) | 2 d E . ; ' i n ' ' 2 1 n ' n v n ' n 
a . ( W ) = - ! I ( J + i ) i-

1 I •) 1 
/ I T (E ) r -^2- dE 

J < n n ' I 2 n 

Noting that T . (W) and B . a r e independent of E , this becomes 

ffln=^ < J + i ' K n ( W ) | Z A 1 1 A [ m . (28> 
4 Q 1 

If the p a r t i a l - w a v e S -ma t r ix if? defined by 

S f l = 6 . + ZiA - , (29) 

the c r o s s sect ion is given by 

T h e r e f o r e , 

4 , ( 1 + 1 ) | A l n | 2 

(30) 

VA, <JA T. 

* f a ° " a 1 " 1 1 1 1 - (3D 

The A. ampli tudes a r e the r e s u l t s of the iBobar -model fit to NTTTT, 

and the A.< ampl i tudes come f rom " E P S A " (e las t ic p h a s e s shift 

ana lys i s ) . ' Th<. p r o g r a m Kanal was wr i t t en to fit the A's by a x 



method, using the K - m a t r i x parametr i inat ion of Eq. (25). 

Before leaving the K - m a t r i x f o r m a l i s m we indicate how we deal t 

with the fact that t he re a re two del ta i s o b a r s in the NTTTT final s ta te 

(Nir.ir_ = A,TT_ + A-JTT,), We t r e a t e d them as s e p a r a t e channels with the 

same coupling. This coupling was \ A / V 2 where -y. is the total de l ta 

coupling. Once we calculated the T ' s for the individual d e l t a ' s , we 

added the ampl i tudes together as 

T A i T A 2 

3. DETERMINATION OF THE OVERALL PHASE AND 
SCALING OF ERRORS 

I n this flection we d i s c m s how we use the K - m a t r i x to sca^e our 

s t a t i s t i ca l e r r o r s to m o r e r easonab le va lues . We a l so Bhow how the 

in t r in s i c ove ra l l a r b i t r a r y phase of our i sobar mode l ampl i tudes at a 

given energy can be removed by the K - m a t r i x . 

3.1 Scaling of E r r o r s 

In o r d e r to use the K - m a t r i x , we needed to supplement our NTTTT 

ampl i tudes A. with e las t ic ampli tudes A^. Two se t s were ava i l ab le , 
Z 3 

those of CERN and those of Saclay. We made two s e p a r a t e fits, one 

using A. . (CERN) and one using A, . (Saclay). However , it is well 

known that the deviation, between the two solut ions a r e g r e a t e r than the 

s ta t i s t i ca l e r r o r s ; so we used l a r g e r e r r o r s in these f i ts . The e r r o r s , 

6 (A. . ) , were calculatcrl by taking the r m s (root mean squa re ) deviat ion 

between the two A . , solut ions . F o r a few waves at some e n e r g i e s this 

external e r r o r was too s m a l l , so the s t a t i s t i c a l e r r o r c la imed by Saclay 

analysis was used f no s t a t i s t i ca l e r r o r is quoted by CERN J. F o r the 

nelas t ic e. o r s it would be nice to again use ex te rna l e r r o r s . However 
:iur analys is i.s the only exist ing ine las t ic ana lys i s available. Instead of 



Ufiing our s t a t i s t i c a l e r r o r s which we felt w e r e too s m a l l , we dec ided 

t>'i HI:,L]e our e r r o r s so that the ine las t i c and e l a s t i c da ta would con­

t r ibu te equally to the ove ra l l mul t ichanne l x • F o r the purpose of 

sca l ing , e r r o r s we wanted to s e l ec t a wave (or waves) that h a s one c l ea r 

r e sonance in the e las t i c phase shift and where our i ne l a s t i c fit ia in 

good a g r e e m e n t with the e l a s t i c phase shift p red ic t ion . Resonances in 

the 1500-MeV region a r e not good cand ida te s , b e c a u s e we a r e m i s s i n g 

i ne l a s t i c da ta f rom 1540 - 1650 MeV. Resonances in the 1900 MeV a r e 

a l so poor cand ida tes , s ince we have l imi ted ourse l f to F waves in our 

mode l . This m e a n s we were unable to s a t i s f ac to r i l y d e s c r i b e the 

p e r i p h e r a l product ion of pions that become impor t an t in th is energy 

region. The 1700-MeV re sonance reg ion s e e m s ideal . In this reg ion 

t h e r e a r e four r e s o n a n c e s that a r e c l e a r l y seen in the EPSA: the S31, 

D33, D15, and F 1 5 . Since S3i and D33 r e sona t e n e a r 1650, they cannot 

be used b e c a u s e of the energy gap (see footnote). The D15 is not in as 

good a g r e e m e n t with EPSA as the F15 . F o r this r e a s o n we only took the 
2 2 

F15 wave to sca le x - e l a s t i c with x - i ne l a s t i c in our K - m a t r i x f i ts . 

The p r o c e d u r e was to adjust the e r r o r s on the ine las t i c ampl i tudes 

for the F15 until the x P e r ene rgy bin was equal for the e l a s t i c and the 

ine las t ic contr ibut ions We used only one pole and a cons tan t background 

as p a r a m e t e r s in the K - m a t r i x and fit in the F15 p a r t i a l wave energy 

region f rom 1585 to 1810 MeV with the ! n e l a s t i c ampl i tudes have one 

free phase al each energy. Notice that al this point v/e a r e only using the 

K - m a l r i x to de sc r ibe the moduli of the ine las t ic ampl i tudes . 

hi our i sobar mode] fits, wo had a comple te set of N'TTTT da ta f rom 

1310 - 1970 MeV except for a gap uf data from 1 S40 - lu50 MeV. 



When we f i r s t fit with extei nal e r r o r s on the e l a s t i c and r a w s t a ­

t i s t ica l e r r o r on the i n e l a s t i c , by far the g r e a t e s t contr ibut ion to x 

the ine las t i c channels . As we sca led up the s t a t i s t i c a l e r r o r s on the 
2 i ne l a s t i c ampl i tudes , the x began to shift to the e l a s t i c channel . At a 

scal ing of th ree on the i ne l a s t i c e r r o r s the x p e r bin of ene rgy b e c a m e 

equal for the e l a s t i c and ine las t i c cont r ibu t ions . T h r e e s eema l ike a 

l a rge factor . However , if one looks at the s t a t i s t i c a l e r r o r s quoted by 

B a r e y r e a t Batavia and c o m p a r e s them with the e x t e r n a l e r r o r s , one 

a l so finds a factor of f rom 2 to 4 . So for the r e s t of the p a r t i a l wave f i t s , 

we used th ree t imes the s t a t i s t i c a l e r r o r s for the ine laa t i c ampl i tude 

and the ex te rna l e r r o r s for the e l a s t i c . 

3.2 Ove ra l l P h a s e 

At each e n e r g y al l the ine laa t i c ampl i tudes a r e well d e t e r m i n e d 

with r e s p e c t to each o ther but have an ove ra l l a r b i t r a r y p h a s e . With 

the uni ta ry cons t r a in t re la t ing the e l a s t i c ampl i tudes to the i ne l a s t i c 

ampl i tudes , we a r e now in a posi t ion to d e t e r m i n e this phase at each 

energy. F o r this pu rpose we only cons ide r dominant p a r t i a l w a v e s . 

See F ig . 2, which shows {1-TJ ) for the dominant wavea . The D15 and 

the F15 which a r e two such , dominate p a r t i a l waves in the ene rgy 

region f rom 1585 - 1810 MeV; they show good r e sonan t mot ion in the 

e l a s t i c channel , so we expect to see mot ion in the ine l a s t i c channel . 

Th is v. as ca r s t a r t i ng point for de t e rmina t i on of the ove ra l l a r b i t r a r y 

phases in this energy region-

Our fi.Hi.ng p r o g r a m (Kanal) had the abi l i ty to fit with an unknown 

overa l l phase tj>. at the ith ene rgy bin for the ine las t i c data . F i r s t we 

obtained a solut ion for F15 and D15 f rom 1585 to 1810 MeV (8 e l a s t i c 

+ c. ine las t i c bins) . He re we used a single pole and a cons tan t back ­

ground as p a r a m e t e r s in the K - m a t r i x , with a f ree phase at each energy . 

http://fi.Hi.ng


ThiB fit was pe r fo rmed sepa ra t e ly for both CERN and Saclay EPSA 

solut ions for the e l a s t i c channel . This gave us five p h a s e s for CERN 

D'i5 and five p h a s e s for Saclay D15; we a l so had the s a m e n u m b e r of 

p h a s e s for F 1 5 . At this point we have four s e t s of p h a s e s at each 

energy . We want to reduce these four se t s to only one se t of phases 

that wi l l equally d e s c r i b e the data for the different i npu t s : D15 (Saclay), 

F15 (Saclay), D15 (CERN), F15 (CERN). "We accompl i shed this goal 

through an i t e r a t i v e p r o c e s s . 

F i r s t we min imized the tota l D15 CERN and D-5 Saclay x DY in­

t roducing a s ingle p a r a m e t e r Y. It had the p r o p e r t y that if Y = 0, the 

p h a s e s a re equal to D15 CERN p h a s e s , and if Y = 1, the p h a s e s a r e 

equa l to D15 Saclay p h a s e s . The specif ic p a r a r n e t r i z a t i o n of the <(>. 

in t e r m s of Y was 

4>. = 4>(D1S CERN). + Y (4>(D15 Saclay) . - 4>(D15 CERN).)- (33) 

2 2 
We a s sumed that \, . , (sum of two x ) * a a q u a d r a t i c function of Y: 

Xtotal = X 2 < 1 ) <2Y 2 -Y) + 4 x

2 ( l / 2 ) ( Y - Y 2 ) + x

2 ( 0 ) ( 2 Y 2 - 3 Y + 1), 
(34) 

2. 2 2 2 
where x (1) i g the t rue total x at Y = 1, x ( l / 2 ) is the t r ue total x at 

? 2 
Y = 1/2 and x (°) i s t h e t r ue total x a t Y = 0- The solut ion to the 

2 
quad ra t i c equation (34) that m in imizes total x is 

y Z » 2 ( D - 4 x ^ ( 1 / 2 ) + 3 x 2 ( 0 ) _ ( 3 5 ) 

4 X

2 { D - 8 X

2 d / 2 ) + 4 X

2 ( 0 ) 

By going through this p r o c e d u r e we a r r i v e d at one se t of phases 

that min imized x * o r D15 CERN and D15 Saclay. The s a m e p rocedure 

was repea ted for the two se t s of F15 p h a s e s (CERN and Saclay) . We 

thus reduced the four setB of phages to only two. A final i t e ra t ion using 
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E q s . (33) and (35) yielded one set of p h a s e s . See F ig . i, which gives 

a flow d i a g r a m of this i t e ra t ive p r o c e s s . 

Ni-xL we looked at the F35 and F37 waves which went f r o m 1730 to 

1970 in energy. In the over lap r eg ion (1730 - 1810) we m i n i m i z e d al l 

four waves , each with two combina t ions , leaving the 1850 - 1970 p h a s e s 

f ree for the F35 and F37 . However , thiB p r o c e d u r e did not change the 

over lap phases very much from the valves obtained by jus t cons ider ing 

D15 and F15 . 

After finally a r r i v i n g at a s e t of p h a s e s f rom 1650 to 1810 we d e ­

t e r m i n e d the phases f rom 1850 to 1970 jus t using F35 and F37 , where 

one pole and constant background w e r e again used in the K - m a t r i x . 

T h u s , we w e r e able to a r r i v e a t nine p h a s e s fo r our nine upper e n e r g i e s . 

We then turned to the lower e n e r g i e s f rom 1310 to 1540. In this 

region the D13 and P l l a r e dominant waves and a r e ideal for de t e rmin ing 

the p h a s e s . The p r o b l e m h e r e , howeve r , was to find a solut ion that 

would continue a c r o s s the ene rgy gap. The D13 at 1540 is ve ry in ­

e l a s t i c , but by 1650 it is no longer ve ry i ne l a s t i c . On the other hand, 

the P l l s t ays very ine las t i c al l the way through the energy reg ion . F o r 

th i s ru-ason the P l l was the only pa r t i a l wave that could be used to make 

the connection a c r o s s the gap. Once we continue a c r o s s the gap we m a y 

u s e , p.3 above, both D13 and P l l to d e t e r m i n e phases below the gap. 

With the upper energy phases fixed on the va lues d e t e r m i n e d above, 

we p a r a m e t r i z e d Lhe K-ma t r i x by two poles and a constant background. 

The pole posi t ions in the K - m a t r i x w e r e in i t ia l ly s e t and held at 1490 

and 1770 MeV (nominal posi t ions of P l l r e s o n a n c e s ) , and the lower 

phase* where left free to vary . We fit over the en t i r e ene rgy range 

f rom 1370 to 2010 MeV in o r d e r tu continue a c r o s s the gap. This gave 

us a solution which was a lmos t the same solution as the final one for the 
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P l l given in th i s pape r . We l a t e r added a l i nea r t e r m to the back­

ground and let the pole posi t ions in the K - m a t r i x va ry . 

At the 1972 Batavia conference , B a r e y e announced that t he re m a y 

be two P l l r e s o n a n c e s , one at 1390 and ano ther at 1540. This p o s s i ­

bi l i ty could spoil our abil i ty to b r idge the gap. 

If we a s sumed another resonance at 1540; it might c r e a t e an add i ­

t ional 180" rota t ion a c r o s s the gap in our Argand d i a g r a m . To t es t th is 

we added another pole and rota ted the upper e n e r g i e s by 180*. The r e ­

sul ts of the fits a re shown in Table II. We see that x. P e r deg ree of 

f r eedom is wor se with the e x t r a pole . Also the x °f ^ n c e l a s t i c chan ­

nel alone is w o r s e . In fact the i n c r e a s e in x f ° r the e l a s t i c channel 

comes f rom the energy region, where we a r e m i s s i n g ine l a s t i c data . 

F o r these r e a s o n s we have r e j ec t ed the 1540 r e sonance of the P l l if we 

cons ide r it would cause a 180* flip of our upper energy solut ion with r e ­

spec t to our lower ene rgy solut ion. When m o r e ine las t ic da ta become 

ava i lab le , a m o r e p r e c i s e s t a t emen t can be m a d e about the second P l l 

r e s o n a n c e . 

Having provided a continuation a c r o s s the gap, we turn to the D13 

solution which was a l so fitted in the s a m e range (1310 to 2010) as the 

P l l . F o r the D13 wn used th ree poles and a constant and l i nea r back­

ground. At this point the lower phases were de t e rmined with e s sen t i a l l y 

the same p rocedure as was used in the upper e n e r g i e s { E4S, (33) and (35)]. 

However , we broke the lower region up into two regions to give m o r e 

f lexibil i ty to our s imple model of m in imiz ing total x . (Notice that t he re 

a re nine ene rg i e s bflow the gap and nine above. ) 

4. K-MATRIX F ITS 

In this sec t ion we give the r e s u l t s of the K - m a t r i x fi ts . 

In o r d e r to fit the K-mat r ix to the e l a s t i c and inelas t ic amp l i t udes , 



we used two different min imiz ing m e t h o d s , one due to Rosenbrock and 
10 the other l<> Davidon. When the fit was far away f rom solution w<-

used the Rosunbrock method, which was m o r e economica l . As the \ 

came c lose to a m i n i m u m the Davidon method was used . This method 

converges s imul taneous ly toward the m i n i m u m and toward the t r u e 

va r i ance m a t r i x {e r ro r m a t r i x ) . 

F o r a s u m m a r y of the r e s u l t s of the K - m a t r i x fi t t ing, see Table III, 
2 

where the x > ene rgy r a n g e , K - m a t r i x p a r a m e t e r s , pole posi t ion, and 

pa r t i a l widths a r e l is ted for each wave fitted by the K - m a t r i x . In 

F ig . 4 we display Argand d i a g r a m s and pa r t i a l v/ave c r o s s sec t ions for 

the e l a s t i c and ine las t i c channe l s . The smooth curve on the Argand 

d i a g r a m s is the ampl i tude obtained f r o m the K - m a t r i x when the d e ­

scr ip t ion was poss ib l e . F o r the P 3 1 and the P 3 3 , we did not t r y to 

make a K - m a t r i x fit, b ecause t h e r e was no evidence for r e s o n a n c e s 

and we did not see al l the ine l a s t i c i t y Nirir channel . C r o s s - h a t c h e d 

m a r k s on the curve c o r r e s p o n d to e n e r g i e s D f E , and F , e tc . The 
2 3 a r r o w s indicate the known r e s o n a n c e s f rom EPSA. * To the r ight 

ine las t ic Argand d i a g r a m , we give the va r i a t ion with energy of the 

squa re modulus of the wave. The tota l i ne l a s t i c contr ibut ion in each 

e las t i c wave is compared with the sum of the ine l a s t i c contr ibut ions 

{ §) wt j observe ( ^ ), where the e j a s t i c ampl i tudes a r e those of 

CERN. All Argand d i a g r a m s a r e now d e t e r m i n e d to within one o v e r a l l 

sign. We have chosen the APP11 to be up. 

5. P O L E S IN THE T-MATRIX 

In this sec t ion we d i s c u s s how Eqs . (13) and (11) a r e ana ly t ica l ly 

continued into the complex ene rgy p lane . This continuation na tu r a l l y 

leads to an analyt ic T - m a t r i x except for complex b r anch points a s s o c i ­

ated with the i s o b a r s and poles due to S-channel r e s o n a n c e s . 
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5.1 Kinemat ics 

Once the K - m a t r i x fits were <- ompleted, we s ea r ched in tht; complex 

ene rgy plane for poles which a re identified with the different r e sonance 

s t a t e s . Because the K - m a t r i x g e n e r a t e s s imple poles in the T - m a t r i x , 

the r e s i d u e of the pole is f ac to r i zab le . A s imple proof of th is is given 

in Appendix II. The res idue m a t r i x of the T - m a t r i x pole iQ identified 

with the coupling of the resonan t s ta te to the different channels . One 

would like to r e l a t e this coupling m a t r i x with the uBual p a r t i a l widths 

I" of the r e s o n a n c e . The pa r t i a l width is equal to the coupling t imes a 

k inemat i c fac tor . The quest ion i s , should this k inemat ic factor be eva l ­

uated at the pole or on the r e a l a x i s ? We decided to take the k inemat icB 

ca lcula ted on the r e a l ax i s , b e c a u s e fo»* a s imple Bre i t -Wigne r with 

n a r r o w width, the pa r t i a l width will be m o r e r ea l and the sum of the 

p a r t i a l widths will be c lo se r to the total width. See Appendix III. 

5.2 Analytic Continuation 

In o r d e r to s e a r c h the complex energy p lane for po le s , we had to 

continue ana ly t ica l ly the A m a t r i x into the complex p lane . The off-

diagonal t e r m s of A m a t r i x tu rn out to be from 5% to 20% of the 

diagonal e l e m e n t s . Also they do not s e e m to add any additional analytic 

shee t s t r u c t u r e , and it is ve ry t ime -consuming to evaluate them many 

t i m e s . When we did the pole s e a r c h , t h e r e f o r e , we Bet the off-diagonal 

t e r m s of the A matrix, to ze ro , mn 
In o r d e r to continue the A m a t r i x to complex energy W, we have mn * n ' 

to do a contour in tegra t ion in the Complex d ipa r t i c l e m a s s E plane r e ­

lated to a given i soba r . Equation (21) 



, Q q , 
T (E ) r -^r2 B dE or1 or' I 2 a a 

1 . (36) 

I T (E } \ 2 -£- dE 
1 a a ' 2 a 

When we a r e on the r e a l a x i s , a l l t e r m s in the i n t e g r a l a r e r e a l . Since 

we want al l t e r m s to be analyt ic in E , we m u s t be able to expand t h e m 

- in a Tay lo r s e r i e s with r e a l coefficients as a function of E . E v e r y 

t e r m in the i n t eg ra l IB obviously analyt ic except | T | . However , we 

know that T i s analyt ic . In fact , T can be r e l a t ed to a function m , 

which i s f ree f rom cu t s , by 

m - lq 
(37) 

Recal l that T is e s s en t i a l l y the 2 — 2 s ca t t e r i ng ampl i tude , BO that m 

is an inve r se K - m a t r i x . T h e r e f o r e , I T I can be wr i t t en a s 
1 a 1 

I V 2 = l] 2" <38> m + a a ^a 

which is obviously analyt ic . 

5.2.1 The Pole in I T | 2 

Next we der ive Eq. (41) to show that ) T | haB a pole , and that it 

occur s exact ly where the sheet II pole o c c u r s for the ampli tude T of 

Eq, (37). We use the s tandard definition of s h e e t s ; the imag ina ry p a r t 

of q > 0 [< 0 J c o r r e s p o n d s to sheet I [ I I ] . T h e r e f o r e , dropping the 

or index, we have the usual r e l a t i onsh ips : 



T I ( E > " mfEJ-iqjIE) ' T I I ( E ) " m(E)-iq u (E) 

m*(E*)= m(E). q^E) = - q*(E*), q^E) = - q n<E). q ^ E ) = - q^(E*). (39) 

From Eqs. (38) and (39), we have 

! T | 2 = - Z i—J— " — — 2 ' ( 4 0 ) 

in (E)+q£(E) m' lEl + q'jjfE) 
This can be written in a symmetric form using both sheets: 

m(E)1- iq l ( E) m * j E * )

1

+ * * ( = T J ! E ) T £< E "> 

= T„(E) T.*(E*) . (41) 
mfEJ - iq^E) m * ( E * ) + ta,*n<E*) - * E ' ~ " I 

Since T(E) is the two-body elastic scattering amplitude of the particles 

that make up the iBobar, it will have a pole on sheet II that is properly 

identified with the isobar, as we Bet out to show. 

5.2.2 Contours of Integration 

Notice that both integrals in Eq. (36) art' path dependent because of 

the pole in | T [ . We can take many paths of integration. We are, 

however, only interested in the paths that ^o most directly to the end 

point of integration, because they lie near th<< physical region, which is 

just the real axis. 

In Fig. 5 we have drawn three different paths of integration and 

labelled them with the symbols A, A', A" as used for the integrals 

themselves, and in Fig. 6 we have deformed the three contours to 

show that they differ only by circles around the pole. Also in Fig. 6 

we show a branch cut coming to the end-point of integration which is due 



to the factor Q in the integral in the numerator of Eq. (36). Along A1 

we want U to be continuous; but this means that Q is on a different 

sheet when the integration passes near the pole. So in order to define 

on what sheet, A is evaluated, we must specify both the sign of the 

imaginary part of Q at the lower limit of integration and also the path 

(A, A', or A" ) of the integration. In summary of Figs. 5 and 6, we 

find six sheets generated by three contours (A, A1, A") and two possible 

gigns for ImQ. However, we only expect to find poles on the sheets with 

ImQ < 0 for reasons of causality. 

5.2.3 Sheets in W Plane 

Next we point out that all values of A, A', and A" approach zero if 

the end-point of integration (W~rru) approaches E , . To see this, 

consider Eq. (36), which we write as A =l/D, Eq. (43). Then D di­

verges as the end-point approaches the pole (in |T | ). But the inte­

grand of I contains a factor Q which always goes to zero at the end-

point and cancels the divergence of | T | . So at the end-point A 

equals a finite number divided by infinity, which is equal to zero. So 

as a function of W we have shown that the values of A (A, A', A") all be­

come pqual at W = E + m, so that E 1 + rn- i s the beginning of a 

b ranch cut (sec Fig. 7). T h e r e i s , of c o u r s e , a l so a conjugate b r a n c h 

cut at E = E^ , + r n , , a l so d rawn on F ig , 7. pol<* 3 fa 

Soon we shall discuss hunting in W, looking for a pole in T. Sup­

pose we find a pole at W on the A sheet; there will in general be 

" shadow poles" at W on the A1 sheet and at W" on A" , where W, 

W , W" may be? close. Hence we must understand the W sheet struc­

ture -if Fig. 9 to decide which of the poles is most influential at real 

axis. 
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To understand Fig. 9. it is helpful to consider Fig. 8, a sketch of 

contours in the E plane. In Fig. 8, a dashed line starting at E 

corresponds to the branch cut starting at E , + m , in Figs. 7 and 9. 

This line is no barr ier to the contours A, A1, A", but we cannot move 

the end-point W-m, across this line without changing the names of the 

contour (changing sheets in the W plane). 

Note that if W-m- is near the real axis the only short contour is A 

Consequently the W sheet connecting to the physical region in Fig. 9 is 

labelled A. 

To go further we need Fig. 8a through 8d. In Fig. 8a, the end 

point of the integral is below the dashed line. As we deform the con­

tour from Fig. 8a to Fig. 8d, the end-point of the integral moves 

around the pole in the E plane. In Fig. fid we are above the dashed 

line. K we consider point 3 in Fig. 9a and move it continuously up 

through the branch cut, we will change sheets. We see that the A con­

tour in Fig. 8a deforms continuously into A' contour in Fig. 8d. Thus 

point 3 of Fig. 9a would move from the A sheet to the A' sheet, e. g. , 

point 2 of Fig. 9b. 

. In Fig. 9a through 9c we show three points on each of the A, A', 

and A" sheets. For each point we have drawn continuous paths leading 

to the physical region. In Fig. 9b and 9c, when we pass onto the A 

sheet (the only sheet connected to the physical region) the lines are 

dashed. The length of the lines in Fig. 9a through 9c are a measure of 

how close a point is to the physical region. Therefore if we find a pole 

on A, A1, or A*r, we can use Fig. 9 to tell us how close it is to the 

physical region. 

In practice it is necessary to calculate only one contour integral. 

We now show how this is done. From Eq, (21), making energy 



dependence explicit, we have 
W-m 3 

^ I |T (E) | 2 Q(W,ES-^ i B2(W,E)dE 

(42) 

1 
f 
1 • T ( E f affil d E 

where the path of integration is A {see Fig. 5). Let na define 

A a - i . (43) 

where I is the r^^in integral arid D is the denominator of Eq. (42), 

respectively. Call the denominator residue R^; then, by using 

Cauchy's integral formula for contours A and A", we obtain 

D - D- = 2,,iRD . Z„l E l im ( E ^ - E ) | T ( E ) | 2 3^1 
pole 

(44) 

I - I" =ZiTiQ(W,E , )B 2(W,E , ) R n . pole * pole D 

We must be sure that we evaluate Q(W, E , ) on the correct sheet. It 

is clear, if we know A, R„, and D, that we can evaluate A" by 

T „ I - 2 t r i Q ( W , E , ) B Z ( W , E , ) R „ 
A .i = I I = pole' pole' D . . . . 

D" 2iriR l *' 

Thus it is clear from Eq. (45) that 

A -2niQ(W,E , )B 2(W,E , )R„/D . „ _ po l e ' po le ' D' 
i - 2uiR D /D 

In the case of A' the spiral around E . is counterclockwise (see ^ pole ' 

Figs. 5 and 6i, sn 2iri — - 2iri, and that is the only change in the tic 

nominator D. 



In addition in the main integral I, Q changes sign because it ia on the 

other ahi'til (see Fig. 6), so we obtain 

A -2iTiQ(W, E . )B Z(W,E . J R ^ D 
A- * p o l e , - E2le D̂  
° 1 -f 2iriRD/D {*'} 

[in thiB aside we compare the sheet structure generated by A of 

Eq. (24) (reliance on relativistic Breit-Wigner). It is clear that the 

sheet structure we have discussed so far generated by Eq. (21) IB a 

spiral sheet structure. We Bee that since Eq. (24) doeB not have a de­

nominator, A' would be equal to A". Therefore this sheet structure 

would be square root in nature.] 

Another property which may be demonstrated is that 

A(W) - - A(W*) (48) 

for all three contours A, A1, A" and both signs of Q. It ia alao clear 

that Q in the integral A has the property 

Q(W,E) = - Q*<wfE*) (49) 

for a given imaginary part of Q. This follows from 

Q2(W,E) = cffwfE*). (50) 

All other terms that appear in the integral, Eq. (21), are Hermitian. 

Thus they are the complex conjugate of the value above the real axis 

when they are integrated below the real axis. So from Eq. (21), it is 

clear that 



W-m, 

-jijT-/ | T ( E ) | 2 Q ( W , E ) 3 ^ i B 2(W,E)dE 4W 

' "3 

| T ( E J | 2 amidE 

T ( E ) | 2 Q { w t E ) - ^ i B 2(wfE)dE 

T ( E ) | 2 a m d E 

(51) 

Therefore Eq. (49) iB true by the way we constructed our integrals. 

5.3 Poles 

To demonstrate sheets and poles in our model, we will take the 

F15 amplitude as an example. The F15 resonance lies near the pN 

threshold which is -sTs" = (1700 - i54) MeV as shown in Fig. 10. When we 

did the T pole search we found F15 poles on each (A,A\ A", for ImQ < 0) 

sheet. The pole on the sheet generated by the A contour is closest to 

the physical rcpion. Figure 10 shows the sheet structure and continuous 

pathB going to the different poles on the different sheets. The poles and 

corresponding sheets are (l672-i77)A, (l682-i54)A', and (1682-i84}A". 

The path from the physical region to the pole on the A" sheet iB drawn 

in such a way an to reveal the path moving from the A sheet to the A" 

sheet as it crosses the branch cut. All poles that we report in this 

paper are the closest poles to the physical region. 



Once the pole position was found, we propagated the error matrix 

from the K-matrix fit to an error matrix for the pole position by dotting 

the Jacobian matrix and its transpose into the K-matrix fit er ror matrix. 

r 2 - / a X P i \ „2 ( 8 X P i 

Z Z 
where a K - is the K-matrix fit error matrix, and (Tp.. is the pole 

position 2X2 error matrix (real and imaginary), X p . ia the pole position 

vector {only two components), Xj. . is the K-matrix variable, and 

8X_ . /©X K . is the Jacobian matrix which was evaluated numerically. 

This procedure gave er rors that were much too small when compared 

with the difference in pole position obtain from CERN and Saclay elastic 

inputs. The reason for this may be that the Davidon error matrix may 

not describe the true errors of our complicated space. 

Table IV gives a summary of the T-matrix poles and the partial 

width calculated from coupling residue matrix times the kinematics 

on the real axis. The sign in the upper right corner of the box where 

the partial width is shown comes from the off-diagonal terms ox the 

residue matrix and is related to the sign of th<' coupling. Since the 

Argand diagrams are determined to within one overall sign* the same 

is true for off-diagonal residue terms. We defer further discussion of 

these parameters until Sec. 6. 

6. BREIT-WIGNER REFIT 

In this section we discuss how we refit the smooth T-matrix ob­

tained form the K-matrix fit with an amplitude which is a sum of a 

unitary background and a Breit-Wigner, rotated in such a way as to 

insure unitarity for the total amplitude. Once we have done the refits, 

we compare resonance parameters obtained from the K-matrix, the 



T - m a t r i x po le s , and the Bre i t -Wigne r refi t . The motivat ion for t h e s e 

c o m p a r i s o n s wa^ to find out how sens i t ive r e sonance p a r a m e t e r s are 

to the p r e s c r i p t i o n from which they a re obtained. 

6.1 U(UB + BW) Amplitude 

In the past , r e sonances were p a r a m e t r i s e d by the B r e i t - W i g n e r 

fo rm. Th** B r e i t - W i g n e r by i tself is un i ta ry . Since the re i s a lways 

a background p r e s e n t due to o ther s i n g u l a r i t i e s , the T - r n a t r i x is in 

genera l a sum of Bre i t -Wigne r plus background. Because th i s i s not 

a mani fes t ly un i ta ry p r e sc r ip t i on , we have turned to the K - m a t r i x . Now 

that wc have made K - m a t r i x fits and obtained smooth desc r ip t i on of the 

da ta , we would like to know what the Bre i t -Wigne r p a r a m e t e r s a r e for 

c o m p a r i s o n with theore t i ca l p r e d i c t i o n s . F o r this pu rpose we used a 

uni tary ampli tude which was a B r e i t - W i g n e r plus a un i ta ry background 

with no local poles . F o r convenience we denote this ampl i tude by 

U(UB + BW). We bel ieve that the background should not be affected 

locally by the p r e sence of the r e s o n a n c e . T h e r e f o r e , the a s sumpt ion 

that it is uni tary with no local poles s e e m s r e a s o n a b l e . In o r d e r to 

cons t ruc t U{UB + BW), we let the Bre i t -Wigne r be rotated by ene rgy 

dependent phases {we bel ieve that the Bre i t -Wigne r not the back ­

ground mus t accommodate i tself to un i ta r i ty ) . These phases a r e c a l c u ­

lated by the D a v i e s - B a r a n g e r cons t ra in t equat ion; a i su , see Goebel 

11 and MeVoy. Once we have made a K - m a t r i x fit, we then refi t using 

lf(UB -I- BW) to tin- smooth T - m a t r i x ir\ the region of the pule , in o r d e r 

to extracL the Br. i t -Wigner p a r a m e t e r s . 

Let us a s s u m e v.c have a uni tary background S m a t r i x B . . . and a 

Bre i t -Wigne r given by 
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i r. r. 1 
2 l i , ^ r , 2 R.. = — - <—. 5 , where r . = Q V-e J . (53) 

" J t E R - E ) " \ = Yk Qk ' ' ' J J 1 

where all t e r m a a r e r ea l except I \ , and Q. is the s a m e as the diagonal 

t e r m s of the A., m a t r i x used in the K - m a t r i x (see Eq. 21). 

The D a v i c s - B a r a n g e r cons t r a in t equat ion is 

B. r 7 = T. . (54) 

Let us r e ca l l B . , in t e r m of the background T - m a t r i x T: l j B 

B . . = 6 . . + 2 i Q 1 ' 2 Q 1 ' / Z T . . . (55) 
l j i j i j l j 

Now if we subs t i tu te E q s . (53) and (55) into Eq. (54), we obtain 

2 ( 6 . . + 2 i Q 1 / 2 Q i / 2 T . . ) v . Q 1 / 2 e " 1 S J = V . Q ? / Z . ' 

which can be shown to equal to 

_. _ . (56) 
j i j i j l j ' j j - i i 

- i 0 . 
Y.s inP. = 5 Q v . T . , e J . (57) 

i 1 J J J 'J 

The r ight -hand side of the Eq. (57) s e e m s at f i r s t to be a complex 

n u m b e r , but the left-hand aide is r ea l . So we can set the imag ina ry 

pa r t of the r ight-hand side equal to zoro ; i. e. , 

S Q - Y . Imag(T. .}cos0 . - S Q . \ . RealfT. . )s in0. = 0. (58) 

At thiB point we a s s u m e that Q. is r e a l . This m e a n s we m u s t 

r e s t r i c t ou r se lves to e n e r g i e s such that. thej_th channel is open 
2 

(Q. ^ 0 ) . We now define the vet to r s 
n 0 \ .' cos 0. \ 

(Sin)= / s in 0 ' and (Cos) = ' cos 0 \ (59) 

and the m a t r i c e s 



/ Q jYjRea l fT j j ) Q 2 Y 2 R e a l ( T 1 2 ) -

(Real) = | Q 1 ^ 1 R e a l ( T 1 2 ) Q 2 Y 2 R e a ] ( T 2 2 • 

Q iVj ImagfT j j ) 

(Imag) = I Q 1 v 1 I m a g ( T 1 2 ) 

Q 2 V 2 I m a g ( T 1 2 ) . 

Q 2 V z I m a g ( T 2 2 ) . 

Equat ion (58) then b e c o m e s 

(Imag) (Coa) - (Real) (Sin) = 0 

or 
(Coa) = (Imag ("N Real) (Sin) . 

In addition we have the added conBtraintB between the sine and the 

cos ine . 

C o s 2 e . + Sin 2 fl . = 1 . 

(60) 

(61) 

(62) 

(63) 

Unfortunately we were unable to solve these t r a n s c e n d e n t a l equat ions 

in gene ra l . There fo re w imposed E q s . (62) and (63) by a x con­

s t r a in t and p a r a m e t r i z e d 6. as a po lynomia l in W. 

We were a l so i n t e i e s t e d in looking for the pole in T = U(UB + BW), 

(which i s jus t the pole in the B r e i t - W i g n e r t e r m ) in the complex W p lane . 

Since the U(UB + BW) ampli tude m u s t be H e r m i t i a n , 0. m u s t have the 

s a m e real axis cut s t r u c t u r e as Q . [o r A..; see Eq. (48)] . T h e r e f o r e a 

na tu ra l p a r a m e t r i z a t i o n for 6. would be 
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e.(W) = Q.(W) 2 a W . (64) 1 ' i - n ' n=0 

6.2 D15, F35, and F15 Refit 

Having established this machinery, we performed a series of 

K-matrix fits and Breit-Wigner refits on three well-established reso­

nances which were coupled to two, three, or four channels. We used 

the D15, F35, and F15 resonances. The results of these fitB and r e ­

fits are given in Table V. In line one of Table V we have identified the 

pole term of the K-matrix with Breit-Wigner-like resonance param­

eters: the mass is the location of the pole, Er , the Uh partial width 
2 

is just (kinematics)X-Y. , and the total width is the sum of the partial 

widths. From thiB K-matrix fit we looked at the T-matrix pole where 

the real part of the pole position is identified with a mass; twice the 

imaginary part IB identified with the total width (pole position iB r e ­

corded in the mass column of Table V). From the residue of the T-

matrix pole we defined the partial width as discussed in first part of 

Sec. 5. We record the real part, the imaginary part, and the modulus 

of partial width in Table V. For the total width we record the sum of 

the real parts, the imaginary parts, and the moduli of each partial width. 

For this T-matri< we do a U(UB + BW) refit from one-half width before 

the pole (in the T-matrix) to one-half width after the pole. We then ob­

tain Breit-WLgncr parameters (mass, partial widths, total width) 

which we record in Table V. For the Breit-Wigner te rm of the re/it, 

wc look at the pule in the complex W plane thus recording the pole 

positiun and residue-related partial widths as we did for the T-matrix. 

Next wc refit the T-matrix again, but this time relaxing the Davies-

Baranger constraint, thus performing a UB + BW refit where the fl.ia 



a r e now constant with energy . F r o m this B r e i t - W i g n e r ref i t we r e ­

cord the fitted p a r a m e t e r s and the pole p a r a m e t e r s . F ina l ly we went 

back to the K-maLrix fit and took out all the i ne l a s t i c amp l i t udes , thus 
2 3 pe r fo rming a fit only to the e l a s t i c data . ' In o r d e r to a b s o r b the 

ine las t i c par t we added an uncons t ra ined Air channel . We then went 

through the same s e r i e s of ref i ts and pole s e a r c h e s except for leaving 

out the U(UB + BW), s ince we only wanted to fit the e l a s t i c channel . 

F i g u r e i l shows the Argand d i a g r a m s obtained f r o m the U(UB + BW) 

ref i t to the F35 wave. The Bolid line is the total ampl i tude f rom 1740 

to 1900 MeV (one-half width below T - m a t r i x pole to one-hal f width 

above). The dashed line is the background for the s a m e ene rgy range-

A r r o w s show the d i rec t ion of i nc reas ing energy . Let us define Ad. as 

the change of ro ta t ion angle 6. of the B r e i t - W i g n e r over the range of 

refi t . Then 

Ad. = e.(W = ' W . I) - 0. [W= |W . | -2 Im(W . ) ] (65) 
I I p o l e 1 ' I L ! p o l e 1 po le 7 ' x ' 

where W . is the pole posi t ion in the T - m a t r i x . A 8. is plotted next 

to the e las t ic Argand d i a g r a m s of F ig . 11. 

The r e su l t s for the th ree r e sonances for both CERN and Saclay 

EPSA input a r c l is ted in Table V. Note that the pole posi t ion and 

r e s idues I'nr the T - m a t r i x f rom both the K - m a t r i x and U(UB + BW) a r e 

very close to each o ther . This is s i m i l a r to the observa t ion of Ball 

and Shaw ^ for the P33 re sonance of the NTI s y s t e m . Also , the K-

m a t r i x p a r a m e t e r s for the F35 have very li t t le to do with the actual 

resonance p a r a m e t e r s . This is because the background t e r m in the 

K - m a t r i x .s \ i ry la rge , and we have shown in Appendix V that the back­

ground t e r m i nuples d i r ec t l y into the pole posit ion of the T - m a t r i x . 

The resfjn.nii «• p a r a m e t e r s obtained from T - m a t r i x poles and 



U(UB + BW) refits are the best candidates for checking theoretical 

predictions. Since they disagree by factors of 2 with each other, we 

would not expect theory to do any better. 

7. SIGN OF COUPLINGS 

In this section we diBcuss one possible prescription for extracting 

the signs of the couplings to the different channels from the total T-

matrix near the resonant energies. The determination of these is 

important for the purpose of comparison with theory. 

In order to understand what the sign of the resonance couplings is , 

one must know the exact Clebsh-Gordon coefficients that go into the 

iBobar model fitting program. For all sign conventions see Chasmore-

13 

Herndon-Soding. Once these conventions are known it might be pos­

sible to read the signs off the Argand amplitudes shown in Fig. 4. How­

ever, one sees that the resonance is not necessarily pointing up or 

down. In these cases one could do a unitary Breit-Wigner refit to de­

termine the sign of the resonance coupling. However, this is really 

not necessary, because if we can see the resonance shape we should 

be able to guess the angles 0. that the resonance is rotated by. We see, 

from Eq. (54) that the angles should be measureable by comparing the 

elastic and the inelastic channels. In the elastic channel (All) the 

resonance is rotated by 20, , and in Lhe inelastic channels (Ali) the 

resonance is rotated by 6.+8.. It is clear that d. has a range from 

-90* to 90". Thus by determining thi.-se angles we will determine the 

sign of the couplings. We have seen that once we have made the uni­

tary Breit-Wigner refit, thi.* total T-matrix produced by this method is 

very close to the T-matrix produced by the K-matrix. 

Thus we shall employ the simp It* in tcrpretation of U(UB + BW) 

but determine the coupling sign directly from the T-matrix elements 



produced by the original K-matrix fits. In fart for all resonant waves 

which hiivi- buen fitted, we have luoketl at the T-matrix for all the 

eJastic (including, e.g. , AIT — ATT } and inelastic channels and determined 

by eye what the nominal values of the 6's are. Table VI gives a list of 

the signs of the couplings and the angles from thie eyeball-fit. If the 

nominal value of 6 is within ±30", we think we are safe in determing the 

sign. But if the value of 9 is greater than ±60°, the sign i& question­

able. 

8. PREDICTED CHANNELS 

In this section we discuss two K-matrix fits in which we introduced 

an extra channel in order to make up for the lack of cross section ob-
14 

served in the Nim system. In the Sil wave we know there must be 

a component of Nn* In the F3? wave we assumed that th*i additional 

channel was Nirtnr. 

The upper right-hand plot for each incoming partial wave in Fig.4.1 

through 4.16 gives the unitary check, i. e. , a comparison between 
2 2 2 

TTK (J+l/2) (1-n ) from EPSA (CERN ) and NTT — Nmr cross section con­

tributed by each of the channels plotted in the right-hand column. Of 

the 13 incoming partial waves plotted, unitarity is well satisfied in 

10 cases. We now discuss the other three. 

The P3l has no evidence for resonance structure and such a small 

section observed in the isobar amplitudes that we did not do a K-matrix 

fit. 

Around 1520 MeV a Bizeable amount of cross aection goes into 

Nrj {about 4 mb). tn our K-matrix fit to Si l we included the Nn chan-
14 nel as a predicted channel (i. e. , no input amplitude to constrain the 

% ). Our results are consistent around 1520 with all the N)? cross sec­

tion going into the Sll wave. Figure 9 shows the total Nn cross section 
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plotli-d along with the Sl i cross section of the Nr| channel from the 

K-m.it.rix. The SI 1 amplitude for the Nn predicted from the K-matrix 

is s<-' n in Fig. 4.1. We believe that the moments of Lhe Nn can be ex­

plained by an introduction of a few percent in cross section of P , D, and 

F waves in the region 15Z0 to 1590 (see Appendix VI). 

In the 1900 region we do not saturate the inelasticity of the F57 

wave by 3 mb, so we introduced a predicted channel. In this energy 
15 region, 1900-2000 MeV, the Ntnrw crosB section grows from 4 to 6 mb, 

so we made the predicted channel an F37 decaying by Ap with angular 

momentum in a P wave. Thus our analysis forces a prediction of the 

amplitude for F37 decaying into the Nirire via a Ap decay in a P wave. 

The predicted Argand amplitude is shown in Fig. 1.16. 

9. CONCLUSIONS 

We were able to apply the constraints of unitarity (using the K-

matrix) to isobar-model-generated amplitudes. We obtained a good 

representation of the Argand diagrams in almost all channels. These 

permitted us to remove the overall phase uncertainty of the inelastic 

amplitudes at each energy. 

With a good representation of the T-matrix we then could extract 

the pole parameters associated with resonant behavior in the Argand 

diagrams. The uniqueness of the pole parameters was demonstrated 

by doing Breit-Wigner refits to the fitted T-matrix amplitudes. Thus 

we found the same pole parameters in this alternative prescription. 

However, these refits showed it was not possible in general to relate 

pole parameters unambiguously to the parameters of the Breit-Wigner, 

Furthermore, the success of the refits and the obvious interpretation 

of the amplitude Uf.IB + BW) {of Sec. 6) justified a simple determination 

of coupling signs from the fitted T-matrix (K-matrix-generated) ampli­

tudes. 

http://K-m.it.rix


Since the isobar model amplitudes may not be the final set the 

world accepts, the numbers presented here are subject to some changes. 

The biggest change may come from NTTTT data in the energy gap. In 

addition theoretical predictions are atimulating searches for new solu­

tions, using additional partial waves that may have been removed by 

the techniques described in Ret. 1. 
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APPENDK I 

UNITARITY OF THE T -MATRIX 

In this apprndix we show that the T-matrix aB defined in the text by 

Eq. (13) is unitary, since we relate T to S by Eqs. (29) and (31): 

S = 1 + iN/A T *[E 

(with no factor 2 in second term), the unitary condition to be tested is 

T - T + = i T + AT . (1.1) 

Equation (13) from Sec. 2 is 

T - k = i /2TAk, (1.2) 

By definition the k-matrix is real and the A-matrix is Hermitian. As 

seen from Eq. (15) of Sec. 2: 

A >, n / * ,f*f d S d S . (1.3) 

$ v \ > which is the recoupling coefficient has the property that 

$ , = tfj. (Ref. 6). If we solve Eq. (I«£) for the T-matrix, we obtain 

T = k ( l - i /2 Alt)" 1 . (1.4) 

Let as substitute Eq. (1.4) into the left-hand side of Eq. (1.1): we get 

k ( l - | Akf 1 - (1 + i - k A + ) " i k = CT+AT . (1.5) 

The next step is to introduce (he unit matrices within f ] , in the appro­

priate places in the left-hand side of Eq. (1.5): 

(l + 4kA + )" 1 ( l+4 i kA + ) l k d - i A k f ' - I H t k A + ) " 1 k 
2 J 

(1-5 Akiii-i-^k)" 

- ir+AT. (1.6) 
We have (1- •$ kA ) at Ihc left of both terms, and a similar common 

factor on the right; factoring th«ae out, we have 

(i + | k A + j " 1 ( l+ - |kA + Jk-k( l -7Ak) 

Simplifying, wo obtain 

(i - f A k f A - IT' 'AT. (1,1) 



fi + T kA ) — = — +—jj— (1»=-Ak) = IT AT (1.8) 

Since A IK a Herrn i t ian m a t r i x , we have 

i(l - f y k A + } " 1 k A k ( l - ^ - A k ) - 1 = i T + A r . (1.9) 

FinaJly, f rom Eq. (1.4) we note that the m a t r i c e s following A art-

jus t T and the m a t r i c e s p reced ing A a r e T . Indeed Eq- (1.1) io 

sa t is f ied . 

APPENDIX II 

FACTORIZABLE RESIDUES 

In this appendix we show that s imple poleB in the T - m a t r i x have 

fac to r i zab le r e s i d u e s . 

The f i r s t s t ep i s to d e m o n s t r a t e that a f ac to r i zab le m a t r i x has only 

one n o n - z e r o e igenvalue . Cons ider a m a t r i x B which has only one non­

z e r o t e r m B . . . Let U.. be a un i ta ry m a t r i x . Cons ide r tho m a t r i x B ' 

such that 

B* = U + B U . (II. 1) 

Using the condition that only the B . . t e r m i s n o n - z e r o , we obtain 

B' .. = U* B , , U , . (11.2) 
IJ l i l i l j 

o r , r e w r i t t e n another way, 

B V ( u i i ^ i i ) ( ^ n V , I ! - i ) 

It follows from Eq. (U.3) that 

B'.. B 1 . . = ( B 1 . . ) 2 . (II.-l) 

i i j j i j 

We shall use this r esu l t shor t ly . 

It is c l ea r that when we have a pole in the T - m a t r i x , Ihu d e t e r ­

minant of T will be ze ro . We may d iagona l i sc T with a uni tary 
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, . - l . / X l 

\ 0 
o 

(II. 5) 

•• / 

Deter"1) = \*2*3 
(II. 6) 

If we have a simple zero at complex total-center-of-mass energy 

E = E_, then only one eigenvalue is equal to zero- By contrast a dipole 

(higher order pole) would have two (many) zero eigenvalues. Therefore 

we may assume that one eigenvalue is given by 

\ 1 - C(E - E Q ) (II.7) 

and the others are non-zero. 

Therefore the diagonal T~ -matrix can be written 
/ C(E - E J 

O 
4° O (II. 8) 

and the inverse is 
crs-Tip Q 

i 
*7 

O 

The diagonal residue matrix is defined as 

(H.9) 

R n = lim ( E - E . ) T 

From Eqs. (11.91 and (11.10), we get 

0' D' (U.10) 



(11.11) 

Notice that the non-diagonal residue matrix is just 

R = U + R D U . (U.12) 

From Eq. (111,4) we know that it factorizea. 

APPENDIX HI 

POLE AND RESIDUE FOR A SIMPLE BREIT-WIGNER 

In this appendix we discuss the shift of the pole parameters from 

the mass and width parameters cf the Breit-Wigner. Also we discuss 

possible definitions of the residue and how it is related to the width. 

For simplicity we take a single-channel T-matrix which is gen­

erated by a K-matrix: 

T = T 7 £ i r . CIU.1) 

where A is the kinematic factor. If we want a simple S-wave Breit-

Wigner, we need a simple pole in the K-matrix without any barr ier 

factors. Therefore we have 

K = £/Z

 E . (III.2) 

where E is the total c, m. energy and E R is the K-matrix pole position. 

For A let us take a form that has a square root behavior and is equal 

A =/ -P- . (HI. 3) 

Substituting Eqs. (III.2) and (IU.3) into (II1.1), wo obtain 



u«ar 

T = ' — _ (in.4) 
E R E . r ^ 

We know that we will have a pole in T when we have a zero in 

D^E), the denominator of T. Let E p be the value of E where D(E) is 

equal to ssero: 

D<E p) = 0 . (in, 5) 

Ther efore 

~T7T 
Squaring both sides of Eq. (III.6), we obtain 

(III.6) 

( E R - W j E* - 2 E p - -ggr ) E„ + E* = 0 , (III. 7) J P " \^R 8E R y P R 

which can be solved by the binomial theorm 

U we make the narrow width approximation (E > > F ) , Eq. (HI. 8) 

becomes 

Taking the root with the minus sign because we want the pole to be on 

th o- correct sheet, we Bee that Ep is given by 

"RI'-T-VT-I 1 - 1 -?! - ( m - 1 0 ) 

1 Kj \ 3 2 4, 
2. 'i'he real part of the pole position haa been shifted by - F / 8 E D from 

XV 

the K-matrix pole position. Alao the width as been reduced in size by 

T 3 / 32E^ . 
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Next we expand D(E) in a Taylor serine about E_, 

D(E) = - f f I (Ep-E) + . . . , (HI.il) 
| E P 

recalling that D(E p) = 0. Differentiation ol D(E) and Eq. (IV.11) yields 

D(E)=[ j . + ^Z ) (E„-E) . (IU.12) 
K1 */Ep~E-/ P 

If we substitute into Eq. (III. 12), the expression E p [ E q . (III.10)] and 

assume E„ > > T we obtain 
K 

D(E) =( I + 'l/Z I (E„-E) • (III. 13) 

Simplifying, we get 

•s /E R <E R - i r /Z 

D<E) = S _ - l (Ep-E) . (III. 14) 

The residue of the pole ia defined by 

E-*E 

Therefore we gee Lhat 

E =lim ^ E ) . (IH. 15) 

.2 
2" " 8 lT R = -f- - 4 « - • (l«-i6) 

JR 

The residue of the T-matrix iB related to the coupling of the reso­

nance. We may define the coupling such that V . = 2AX {coupling}. 

But thr question IB what momentum should we use in calculating the 

total width. For the coupling we used the residue of the pole so one-

might think that the momentum at the pole should be used. On the other 

hand the momentum on the real axis tells us how much uf the coupling 

is physically seen. 

http://HI.il
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K = SJl + B. (IV.l) 
E R - E 

H e r e E ia the t o t a l - c e n t e r - o f - m a s a ene rgy , E R is the pole pos i t ion , 

r / 2 is Use coupling, and B i s the background . T i s given by 

K 
i - i A K ' 

where A is the k inemat ic factor which we will take the s a m e a s in 

T • - r £n? • ( IV-2) 

Appendix III: 

Subst i tut ing Eq. ( IV. i ! into (IV.Z), we get 

(IV. 3) 

T = • r- . (IV.4) 

If we a s s u m e B <<" 1', then 

E R - E B(E R -E )< : ^ 
(IV. 5) 

We know that we wil l have a pole in T when wc have a z e r o in D(E), the 

denomina to r of T. Let E p be the value of E where D(E) i s equal to z e r o : 

D ( E p ) = 0 . (IV.6) 

Then by subst i tu t ion of E „ into Eq. (IV.6), we obtain 

, 2 
- E ) B(E - E f \ E 

v—?*£-)-•$ 
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i6B(E -E ) 3 4(E -E ) 2 (E -E ) 
*—E_ + K r fi__E_ + 1 = 0 , (iv.8) 

2 / 4 where we have dropped the factor of B /T . If we assume 

E„ > > T > > |B | and | B | < < 1, then a solution of Eq. (IV.8) is 

Er--ER + Er-m-R-:rJi-m-R- ' I V - 9 > 
In this approximation we see, from Eq. (IY.9), that the real part of the 

pole position has been shifted by FB/2 from the normal Breit-Wigner 

pole (see Appendix IV) due to the presence of the background. We also 

should note that the shift can be either up or down in energy, depending 

on the sign of the background. For a narrow resonance with a small 

background the shift will be to first order in the real part of the pole 

position. 

APPENDIX V 

S-WAVE DOMINANCE OF THE IJN CROSS SECTION 

In this appendix we estimate the minimum partial wave cross sec­

tion for the n~p -i- rjn by using moments and the assumption of S-wave 

dominance around the 1520-MeV c m . energy region. 

If we assume that only S l i , P l l , Di3, D15 and F15 waves contri­

bute to the nN channel and that they all have the same phase, we then 

will obtain the minimum amount of these waves necessary to generate 

the moments. From Ref. 16 we obtain the moment expressions: 



C Q = | S f l | 2 + | P i i | E + Z | D 1 3 | E + 3 | D 1 5 | 2 + 3 | F 1 5 | 2 , 

C t = 2 | S l i | | P U | + 4 | P l i | | D 1 3 | + 7 . 2 | D 1 3 | | F 1 5 | +0 .515 | D15 | | F 1 5 | 

C 2 = 4 | S l l | | D 1 3 | + 6 | S 1 1 | |D15 |+6 |P11 | |F15 | + 2 |D13 | 2 +1.714 |D13 | |jF15| 

+ 3 .429 | D 1 5 | 2 + 3 .429 | F 1 5 | Z , 

C 3 = 6 | S l l j | F 1 5 | + 6 | P H | | D i 5 J + 4 . 8 | D 1 3 | | F 1 5 | + 3.2 | D15 | | F 1 5 | . 

(V. l ) 

F r o m our K - m a t r i x fits to the S l l wave , we know that m o s t of the 

c r o s s sec t ion goes into S l l around 1520. T h e r e f o r e we wil l a s s u m e 

S-wave dominance . Dropping all t e r m s except those which have S-

waves in them, we get for the m o m e n t s : 

C Q = j S l l | Z , 

c t = z | sn | | P H | , 
C , = 4 | S l l I I D13 I + 6 | S l l I I D15 I , (V.2) 

We now can eas i ly show that the r a t io of the c r o s s Bection of P i l , D13, 

o r D15 , F15 to S l l can be wr i t t en as 

J D 1 3 

g D15(only) _ 3 | D l c ! 2 

0 S 1 1 | S l l 

. . i Z 

2 
P l l . I P l l l Z

 = fCl \ 
Sll " | Sll | 2 " \ 2 C c J 

(only) _ 2 [ D13 | 2 _ 1_ / C 2 

Sll " | S l i | 2 " 2 l 2 C 0 

l l 2 3 \ r ^ ) ' 

3 {ZC0) • 

(V.3) 

A s u m m a r y of these c r o s s - s e c t i o n ra t ios taken f rom the m o m e n t s of 
14 Lemoigne et a l . a re shown in Table VII for 1520 to 1590 MeV. We 

conclude from Table VII and Fig . 9 that the S i l r)N is r easonab ly 



predicted from <mr K-matrix fit and small (~ 5% ) total contribution of 

higher waves (not permitted in our fit) to this channel could well de­

scribe the moments for it"p-»nN. 



Table I. Parameters of Breit-Wigner used in 
Watson final state factors equation (18). 

Isobar, a Mass, Er Width, v Orbital angular 
a "a " 

(pion masses) (dimensionless) momentum, £ 

Delta 8.83 0.40 1 
Rho 5.464 0.20 1 

Epsilon 6.0 0.8 0 

— i 

*. 



Table II. Comparison of P l l solutions of Sec. 3.2 
with two poles and three poles. 

P l l solution with two poles P l l solution with three poles 

X per deg. 1.47 x per deg. 1.62 

of freedom of freedom 

elastic+ inelastic elast ic! inelastic 

X elastic 45 x elastic 58 

o 



Table IU. K-matrix p a r a m e t e r s of all waves, in sequence S, P , D , F . 
[The pa rame te r s a r e defined in Eq. t25). j 

Table Ilia 

'A'avi* S i i , CERN S l l , Saclay S31, CERN S31, Sac lay 

Energy range 1310-1810 1310-1810 1310-1810 1310-1810 
(MeV) 

. 2 88.7 57.2 136.4 141." 

Degrees of f ree­ 62 6 2 73 73 
d o m 

Channel 1 N IT, L = 0 N TT, L = 0 N TT, L - 0 N IT, L - 0 

Channel 2 N e, L = 1 N e, L = 1 An, L - 2 ST,. L = 2 

Channel 3 N p l / 2 . L = 0 N p ] / 2 . L = 0 N p l / 2 , L , 0 N p l / z , L ^ 0 

Channel 4 NT, , L = 0 NT,, L = 0 --- — 
i - Pole 

^1 *- Channel .34b±.009 -.0474.020 1.786±.012 2.000±.013 

1 ,Pion . 
^ ' m a s a 1 3.798±.035 3.235±. l6l -4.932±.215 -5.784±.166 

l .Pion 
Y 3 1 H H S S ' 1.351±.092 .53i±.100 -2.802±.149 -2.852±.!42 

1 .Pion . 
^4 mass -2.539±.022 -3.535±.037 . . . . . . 

2 - Pole 
^1 - Cha nnel 3.431±.004 3.358±.002 --- . . . 

2,Pion . 
V m a s s 1 -1.676±.005 -2.273±.040 — . . . 

2,Pion . 
V i 'maos ' 2.329±.010 1.876±.050 --- . . . 



T a b l e I l lb 

S l i , C E R N S l l , S a c l a y S 3 1 . C E R N S 3 I , S a c l a y 

2 , P i o n . 
^ 4 m a s s - i . 6 B 8 ± , .009 - 2 . 2 0 9 * .0216 — — 

P o l e 1 (MeV) 1493± , .6 1 4 8 3 ± 2 . 4 1 5 9 8 ± 2 . 9 1 6 0 2 ± . 4 

P o l e 2 (MeV) 1691± , ,06 1 6 9 1 ± . 2 — — 
c n 30 .62± .013 3 0 . 5 5 ± . 0 2 3 1 9 . 3 0 ± . 0 8 5 2 0 . 4 4 * .033 

C 1 2 - 5 6 . 5 3 ± .189 - 5 9 . 7 0 ± . 6 9 0 - 1 2 6 . 2 8 ± 2 , 3 7 0 - 8 8 . 4 2 * . 6 7 5 

C 1 3 - 5 . 6 i ± .117 - 3 . 2 1 ± . 0 7 4 3 . 5 4 ± . 8 2 8 - 2 2 . 6 4 * .374 

C 1 4 6.55± .094 . 3 7 ± . 0 6 2 --- . . . 

C 2 2 1 5 7 . 2 7 ± 2 . 3 5 1 0 0 . 5 2 ± 1 . 9 7 0 - 2 0 4 6 . 1 8 ± 1 4 . 0 3 0 - 2 3 1 8 . 6 6 ± 5 . 5 7 4 

C 2 3 66 .43± .147 7 0 . 6 9 ± .469 - 7 0 3 . 3 4 * 3 . 1 6 2 - 1 3 4 6 . 8 5 ± 3 . 2 0 7 

C 2 4 
- 6 4 . 0 8 ± .112 - 6 3 . 9 6 ± .193 . . . 

C 2 4 

C 3 3 33 .16± .169 3 7 . 4 4 i l . 1 7 3 --- . . . 
C 3 4 - 1 9 . 2 7 ± .130 - 1 2 . 3 4 * 2 . 0 2 1 — . . . 

C 4 4 97 .65± .271 9 8 . 1 8 ± .964 --- . . . 

B H < 
P i o n _ 1 

m a s s -1 .85± .003 - 1 . 7 1 4 .002 - 3 . 6 8 ± .010 - 3 . 8 6 ± .002 

B 12< 
P i o n . 
m a s s ' 5.32± .017 5 .73± .031 14.0Z± . 1 1 4 10 .76* .024 

http://37.44il.173


Table IIIc 

S l l , CERN • S l l , Saclay 

13 mass .34* .006 .46* .010 

B, l (

P i ° n I" ' 1 4 mass 2.94±.011 3.97*.Oil 

B .Piun .-I 
2 2 * n i a s s ' 

• ,Pion .-1 
£i mass 

-12.14*.231 

- 4 . 6 3 * .017 

-7 . '9± .022 

-4.23±.044 

B P.on -I 
^4 mass 

B „ ( P i ° n ) - ' 
33 m a s s ' 

,Pinn .-1 
34 mass 

B 4 4 ( P i ° n I " 1 

44 mass 

3.47* .011 

-5.31*.038 

2.76* .032 

-3.55*.020 

3.6i±.008 

-4.29±.109 

2.67*.179 

-2.76* .050 

Pa r t i a l width 1 
(MeV) 

1.216 .022 

Pa r t i a l width 2 
(MeV) 

43.738 30.799 

Par t i a l width 3 
(MeV) 

7.754 1.186 

Pa r t i a l width 4 
(MeV) 

12.255 0.000 

Total width 
(MeV) 

64.963 32.007 

Pa r t i a l width i 
(MeV) 

139.976 134.071 

Par t i a l width 2 
(MeV) 

12.693 23.324 

S31, CERN S31. Saclay 

. 39 * .059 2 . 1 4 ± . 0 l 6 

173.60* .976 280.0 ± .298 

6 4 . 2 5 * . 233 1 2 0 . 2 9 * . 2 5 2 

68.65* .940 109 .29* .344 

35.703 

33.096 

33.587 

102.386 

44.793 

46.878 

34.684 

126.355 



Table IUd 

S l l , CERN S l l , Saclay 

P a r t i a l width 3 21.215 13.768 
(MeV) 

P a r t i a l width 4 23.282 39.847 
(MeV) 

Total width 197.166 211.009 
(MeV) 



Table I l le 

Wave P I ] , C E R N P l l , S a t l a y P 1 3 , C E R M P 1 3 , S a r l a y 

Knerfiy rant^f 1 3 I 0 - J 0 1 0 1 3 1 0 - 2 0 1 0 1 5 2 0 - 2 0 1 0 1 5 2 0 - 2 0 J 0 
(MeV) 

2 
X 1 5 2 . o 1 6 0 . 6 117 .6 89 .1 

Degrees of 98 98 47 47 
freedom 

Channel 1 N IT, h = 1 N i , L = 1 N i r , L = 1 N IT, L = 1 

Channel 2 A it, L = 1 A i , L - 1 N p l / 2 , L * l N p 1 / 2 , L = l 

Channel 3 N c, L = 0 N E, L, = 0 . . . . . . 

J - Pole 
^ -Channel 4 . 9 1 9 ± . 0 4 7 4 . 8 7 i ± . 0 1 4 2 . 4 9 7 ± . 0 4 4 2 . 5 4 1 ± . 0 3 9 

l .Pion . 5 . 9 3 5 ± . 1 3 5 6 . 3 8 6 ± . 026 - 7 . 4 6 5 ± . 0 8 8 - 7 . 5 0 6 ± . 0 9 2 

l .Pion . 
^3 mass - 2 . 3 4 ? ± . 1 H - 1 . 8 4 8 ± . 0 3 9 . . . . . . 

Z.Pion . 
^ l m a B s 5 . 8 3 8 ± . 1 9 2 5 . Z 7 7 ± . 0 1 5 . . . . . . 

2,Pion ( 

^2 m a g s ' - 4 . 8 3 1 * . 1 5 5 - 4 . 1 7 6 ± . 0 1 8 . . . . . . 

Z.P ion . 
^3 m a s s ' 4 .91 5± .170 4 . 5 9 2 ± . 0 1 0 . . . . . . 

P o l e 1 (MeV) 1 4 7 7 ± 1 . 5 1 4 7 6 ± 1 . 2 1 8 0 9 ± 5 . 4 1 8 0 9 ± 4 . 9 

P o l e 2 (MeV) 1 8 7 0 ± 4 . 9 1 8 6 9 ± . 7 . . . . . . 



Tabic Illf 

P l l , CERN' P l l , .Sac lay P13, CL'RN P l i , .SjU-Uy 

c , l -8.fcl±.500 -12.28±.730 -8.78± .130 - 1 2.82± .090 

C , 2 22.85*4.903 14.47±.242 -8.26A.10fc -2.MK± .4-15 

C 1 2 24.38±4.440 15.54±.l28 --- ---
C 2 2 144.54±2.038 93.08±.144 -1 79.10s- 1.593 -219.70±1.113s 

C 2 3 19.28±. l46 46.34±.491 — ---
C 3 3 -6.92±3.168 42.92±.930 --- ---

n ( P l o n l B l l l m a S s ) - .18±.047 .43±.056 .17±.001 .49± .005 

12* mass - .40±.402 -.3 5±.021 1.02±.033 .58±.003 

Pion -1 
B 13{ ) mass 

-3.48±.376 -2.74±.024 --- ---
_ .Pion -1 
B 2 2 ( m a s s ) -° .02±.154 -.82±.056 14.8l±.026 J 7.90± .031 

B Picn -1 
23 m a s s - .21± .047 .81±.035 --- . . . 

R ( P l o n | 
33 v mass ' 

.88±.273 -.89±.044 — ---

Partial width 1 200.045 196.060 71.998 74.574 
(MeV) 

Pa r t i a l Width 2 66.999 77.285 235.844 238.951 
(MeV) 

Pa r t i a l Width 3 27.561 17.091 
(MeV) 

http://-8.26A.10fc


Table Illg 

Total width 
(MeV) 

Par t ia l width 1 
(MeV) 

Part ia l width 2 
(MeV | 

Par t ia l width 3 
(MeV) 

Total width 
(MeV) 

U1 
-0 

P U , CERN P I ! , Saclay P13, CERN 

Z94.605 290.435 307.842 

407.369 332.702 ---

171.665 128.176 ---

182.936 159.541 ---

761.971 6Z0.419 

PI 3, Saclay 

313.525 
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sure that the asymmetries in these two solvents are due almost 

exclusively to hot reactions. Independent studies of this type 2 7 

verify ';hat the asymmetries observed in methanol, hexane, and 

ueptane are due only to hot chemistry. 

Asymmetries in hydrocarbons tend to increase with the 

number of hydrogen atoms per molecule, except when the compound 

is unsaturated, in which case the H atoms are presumably more 

tightly bound. Note the marked difference between hexene and 

cyclohexane, which differ only in bond structure, and the 

exceptionally low asymmetry in benzene, where the H atoms are 

particularly tightly bound by the "resonance" effect28. The 

high asymmetry observed in glycerol and in halide-substitued forms 

of methane may be due to thermal reactions. 

The results obtained for muonium hot chemistry may be 

compared and combined with analogous results from hot tritium 

(T) chemistry ' , In which it is more difficult to tell "hot" 

from "cold" reaction products, but where it is possible to 

distinguish between different diamagnetic products (e.g., TH vs. 

THO in hot reactions with water). 

We have not yet seriously attempted to develop the 

potentialities of this technique for studying hot atom chemistry; 

however, it seems clear that the field should benefit broadly from 

this technique29. 



Tabic l i l t 

D13, CERN D13, Saclavr 

-8.989±.176 

D33, CERN D33. .Saclay 

2,Pion , -9.624±.211 

D13, Saclavr 

-8.989±.176 --- . . . 

Z.Plon . -3.859±.087 -3.498±.239 --- . . . 

2,Pion . 
^4 mass 19.339±.255 20.764±.563 . . . ---

2,Pion , 
Y 5 mass ' - l i .453±.920 -13.464±.375 . . . . . . 

3,Pion 
v l 'mass ' 2.122±.028 1.679±.082 --- ---

3,Pion . -2.171±.156 -3.354±.381 --- . . . 

v 3.Pion 
•'3 mass -7.734±.006 -8.463±.134 . . . . . . 

3,Pion , 
^ ' m a s s 1 9.484±.247 11.548±.262 . . . ---

3,Pion , 
V m a s s 1 i l .465±.399 13.38l±.139 . . . . . . 

Pole 1 (MeV) 1508± 1.0 1510±1.0 1697±6.1 1704±.9 

Pole 2 (MeV) 1878±.6 1908±6.5 . . . . . . 
Pole 3 (MeV) Z218±3.9 226l±7.8 --- . . . 

C l l • -11.18 ±.143 -10.52 ±.167 51.2fc±.033 51.33±.076 

C ! 2 -17.82 ±.150 -16.38 ±.433 -8.76±1.640 -5.Z3±.065 

c , , -6.45 ±.215 -8.62 ±.678 -65.73±.078 -65.39±.055 
13 



T a b l e III j 

D 1 3 , C E R N D 1 3 . Sac lay D33 , C E I ! \ I ) i 5 , Sa L-I.-iy 

= , 4 5 3 . 2 0 ± . 6 3 4 5 5 . 2 9 ± . 8 0 6 ... . . . 
c , s - 3 5 . 1 0 ± . 4 9 5 3 5 . 1 0 ± . 6 6 3 ... ---

= Z2 - 6 0 . 0 0 ± 2 . 9 6 4 - 6 7 . 0 8 * 5 . 0 7 0 5 4 5 . 8 8 ± . I 9 6 5 4 5 . 9 4 * .T9S 

= 23 - 3 6 . 7 4 ± . 6 5 8 - 3 6 . 2 0 * 3 . 2 6 1 - 3 2 . 6 l ± . 7 i O - 3 1 . 9 8 * .263 

= 24 1 6 2 . 9 2 * 2 . 4 5 9 1 7 9 . 7 6 * 2 . 4 8 6 . . . . . . 

=Z5 2 0 . 4 8 ± i . l 0 2 4 7 . 7 8 * 5 .253 . . . . . . 

= 3 3 - 5 9 . 5 0 ± 4 . 8 8 5 - 4 4 . 2 8 * 5 . 0 1 5 2 0 4 . 2 9 * 1 . 0 3 6 2 0 8 . 4 1 * .609 

= 34 8 5 . 8 5 i . 1 1 7 8 9 . 8 4 * 5 . 8 9 5 --- ... 

= 35 - 9 1 . 7 1 * 2 . 2 9 8 - 8 0 . 3 4 ± 4 . 6 9 9 --- — 

= 4 4 - 6 0 . 9 3 ± 3 . 4 4 6 - 6 5 . 5 1 * 1 . 8 4 2 . . . ... 

= 45 2 . 5 5 ± 5 . 8 8 5 1 . 8 8 1 * 6 . 0 9 0 . . . . . . 

= 55 
- 2 9 3 . 1 0 ± 8 . 5 0 0 - 3 1 5 . 5 2 ± 6 . 7 4 6 --- ---

B l i < 
,P ion . 
' m a s s . 6 5 ± . 0 0 5 . 7 1 ± . 0 H - 4 . 8 5 * .025 - 4 . 8 8 ± .008 

B 12> 
,P ion . 
' m a s s . 0 6 ± . 0 1 7 . 2 4 * .01 4 - . 9 5 ± . l 8 2 - 2 . 3 3 ± .008 

B 13< 
r P i o n " 
' m a s s . 5 8 ± . 0 1 2 . 8 2 ± . 0 4 7 6 . 2 5 ± . 0 7 4 6 . 1 8 * .003 

o 
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Table IHk 

D13, CERN D13, Saclay D33, CERN D33, Saclay 

Pa r t i a l width 1 
(MeV) 

Par t i a l width 2 
(MeV) 

Pa r t i a l width 2 
(MeV) 

-2.13±.047 

.23±.0l4 

3.70±.152 

.75*.064 

-3.32±.126 

-1.86±.192 

1.12±.350 

-.35±.090 

-.62±.225 

-15.30±.474 

1 5.1 5± .058 

-7.98±1.29 

69.150 

32.126 

16.021 

-2 .45±.041 

.41±.013 

4.88±.332 

1.07±.421. 

-5.5Z±.238 

-2 .68±. l84 

- .02±.245 

-.95±.370 

- .89±.259 

-15.88±.4Zi 

15.34±.055 

-9.98±1.100 

70.211 

33.114 

15.967 

-51.i8±.268 

-l6.25±.238 

-52.06*.080 

-16.59±.057 

33.127 42.142 

201.740 273.255 

72.634 75.471 



TabU- III 1 

D13, CERN Dl3 , Saclay 

.022 

D33, CERN D33, Saclay 

Par t ia l width 
(MeV) 

4 .002 

Dl3 , Saclay 

.022 . . . . . . 

Par t ia l width 
(MeV) 

5 20.633 25.116 . . . . . . 

Total width 
(MeV) 

137.932 144.420 307.502 390.868 

Par t ia l width 
(MeV) 

1 160.157 148.584 . . . . . . 

Par t i a l width 
(MeV) 

2 810.063 725.494 . . . . . . 

Par t ia l width 
(MeV) 

3 105.730 92.888 . . . . . . 

Par t i a l width 
(MeV) 

4 2322.352 2800.493 . . . . . . 

Par t i a l width 
(MeV) 

5 652.554 967.023 . . . . . . 

Total width 
(MeV) 

40 50.857 4734.482 . . . . . . 

Par t i a l width 
(MeV) 

1 55.182 35.100 . . . . . . 

Par t i a l width 
(MeV) 

2 51.273 124.672 . . . . . . 

Par t ia l width 
(MeV) 

3 642.319 789.966 . . . . . . 

Par t i a l width 
(MeV) 

4 815.626 1246.676 . . . . . . 

Par t ia l width 
(MeV) 

5 1097.227 1 551.926 . . . . . . 

Total width 
(MeV) 

2661.627 3748.340 . . . . . . 



T a b l e I H m 

Energy rar,„-
(MeV) 

Degrees of free­
dom 

Channel J 

Channel 2 

Channel 3 

Channel 4 

1 - Pole 
v l - Channel 

l .Fton 
'2 masB 

l .Pion . 
Y 3 mass 

l .Pion 
v 4 m a s s ' 

Pole 1 (MeV) 

C H 

C 1 2 

D15, CERN D15, Saclay 

1585-1810 

F15, CERN F15, Saclay 

1585-1810 

D15, Saclay 

1585-1810 1585-1810 1585-1810 

58.7 69.6 44.2 30.9 

20 20 31 31 

N . I -2 N n ( 2 S i 1 3 \ IT I 3 

A TT 1 = 2 A ir / - 2 l i 1 M A n f 1 

. . . . . . N p 3 / 2 i - l N p 3 / 2 i = l 

. . . --- N € I - 2 N e i - 2 

2.890±.047 2.840±.055 4.427±.035 4 . 3 6 2 ± . 0 3 4 

-6.265±.154 -6.064±.lfc3 1.000±.053 1 .147± .053 

. . . . . . 5.007±.205 4 . 8 4 3 ± . 2 0 0 > 
t o 

. . . — 2.684±.186 Z.588± .182 

1684±3.3 1683±3.2 1684±.8 1 6 8 2 ± . 8 

-.59 ±.620 -1.02 ±.607 4.71 ±.338 3.64 ± . 2 6 1 

-5.22 ±1.834 .93 ±1.841 -8.34 ±.126 - 7 . 8 6 ± 1 . 2 7 3 



T a b l f IHn 

D 1 5 . C E R N D 1 5 , S a c l a y F J 5 , t U O i 

- 1 . 4 9 * 1 . 0 5 5 - 4 . 0 0 ± 1 , 0 4 5 

- . 1 5 ± 1 . 9 1 i - 1 . 8 0 ± 1 . 9 5 2 

6 . 2 2 * 8 . 6 1 2 - 1 . 5 4 * 8 . 8 0 8 - 2 7 . 0 0 * 5 . 1 0 0 - 2 3 . 5 2 * 4 . 6 6 2 

5 3 . 4 1 * 2 . 7 5 3 5 0 . 2 6 * 2 . 1 3 1 

9 . 2 6 * 2 . 8 8 1 7 . 3 0 * 2 . 8 6 7 

- 4 0 . 6 7 * 5 . 8 8 6 - 4 0 . 3 1 * 6 . 0 2 9 

- 3 9 . 6 4 * 8 . 2 9 0 - 4 n . n 8 ± 8 . 0 3 2 

1 5 . 0 3 * 1 0 . 0 8 9 1 4 . 5 4 ± 1 0 . 2 2 3 

6 3 . 8 1 5 8 3 . 4 5 8 80 .647 

8 9 . 1 3 3 5 .177 6.772 

P a r t i a l w i d t ! 3 - - - - - - 5 3 . 1 5 3 49.731 

P a r t i a l w i d t h 4 - - - 1 5 . 2 9 3 14.154 

T o t a l w i d t h 161.680 1 5 2 . 9 4 8 1 5 7 . 0 8 0 151 .305 

"?. i 

C 3 3 . . . 
C 3 4 . . . 
C 4 4 . . . 
Par t ia l width 1 66.192 

Par t ia l width 2 95.488 



Table IIIo 

Wave F35, CERN F35, Saclay F37, CERN F3 ., Saclay 

Energy range 
(MeV) 

1730-2010 1730-2010 1770-2010 1770-2010 

2 
X 

26.5 20.7 23.0 9 .5 

Degrees of free­
dom 

34 34 23 23 

Channel 1 N i , L = 3 N ir, L = 3 N jr. L - 3 N IT, L = 3 

Channel 2 A TT, L = 3 A jr, L = 3 A ir, L = 3 A ir, L = 3 

Channel 3 N p 3 / 2 . L = l N p 3 / 2 , L, 1 N p 3 / 2 . L 3 N p 3 / Z , L = 3 

Channel -! --- . . . A p , L 1 A p , L 1 

1- Pole 
^ i - Channel 4.282±.263 4.179*1.691 3.794±.030 3.5i3±.005 

l ,Pion 
Y 2 maflfl' 2.938±5.451 5.178*1.509 9.019±.084 6.099±.142 

i .Pion . -18.321±4.391 -15.666±7.688 -4.502±.101 -3.296±.l28 

1 .Pion . 
' v 4 l m a s s l . . . . . . 7.238±.183 8.041±.033 

Pole 1 (MeVl 2l69±60.5 2136±125.9 1941±1.2 1921±.8 

c n -4.16 ±.473 -3.80 ±3.319 2.82 ±.073 3.08 ±.286 

< = . , -3.79 ±7.217 -6.42 ±6.268 2.74 ±.714 6.59 ±.919 



Table III p 

F35, CERN F35 , Saclay F37, CERN F37, Saclay 

C 1 3 6.68±3.579 5.97±13, ,788 3.27±1.50 8.74*.400 

C 1 4 — . . . -15.191±.555 -17.07*.670 

C 2 2 -169.24*28.034 -142,68*50 ,356 173.02±7.348 156.74*4.310 

C 2 3 
-57.69± 53.152 -31.04*2.096 -56.51*3.496 39.39*3.748 

C 2 4 
. . . . . . -115.81*3.850 -78.08*.922 

C 3 3 -127.87±48.838 101.78*65 .735 -221.14*7.150 -308.52*5.43 

C 3 4 
. . . . . . 1 54.91±8.074 190.03* .890 

C 4 4 
. . . . . . -51.17*7.081 -23.62*4.058 

Pa r t i a l width 
(MeV) 

i 177.921 164.775 108.736 90.432 

Pa r t i a l width 
(MeV) 

2 46.503 135.129 234.350 98.772 

Pa r t i a l width 
(MeV) 

3 3176.717 2245.710 34.511 15.721 

Pa r t i a l width 
(MsV) 

4 . . . . . . 112.206 137.436 

Total width 
(MeV) 

3401.141 2545.615 489.803 342.361 



Table IV, T-matr ix poles and res idues for all waves in sequence S, P, D, F , 
(Poles and part ial widths (residues) are in MeV). 

Table IV a 

SI 1 C E R N , F i r s t P o l e 

Real ; 1503.2±.8 
/ 

Twice Imag • •• 64.8 ± 1.8 

r ( N „ ) r [ N , ( P ) ] r [ N p l / E ( S i ] r [Nr,(S>| 

Real 7.2 23.0 fc.5 2.3 
Imag -5.8i 35.4i .2i 9.7i 
Mad J9.2I '42.2] i, . i :10.0 ! 

r ( t o t a l ) 

38.9 Real 
39.5i Imag 

! 6 8 . 0 | a Mori 

SI i S a c l a y , F i r s t P o l e 

Real = 1491.4± 2.9 / Twice Imag : 57 .5±3.3 

r<N,r) r [ N c ( P ) ] r t N P j / z ( S l ] r iN7,(S)] r ( t o t a l ) 

Real .8 11.7 + . 4 4 -.8 + 

Imag -13.4i 28.li 1.4i 1 4 . l i 

Mod | 13 .4 | ]30.5 | | 1 .4 | | 1 4 . 1 [ 

12.0 R e a l 

3 0 . 2 i I m a g 

| 5 9 . 4 | a Mod 

S l f C E R N , S e c o n d P o l e 

R e a l = 1 6 5 2 . 4 ± .2 / T w i c e I m a g = 1 0 0 . 3 ± . 8 

r ( N „ ) r ( N E ( P ) ] r l N P l ^ ( S ) ] r lN77(S)J F ( t o t a l 

R e a l 26.1 - 2 . 3 " - 2 . 6 4 .7 " 25 .9 R e a l 

Imag - 3 6 . 8 i - 3 . 7 i - 8 . 9 i - 3 1 . 9 1 - 8 1 . 2 i Imag 

Mod 145.1 ! 1.4.4 1 J 9.21 | 3 2 . 3 j ' 9 0 . 9 ! Mod 

M o d u l u s of F ( t o t a l ) is s u m of m o d u l i of T - . 



Tab! <- I V b 

S I ! S a L 1 a y , S t- t u n d P n ! 

Real 164.-1 ± O.-S Twice l m a s 103.6 ± 2.1 

~lNp, / z (S)] r [Nr](SI] r ( to ta I I 

Heal 18.8 0.4 " -2.7 ' 8.4 " 24.8 Rual 
Imag -41.2i -7.9i -5.0i -31.0i -85 . l i Imag 
Mod 145.3 17.9j |5.7l j 32.1 . 91.0 a Mod 

S3 1 C E R N , P o l e 

Real = 1600.3± 4.8 Twice Imag 79.2 ± 10.4 
L 

r (Nnl r | 4 . r ( D I | r | N P ] , 2 ( S I | r i t , u a l l 

Real -3.2 22.0 " -5.3 13.4 Heal 
Imag -10.5 i 15.8i 101.91 9M.2i Iniau 
Mod 19.8 ,27.1 102.0: 148.9 a Mod 

S 3 1 S a c 1 a y 

Real .- 1602.4 ± 3.9 / ' Twice Imag - 74.1 ± 6.1 

r ( N n) r [^, i r(Dl] r [ N p 1 / 2 ( S l J ""(tntall 

Real -4.2 24.5 " -56.6 " -36.3 Real 
!mag -19.2i 7.0i 56.4i 44.2i Imag 
Mod 119.7 l25 .5 | ;79.9 | 1 2 5 . l ' a Mod 

00 

Modulus of r (totall is sum o£ moduli o£ T. . 



Table IV c 

R.-al = 13M.b ± 2.H 

U"<P>] [Ne(S)] 

P I 1 S a c l a y , F i r a t P o l e 

r [Air(P)] r [Ne(S)] 

Real 36.0 21.0 5,1 62.1 Real 
Imag -109.2i -25.5i -5.H -'->9.9i Imag 
Mod 1115.0 1 I 33.0 ! | 7.21 ! 155.2 | a Mod 

Real = 1391.0 ± 0 . 5 / . Twice Imag = 206.3 ± l.S 

Real 29.5 29.5 2.0 ' 61.0 Real 
Imag -85.4i -30.9i 0.6i -115.7i Imag 
Mod | 90.3 | I -42.S1 '2.1 | I 135.1 | a Mod 

P l l C E R N , S e c o n d P o l e 

Real = 1724.5 ± 5.5 / Twice Imag = 282.6 ± 8.2 

r(Nir) r [ A u ( P ) ] r[NE(S)] ""(total) 

Real -39.4 46.6" 31.0 38.1 Real 
Imag -115.0i 5.3i -55.9i -165.6i Imag 
Mod ! 1Z1.31 '46.91 i 63.91 I 232.3 | a Mod 

Modulus of r . . . ., is sum of moduli of r . . (total) l 



T a b l e IV d 

P l l S a c 1 a y , S e c o n d P o l e 

R e a l = 1 7 4 4 . 1 ± 1.0 / T w i c e I m a g = 2 9 3 . 7 ± 5.0 

r(NT7) r [ A i r ( P ) J r [ N e ( S ) ] r ( t o t a l ) 

R e a l - 2 2 . 6 38 .4" 60 .5 76 Real 

I m a g - 1 2 6 . 3 i 3 .7i - 5 7 . 6 i - 1 8 0 . 2 i Imap 

Mod | 128 .31 I 3 8 . 6 ] t 83.51 250 .4 ' a Mod 

P I 3 C E R N P o l e 

R e a l = 1 7 2 8 . 2 ± 2 .3 / T w i c e I m a g = 1 5 " . 3 ± 5.0 

r ( N i r ) r [ N p l / 2 ( P ) ] r ( t o t a l ) 

R e a l 0 .5 4 2 . 3 " 4 2 . 8 R e a l 
I m a g - 2 5 . 3 i - 7 2 . 7 i - 9 7 . 9 i Imag 
M o d I 25 .3 ! I 84 .1 | [ 109 .3 | a Mod 

. I 

P I 3 S a c l a y P o l e O 

R e a l - 1 7 2 7 . 7 ± 2 .1 / T w i c e I m a g = 1 56 .9 ± 4 . 9 

r ( N i r ) r [ N P ] y 2 ( P ) ] r ( t o t a l ) 

R e a l 1.5 38 .5 ." 4 0 . 0 Real 

I m a g - 2 6 . 0 i - 6 9 . 8 i - « 5 . 8 i Imag 
Mod I 26-01 I 7 9 . 7 J 1 0 5 . 8 | a M o d 

M o d u l u s of f\ ^ ,. i s s u m of m o d u l i of F . . 
( to ta l ) i 



Table IV e 

D 1 3 C E R N , F i r s t P o l e 

Real = 1514.6 ± 2.1 
/ 

Twice ; Imag = 14Z.1 ± 5.4 

r(NTO r [An(S)] 

5.1 " 
35.9i 

'• 36.3 | 

r [ N P j / 2 ( S ) ] 

33.7 + 

5.7i 
1 34.2| 

r [ N e ( P ) ] 

-3.4 " 
0.3i 

! 3.4 j 

riAir(D)] •""(total) 

Real 
Imag 
Mod 

88.1 
12.5i 
B9.0 

r [An(S)] 

5.1 " 
35.9i 

'• 36.3 | 

r [ N P j / 2 ( S ) ] 

33.7 + 

5.7i 
1 34.2| 

r [ N e ( P ) ] 

-3.4 " 
0.3i 

! 3.4 j 

3.2 
13.5i 

j 13.H! 

126.7 
67.9i 

i 176 .7 l a 

Real 
Imag 
Mod 

D 1 3 S a c l a y , F i r s t P o l e 

Real = 1514.9 ± 4.8 
/ 

Twice Imag = 148.1 ± 6.4 

r(Ntr) rfATT(S)] 

7.9 " 
40 . l i 

| 4 0 . 9 | 

r [ N p J / 2 ( S ) ] 

35.6 + 

5.3i 
1 36-0 1 

r [ N e ( P ) ] 

-4.0 " 
0.3i 

1 4.0 | 

r[An(D)l r ( t o t a l ) 

Real 
Imag 
Mod 

91.3 
10.4i 

!91 .9 | 

rfATT(S)] 

7.9 " 
40 . l i 

| 4 0 . 9 | 

r [ N p J / 2 ( S ) ] 

35.6 + 

5.3i 
1 36-0 1 

r [ N e ( P ) ] 

-4.0 " 
0.3i 

1 4.0 | 

3.3 " 
14.3i 

1 14.71 

134.2 
70.5i 

1 1 8 7 . 5 | a 

Real 
Imag 
Mod 

D 1 3 C E R N . S e c o n d P o l e 

Real = 1646.9 ± 6.5 
/ ' Twic e Imag ~ 116.6 ± 5.4 

r (Nn) rrAir(S)] 

-8.0 + 

-22.2i 
| 2 3 . 6 | 

r [ N p 3 / 2 ( S ) ] 

-.7 " 
3.61 

| 3 . 7 | 

r[N<r(P>] 

-56.9 " 
-31.7i 
165.11 

r [An(D)] r ( t o t a l ) III! 
5.3 

-14.9i 
I 15.8| 

rrAir(S)] 

-8.0 + 

-22.2i 
| 2 3 . 6 | 

r [ N p 3 / 2 ( S ) ] 

-.7 " 
3.61 

| 3 . 7 | 

r[N<r(P>] 

-56.9 " 
-31.7i 
165.11 

0.3 " 
-2.4i 
t 2.4 I 

-60.0 
-67.5i 

l U 0 . 7 , a 

Real 
Imag 
Mod 

Modulus of I \ , . . , ie sum of moduli of I \ . (total) i 



Table IV f 

D13 S a c l a y , ! S e c o n d P o l e 

Real = 1650.4 ± 12.4 
/ Twice Imag - 125. 4 ± o.T 

r(Nir) r [^(£') l 
-9.2 + 

-23.11 
| 2 4 . 9 | 

r [ N p 3 / 2 ( S ) ] 

-.5 " 
4.1i 

| 4 . 1 | 

r [ N £ ( P ) ] r[ATT(D]] 

-63.3 " 0.2" 
-39.oi -1.3i 
| 74 .8 | ! 1.3 i 

r ( t o t a l ) 

Real 
Imag 
Mod 

5.0 
-12.6i 
1 13.6 | 

r [^(£') l 
-9.2 + 

-23.11 
| 2 4 . 9 | 

r [ N p 3 / 2 ( S ) ] 

-.5 " 
4.1i 

| 4 . 1 | 

r [ N £ ( P ) ] r[ATT(D]] 

-63.3 " 0.2" 
-39.oi -1.3i 
| 74 .8 | ! 1.3 i 

-67.8 
-72.8i 

1 U 8 . 6 i a 

Real 
Imag 
Mod 

D 1 3 C E R N , T h i r d P o l e 

Real = : 1971.0 ± 11.5 / Twice Imag = 4 52. 1 * 37.4 

r(Nir) r [Air(S)] r [ N p 3 / 2 ( S ) ] 

110.6 " 
-177.9i 
| 209.5| 

r r N c ( P ) ] r(AJT(D)l 

-2.0 + 8.3 + 

1.3i -27.4i 
| 2 . 4 | | 28.6 | 

r ( t o t a l ) 

Real 
Imag 
Mod 

-1.9 
-87.2i 
| 87.2| 

-48.0 + 

51.Oi 

1 7 0 - 1 1 

r [ N p 3 / 2 ( S ) ] 

110.6 " 
-177.9i 
| 209.5| 

r r N c ( P ) ] r(AJT(D)l 

-2.0 + 8.3 + 

1.3i -27.4i 
| 2 . 4 | | 28.6 | 

67.0 
-240.3i 
1 3 9 7 . 8 ! a 

Real 
Imaf: 
Mod 

D13 S a c l a y , T h i r d P o l e 

Real = = 1970.7 ± 32.0 / Twice Imag = 401. 8 ± 52.4 

r(Nir) r[ATT(S)] 

-48.3 + 

47.3i 
| 6 7 . 6 | 

r [ N p 3 / 2 ( S ) ] 

82.7 " 
-170.Zi 
| 189.21 

r [ N e ( P ) ] r[Air(D)J r ( t o t a l ) 

Real 
Imag 
Mod 

14.1 
-54.8i 
]56.6l 

r[ATT(S)] 

-48.3 + 

47.3i 
| 6 7 . 6 | 

r [ N p 3 / 2 ( S ) ] 

82.7 " 
-170.Zi 
| 189.21 

-1.0 + 0.6 + 

0.4i -25.9i 
! l . l | 1 25.9 | 

48.2 
-203. l i 
| 340.3 i a 

Real 
Imag 
Mod 

Modulus of r . . . . . is sum of moduli of I \ . (total) l 



Table IV g 

D 3 3 C E R N P o l e 

Real = 1656.7 ± 5.3 / Twice Imag = 109.3 ± 2.3 

r INir) r[ATT(S)] r [ N p 3 / 2 ( S ) ] 

Real 6.9 -6.6 35.° 36.2 Real 
Imag -3.4i -45. l i 7. Si -40.9i Imag 
Mod | 7 . 7 | ! 45.5 j | 36.61 | 8 9 . 8 | a Mod 

D3 3 S a c l a y P o l e 

Real . 6 5 4 . 4 * 1 . 4 / Twice Imag = 117.5 ± 2.4 

r (Nu) r[Air(S)] r [ N p 3 ^ 2 ( S ) ] r ( to t a l ) 

Real 6.9 -8.9 36.0 34.0 Real 
Imag -4.2i -49.3i 8.5i -44.9i Imag 
Mod | 8 . l | j 50.1 j | 3 7 . 0 | I 95.1 | Mod 

D 1 5 C E R N P o l e 

Real = 16.65.7 ± Z.8 / Twice Imag = 159.0 ± 11.1 

r(Nir) r[ATT(D)] r ( t o t a l ) 

Real 67.7 91.0 " 158.8 Real 
Imag -13.8i -10.4i -24.2i Imag 
Mod ] 6 9-M I 91.61 160.71 a Mod 

Modulus of r . t . .. is sum of moduli of r . . (total) i 



Table IV h 

D15 S a c l a y P o l e 

Real = 1662.1 ± 2.2 / Twice Imag = 139.7 ± 9.2 

r(Nir) r [An(D)] r | t o t a l ) 

Real 55.8 71.2 127.0 Real 
Imag -18.2i -21.Zi -39.4i Imag 
Mod '58.71 174.3! ! 133.0 l a Mod 

F 1 5 C E R N P o l e 

/ 
Real = 1672.0 ± 2.4 / Twice Imag = '54.6 i i.Z 

r(Nir) r [Aw(P)] r ( N p 3 / 2 ( P ) ] r l N e ( D ) ] r ( t o t a l , 

Real 99.3 5.3 32.5 14.5 151.6 Real 
Imag -17. l i 10.6i -27.Oi -15.7i -49.U Imag 
Mod | 100.7 | | 11.9) | 4 2 . 2 | I 21.4 j i l 7 6 . 2 ' a Mod 

F 1 5 S a c l a y P o l e 

Real = 1668.6 ± 2.0 / Twice Imag = 145.0 ± 4. 8 

r(Nir) r [Ai r (P | ] r [ N p 3 / 2 ( P ) ] F [Ne (D) ] r <total) 

Real 88.7 7.4 + 29.9 11.7 + 137.6 Real 
Imag -20.4i 9.2i -24.9i -14.91 -51.Oi Imag 
Mod ! 91.01 | 11.B| ) 38.91 | 18.9! • 160-6) Mod 

Modulus of r , t t -. is sum of moduli of T.. (total) i 



T a b l e IV i 

F 3 5 C E R N P o l e 

S ^ a l - 1B24.1 ± 7 .5 / T w i c e I m a g = 2 8 2 . 1 ± 2 5 . 6 

r f A i r ( F ) ] r [ N p 3 / z ( P ) ] r < t o t a H 

R e a l 36.3 1 9 . 1 - 2 0 . 3 " 3 ? . l R e a l 
I m a g -Z5 .5 i - 1 7 . 7 i - 1 0 4 . 7 i - 1 4 8 . Oi Imag 
Mod ) 4:4.3 j | 2 6 . l | | 106 .7 J , 1 7 7 . I | a Mod 

F 3 5 S a c l a y P o l e 

R e a l = 1B31.9 ± 2 0 . 7 / T w i c e I m a g = 2 7 7 . 5 ± 3 4 . 9 

^(Nir) r [ A n ( F ) ] r [ N p 3 / 2 ( P ) ] r ( t o t a l ) 

R e a l 36.2 1 5 . 7 T - 1 7 . 1 " 3 4 . 8 R e a l 

I m a p - 2 4 . 8 i - 1 9 . 2 1 - 1 0 7 . 7 i - 1 5 1 . 7 i Imag 

M o d | 43 .9 ] [ 2 4 . 8 1 | 109.01 ] 1 7 7 . 8 | a Mod 

F 3 7 C E R N P o l e 

R e a l = 1866 .1 ± 5 .8 / T w i c e I m a g = 2 5 4 . 9 ± 2 1 . 4 

r(NTT) r [ A f ( F ) ] r [ N P i / 2 ( F ) ] r [ A p ( P | ] r ( t o t a l ) 

R e a l 78.2 12 .0 - 3 4 . 9 5 1 . 8 1 0 7 . 1 R e a l 

I m a g 23.Oi 5 4 . 7 i 22 .4 i - 8 4 . 2 i 1 5 . 9 i I m a g 

M o d | 8 1 . 6 | | 56 .0 | | 44.4:) | 9 8 . 8 | | 2 7 7 . 8 [ a Mod 

M o d u l u s of F,.. t , , i s s u m of m o d u l i of I \ . ( to ta l ) I 



T a b l e IV j 

F 3 7 S a c l a y P o l e 

R e a l = 1 8 7 6 . 8 ± 6.2 T w i c e I m a g = 2 9 7 . 8 ± 30 .2 

r(NTT) r [ A n ( F ) ] r [ N p , / ? ( F ) ] r [ A p ( P ) ] r ( t o t a l 

R e a l 4 8 . 5 92-3 T - 9 . 1 58 .0 ^ 189 .8 R e a l 

I m a g - 3 7 . l i 2 6 . 0 i 50. Oi - 2 9 . 2 i 9. Hi I m a g 

M o d I 61 .1 | | 96 .0 | I 51.0 | | 6 4 . 9 | | 2 7 2 . 8 j a Mod 

M o d u l u s of r i s s u m of m o d u l i of I \ . 
( to ta l ) l 

- J 



Table V. C o m p a r i s o n of p a r a m e t e r s of K - m a t r i x , T - m a t r i x , and B r e i t - W i g n e r r e f i t , all in MeV. 

Z Channe l , Small Background, D15 C E R N ( E P S A ) + N T T T T 

Or ig in 

K - m a t r i x 
pole 

f rom Table III 

T - m a t r i x Rea l 1666 159 68 91 
pole Imag -159 i 

Z -24i -14i - lOi 
f r o m Table IV Mod | 1 6 1 | I 6 9 | 1 92 | 

Real 
Imag 
Mod 

Uni ta r ized 
(UB+BW) 

BW p a r a m e t e r 
1692 

Uni ta r ized 
(UB+BW) 

BW p o l e 3 

Real 1666 
Imag ^i|S> 
Mod 

156 68 88 
-24i -12i - H i 

| 1 5 8 | I 6 9 | | 89 [ 

Real 
Imag 
Mod 

P.aal 

Real 
Imag 
Mod 

UB+BW 
BW p a r a m e t e r R e a l 1683 68 99 

UB+BW 

BW po le " 

Real 1659 134 57 
Imag -150i 

2 -45i -22i 
Mod | 1 4 1 | | 6 1 | 

77 
-23 i 
I 8 0 | 

D15 CERN [EPSA) Only 

M a s 8 r ( t o t a l ) r ( N n ) r [ ^ ( D ) ] 

K - m a t r i x 
pole 

p o l e " 

Rea l 1682 64 

Rea l 1660 125 54 71 
Imag -140 i 

2 -43i -ZOi -23i 
Mod | 1 3 3 | | 5 8 | | 7 5 | 

Real 

Real 
Imag 
Mod 

^ BW p a r a m e t e r Rea l 16B2 

BW pole" 

Real 
Imag 
Mod 

1661 
-140 i 

2 

55 
-181 
I 581 

Real 

S t . l 
Imag 
Mod 

T - m a t r i x pole has complex pos i t ion and p r t ia l width ( r . ] . Modulus of r . . i s the s u m 
of the moduli of T.. ' . total) 



T a b l e V b 

2 C h a n n e l , Smal l Background , Dl 5 Saclay(EPSA)+NiTiT 

P a r a m e t e r 

r ( t o t a l ) r(NTt) : ' [ A T I ( D ) | 

K - m a t r i x 
pole 

f r o m Table III 
Rea l 1683 

T - m a t r i x R e a l 
pole Imag 

f rom Tab le IV Mod 

1662 
-140 i 

127 
-39i 

! 133 | 

56 

-18 i 

I 59 | 

71 " 
-21 i 
I 74 I 

+ 

ST 

Uni t a r i zed 
(UB+BW) 

BW p a r a m e t e r 
R e a l 1684 

Un i t a r i s ed 
(U3+BW) 

BW p o l e 3 

R e a l 
I m a g 
Mod 

1663 
- 1 4 0 i 

2 

130 56 74 
-36i - 18 i -18 i 
| 1 3 5 | | 5 9 | | 7 6 | 

UB+BW 
BW p a r a m e t e r R e a l 1684 

UB+BW 

BW p o l e a 

R e a l 
I m a g 
Mod 

1662 
- 1 4 0 i 

127 55 71 
-40i -18i -22 i 

1 133] 1 sa| | 7 5 | 

D15 Saclay (EPSAt Only 

t 
1* 

K - m a t r i x 
pole R e a l 1682 154 64 90 

F T - m a t r i x R e a l 1660 122 53 69 
KJZ Ima» -138i 

2 -44i -2Ci -24i 

j . a pole Mod 1 129; 1 56 ! 1 7 3 ' 

+ 

UB+BW 
BW p a r a m e t e r R e a l 1684 150 62 88 

u 
1 

UB+BW Real 
Imag 

1663 
-143 i 

2 

56 
-1 -".i 

1 BW p o l e 3 Mod 5H' 

T - m a t r i x pole has c o m p l e x posi t ion and p a r t i a l width ( I \ ) . Modulus of T, ,, i s the sum 
of the moduli of r . . ' ( l o t a I ) 



T a b l e V c 

3 C h a n n e l , L a r g e B a c k g r o u n d , F 3 5 CERN(EPSA)+Nmr 

O r i g i n 
r ( t o t a l ) r | N « ) r [ A i : ( F ) l ' " [ N p ^ P ) ! 

K - m a t r i x 
pole 

f rom Tab le III 
2169 3401 

E T - m a t r i x R e a l 1824 

X pole I m a g ^ 
f rom T a b l e IV M o d 

35 
-148i 
I i 7 7 | 

36 
- 2 6 i 
| 4 4 | 

19 
-17 i 
| 2 6 | 

- 2 0 
- 1 0 5 i 
1.1071 

Uni ta r i zed 
(UB+BW) 

BW p a r a m e t e r 
1907 219 

(0 
Un i t a r i zed 

(UB+BW) 
R e a l 

I m a g 

1824 
-2B2i 

Z 

1 BW p o l e a Mod 

53 
-143i 
I 173 I 

43 
- 2 7 i 

I 51 I 

16 T 

-12 i 

| 2 3 | 

-6 

-99 i 

| 9 9 | 

a + 
10 

UB+BW 
BW p a r a m e t e r R e a l 1957 391 75 41 275 

UB+BW 

BW p o l e " 

R e a l 
I m a g 
Mod 

1783 
-3861 

2 

13 
-304i 
I 3 2 3 1 

37 
-621 

\n\ 

18 
- 3 6 i 
I 411 

-42 

- 2 0 6 i 

I 2 1 0 I 

F 3 5 CERN ( E P S A j On ly 

R e a l 
I m a g 
Mod 

R e a l 

R e a l 
I m a g 
Mod 

R e a l 

R e a l 
I m a g 
Mod 

I 
-J 
-O 

Parameter 

O r i g i n 
M a 8 B F ( total) r [ A i r ( F ) ] 

K - m a t r i x 
pole R e a l 2042 154 1592 R e a l 

Rea l 
Imag 
Mod 

R e a l 

R e a l 
Imag 
Mod 

T-matrix 

pole 

UB+BW 
BW p a r a m e t e r 

R e a l 1810 
-2751 

2 
Mod 
I m a g 

33 
-25 i 
| 4 2 l 

,1 1891 36 

BW p o ) e a 

R e a l 
I m a g 
M o d 

1815 
-222 i 

20 
- 1 3 i 

I 2 4 1 

x-n- .a t r ix pole has c o m p l e x p o s i t i o n and p a r t i a l width (I",). Modulus of I \ . . i s t he s u m 
of ths modul i of T. . " i - ( to ta l ) 



3 C h a n n e l , L a r g e Background , F 3 5 Sac lay ( E P S A I + NTTTT 

""(total) r ( N i r ) r [ A t t ( F ) J ^ N p j ^ l P l J 

rC-matr ix 
pole R e a l 2136 2545 165 

from Tab le III 

m
at

 

T - m a t r i x R e a l 1832 3 5 3 6 16 + - 1 7 Real 
sc t a 

pole I m a g -27Bi -> -152i -25i -19i -U)Bi Iniag 

1 f rom Tab le IV M o d ! 17»i 4 4 2 5 1 1 0 " Mini 

1 Uni t a r i zed 
(UB+BW) Rea l 1 91 1 3 2 0 5 0 50 + 2 2 0 Real 

o BW p a r a m e t e r 
[0 
S> U n i t a r i z e d Rea l 1833 51 4 6 15 -1 1 H.-al 
3 (UB+hSvV) Imag -2B2i - I46 i -25i -14 i -10t>[ I n u t 

1 BW p o l e 3 M o d 180 i 53 ' 2 1 1 0 6 M o d 

1 UB+BW Rea l 1142 3 " 5 7 0 47 + 2 7 8 Real 
* BW p a r a m e t e r 
+ UB+BW Rea l 1798 - 1 0 3 9 1 5 + - 6 4 " Real 
n 1 I tnap 2 -290i -52i -36i -2C2i Imag 

! BW p o l e a M o d 1 316 ' 65 ' ! 3 9 
2 1 2 M u d 

F35 Saclay (F.PSA) Only 
P a r a m e t e r 

R e a l 1 5 6 

pole 

R e a l 
I m a g 
Mod 

1822 
-283i 

2 

35 
-26 i 
I 43 I 

UB+BW 
BW p a r a m e t e r R e a 35 

UB+BW 

BW pole 

Real 
I m a g 

1833 
-1 li 

24 

Deal 

Ileal 
Imag 
M..d 

Real 

Real 
Iniac 
Mod 

T - m a t r i x pole h a s c o m p l e x pos i t ion and p a r t i a l width (T.)- Modulus of r . .. is the su 
of the moduli of F . . 



4 C h a n n e l , Med ium B a c k g r o u n d , F 1 5 CERN+NTTIT 

P a r a m e t e r 

I K - m a t r i x 
1 pole R e a l 
* f r o m Table .III 

M a S 5 r ( t o t a l ) r ( N ^ ) r [ A n ( P ) ] r [ N p 3 / 2 ( P ) r | N e ( D ) | 

1684 5 T 

5 T - m a t r i x R e a l 
.j. pole I m a g 

f r o m T a b l e IV Mod 

1672 152 99 5 T 33 T 15 T Real 
-49i - 1 7 i H i -27i - l 6 i Imag 
176 | | 1 0 1 | l«l | « | 1 21 1 Mod 

I Un i t a r i zed 
ST (UB+BW) 
CO BW p a r a m e t e r 
•+ 
to. 

s 

1681 149 1 6 ' 

U n i t a r i z e d 1672 
-148i 

2 
BW po le* 

148 
-33i 

| 162 | 

92 
- H i 
|92| 

37 T 12 T Rea! 
14i -14i I n u g 
40 | I l 9 | Mu.l 

UB+BW 
£ BW p a r a m e t e r R e a l 1679 148 84 

UB+BW 

BW pole * 

R e a l 
. I m a g 

Mod 

1672 
-147i 

2 

152 93 10 T 37 T 13 T Rea l 

-30i - l O i -9 i -18 i - H i Imag 
165 | I 93 1 I l 4 | U l | | l 7 l Mod 

F15 CERN (EPSA) On ly 

O r i g i n 
M a S S r ( t o t a l ) r < N " ) r [ A i r ( P ) ] 

K - m a t r i x 
pole R e a l 1693 Real 

pole " 

R e a l 
I m a g 
Mod 

1659 
-128i 

2 

70 
-241 
I 741 

Rea l 
Imag 
Mod 

UB+BW 
BW p a r a m e t e r 

UB+BW 

BW pole ' 

Rea l 

R e a l 
I m a g 
Mod 

167K 

1664 
-129i 

2 

82 

75 
- 1 5 i 
i 77 1 

Ileal 

Real 
Imag 
Mod 

' T - m a t r i x pole h a s c o m p l e x posi t ion and p a r t i a l wid th (F . ) . Modulus of r , , n is the sum 
of the modul i of T. . ' ' U o . a l | 



4 C h a n n e l , Medium B a c k g r o u n d , F 1 5 Sac lay (EPSA1+N-™ 

O r i g i n 
r ( t o t a l ) r(NTt) r [A7>(p)] r [ N p 3 / 2 { p ) ] r ( N e ( D)J 

K - m a t r i x 
1 pole 
* f r o m Tab le III 

R e a l 1632 152 81 7 + 50 + 14 + Real 

S T - m a t r i x 
? , a 

X Pole 
I f r o m Table IV 

R e a l 
I m a g 
Mod 

1669 
- 1 4 5 i 

2 

138 
-51i 

! 161 | 

89 
-ZOi 
i 9 i ; 

7 + 

9i 

121 

30 + 

-Z5i 
39 

12 + 

-15 i 
! 1 9 ' 

Real 
Imag 
Mod 

' U n i t a r i z e d 
£ (UB+BW) 
P5 BW p a r a m e t e r 

R e a l 1678 142 81 16 + 30 + 15 + Real 

P 3 U n i t a r i z e d 
' (UB+BW) 

BW pole a 

R e a l 
I m a g 

1669 
-140 i 

Z 

137 
-35i 

! i s i | 

84 
-12 i 
| B 5 ! 

8 + 

7i 

'* ! 

35 + 

-15 i 
38 

10 + 

-15 i 
' 17 ! 

Real 
Imag 
Mod 

5 
H 
P 

J 

UB+BW 
BW p a r a m e t e r 

? UB+BW 
3 
3 

BW pole a 

R e a l 1679 141 80 12 + 34 + 15 + Real 

5 
H 
P 

J 

UB+BW 
BW p a r a m e t e r 

? UB+BW 
3 
3 

BW pole a 

R e a l 
I m a g 
Mod 

1672 
-140 i 

2 

144 
-25i 

! 1 5 4 j 

87 
-7 i 

! 8 7 | 

10 + 

9i 

« i 

35 + 

-16i 
| 3 3 l 

12 + 

- H i 
! 1 6 | 

Real 
Imag 
Mod 

F15 Saclay (EPSA) Only 

O r i g i n 

M a s s r .^ , ,, r , - . , Tr . / T-,,i 
(total) (NTT) [ATT(P)J 

K - m a t r i x 
pole 

rt T - m a t r i x 

pole 

R e a l 1692 179 

R e a l 
I m a g 
Mod 

1658 
-121 i 

64 
-26 i 
| 6 9 | 

Real 

Real 
Imag 
Mod 

Rea l 

Real 
Imag 
Mod 

UB+BW 
BW p a r a m e t e r R e a l 1677 

BW pole ' 

R e a l 
I m a g 
Mod 

1665 
-122i 

2 

71 
-13i 
| 7 3 i 

T - m a t r i x pole h a s c o m p l e x pos i t ion and p a r t i a l wid th (T . ) . Modulus of T, .. is the s u m 
of the modul i of T,. l ( total) 



Table VI. Sign of all couplings from Breit-Wigner refit made by 
eyeball in sequence S, P , D. F . 

Channel 

Sign 
coupling 

Channel 

Table Via 

Wave S11 C E R N , F i r s t p o l e 
(a) 

N ir, L = 0 Nc, L - i N p w 2 . L = 0 N n, L = 0 

^ + + + 

Angle -20° 10° -10° 40° 

Wave S l l S a c l a y , F i r s t p o l e 
(a) 

Channel N ir, L ^ 0 N e, L = 1 N p 1 / Z > L = 0 N n, L = 0 

S L 8 n , . + + + + 
coupling 
Angle -20° 20° -20° 40° 

Wave S H C E R N , S e c o n d p o l e 

N i t , L = 0 N e, L r 1 N p , , , , L = 0 N n, L, = 0 

Sign 
coupling + - + 

Ancle -20° -40° -40° -30° 

'N n channel is not in N TTTT ; this sign has been defined as posi t ive. 



T a b l e VI b 

Wave S l l S a c l a y , S e c o n r l P o l e 

C h i n n e l N i , L . 0 N c, L = 1 N p . , , , L • 0 N n, L 0 

S l B n . . + - H -
coupl ing 

Angle 20° -40° -40° -20° 

S 3 1 C E R N 

C h a n n e l N IT, L, = 0 A IT, L = 2 m P j / , , 

S L E " + 
coupl ing 

Ang le - 4 5 ° 0° 45° 

S 3 1 S a c l a y 

Channe l N n , L = 0 A ir, L = 2 N p ,_, L, = 0 

S i 8 n + 
coupl ing 

Angle - 4 5 ° 0° 45° 



T a b l e V i c 

Wave P i l C E R N , F i r s t P o l e 

Channe l NT n, L, - 1 A ir, L - 1 N c, L = 0 

S i S " + 4 
coupl ing 
Ang le - 3 0 ° -60° -40° 

Wave P H S a c l a y , F i r s t P o l e 

Channe l N i , L = 1 A i r , L = l N <r, L = 0 

Sign 
coupl ing 

Angle - 3 0 ° -60" -40° 

Wave P l l C E R N , S e c o n d P o l e 

Channe l N i , L = 1 A TT, I . = 1 N c, L = 0 

S l « n

1 . coupl ing 

Ang le -50° -10° -40° 



T a b l e VId 

W a v e P l l S a c l a y , S e c o n d P o l e 

Channe l X rr, L - 1 A IT , L , I N r , L =- 0 

S i S n ^ 
coupl ing 

Ang le - 5 0 ° -10° -30° 

W a v e P 1 3 C E R N 

C h a n n e l N n, L : I N p . , , , L 

Sign ^ 
coupl ing 

Ang le -45° -45° 

Wave P 1 3 S a c l a y 

C h a n n e l N T , L - 1 N p l / 2 , L = 1 

Sign 4 

coupl ing 

Ang le - 4 5 ° -45° 



T a b l e V i e 

W a v e D 1 3 C E R N , F i r s t P o l e 

C h a n n e l N i , L, = 2 A TT, L = 0 N P3/Z, L =0 N i, L •- 1 A TT, L -- 2 

S i S n

r 4 
coup l ing 

A n g l e 5° 35° 5° -65° -5° 

Wave D 1 3 S a c l a y , F i r s t P o l e 

C h a n n e l N i , L = 2 A ir, L -- 0 N p , , L -- 0 N c, L. = 1 A TT, L = 2 

S L g n 4 - 4 
coup l ing 

A n g l e 5° 35° 5° -65° -5° 

Wave D 1 3 C E R N , S e c o n d P o l e 

C h a n n e l N i , L = Z A j , L - 0 N p , / 7 , L = 0 N c , L - l A n , L = 2 , 

Sign 7 1 

coup l ing 

A n g l e -20° -60° 70° -80° -60° 



T a b l e VI f 

Wave D 1 3 S a c l a y , S e c o n d P o l e 

Sign 
coup l ing 

C h a n n e l N IT, L - Z A w. L = 0 N p , / ? . L = ° N r . L r ] A TT, L 

S i g " + + . 
coup l ing 

Angle -20° -60° 70° -80° -60° 

Wave D 1 3 C E R N , T h i r d P o l e 

Channe l V TT, L = Z A ir, L = 0 N p / 2 , L = 0 N e, L ; 1 A TT, L : 2 

Sign + , 
coup l ing 

A n g l e -40° 80° - 4 0 ° ? ? 

Wave D 1 3 S i c U y , T h i r d P o l e 

C h a n n e l N TT, L = 2 A TT, L = 0 N p , , . , L = 0 N e, L i Z A i r , L Z 3/2' 

A n g l e - 4 0 ° 80° -40° 



T a b l e VI g 

W a v e D 3 3 C E R N 

Sign 
coupl ing 

C h a n n e l N rr, L, = 2 A ir, L - b u p ?/?> 

+ + 

Angle -30° -60° 0° 

Wave D 3 3 S a c l a y 

C h a n n e l N ir, L -- 2 A ir, L. = 0 N p , L = 0 3/2' 
.Sign 
coup l ing 

A n g l e -30° -60° 

W a v e D 1 5 C E R N 

C h a n n e l N ir, L ^ 2 A TT, L = 2 

Sign ^ 
coup l ing 

A n g l e -10° -20° 



T a b l e V l h 

D I 5 S a c l a y 

C h a n n e l N IT, L • 2 A t , L 

Sign 
c o u p l i n g 

A n g l e -10° -20 

W a v e F I 5 C E R M 

Sign 
c o u p l i n g 

Sign 
c o u p l i n g 

C h a n n e l NTT, L - 3 A IT, L = 1 N p - / ? , L - 1 N 3/2' 

A n g l e -10° 10° -10° -30° 

F 1 5 S a c l a y 

C h a n n e l N n. L - 3 A -r, L = 1 N p , , , L 3/2' 

A n g l e -10° 10° -10° -30° 



T a b l e VI i 

W a v e F 3 5 C E R N 

C h a n n e l N i , L = 3 A v, L, = 3 N P 3 / 2 . L = 1 

s i gn 
coup l ing 

A n g l e - 2 5 ° -50° - 7 5 ° 

W a v e F 3 5 S a c l a y 

C h a n n e l 

Sign 
c o u p l i n g 

N 7i, L 3 Air, L 3 M p 3 / 2 , L : | 

A n g l e - 2 5 ° - 5 0 ° 

W a v e F 3 7 C E R N 

C h a n n e l 

Sign 
coup l ing 

N TT, L -- 3 A IT, L ; 3 N p , . , L = 3 A p , L I 

A n g l e -10° 20° -80° -40° 

A p c h a n n e l is not in NTTTT; i ts s ign has b e e n de f ined a s p o s i t i v e . 



Table VI j 

Channel N ir, L = 3 

Sign _, 
coupling 

Angle -10° 

_̂  p channel is not in NTTTT; its sign has been defined as positive. 

A IT, L, = 3 N p , i z , L = 3 i p , L = I 

Z0° -80° -40° 

i 

tv 



T a b l e VII. C r o s s - s e c t i o n r a t i o for T)N, a s s u m i n g 
S-wave dominance at 1520-1590 MeV, c m . 

Energy 1520 1530 1540 1560 1590 

c o .120 .125 .125 .130 .10 

c l .025 .025 .025 .01 0.0 

a P H .01 .01 .01 .0015 0.0 
ffSll 

C 2 .01 .045 .055 .07 .06 

^ 1 3 . 
CTS11 

only) .001 .016 .024 .036 .045 

a D 1 5 ( 

CTS11 
only) .001 .010 .016 .024 .03 

C 3 0.0 0.0 0.0 0.0 - . 05 

ffF15 0.0 0.0 0.0 0.0 .02 



FIGURE CAPTIONS 

Fig . 1. S-channel d iagram for i sobar a outgoing and i soba r p incoming, 
g 

where B ( q , i ) is square root of Blatt-Weisskopf b a r r i e r factor for 

momentum q in an angular momen tum state i. W is the Watson 

final state factor for the a i sobar . A is the e las t ic Argand ampl i ­

tude for p a r t i c l e s that make up the i sobar . 
2 

Fig- 2. D iag ram of 1-r) for the six different r e sonances used in de ­

termining the overa l l phase . 

F ig . 3. Flow d i a g r a m for the reduct ion of four sets of <$>. ' s to one set 

of <i>.'s, using E q s . (33) and (35). 

F ig . 4 .1 . Argand d iag rams and p a r t i a l wave c ross sect ions for the 

e las t ic and ine la s t i c channels. The smooth curve on the Argand 

d i ag rams i s the amplitude obtained from the K - m a t r i x when the 

descr ip t ion was poss ib le . C ros s -ha t ched m a r k s on the curve 

correspond to the energies D, E , F , e tc . the a r rows indicate the 

known r e sonances of Table V. The total inelas t ic contr ibut ion in 

each e las t i c wave ( if ) is compared with the sum of the inelas t ic con­

tr ibut ions we observe ()j\). Facing each inelas t ic Argand d iagram, 

we give the var ia t ion with energy of the square modulus of the wave. 

(This caption a lso applies to F i g s . 4.2 through 4.16. ) 

F ig . 5. Three different paths A, A 1 , A" in the E plane. E is the d i -

par t ic le m a s s that makes up the i soba r . W is the complex Vs 

(three body) where one s ea r ches for poles in the th ree -body 

T-ma t r ix . 

F ig . 6. The paths of Fig. 5 deformed so that they only differ by in te­

gration around the pole. 

F ig . 7. The b ranch cuts in the *v/~s or W plane (total c. m. energy) 

generated by the pole in the final s ta te interact ion of the i sobar . 



Fig. 8. T h r e e different paths of in tegrat ion in the E plane at four dif­

ferent va lues of W. The dashed line is the project ion of the branch 

cut f rom the W plane which i s not c rossed by "W-m, as it moves 

from (a) to (d). 

Fig. 9. T h r e e points on the A, A' , and A" sheets and how one has to 

t r ave l f r o m them to the phys ica l region in a continuous way. 

Fig . 10. The poles of the F15 T - m a t r i x which l ies nea r pN threshold. 

Each shee t is generated by the pN cut. 

Fig . 11. Argand d iagrams f rom U(UB + BW) refit to F 3 5 wave. Solid 

line is the U(UB + BW) ampl i tude , while dashed l ine is the uni tary 

background UB. Energy range is f rom 1740 to 1900 MeV, where 

a r r o w s point direct ion of inc reas ing energy. Aft i s the change of 

rotat ion angle of Bre i t -Wigner in this energy range . See Eq. (65). 

F ig . 12. K - m a t r i x predict ion for Nrj S l l f i r s t moment plotted against ^ 
Ul 

total c r o s s section. 
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