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ABSTRACT

Starting with partial wave amplitudes for "N~ N7 and 7N - sev-
eral ischar model states of Nrw, we are able to apply the conatraint of
unitarity (using the K-matrix). This permits the removal of the overall
phase ambiguity of the isobar amplitudes at each energy. The K-
matrix fits generated a smooth prescription for the T-matrix amplitudes,
enabling us to search the complex energy plane for prles. The unigquen-
nees of these poles was demonstrated by doing Breit-Wigner refits to
the fitted T-matrix amplitudes. The success of the refits and the ob~
vious interpretation justified a simple determination of coupling signs
for which there can be checks with theory. This thesis corresponds
closely to a forthcoming paper submitted to Physical Review except
ti:at here the K-matrix is based on a 1972 solution "A" iscbar-model

fits to Nwn data, and in the final paper we use solution '"B, "
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1. INTRODUCTION
1.1 Recently partial wave amplitudes in the context of the isobar
model have become available for the reaction "N - Nrnn.  Here we
present the results of a K-matrix {it to both these amplitudes and the
elastic amplitudes, 2,3 7N - wN. In addition we extract from the ampli-
tudes of the K-matrix fit resonance parameters (mass, widths,
couplings, poles).
Nuw partial wave analysisi spans the center-of-mass (c.m.)
energy range 1300 < E < 2000 MeV, except for a 100-MeV gap
1540 < E < 1£50 MeV, where the data are not yet available to us. We
utilize the data in the most efficient manner, making simultaneous
maximum likelihood fits4 to the three major channels at each energy:
™ p—~ e n,
ﬂ-p - 1T-Tl’°p,
T p-—~ 1-r+'rr"p .
The ineclastic partial wave cross sections we obtain are in excellent
agreement with the predictions from elastic phase shift analyses
(Epsa). 2+3
The isobar final states that we have specifically considered are
™ - 1A
~ p N
-+ €N.
The subscript s refers to the spin of the pN syatem (s = 1/2 or 3/2),
referred to as Py or Py Since between the energies 1.3 to 2.0 GeV Nrw
is the moat important inelastic reaction, it is fruitful to use unitarity
to describe both elastic and inelastic processes together. For this
purpose a coupled channel K-matrix equation was used. We assumed

one could describe the resonant siates as poles in the K-matrix and
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then fit [or the pole position and rcsidues. Where the data indicated
the necd for large additional contributions, we added the appropriate
poles, thus providing additional evidence {nr poorly established reso-
nance states.

Another motivation [or doing the K-matrix fits was to determine
the one overall phase at each encrgy of the isobar amplitudes. Once
this phase is determined, Argand diagrams are then possible and we
can establieh the relative aigns of the couplings far different channels
and resonances from resonance region to resonance region.

Finally the problem of determing reliable resonance parameters
from the amplitudes of the K-matrix fit is discussed. Several different
ways of estimating resonance parameters, notably the widths, are con-
sidered.

1.2 Relation between this thesis and a forthcaming paper:

This thesis is the same asthe Physical Review paper except for input

isobar amplitudes, some tables, and appendices. The input iscbar

arnplitudes for this thesis come from unpublished LBL/SLAC partial

wave analysis references. 145
2. K-MATRIX FORMALISM

In this scction we will discuss how three-particle cross sections
can be described in terms of the isobar model amplitudes. We also
discuss how an integral K-matrix equation can be reduced to an alge-
bratic equation. Furthermore we introduce the parametrization of our
K«matrix which is used to describe simultaneously Nw -+ Nn and
Nnr - Nurm partial wave amplitudes.

The cross section for 2 - 3 particle processes in our normaliza-

tion is
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where P is overall four -momentum and q; is the four -momenturn of

the ith particle in the final state:
q; = (e;» 9,)- (2)

F is the Mgller invariant flux factor:

F=la,vs. (3)

Here Q‘l is the c. m. momentum of the beam particle and '\/—s is the
c. m. enerpgy of the system. Finally T23 is the invariant matrix ele-
ment for the 2 -~ 3 particle proceas.

We are interested in the cross section of an incoming angular mo-
menium state and want to use the isobar model amplitudes determined
in Ref. 1. We follow the notatinn of Ref. 1. The three-particle final
state has four independent variables at each value of s. Let us choose
them to be two diparticle masses (squared} (sn and sm) and two angles
(@ and ¢}). We will denote these variables as a vector G, We then
assume T23(m to be a sum of contributions from isobar partial wave

amplitudes,
Tys@ = 2 4 @, @

where the subscripts include both isobare (A, p.€) and partial wave
(J‘P) indices. Far details see Ref. 5, Inserting this partial wave

deconiposition into Eq. (1} and integrating over the angles 0, ¢, we find

- r 2 nqnd n
o = (F+1/2) s |Ti (s_.s) ° 22T
4Q-\/— non 45 45

1

T I
+ = 2T (s ,a) T {s__,s)ds ds . {5}
n m in na - im' m n m

n#



where n is the value of k which is fed by a single incoming wave J,
Q1 is the beartn momentum, Qr. the izobar momentum, and 9, the
momentum of the isobar decay products. (Qi’ Qn are in the center of
mass, but a, is evaluated in the isobar rest frame), Finally the ¢gm
are the usual recoupling coefficients (Ref. 6 and Appendix C in Ref. 13).
We have completely changed the subscripts and introduced the following
notation: Tfn represents the partial wave amplitude from the Nvw state
(labeled 1) to a final state n, formed by an isobar (the nth isobar) and
remaining particle. Notice that we have not yet integraied over the
diparticle mass (Dalitz plot) 9 5m®

We now introduce a K-matrix representation for T. Graves Morr:'m7
has shown that given an amplitede Ti f(pi ' 9 }, where i is the in-
coming state of up to three particles (« _<_03). f is the outgoing state of
up to three particles (B =< 3), and p,q are the four-momenta of the
particles, one can write a function Ki f(pia'qf } which is free {rom all

two particle cuts and is related to Ti f(pi ' 9 ) by an integral equation.
o B

-

3
de

i o
T. dp, 9, ) - K. p: =5 Z m g— T, . WP,
if p]a fp 1fp1a q[p) 2t Lc:i 2e, 1m'(p1a mo)

ag
4
X Km'i‘pm’ =T )6 (P-’."._,Pj) . {6)
o B j
If K.1 f(pia.qf ) is Hermitian then Tif(pia.qu) is unitary. [ This ia shown
from Eq. (13)] . If we expand T, it in a partial wave decomposition as

we did above, we obtain {y = two-body; j,k = threc-body states;

i - several n isobar; and f— several m isobar for a given J"P state)

. Q
Tam  Kam =3 2 Ty =5 K,
Y s
T Q. q. K“T ; T I
._.L_.I_J_J_ ds + L s T4 3!
N B : .E i d)ij ds dsk.



If we include the stable two-body states and also the diagonal elements

of the three-body states in (b‘YIx we may rewrite Eq. (7) as

=
1
2]
L
™

S B .
f}\ anv %) Ky e ds, 5 (8)

here the stable two-body KD;T)\ are

G’J = & 6, b{s_-B) b{s,-5) {9)
YA oy YAOY L

For the diagonal three-body states we will still use the subscript vy,
and they become
7y By Bleymsy)

Y 4 e,

Henceforth we shall discuss a single partial wave, so we will drop the

(10)

superscript J.

As it stands, Eq. (8) ie an integral equation. We shall now make
certain factorization assumptions that will reduce Eq. (B) to a matrix
equation. It is clear that a matrix equation will be easier for practical
calculationa (i. e., fitting the isobar amplitudes). Indeed the factoriza-

tion agsurmptions we make are already inherent in the isocbar model. As

in the isobar model, we assume T“ﬁ to factor,
T =7 £ 1 11
ap " Tapta ' (11)

where fa depends on barrier factors and final state factors of the iso-
bar decay and Taﬁ is only a function of s.

In addition we assume Kﬂ_ can be factored in the same way:

B

Kaﬁ = lcaﬁ I;Iﬁ , (12)

wl:ere kap depends only upon s and is free from all branch points. In

the spirit that the isobar model is describing particle states, we shall

take kc“3 to be a real function of 8 (or W = Af8). 1f the several final



-6~

state resonance bands did not overlap, then a real k-matrix implies a
symmetric T-matrix.,
We can reduce the integral Eq. (8) to a matrix equation by substitu-

tion of K __ and T _; we thus obtain
af o

B
Ta[ﬂ - kaﬁ = -% \?)\ T“’Y Ay)\ k)\ﬂ f {13)
where for stable two-body states 5
av, = M , (14)
45

i.e., diaponal with value proportional to Q times barrier, and for three-
body states
*
Ay)\ =j@Y)‘ fyf)\dsyds)\ . {15)
one easily shows that Eq. (13) implies the usual unitarity relation
T - ‘r+ = i'r+A'r; see Appendix I.

We now discuss the barrier factor {,. For the terms which only
involve stable particles, we assume that ‘fA[z is the Blatt-Weisakopr
barrier factor. Our confidence in these factors has recently been in-
creased by Von Hippel and Quigqq, 8 who showed that they can be derived
from general properties of spherical harmonics and are not limited to
square wells, But since our isobar dees not have a fixed mass, we have
to take its production barrier Ba (Qa‘ La] weighted over the IJalitz plot.
To be consistent with the isobar model used to obtain the amplitudes,
we de s‘cribe the final state interaction by the Wateon final etate interac-
tion (elﬁa sin ﬁa/q;+i/2)wa. The ﬁa is the phase shift for the elastic

scattering amplitude A . representing the « isobar (TN 7N or mr — wm),

241/2

where a,

is approximately the sguare root of: a, times the barrier
for the elastic scattering. For a complete s-chanrmel diagram showing

all important factors see Fig. 1. Therefore, tha form of i, becomes
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where Ba is the square root of the Blatt-Wcisskopf barrier, LQ the
production angular momentum of the isobar, and Qa the c. m. production
momentum of the iscbar.

For the stable two body, fn is equal to Ba and WQ is equal to one.
In the case of the isobar, WQ becomes

A (s,)

1/2
_ 9o Ba(qa’la)

= (\/E-m3)2 /2 (17)
|, 2 ds,
Bz(qcx' la) 44—3:
/ (rni*i-mz)2

where A is the elastic scattering Argand amplitude lo<| A, f<11,
Ba(qa"a) is the square rool of the Blatt- Weisskopf barrier for forma-
tion, q, i the c. m. momentum of particles that malte up the isobar, and
Ea is the angular momentum of the particles that make up the isobar.
The normalization is done because we treat WQ as a weighting function.

For the A, we take a Breit-Wigner form,

2
anaBa (qa' la)

Alsy) = 5 : (18)
o Era- \I-s: -waana(qu’la)
If we definc
T_(E,) o o) )
L ) Ee T (19
@ gt2g (q .t )

where E_ = afs then{ becomes
o a a
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or/— E-my 1/2

q
S ENENCRIE S8

(20)

mi+mz
In our Breit-Wigner form [Eq. {18)} Era and y, are conslants given in

units of pion masses, See Table I for a list of values uscd.

The diagonal terms of the A matrix become for isobar a,

Ns-m,
Q_ a
2 o o 2
!Tu(Ea” 2 Bn dEa
1 Smytm,

A = — — e —— (21)
B N »J'E-m3

2 Y4
I Ta(Ea)' =z dEa

g
3

We gee that the normalization was chosen so that Aaa is vssentially an
average of QuBz/(‘l\E). which is a dimensionless quantity. Therefore
K‘!ﬁ in Eq. {13) is a dimensionless number, and in fuct the whole
Eq. {13) is dimensionless.

In this paragraph we give an alternative prescription for Aaa which
we did not use. This prescription will only change the K-matrix pa-
rameter: and not the T-matrix which we iit to, One can think of the

isobar being described by a relativistic Breit-Wigner resonance where

the ' typical"” momentum of the isobar is given by

s-mg
r Q. q
= 1 el a o
Qa = N - _E2)2+1"2 5 dEu" {22)
/' R 7o total
mi+m2
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The Breit-Wigner is normalized all the way out to N8 = @ such that

q
el o _
S A g = N (z3)
R "o total
Z
m1+m2

In this case, Aaa would become

N5-m,
_ 1 1 1ﬂel ch Ay 2
Aaa - N 2.2 2 2 Ba dEa'
s (ER _Ea? + r;:otal
mi+m2

(24

In making this assumption one is relying on the fact that as the width of
the Breit-Wigner goes to zero it becomes a delta function. We have
chosen our particular definition of Aaa' Eq. (21), because it depends

on the measured Argand amplitudes and is independent of model asgump~
tions, unlike Eq. (24).

We assume that ka is real with uo branch points and can be des-

g
cribed by simple factorizable poles {which repregent the formation of
N resonance) plus nonfactorizahle background terma which are poly-
nomials in Ns. The K-matrix program Kanal which was written to do

the fits had the possibility for three regular poles and a background

linear in ~'s (which from now on we will call W). That is,

Tr_ T
\ Yo ¥
k = ~w t Cagt W B, (25)
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We may express the cross scction in terms of the reduced ampli-
tudes Tin Starting with Eq. (5) and taking only one partial wave and
isobar, we obtain

W) = o k) T, (woE ) L
% int )= 4Q1W 2) in’ ' Tn W

(26}

By substitution of Eq. (11) and (20) into Eq. (26), we get

Q q
2 “n'n 2.2 2
. 1 /I Tin(w)l z B4By ITn(En)l dE,
(J+

o, (W)= sS)
in 1601w2 z q
2 n
/ | T E " == 4B,

Noting that Tin(w) and B% are independent of En' this becomes

L 1 2
~ I+ )l W {C 8, A 28
1

%4n =

If the partial-wave S-matrix ie defined by

Sy = Bgt 2iA (29)

aB  ap B’
the cross section is given by

1 2
e A | ,
Cpp™ - 30)
Qy

Therefare,
Air] = -—T——— . (31)
The Ain amplitudes are the results of the isobar-model fit to N, !

and the A , amplitudes come from " EPSA" (elastic phases shift

analysis), 23 The program Kanal was written ta fit the A's by a xz
-
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method, using the K-matrix parametrization of Eq. (25).

Before leaving the K-matrix formalism we indicate how we dealt
with the fact that there are two delta isobars in the Nuwrw final state
(Nﬂiﬂz =am, + AZ"i)' We treated them ag separate channels with the
same coupling. This coupling was YA/\/-E where Ya is the total delta
coupling. Once we calculated the T's for the individual delta's, we

added the amplitudes together as

Ta Ta
AL, Az

T =
A yT NT

(32)

3. DETERMINATION OF THE OVERALL PHASE AND
SCALING OF ERRORS

In this section we discuis how we use the K-matrix to sca.le our
statistical errors to more reasonable values. We also show how the
intrinaic overall arbitrary phase of our isobar model amplitudes at a
given energy can be removed by the K-matrix.

3.1 Scaling of Errors

In order to use the K-matrix, we needed to supplement our Nwm
amplitud~s Ainwith elastic amplitudes A;,. Two sets were available,
those of CERN2 and those of Saclay. 3 We made two separate fits, one
using A“ (CERN) and onc using A‘li (Saclay). However, it is well
known that the deviation belween the two solutions are greater than the
statistical errors; so we used larper errors in thesc fits. The errors,
ilA“). were calculated by taking the rms (root mean square) deviation
between the two A“ solutions. For a few waves at some cnergies this
external error was too small, so the statistical error claimed by Saclay
analysis was used [no statistical error is quoted by CERNZJ. For the

nclastic ¢, nrs it would be nice to again use external errors. However,

aur analysis is the only cxisting inelastic analysis available. Instead of
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uning our statistical errors which we felt were too small, we decided
ts Hitale our errors so that the inelastic and elastic data would con-
fribute equally to the overall multichannel xz. For the purpose of
scaling, errors we wanted to select a wave {or waves) that has one clear
resonance in the elastic phase shift and where our inelastic fit is in
good agreement with the elastic phase shift prediction. Resonances in
the 1500-MeV region are not good candidates, because we are missing
inelastic data from 1540 - 1650 MeV.* Resonances in the 1900 MeV are
also poor candidates, since we have limited ourself to F waves in our
model. This means we were unable to satisfactorily describe the
peripheral production of pions that become important in this energy
region. B The 1700-MeV resonance region seems ideal. In this region
there are four resonances that are clearly seen in the EPSA: the 531,
D33, D15, and F15. Since 531 and D33 resonate near 1650, they cannot
be used because of the energy gap (see footnote). The D15 is not in as
good agreement with EPSA as the F15. For this reason we only took the
F15 wave to scale xz-e]astic with xz-inelastic in our K-matrix fits.

The procedure was to adjust the errors on the inelastic amplitudes
for the W15 until the xz per energy bin was equal for the elastic and the
inelastic contributions We used only one pole and a constant background
as parameters in the K-matrix and fit in the F15 pariial wave e¢nergy
region from 1585 to 1810 MeV with the inelastic amplitudes have one
free phase al each energy. Notice that al this poir. we are only using the

K-malrix to describe the moduli of the inelastic amplitudes.

In vur isobar model lits, we had a complete set of Nwm data from

1310 - 1970 McV except for a gap of data from 1540 - 1650 McV,




When we first fit with external errors on the elastic and raw sta-
tistical error on the inclastic, by far the greatcst contribution to xz
the inelastic channels. As we scaled up the statistical errors on the
inelastic amplitudes, the XZ began to shift to the elastic channel. At a
scaling of three on the inelastic errors the ¥ 2 per bin of energy became
equal for the elastic and inelastic contributions. Threc seems like a
large factor. However, if one looks at the statistical errors gquoted by
Bareyre at Batav‘ia3 and compares them with the external errors, one
also finds a factor of from 2 to 4. So for the rest of the partial wave fits,
we used three times the statistical errors for the inelastic amplitude
and the external errors for the elastic.

3.2 Overall Phase

At each energy all the inelastic amplitudes are well determined
with respect to each other but have an overall arbitrary phase. With
the unitary constraint relating the elastic amplitudes to the inelastic
amplitudes, we arc now in a position to determine this phase at each
energy. For this purpose we only consider dominant partial waves.
See Fig. 2, which shows (1-7;2) for the dominant wavea. The D15 and
the F'15 which arc two such, dominate partial waves in the energy
region from 1585 - 1810 MeV; they show pood resonant motion in the
elastic channe), so we expect to Ssee motion in the inelastic channel.
This was cur starting point for determination of the overall arbitrary
phases in this energy region.

Our firting program (Kanal) had the ability to fit with an unknown
overall phase tbi at the ith energy bin for the inelastic data. First we
obtained a solution for F15 and D15 from 1585 to 1810 MeV (8 elastic
+ £ inelastic bins)., Here we used 2 single pole and a constant back-

evourd as parameters in the K-raatrix, with a frce phase at cach energy.
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This fit was performed separately for both CERN and Saclay EPSA
solutions for the elastic channcl. This gave us five phases for CERN
D15 and five phases for Saclay D15; we also had the same number of
phases for Fi15. At this point we have four sets of phases at each
energy. We want to reduce thece four sets to only one set of phases
that will equally describe the data for the different inputs: D15 (Saclay),
F15 (Saclay), D15 (CERN}, F15 (CERN). We accomplished this goal
through an iterative process.

First we minimized the total Di5 CERN and D.5 Saclay z by in-
troducing a single parameter Y. It had the property that if Y = 0, the
phases are equal to D15 CERN phases, and if Y = 1, the phases are
equal to D15 Saclay phases. The specific parametrization of the &

in terms of Y was
¢i = ¢(D15 C]?.RN)i + Y ($p(D15 Szu.:lay)i - ¢$(D15 CERN)i). (33)
We assumed that xtzutal (sum of two XZ) is a quadratic function of Y:

=y 201 @YEov) +axl1/2) (Y-Y%) + x2(0) (2¥2-3Y+1),
(34)

2
Xtotal

where xz(i) ig the true total XZ at' Y =1, XZ_(i/Z) iz the true total xz at
Y =1/2 and XZ(O) is the true total xz at Y = 0. The solution to the
quadratic equation (34) that minimizes total x 2 iB

¢ 2o - ax1/2) + %) 35)
a2(1) - 8x(1/2) + 4x%(0)

By going through this procedure we arrived at one set of phases
that minimized XZ for D15 CERN and D15 Saclay. The same procedure
was repeated for the two sets of F15 phases (CERN and Saclay). We

thus reduced the four sets of phares to only two. A final iteration using
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Eqgs. (33) and (35) yielded one set of phases. See Fig. 3, which gives
a flow diagram of this iterative process.

Next we looked at the F35 and F37 waves which went from 1730 to
1970 in energy. In the overlap region (1730 - 1810) we minimized all
four waves, each with two combinations, leaving the 1850 - 1970 phases
free for the F35 and F37. However, this procedure did not change the
overlap phases very much from the valves obtained by just considering
D15 and Fi5.

After finally arriving at a set of phases from 1650 to 1810 we de-
termined the phascs from 1850 to 1970 just using ¥35 and F37, where
one pole and constant background were again used in the K-matrix.
Thus, we were able to arrive at nine phases for our nine upper energies.

We then turned to the lower energies from 1310 to 1540. In this
region the D13 and P11 are dominant waves and are ideal for determining
the phases. The problem here, however, was to find a solution that
would continue across the energy gap. The D13 at 1540 is very in-
clastic, but by 1650 it is no longer very inelastic., On the other hand,
the P1! stays very inelastic all the way through the energy region. For
this rcason the P11 was the only partial wave that could be used ta make
the connection across the gap. Once we continue zcross the pap we may
use, 23 above, both D13 and P11 to determine phases below the gap.

With the upper cnergy phases fixed on the values determined above,
we parametrized the K-matrix by two poles and a constant background.
The pole positions in the -matrix were initially set and held at £490
and 1770 MeV (nominal positions of P11 resonances), and the lower
phases where left free to vary.  We fit over the entire cuergy range
from 1370 to 2010 MeV in order tu continuc across the gap. This gave

us a solution which was almost the samv solution as the final one [or the
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P11t given in this paper. We later added a linear term to the back-
ground and let the pole positions in the K-matrix vary.

At the 1972 Batavia ccnference, Bareye3 announced that there may
be two P11 resonances, one at 1390 and another at 4540. This possi~
bility could spoil our ability to bridge the gap.

If we agsumed another resonance at 1540; it might create an addi-
tional 180* rotation across the gap in our Argand diagram. To test this
we added another pole and rotated the upper enecrgies by 180°. The re-
sults of the fits are shown in Table II. We see that XZ per degree of
freedom is worse with the extra pole. Also the XZ of the elastic chan-
nel alone is worse. In fact the increase in xz for the elastic channel
comes from the energy region, where we are missing inelastic data.

For these reasons we have rejected the 1540 resonance of the P11 if we
consider it would cause a 180° flip of our upper energy solution with re-
spect to our lower energy solution. When more inelastic data become
available, a more precise statement can be made about the second P11
resonance.

Having provided a continuation across the gap, we turn to the D13
solution which was also fitted in the same range (1310 to 2010) as the
Pi11. For the D13 we used three poles and a constant aad linear back-
pround, At this point the lower phases were determined with essentially
the same procedurc as was used in the upper cnergies { Eys. (33) and (35)].
However, we broke the lower region up into two regions to give more
flexibility to our simple model of minimizing total XZ. (Notice that there
are nine c¢nergivs below the gap and nine above. )

4. K-MATRIX FITS
In this section we give the results of the K-matrix fits.

In order fo fit the K-matrix to the elastic and inelastic amplitudes,
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we used two different minimizging methods, one due to Roaenbrockg ancl
the other Lo Davidon. 10 When the fit was far away from solution w«
used the Roscenbrock method, which was more economical. As the xz'
came close to a minimum the Davidon method was used. This method
converges simultaneously toward the minimum and toward the true
variance matrix (error matrix).

For a summary of the results of the K-matrix fitting, see Table III,
where the xz. energy range, K-matrix parameters, pole position, and
partial widths are listed for ecach wave fitted by the K-matrix. In
Fig. 4 we display Argand diagrams and partial wave cross sections for
the elastic and inelaatic channels. The smooth curve on the Argand
diagrams is the amplitude obtained from the K-matrix when the de-
scription was possible, For the P31 and the P33, we did not try to
make a K-matrix fit, because there was no evidence for resonances
and we did not see all the inelasticity Nuw channel. Cross-hatched
marlks on the curve correspond to energies D, E, and F, etc. The

arrows indicate the known resonances from EPSA. 2,3

To the right
inelastic Argand diagram, we give the variation with encrgy of the
square modulus of the wave. The total inelastic contribution in each
elastic wave is compared with the sum of the inelastic contributions
( #) we observe ( * )» where the elastic amplitudes are those of
CERN. 2 All Argand diagrams are now determined to within one overall
sipn. We have chosen the APP11 to be up.
5. POLES IN THE T-MATRIX

In this section we discuss how Eqs. (13) and {11) are analytically
continued into the complex energy plane. This cortinuation naturally
lcads to an analytic T-matrix except for complex branch points associ-

ated with the isobars and poles due to S-channel resonances.
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5.1 Kinematics

Once the K-matrix fits were completed, we searched in the complex
encrgy plane for poles which are identified with the diffcrent resonance
states. Because the K-matrix generates simple poles in the T-matrix,
the residue of the pole is factorizable. A simple proof of this is given
in Appendix II. The residue matrix of the T-matrix pole is identified
with the coupling of the resonant state to the different ckhannels. One
would like to relate this coupling matrix with the usual partial widths
I of the resonance. The partial width is equal to the coupling times a
kinematic factor. The question is, should this kinematic factor be eval-
uated at the pole vr on the real axis? We decided to take the kinematics
calculated on the real axis, because fo, a simple Breit-Wigner with
narrow width, the partial width will be more real and the sum of the
partial widtliis will be closer to the total width. See Appendix III.

5.2 Apaiytic Continuation

In order to search the complex energy plane for poles, we had to
continue analytically the Am.n matrix into the complex plane. The off-
diagonal terms of Amn matrix turn out to be from 5% to 20% of the
diagonal elements. Also they do not seem to add any additional analytic
sheel structure, and it is very time-consuming to evaluate them many
times. When we did the polc search, therefore, we set the off-diagonal
terms of the Amn matrix to zero.

In order to continue the Am matrix to complex energy W, we have

n

to do a contour integration in the ¢complex diparticle mass Ea plane re-

lated to a given isobar. Equation (21)
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When we are on the real axis, all terms in the integral are real. Since
we want all terms to be analytic in Ea' we must be able to expand them
in a Taylor series with real coefficients as a function of Ea' Every
term in the integral is obviously analytic except ]Talz. However, we
know that Tu is analytic. In fact, Ta can be related to a function m,.

which is free from cuts, by

T & ot 37)
@ m_-ig
o a

Recall that Ta is nssentially the 2~ 2 scattering amplitude, so that m,

is an inverse K-matrix. Therefore, l Tzzl 2 can be written as
| & = ———
fT,! 5 5 (38)

which is obviously analytic.

5.2.4 The Pole in | T, |2

Next we derive Eq. (41) to show that |Ta| 2 has a pole, and that it
occurs exactly where the sheet Il pale occurs for the amplitude Ta of
Eq. (37). We use the standard definition of sheets; the imaginary part
of a, >0 {<0] corresponds to sheet I [11}. Therefore, dropping the

a index, we have the usual relationships:



T (E) = T {E) =

i i
m(E)-iq(E}’ m(E}-iq,(E) '

m*(E")= m(E), q(E) = - a (€, q () = - ay(E) ay(E) = - ag (E). (39)

Fram Eqs. (38) and (39), we have

I IZ £ 1 = 1 . (40)
m?(E) +qf(B)  m(E)+q5(E)

This can be written in a symmetric form using both sheets:

2 1 1 -
T|" = - = TH(E) T (E )
171" - ey 9E ' EYrigEh T !

. L 1
mEN B e s ig e

% %
= TL(E)T/(E) . (41)

Since T(E} is the two-body elastic scattering amplitude of the particles
that make up the isobar, it will have a pole on sheet II that is properly
identified with the isobar, as we set out tu show.

5.2.2 Contours of Integration

Notice that both integrals in Eq. {36} are path dependent because of
the pole in ITa l 2. We can take many paths of integration. We are,
however, only interested in the paths that po most directly to the end
point of integration, because they lie near thy physical region, which is
just the real axis.

In Fig. 5 we have drawn three differcnt paths of integration and
labelled them with the symbols A, A', A" as used for the integrals
themselves, and in Fig. 6 we have deformed the three contours to

show that they differ only by cireles around the pole. Also in Fig., 6

we show a branch cut coming to the ¢nd-point of integration which is due



to the factor Q in the integral in the numerator of Eq. (36). Along A'
we want Q to be continuous; but this means that Q is on a different
sheet when the integration passes near the pole. So in order to define
on what sheet, Alw is evaluated, we must gpecify both the sign of the
imaginary part of Q at the lower limit of integration and also the path
(A, A', or A") of the integration. In summary of Figs. 5 and 6, we
find six sheets generated by three contours (A, A',A") and two poasible
aigns for ImQ. However, we only expect to find poles on the sheets with
ImQ < 0 for recasons of causality.
5.2.3 Sheets in W Plane

Next we point out that all values of A, A, and A" approach zero if
the end-point of integration (W~m3) approaches Epole' To see thia,
consider Eq. (36), which we write as A =1/D, Eq. (43). Then D di-
verges as the end-point approaches the pole (in lTal Z). But the inte-
grand of 1 contains a factor Q which always goes to zero at the end-
point and cancels the divergence of l Tul 2. So at the end-point A
equals a finite number divided by infinity, which is equal to zero. So
as a function of W we have shown that the values of A (A, A', A'') all be-
come cqual at W = Epoh3 + m, 8o that Epole + my is the beginning of a
branch cut (sce Fig. 7). There is, of course, also a conjugate branch
cut at E = E:ulv +my, also drawn on Fig. 7.

Soon we shall discuse hunting in W, looking for a pole in T. Sup-
pose we find a pole at W on the A sheet; therc will in general be
'* shadow poles' at W' on the A' sheet and at W' on A", where W,
W', W'" may be close. Hence we must understand the W sheet struc-

ture of Fig. 7 to decide which of the poles is mast influential at rea!l

axis.
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To understand Fig. 9, it is helpful to consider Fig. 8, a sketch of
contours in the E plane. In Fig. B8, a dashed line starting at Epole
corresponds to the branch cut starting at Epole + my in Fige. 7 and 9.
This line is no barrier to the contours A, A', A", but we cannot move
the end-point W-m3 across this line without changing the names of the
contour {changing sheets in the W plane}.

Note that if W-m, is near the real axis the only short contour is A.
Consequently the W sheet connecting to the physical region in Fig. 9 is
labelled A. '

To go further we need Fig. Ba through 8d. In Fig. 8a, the end
point of the integral ia below the dashed line. As we deform the con-
tour from Fig. Ba to Fig. 8d, the end-point of the integral moves
around the pole in the E plane. In Fig. 8d we are above the dashed
line. If we consider point 3 in Fig. 9a and move it continuously up
through the branch cut, we will change sheeta. We see that the A con-
tour in Fig., Ba deforms continuously into &' contour in Fig. 8d. Thus
point 3 of Fig. Y9a would move fram the & sheet to the Af sheet, e.g.,
point 2 of Fig. 9b.

. In Fig. 9a through 9c we show three points on each of the A, A',
and A" sheets. For each point we have drawn continuous paths leading
to the physical region. In Fig. 9 and 9c, when we pass onto the &
sheet {the only sheet connected to the physical region) the lines are
dashed. The length of the linesa in Fig. 9a through 9c are a measure of
how close a point is to the phyEiC;ﬂ region. Therefore if we find a pole
on 4, A!', or A, we can usc Fig. 9 to tell us how close it is to the
physical region.

In practice it is necessary to calculate only one contour integral.

We now show how this is done. From Eq. {21}, making energy i



dependence explicit, we have

W--m3
1 2 E 2
o |t |2aw. B) YEL 8% (w, E)E
m, +m
- 1 2
a = W-m ' (42)

{- 3
j |ref 4EL aE
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where the path of integration is A {see Fig. 5). Let ns define
o 1

A= 5. (43)
where I is the rzin integral and D is the denominator of FEq. (42),
rcspectively., Call the denominator residue RD; then, by using

Cauchy’s integral formula for contours A and A'', we obtain

- D = i = 2w U 0 -E 2B
D-D' = 2Ry « 2ni E}:’]’E‘ <l:“pale E)| T(E)! 2
pole
(44)
1 = i Z
I- 1" =2miQ(W, Epole) B (W, Epole) RD '

We must be sure that we evaluate Q(W, Epole) on the correct sheet. It

ig clear, if we know A, RD’ and D, that we can evaluate A" by

. 2
I-2miQ(wW, Epole) B (W'Epole)RD

2w RD (45)

5 )

I
A :-—D-.ﬁ =

D{1 -

Thus it is clear from Eq. (45) that

. 2
A A - 2ni Q{W,Epole)B (W,EPOIE)RD/D

1- ZwiRD/D

In the case of A' the spiral around E ole is counterclockwise {secc
Figs. 5 and 6}, s 2mi <« - 2ni, and that is the only change in the de-

nominator D.
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In addition in the main integral I, Q changes sign because it ia on the
other sheol (see Fig. 6), so we obtain

. 2
i A - 2mQ(W, Epole) B (W.EEole)RD/D

'
A= T+ 2ZsiRy/D (247

[In this aside we compare the sheet structure generated by Acm of
Eq. (24) (reliance on relativistic Breit-Wigner). It is clear that the
sheet structure we have discussed so far generated by Eq. (21) is a
spiral sheet structure. We see that since Eq. (24) does not have a de-
nominator, A' would be equal to A''. Therefore this sheet structure
would be square root in nature. ]
Another property which may be demonstrated is that

awW) = - aw™ (48)
for all three contours A, A, A" and both signs of Q. It is also clear
that Q in the integral A has the property

Qw,E) = - Q¥ (wiE" (49)
for a given imaginary part of Q. This follows from

Q4 (w.E) = iw] E™. (50)
All other terms that appear in the integral, Eq. (21), are Hermitian.
Thus they are the complex conjugate of the value above the real axis

when they are integrated below the rcal axis. So from Eq. (21), it is

clear that
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Therefore Eq. (49) is true by the way we conatructed our integrals.
5.3 Poles

To demonstrate sheets and poles in our model, we will take the
F15 amplitude as an example. The F15 resonance lies near the pN
threshold which is g = {1700 - i54) Mé&V as shown in Fig. 10. When we
did the T pole scarch we found F15 poles on each (4,4', &', for ImQ < 0)
sheet. The polc on the sheet generated by the A contour is closest to
the physical repion. Figure 10 shows the sheet structure and continuous
paths going to the different poles on the different sheets. The poles and
corresponding sheets are (1672-i77)A, (16B2-i54)A', and (16B2-iB4)A".
The path from the physical region to the pole on the A' shect is drawn
in such a way as to reveal the path moving from thc A sheet to the A"
sheet aB it crosses the branch cut. All poles that we report in ihis

paper are the closest poles to the physical region,
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Once the pole position was found, we propagated the error matrix
from the K-matrix {it to an error matrix for the pole position by dotting

the Jacobian matrix and its transpoese into the K-matrix fit error matrix.

T X, |

X,
2 Pi 2 Pi |
[ A 14 P (52)
Pij §Xm Kim Bme/

where oli!m is the K-matrix fit error matrix, and oPij is the pole
position 2X2 error matrix (real and imaginary), xPi is the pole position
vector {only two components), XKI is the K-matrix variable, and
BxPi/BxKl in the Jacobian matrix which was evaluated numerically.
This procedure gave errors that were much too small when compared
with the difference in pole position obtain from CERN and Saclay elastic
inputs. The reason for this may be that the Davidon error matrix may
not describe the true errors of our complicated space.

Table IV gives a summary of the T-matrix poles and the partial
width calculated from coupling residue matrix times the kinematics
on the real axis. The sign in the upper right corner of the box where
the partial width is shown comes from the off-diagonal terms of the
residue matrix and is related to the sign of the coupling. Since the
Argand diagrams are determined to within one overall sign, the same
is true for off-diagonal residue terms. We defer further discussion of
these parameters until Sec. 6.

6. BREIT-WIGNER REFIT

In this section we discuss how we refit the smooth T-matrix ob-
tained form the K-matrix fit with an amplitude which is a sum of a
unitary background and a Breit-Wigner, rotated in such a way as to
insure unitarity for the total amplitude. Once we have done the refits,

we compare resonance paramecters obtained {rom the K-matrix, the
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T-matrix poles, and the Breit-Wigner refit. The motivation for these
comparisons was Lo find out how sensitive resonance parameters are
to the prescription from which they are obtained.

6.1 U{UB + BW) Amplitude

In the past, resonances were parametrized by the Breit-Wigner
form. The Breit-Wigner by itself is unitary. Since therc is always
a background present due to other singularities, the T-matrix is in
general a sum of Breit-Wigner pluas background. Because this is not
a manifestly unitary prescription, we have turned to the K-matrix. Now
that we have made K-matrix fits and obtained smooth description of the
data, we would like to know what the Breit-Wigner parameters are for
comparicon with theoretical predictions. For this purpose we used a
unitary amplitude which was a Breit-Wigner plus a unitary background
with no local poles. TFor convenience we denote this amplitude by
U(UB + BW). We believe that the backpground should not be affected
locally by the presence of the resonance. Therefore, the assumption
that it is unitary with no local poles seems reasonable. In order to
construct U(UB + BW), we let the Breit-Wigner be rotated by energy
dependent phases {we believe that the Breit-Wigner not the back-
ground must accommodate itself to unitarity). These phases are calcu-
iated by the Dav:us~Baranger11 censtraint cquation; also, sce Goebel

and McVoy. bk

Once we have made a K-matrix fit, we then refit using
U{UB + BW]) to the smuoth T-matrix in the region of the pule, in order
to extract the Broit-Wigner parameters.

Let us assume we have a unitary background § matrix Bij' and a

Breit-Wigner given by
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1
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, where I'j—Qj\'.e B (53)

where all terms are real except I"j, and Qj is the same as the diagonal
terms of the Aij matrix used in the K-matrix (see Eq. 21).

The Davics-Baranger constraint equation is

B.T.=T.. (54)

iy 7 j i

Let ug recall Bij in term of the background T-matrix T:

_ L ~1/2.1/2
Bij = 61,—' + 21Qi Qj Tij . (55)
Now if we substitute Eqs. (53) and (55) into Eq. (54), we obtain
-i8 16;

£ ..+ 2022 7 yy ql/2e i =y al/Z (56)

74 i j ij’vi i

which can be shown to equal to
-iBJ.

v;sin @, = 'j‘:QijTije . (57

The right-hand side of the Eq. (57) seems at first to be a complex
number, but the left-hand side is real. So we can set the imaginary
part of the right-hand side equal to zero; i.e.,

Q.y. L T.. 8. - T Q.. Real(T,.)sinf, = 0. 5
j Jyj mag( lJ)z:os i j Jyj eal( lJ)EmJ (58)

At this point we assume that Qi is real. This means we must
restrict ourselves to encrgies such that the jth channel is open

(Q? >0}). We now deline the vectors
sinﬂj‘\ ;cos 91\
{Sin) = sin 02 ' and {Cos) = [ cos 92 | (59)
]

'
l

and the matrices



QiyiReal(T“.) szzReal(Tiz)- ..
Z .
(Real) = QiyiReal(TiZ) QZYZReal(TZZ
and
Qiyilmag('l‘“) szzlmag(Tiz)' -
(Imag) = Qiyilmag(Tiz) szzlmag(Tzz)- .-
(60)
Equation (58) then becomes
(Imag) (Cos) - (Real) (Sin) = 0 (61)
or
(Cos) = (Imag)~}(Real) (Sin) . (62)
In addition we have the added constraints between the sine and the
cosine.
Cos’6, + Sin%f, = 1. (63)

Unfortunately we were unable to solve these transcendental equations
in general. Therefore we imposed Eqs. (62) and (63) by a xZ con-
straint and parametrized Oi as a polynomial in W.

We were also intei1ested in looking for the pole in T = U(UB + BW),
(which is just the pole in the Breit-Wigner term) in the complex W plane.
Since the U(UB + BW) amplitude muat be Hermitian, 9,‘ must have the
same real axis cut structure as Qi[or Aii; see Eq. {48)]. Therefore a

natural parametrization for Oi would be
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8,(W) = Q(W) n (64)

n

13
[
]

6.2 D15, ¥35, and F15 Refit

Having established this machinery, we performed a series of
K-matrix fits and Breit-Wigner refits on three well-cstablished reso-
nances which were coupled to two, three, or four channels. We used
the D15, F35, and F15 resonances. The results of these fits and re-
fits are given in Table V. In line one of Table V we have identified the
pole term of the K-matrix with Breit-Wigner-like resonance param-~
eters: the mass is the location of the pole, Er, the ith partial width
is just (kinematics)X yf , and the total width is the sum of the partial
widths. From this K-matrix fit we looked at the T-matrix pole where
the real part of the pole position is identified with a mass; twice the
imaginary part is identified with the total width (pole position is re-
corded in the mass column of Table V). From the residue of the T-
matrix pole we defined the partial width as discussed in first part of
Sec. 5. We record the real part, the imaginary part, and the modulus
of partial width in Table V. For the total width we record the sum of
the real parts, the imaginary parts, and the moduli of each partial width.
For this T-matrix we do a U(UB + BW) refit from one -half width befcre
the pole (in the T-matrix) to one-half width after the pole. We then ob-
tain Breit-Wigner parameters (mass, partial widths, total width)

a
which we record in Table V. TFor the Breit-Wigner term of the refit,
we look at the pule in the complex W plane thus recording the pole
positiun and residuc-related partial widths as we did for the T-matrix.

Next we refit the T-matrix again, but this time relaxing the Davies~

Baranger constraint, thus performing a UB + BW refit where the Gils




are now cuonstant with energy. From this Breit-Wigner refit we re-
cord the fitted parameters and the pole parameters. Finally we went
back to the K-malrix fit and took out all the inelastic amplitudes, thus

2.3 In order to absorb the

performing a fit only to the elastic data.
inelastic part we added an unconstrained Avw channel. We then went
through the same series of refits and pole searches except for leaving
out the U(UB + BW), since we only wanted to fit the elastic channel,
Figure 11 shaows the Argand diagrams obtained from the U(UB + BW)
refit to the F35 wave. The solid line is the total amplitude from 1740
to 1900 McV (one-half width below T-matrix pole to one-half width
above). The dashed line is the background for the same energy range.
Arrows show the direction of increasing energy. Let us define AGi as

the change of rotation angle 9i of the Breit-Wigner over the range of

refit. Then

A6i=6i(W:’W [)-si[w= |w | -2Im(w )] (65)

pole pole pole

where wpole is the pole position in the T-matrix. Aei is plotted next

to the elastic Argand diagrams of Fig. 11.

The results for the three resonances for both CERN and Saclay
EPSA input arc listed in Table V. Note that the pole position and
residues lor the T-matrix from both the K-matrix and U{UB + BW} are
very close to cach other. This is similar to the observation of Ball
and Shaw‘Z for the P33 resonance of the Nm system. Also, the K-
matrix paramecters for the F35 have very little to do with the actual
resonance paramoaters. This is because the background term in the
K-matrix .5 very large, and we have shown in Appendix V that the back-
ground term «ouples directly into the pole position of the T-matrix.

The resoirane o parameters obtained from T-matrix poles and



U{UB + BW) refits are the best candidates for checking theoretical
predictions. Since they disagree by factors of 2 with each other, we
would not expect theory to do any better.

7. SIGN OF COUPLINGS

In this section we discuss one possible prescription for extracting
the signs of the couplings to the different channels from the total T-
matrix near the resonant energies. The determination of these is
important for the purpose of comparison with theory.

In order to understand what the sign of the reusonance couplings is,
one must know the exact Clebsh-Gordon coefficienta that go into the
isobar model fitting program. For all sign conventions see Chasmore-
Herndon-S6ding. 13 Once these conventions are known it might be pos-
sible to read the signs off the Argand amplitudes shown in Fig. 4. How-
ever, one sees that the resonance is not necessarily pointing up or
down. In these cases one could do a unitary Breit-Wigner refit to de-
termine the sign of the resonance coupling. However, this is really
not necessary, because if we can sece the resonance shape we should
be able to guess the angles 0.1 that the resonance is rotated by. We see,
from Eq. (54) that the angles should be measureable by comparing the
elastic and the inelastic channels. In the elastic channel (A11) the
resonance is rotated by 291, and in the inelastic channels (Ali) the
resonance is rotated by 91+Bi. It is clear that 9i has a range from
-90* to 70°. Thus by determining these angles we will determine the
sign of the couplings. We have seen that once we have made the uni-
tary Breit-Wigner refit, the total T-matrix produced by this method is
very close to the T-matrix produced by the K-matrix.

Thus we shall employ the simple in terpretation of U(UB + BW)

but determine the coupling sign dircctly from the T-matrix elements



produced by the original K-matrix fits. TIn fact for all resonant waves
which huve been fitted, we have luoked at the T-matrix for all the
elastic {including, e.g.. A% ~ Aw} and inclastic channels and determined
by eye what the nominal values of the 6's are. Table VI gives a list of
the signs of the couplings and the angles from this eyeball-fit. If the
nominal value of 6 is within £30°, we think we are safe in determing the
sign. But if the value of 8 is greater than £60°, the sign is question~
able.

8. PREDICTED CHANNELS

In this scction we discuss two K-matrix fits in which we introduced
an extra channel in order to make up for the lack of cross section ab-
served in the Nnm system. In the S11 wave we krmw14 there must be
a component of Nn. In the F37 wave we assumed that the additional
channel was Nmww.

The upper right-hand plot for each incoming partial wave in Fig.4.1
through 4.16 gives the unitary check, i.e.. a comparison between
th(J-H/Z) (1-112) from EPSA (CERNZ) and Nm - N7m cross section con-
tributed by each of the channels plotted in the right-hand column. Of
the 13 incoming partial waves plotted, unitarity is well satisfied in
10 cases. We now discuss the other three.

The P31 has no evidence for resonance structure and such a amall
section observed in the isobar amplitudes that we did not do a K-matrix
fit.

Around 1520 MeV a sizeable amount of cross section goces into
N7 {about 4 mb}. 1n our K-matrix [it to 511 we included the Nn chan-
nel14 ag a predicted channel (i. e., no input amplitude to constrain the
xz). Qur results are consiatent around 1520 with all the Nn cross sec~

tion going into the S11 wave. Figure 9 shows the total N crose section
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plotted along with the 511 cross section of the Nn channe! froin the
K-mitrix. The 511 amplitude for the Nn predicted from the K-matrix
is scen in Fig. 4.2, We helieve that the moments of the Nij can be ex-
plained by an introduction of a few percent in cross section of P, D, and
F waves in the region 1520 to 1590 (see Appendix VI).

In the 1900 region we do not saturate the inelasticity of the FF57
wave by 3 mb, so we introduced a predicted channel., In this energy
region, 1900-2000 MeV, the Nnnw cross section grows from 4 to b mb;15
so0 we made the predicted channel an ¥F37 decaying by Ap with angular
momentum in a P wave. Thus our analysis forces a prediction of the
amplitude for F37 decaying into the Nnwr via a Ap decay in a P wave.
The predicted Argand amplitude is shown in Fig. 1.16.

9 CONCLUSIONS

We were able to apply the constraints of unitarity (ueing the K-
matrix) to isobar-model-generated amplitudes. We cobtained a good
representation of the Argand diagrams in almost all channels. These
permitted us to remove the overall phase uncertainty of the inelastic
amplitudes at each energy.

With a good repregentation of the T-matrix we then could extract
the pole parameters associated with resonant behavior in the Argand
diagrams. The uniqucncss of the pole parameters was demonstrated
by doing Breit-Wigner refits to the fitted T-matrix amplitudea. Thus
we found the same pole parameters in this alternative prescription.
However, these refits showed it was not possible in general to relate
pole parameters unambiguously to the parameters of the Breit-Wigner.
Fuarthermore, the success of the refits and the obvious interpretation
of the amplitude U{"ITR + BW} (of Sec. b) justified a simple determination

of coupling signs rrom the fitted T-matrix (K-matrix-generated) ampli-

tudes.
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Since the isobar model amplitudes may not be the final set the
worid accepts, the numbers prescnted here arc subject to some changes.
The biggest change may come from Nww data in the energy gap. In
addition theoretical predictions are stimulating searches for new solu-
tions, using additional partial waves that may have been removed by
the techniques described in Re(. 1.
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APPENDIX 1
UNITARITY OF THE 7-MATRIX
In this apprndix we show that the 7-matrix as definud in the text by
Eq. (13) is unitary, since we relate T to 5 by Eqgs. (29} and {31):
S=1+iNA 7 A
(with no factor 2 in second term), the unitary condition to be tested ia

9
r-ttdicTar. (L1)
Equation (13) irom Sec. 2 is

T -k =if2TAK, {1.2)
By definition the k-matrix is real and the A~-matrix is Hermitian. As

seen from Eq. {15) of Sec. 2:
dSYdS}‘ {L3)

q)yk' which ie the recoupling coefficient has the property that

*
QY)‘ = Q’\Y (Ref. 6}). I we solve Eq. {LZ) for the T-matrix, we obtain
=k (1-1/2 a1, (L4)

Let us substitute Eq. (I.4) into the left-hand side of Eq. (l.1}; we get
k1-4 ant o +-§EkA+)"k"é wtar . (1.5)

The next step is to introduce the vnit matrices within { ], in the appro-

priate places in the left-hand side of Eq. (I.5):

[(u—izka’f)'i(u—iz k.-:\*)J k(i-—iz ak e %—m*)'i % [u--; Aic)f1~i,~Ak)"“]

, I wtar. (1.6
We have (1-% kA+) at the lcft of both terms, and a similar common

factor on the right; factoring these out, we have

(+g m’*;"[(n«%m*)k-k(t-‘zAk)]u Lot rtarn L

Simplifying, we obtain



g

. 4 gt _—
(145 ka®) “‘—?l‘ +-‘3‘§‘—". (-3t Lirtar (L.8)

Since A is a Hermitian matrix, we have
ke ) M kak - fa T s artar (L.9)

Finally, from Eq. (1.4} we note that the matrices following A arc
just 7 and the matrices preceding A are rt. Indeed Eq. (1.1} io
satisfied.

APPENDIX I1I
FACTORIZABLE RESIDUES

In this appendix we show that simple poles in the T-matrix have
factorizable residues.

The first step is to demonstrate that a factorizable matrix has only
one non-zero eigenvalue. Consider 2 matrix B which has only one non-
zero term B“. Let Uij be a unitary matrix. Consider the matrix B'
such that

B -=u'BU. (IL.1)
Using the condition that only the B“ term is non-zero, we obtain
B'..=U B, U, (0.2)

or, rewritten another way,

Bl]:(U“'\)B“)NB“ U”) (1. 3)
It follows from Eg. (I1.3) that
2
[ T . ' K
Bii B i (B ij) . {I1.4)

We shall usc this result shortly.
It is clear that when we have a pole in the T-matrix, the deter-
minant of Tn1 will be zero. We may diagonalize T—1 with a unitary

matrix U.
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Tﬁt= y, O {11.5)

The determinant De!(T;;') becomes

-1,
Det(T™1) = A Ay oen (1L.6)

If we have a simple zero at complex total-center-of-mass energy
E = Eo. then only one eigenvalue is equal to zeru. By contrast a dipole
(higher order pole) would have two (many) zero cigenvalues. Therefore
we may assume that one eigenvalue is given by
Xi = C(E - Eo) (I1.7)
and the others are non-zero.

Therefore the diagonal T™!_matrix can be written

C(E - 1:;
Tla (11.8)
O
o

and the inverse is

CD Eo O
1
b b

1‘L
\ O %

(L1.9)

The diaponal residue matrix is definced as

Ry = lim (E-EU) Tpy (I1.10)

D
E - E()

From Egs. (II.9) and (I[.10), we get




'/1 1
0 ¢ O
Ry = lim {(E-Eg) = [} . {11.11)
E~E Y,
0 2 O o
o ==
3 /
Notice that the non-diagonal residue matrix is just
R =U'R, U. (L.12)
D .

From Eq. (IIl.4) we know that it factorizes.
APPENDIX II
POLE AND RESIDUE FOR A SIMPLE BREIT-WIGNER
In this appendix we discuss the shift of the pole parameters from
the mass and width parameters cf the Breit-Wigner. Also we discuss
possible definitions of the residue and how it is related to the width.
For simplicity we take a single-channel T-matrix which is gen-

erated by a K-matrix:

. _K
T 1-iakK

where A is the kinematic factor. If we want a simple S-wave Breit-

T (I11.1)

Wigner, we need a simple pole in the K-matrix without any barrier

factors, Therefore we have

K_I"ZZ
-ER-E '

where E is the total c. m. cnergy and ER ie the K-matrix pole position.

(111.2)

For A let us take a form that has a square root behavior and is equal
Lo one at E = ER:

—
A= o (11 3)
¥ Er

Substituting Eqs. (II1.2) and (Ill.3) into {IIl.1), we obtain



g

T= i = {I11.4)
T By

We know that we will have a pole in T when we have a zero in
D{E), the denominator of T. Let EP be the value of E where D(E) ia

equal to zero:

D(EP) =0. {IIL. 5)
Therefore
E_-E E
R P _ . P
=i e . (II1.6)
T/2 ER
Squaring both sides of Eq. (I11.6), we obtain
2 T .
EP-Z(ER-—B—E—R)EP'FER-O. (HL7)

which can be solved by the binomial theorm

2 s 2
I j oy r
E :E(-—-)*..._ 1 - . (111. 8)
P R 2 2 2
EER . ibER

If we make the narrow width approximation (ER > > I'), Eq, (IIL.8)

becomes
2 . 2
Ep=Ep(t -S|« E i IS0, (I1L.9)
EER 32ER

Taking the root with the minus sign because we want the pole to be on

the correct sheet, we see that EP is given by

2 u 2
. Iy il T
Ep = ER 1 - ——}-3 i- = ] (II1.10)
BER ZER

'Whe real part of the pole position has been shifted by -l‘z/BER from
the K-matrix pole position. Algo the width as been reduced in size by

3 2
I°/32Eg .
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Next we expand D{E) in a Taylor serives about E

B
D(E) = - _g_g. Ep-E) 400, (I11.11)
E
P
recalling that D(EP) = 0. Differentiation of D(E) and Eq. (IV.11) yields
D(E)=<% y A2 ) (Eg-E) . (LIL12)
VEp Ep

If we substitute into Eq. (IIL.12), the expression EP[Eq. (1I11.10)] and
assume E_> > ' we obtain

R
D(E) (% R/ — ) (Ep-E) . (111.13)

'\/ERER ir/jz

Simplifying, we get

D(E) = \ (Ep (I11.14)
F'Ti‘_ /

The reaidue of the pole is defined by

i Ep =) 15
R -]é:.n}g BE - (1. 15}
P
Therefore we see that
2
r ir
T e e e L.16
R= 7 gy (L. 16)

The residuc of the T-matrix is related to the voupling af the reso-
nance. We may define the coupling such that rtotal = 2AX (coupling}).
But thy question is what momentum should we use in calculating the
total width. F¥For the coupling we used the rcsi.r.lu:- of the pole, so one
might think that the mementum at the pole should be used. On the other
hand the momentum on the real axis tells us how much of the coupling

is physically scen.
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g

x=§1%+a. av.1)
o

Here T is the total-center-of-mass energy, ER is the pole position,

T'/2 is the coupling, and B is the background. T is given by

. _K
T 1iax’ rv-2)

where A is the kinematic factor which we will take the same as in

Appendix III:
a=[E. (Iv.3)

Substituting Eq. {IV.1) into (IV.2), we get

T = 1 . (IV.4)
ER—E
.L(I’ZZI_T lE
) BlE,-E Ep i
T/Z

If we agaume |Bl << i', chen

1
T = . (IV.5)
- -E)2
ER E _B(ER E) } -EE
T/2 1..2/4 R

We know that we will have a pole in T when we have a zero in D(E), the

denominator of T. Let EP be the value of E where D(E) is equal to zero:
D(Ep) =0 . (Iv.6)

Then by substitution of EP into Eq. (IV.6}, we obtain

2 2
((ER-EP) B(Eg-Ep) ) _E

p
T/z /4 Eg v
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or
3 2
16B(Eg -Ep) X A(E-Ep) (Eg-Ep)

r rt Ep

1:=0, (1v.8)

where we have dropped the factor of B‘/IA. If we assume

ER >>» I >> ]B [ and IBI < < 1, then a solution of Eq. {IV.8B) is

2 : 2
N B _T ir Iy
Ep "Ep* 7 -8E, - 7/t eEy -9

In this approximation we see, from Eq. (IV.9}, that the real part of the
pole position hae been shifted by I'B/2 from the normal Breit-Wigner
pole {pee Appendix IV} due to the presence of the background. We also
should note that the ghift can be either up or down in energy, depending
on the sign of the background. For a narrow regonance with a small
background the shift will be to first order in the real part of the pole
position.
ArPENDIX V
5-WAVE DOMINANCE OF THE nN CROSS SECTION

In this appendix we estimate the minimum partial wave cross sec~
tion for the n"p — nn by using moments and the assumption of S-wave
dorninance around the 1520-MeV ¢. m. energy region.

If we assume that only S11, P11, D13, D15 and F15 waves contri-
bute to the 7N channet and that they all have the same phase, we then
will obtain the minimum amount of these waves neceasary to generate

the moments. From Ref. 16 we obtain the moment expressions:




C, = |s11]2+ |p11]2+2|D13|% + 3| D15| 2 + 3| F15| %,
C, =2|511||P11| + 4| P11|| D13| +7.2| D13| | F15] +0.515| D15 || F15],

C, = 4[511]|D13 |+ 6|s11] |D15 [+6 [P11|[F15]+2| D13| % 1.714|D13] [F15|
+3.429|D15| % + 3.429| F15{ %,

C; = 6|S11||F15[+6] P11} |D15|+4.8| D13} | F15|+3.2| D15 | F15] .
(V.1)
From our K-matrix fits to the S11 wave, we know that most of the
cross section goes into S11 around 1520. Therefore we will assume
S-wave dominance. Dropping all terms except those which have S5-

waves in them, we get for the moments:

g = is11]2,

c, = z{s1{|p11},

C, = 4|s11]|D13] +6|s511||D15], (v.2)
Cy = 6]|511||F15].

We now can easily show that the ratio of the cross section of P11, D13,

or D15, F15 to S11 can be written as

f_m:lpul?‘z(_c_;_)
9511 (s11]% \2Cq/ '
2
D13(only) _2|D13[% _ 1 (_Cz;
%514 Ist1|2 2 \¢Cg

(v.3}

"Dis(only) _3(D15[% _ 1
Is11 |s11]2

%p15 _3|Fis Zzi(ca )
9511 s1t1]2 3\ 26,

A summary of these cross-section ratios taken from the moments of

W e
P e
NN
(9]
o fv
N

Lemoigne et al. ¥ are shown in Table VII for 1520 to 1590 MeV. We

conclude from Table VII and Fig. 9 that the S11 NN is reasonably



predicted from cur K-matrix {it and small (~ 5% } total contribution of
higher waves (ni permitted in our fit) to this channel could well de-

scribe the moments for w p—~nN.



Paramelers of Breit-Wigner used in

Table I.
Watson final state factors equation (18).
Isobar, a Mass, Er(1 Width, Y, Orbital angular
(pion masses) (dimensionless) momentum, lu
Delta 8.83 0.40 1
Rho 5.464 0,20 1
0.8 0

Epsilon

6.0

_6?-



Table I. Comparison of P11 solutions of Sec. 3.2
with two poles and three poles.

P11 solution with three poles

P11 solution with two poles
2 2 .
x per deg. 1.47 x per deg. 1.62
of freedom of freedom
elastic+ inelastic elastic+ inelastic
2 .
45 x elastic 58
1
(%2}
o
1

elastic

2
X




Table UL, K-matrix parameters of all waves, in sequence 5,P,D, F,
[ The parameters are defined in Eq. 125).)
Table Illa

Wave 511, CERN 511, Saclay 531, CERN 531, Saclay

Energy range 1310-1810 1310-1810 1310-1810 1310-1810
{MeV)
22 88.7 57.2 136.4 141.7
Degrees of free- 62 62 73 73
dom
Channel 1 Na L=0 Nm L=0 Ng L -0 NmL=0
Channel 2 Ne L=t Ne L =1 Aanm L .2 Sq, L=2
Channel 3 Npyjp L=0 Np,jp L0 Np,jplis 0 Np oL 0
Channel 4 N,-‘,L=0 Nn, L =0 - -
Vi ome .3452.009 -.047%.020 1.786%.012 2.000%.013
va(oion 3.798.035 3.2355 464 -4.932+.215 -5,784% 166
y;(r‘;‘a"g“s) 1.3512.092 .531%.100 -2.802%.149 -2.8522.142
1,Pion + 5
Ytl(mass) -2.539+,022 -3.535%.037 --- -
Yool 3.4312.004 3.358%.002 - —--
yg(ii:s"s) -1.676.005 -2.273+.040 - .-
2 Pion

Y3( mass’

2.329%,010

1.876+.050

-‘S—



Table [IIb

511, CERN 511, Saclay 531, CERN $31, Saclay
yi(f;:‘;si -1.688%.009 -2.209%.0216 --- .-

Pole 1 {MeV) 14932 ,6 148322.4 1598=2.9 1602:£ .4

Pole 2 (MeV) 1691% .06 16912 .2 - ---

Cyy 30.62%.013 30.55¢.023 19.30%,085 20,442 .033

C» -56.53,189 -59,70£.690 -126,28+2,370 -B88,42%.675

C13 -5.61% 117 -3,21x.074 3.54+ ,828 -22.64%,374

Cyy 6.55%.094 374,062

€,y 157.27£2,35 100.52+1.970  -2046.18=14.030 -2318.66%5.574

Cpy 66.43% .147 70.69+ .469  -703.34= 3.162 -1346.85%3.207

c -64.08% 112 -63.96= .193

24

Cyq 33462 .169 37.44£1.173 .-

C -19.27¢ 130 -12.3422.021 - -~

34 1

- wu
Cyy 97.65¢ .271 98.18% ,964 R
Pion 1
B, ( ) -1.85% ,003 -1.,71% .002 -3.68x .010 -3.86x .002
11*massg
Pi -1
B,,( 00 5.32+ 017 5.73% .034 14.02% .114 10.76x .024

12'mass
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Table Illc

511, CERN 514, Saclay $31, CERN 531, Saclay
Pi -1
lon .34%.006 462,010 -.39£,059 2.14.016
13 'mass
(Pion )_1 2,94+ ,011 3,97+ ,011 - -
14'mass * ‘ PIE
Lion )=t -12.14%,231 -7.79%.022 173.60%.976 280.0 =,298
22 nl.BSS
(Pion \-1 -1.63%.017 -4.23% ,044 64.25%.233 120.29+.252
23 'mass
Pion -1 -
24(mass) 347,011 3.61%.008 .-
gaiiion )=t -5.31%,038 -1.29%.109 68.65%.940 109,29+ 344
3'mass
Pion ,-1 - - -
313tmass’ 2.70£.032 2.07%.179 - ---
Pion -1 .
14{maes) -3.55%.020 -2.76% 050 - .-
Partial width 1 1.216 .022 35,703 44,793
(MeV)
Partial width 2 43,738 30.799 33.096 46.878
{MeV)
Partial width 3 7.754 1.186 33,587 34,684
(MeV)
Partial width 4 12.255 0.000 .- .-
(MeV)
Total width 64.963 32,007 102,386 126.355
{MeV)
Partial width 1 139.976 134,074 - -
(MeV)
Partial width 2 12.693 23.324 --- .

{MeV}

_{5-



Table IIId

S14, CERN 511, Saclay
Partial width 3 21.215 13.768
(MeV)
Partial width 4 23,282 39.847
(MeV)
Total width 197.166 211,009

(MeV)

-pG-



Table Ille

Wave P11, CERN P11, Saclay P13, CERN P13, saclay
Fnergy range 1310-2010 1310-2010 1520-2010 1520-2010
{MeV)
W2 1520 160.6 17,6 9.1
Degrees of 98 98 47 47
freedom
Channel 1 Nwx L =1 Na L=1 Nm L=1 Naw L=t
Channel 2 Aw, L=1 Am L1 Npi/Z,Lri Npi/Z'L‘:i
Channel 3 Ne¢g L=0 Neg L=0 _——- cee
‘:g:alfmel 4,919,047 4,871 .014 2,497+ 044 2.541%.039
vaEon 5.935¢.135 6.386%.026 -7.4652 .088 -7.506% 092
Yi(oon ~2.347£ 111 ~1.848%.039 - -
yiElen, 5.838.192 5.277%.045 - --- .
)]
2 Py =
YZ(n'::slsa) -4.831=.155 -4,176%.048 - . 1
yaEion 4.915%.,470 4,592%.040 - -
Pole 1 (MeV} 1477%1.5 1476%4.2 1809+5,4 1809+ 4.9

Pole 2 (MeV) 1870+ 4,9 1869+ .7 - .-




Table IIIf

P11, CERN P1t, saclay P13, CERX P13, saclay
c,, -8.61+,500 -12.28%.730 -8.78%.130 S12.824,000
s 22.85% 4,903 14,472,242 -8.26% .106 ~2.48% .15
Cyo 24.38+ 4,440 15.54%,128 - .-
Cy; 144.54£2,038 93.08+.144  -179.10#1.593 -219,70%1.038
Cyq 19.28+.146 16.34% .491 - .
Cyy -6.92£3.168 42.92% 930 ——- -
(Pion )-1 182,047 132,056 17£.001 192,005
11 mass it} o f L. - . l . - -
B (pi°")-1 40+ ,402 35+ 021 1,024,033 58,003
12 mass . - = - . -« - -
B”(pm“ ’ -t -3.48%.376 S2.74%.024 - -
mass
Pion , -1 " 2 I
Byolrmans) -9.02+.154 -.82+.056 14,81%.,026 17.90%.031
Picn ,-1 - -
Boalass! -.21£,047 .81£.035 --- - \
w
Pi T
ion . - " . . 1
Baslhass! .B8.273 .89=,044
Partial width 1 200.045 196.060 71.998 74.574
(MeV)
Partial Width 2 66.999 77.285 235.844 238.951
(MeV)
Partial Width 3 27.561 17.091 .-

{MeV)
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Table [llg

Pit, CERN P11, Saclay P13, CERN P13, Saclay

Total width 294.605 290.435 307.842 313,525
(MeV)

Partial width 1 407.369 332,702 - .-
(MeV)

Partial width 2 171.665 128.176 - -
(MeV)

Partial width 3 182.936 159,541 - -
(MeV)

Total width 761.971 620,419 - ---
(McV)

-1G-



89

sure that the asymmetries in these two solvents are due almost
exclusively to hot reactions. Independent studies of this type?’
verify that the asymmetries observed in methanol, hexane, and
uneptane are due only to hot chemistry.

Asymmetries in hydrocarbons tend to increase with the
number of hydrogen atoms per molecule, except when the compound
1s unsaturated, in which case the H atoms are presumably more
tightly bound. Note the marked difference between hexene and
cyclohexane, which differ only in bond structure, and the
exceptionally low asymmetry in benzene, where the H atoms are
particularly tightly bound by the "resonance" effect?®. The
high asymmetry observed in glycerol and in halide-substitued forms
of methane may be due to thermal reactions.

The results obtained for muonium hot chemistry may be
compared and combined with analogous results from hot tritium
(T) chemistry12’17, in which it is more difficult to tell “hot"
from “cold" reaction products, but where it is possible to
distinguish between different diamagnetic products (e.g., TH vs.
THO in hot reactions with water).

We have not yet seriously attempted to develop the
potentialities of this technique rfor studying hot atom chemistry;
however, it seems clear that the field should benefit broadly from

this techniquezg.



Table Illi

D13, CERN D13, Saclay D33, CERN D33, Saclay
vagien, -9.6242 211 -8.989+.176
Vs .3.850% 087  -3.498%.239
AN 19.339% 255 20.763% 563 -
yaEion -11.453+.920  -13.464%,375

13‘1;:::5) 2.122%,028 1.679% 082
\gff,f:s S2.471% 456 -3.354% 384 .
yyblon -7.734%,006 -B.463%.134 ---
yy(en 9.484= .247 11.548% 262 .-- —--
valEon ) 11.465% 399 13.381%.139 -
Pole 1 {MeV) 1508%1.0 1510+1.0 16972 6.1 1704%.9
Pole 2 (MeV) 18782 .6 19082 6.5 -
Pale 3 (Mev) 2218£3.9 2261£7.8
<, S11.4B £.143 1052 #.167 51.26%,033 51.33%.076
<, “17.822.450  -16.38 +.433 -8.76£1.640  -5.23%.065
c -6.45 %.245 -8.62 %.678 65,732,078 -65.39%.055

13

-6g-



Table IIlj

D13, CERN D13, Saclay D33, CERXN D33, Saclay
14 53,20+ ,634 55,29+ .30 -
s -35.10+.495 35.102 663 -
C, -60.002 2,964 -67.08%5.070 545.88%.196 545.04% .708
Cys -36.74%.658 -36.20%3.261 -32.61,710 -31.98+.263
Cpy 162.92%2.459 179.76%2.480
Cys 20.48+1.102 47,782 5.253
Cys -59.504 4,885 -44.2825.045 204.29£1.036 208.41%.609
Cay 85.85+.147 89.84%5.895 ---
Cye -91.71£2.298 -80.34% 4.699 .
Cuq -60.93%3.446 -65.51=1.842
Cys 2.55% 5,885 1.881%6.090
c -293.10+8.500 -315.52% 6,746 .-
55
(Flon )-1 65+.005 T1£ 011 _4.85%.025 -4.88% 008
110mang .65% . RIS .85% 025 .88z .
B, (Fion )-1 06%,017 24%.014 ~.95+.182 -2.33+.008
12 mass . . t - - - . . 0
Pion !
Con) .58+.012 .82+ .047 6.252.074 6.18%.003

13'maass

_09_
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Table Ik
D13, CERN D13, Saclay D33, CERN D33, Saclay
Pion -
1 ihmes -2.13%.04% -2, 45%.041
Pion
15loman ) 232014 41,013
Lt
Pion
Byylioony) 3.702.152 4.88%,332 -51.182 .268 -52.06%.080
B, (Tlon )-1 75%,064 1.07%.421
23 'mass <fI=. M . )
B, (Plon )™ -3.322.126 -5.52%.238
24'mass " ‘ * *
B, (Plon ) ! -1.86%.192 2.68%.184
25'mass ‘ : T :
3 (pb“)-1 1.42%,350 -.02%.245 -16.,25%.238 -16.59%,057
33t na A2, .02+, .25+, .59,
B, (Plon ) 354,090 -.95%.370 . .-
34'mass o M . . o
(Pion ™! - 62,225 -89 259 -
351nass TR * . -
o 5
won -
Byylrmon ) -15.30% .474 -15.88%,421 --- o
B, (Flon - 15.15%,058 15.34% 055
45'mass ‘ * ‘ M
g, (Pion )™ -7.98£1.29 9.9841.100 -
55'mass ‘ - -7 . T
Partial width 1 69.150 70.211 33,127 42,122
(MeV)
Partial width 2 32,126 33,414 201.740 273.255
{MeV)
16.021 15.967 72.634 75.474

Partial width 2
{MeVv)




Table L1

D13, CERN D13, Saclay D33, CERN D33, Saclay

Partial width 1 .002 022 [ -
(McV)

Partial width 5 20.633 25.116 - .
(MeV)

Total width 137.932 114,420 307.502 390.868
{MeV}

Partial width 1 160.157 148.584 e .-
{MeV)

Partial width 2 810.063 725.194
{MeV)

Partial width 3 105.730 92.888 - -
(MeV)

Partial width 4 2322.352 2800,493 --- -
{MeV)

Partial width 5 652.554 967.023 ..
(MeV)

Total width 4050.857 4734.482 --- ---
(MeV)

Partial width 1 55.182 35.100 --- -
{MeV})

Partial width 2 54,273 124.672 - -
{MeV)

Partial width 3 642.319 789.966 --- ---
{MeV)

Partial width 4 815.626 1246.676 --- ---
{MeV)

Partial width 5 1097.227 1551.926 --- ---
(MeV)

Total width 2661.627 3748.340 --- ---

{MeV)




Table IIIm

Wave D15, CERN D15, Saclay F15, CERN F15, Saclay
Energy range 1585~-1810 1585-1840 1585-1810 1585-1810
(MeV)
X2 58.7 69.6 1.2 30.9
Degrees of ree- 20 20 34 31
dom
Channel | Nait-=2 Nns¢ 2 Na &t 3 Nwoif 3
Channel 2 Amf=2 Aa f- 2 Aw £ Ax i 1t
Channel 3 - --- NpS/Zl:i Np3/21=1
Channel 4 --- -~ Neg £=2 Ne t-2
1 « Pole - - .
¥y « Channel 2,890+ ,047 2.840%.055 4.4272 035 4.362%.034
1,Pion -
2{nass) -6.265% 154 -6.064%.163 1.000%,053 1.147%.053
1 Pion
30inase’ --- --- 5.007+.205 4.843%.200
1 Pion
+mass’ --- .-~ 2.684% ,186 2.588%,182
Pole 1 {MeV) 1684£3.,3 1683%3.2 1684+ .8 1682+.8
C“ -.59 £.620 -1.02 %,607 4,71 +.338 3.64 +.261
Cc -5.22 +1.834 .93 +1 _841 -8.34 =.,126 -7.86 £1.273

12
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Table [IIn

D15, CERN D15, saclay F135, CERN Fi3, Saclay
Cy3 T T -1.49%1,055 -4.0021,045
. —— - - 8 ;52
Cyy L15%1,911 1.80% 1,952
C,s 6.22+8.612 -1,54+8,808 -27.00%£5,100 -23.52£ 4,662
<;a .- --- 53,41£2.753 50.26%2.131
oy --- --- 9.26x2.881 7.30£2.867
Caq - .- -40.67+5,886 -40.31£6,029
Cay - - -39.64£8,290 -10.08+8,032
Cyq .- - 15.03% 10,089 14.54£10.223
4
Partial width 1 66,192 63.815 83.458 80.647
Partial width 2 95,488 89.133 5477 6.772
Partial widtl 3 --- - 53,153 49,731
Partial width 4 - -—-- 15,293 14.154
1
Total width 161.680 152.948 157.080 151.305 52
]




Table Ilio

Wave F35, CERN F35, Saclay F37, CERN F37, Saclay
Energy range 1730-2010 1730-2010 41770-2010 1770-2010
{MeV)
N 26.5 20.7 23.0 9.5
Degrees of free- 34 34 23 23
dom
Channel 1 Nwx L=-3 Nam L =3 Nwa L-3 Na L=3
Channel 2 Aw, L=z3 Amm L =3 Am L=3 Am =3
Channel 3 NpB/Z,L:i Np3/2, L= Np3/2,L Np3/2, L=:=3
Channel 1 --- --- Ap, L - 1 Ap, L .1
1+ Pole - -
¥4. Channel 4,282x.263 4.179x1.691 3.794%,030 3.513%.005
1,Pion
2lnasa! 2.938% 5,451 5.178+ 1,509 9.049+.084 6.099.142
y(Fion 118.32124.391  -15.666%7.688 -4.502%.101 -3.296%.128
1
N o~
1, Pion = o
Y4'mass --- - 7.238%.183 8.041+.033 '
Pole 1 (MeVi 216960.5 2136x125.9 1941x1.2 1921=.8
C“ -4.16 £.473 -3.80 £3.319 2.82 £.073 3.08 +.286
C -3,79 £7.217 -6.42 +6.268 2.74 £.714 6.59 =.919

12




Table Illp

F35, CERN F35, Saclay F37, CERN F37, Saclay
C13 6.68+3,579 5.97+13,788 3.27£1.,50 8,74+ ,400
C‘14 --- --- ~15.191£.555 -17.07%.,670
CZZ -169.24£28.034 -142.68% 50,356 173,027,348 156.74=4.310
Cz3 -57.69+ 53,152 -31.04+ 2,096 -56.51+ 3,496 39.39+ 3,748
C24 --- --- -115.81+3.850 -78.08%.922
C33 -127.87+48.838 101.78+£65.735 -221.14%7.150 -308.52%5.43
C34 --- --- 154.91+£8.074 190.03% .890
C44 e -—- -51.17+7.081 -23.,62+4.058
Partial width 177.921 164.775 108.736 90.432
{MeV)
Pertial width 46.503 135.129 234.350 98.772
(MevV)
Partial width 3476.717 2245.710 34.511 15.721
(Mev)
Partial width --- --- 112.206 137.436
{Msav)
Total width 3401.144 2545.615 489.803 342.361

{ MeV)

_99-



Table IV, T-matrix poles and residues for all waves in sequence S, P, D, F,
(Poles and partial widths (residues) are in MeV).

Table IVa

511 CERN, First Pole

Real : 1503.2%.8 / Twice Imag : 64.8%1.8
r
Pinm Onery T Np, /p(91] Tinnes| {total)
Real 7.2 230" 6.5 2.3t 38.9 Real
Imag ~-5,81 35.4 W21 9.7 39.5i Imag
Mad ja.2} 42,2} l6.5 '10.0! 168.0]*  Mod

S14 Saclay, First Pole

Real = 1491.4% 2.9 / Twice Imag : 57.5% 3.3
T r L r r
{N ) [N elP)] {Np 1jz(S)] [ Nn(S)] {total)
Real K 11.7 % 4 -8t 12.0 Real
Imag  -13.4i 28.1i 1.4i 1441 30.2i  Tmag
Mod }13.4} 130.5] [1.4] [1a.1] 159.41*  Mod

§11 CERN, Second Pole

-L\?-

Real - 1652.4% .2 Z Twice Imag - 100.3%.8
Iy I, r I r
(N =} (Ne(P)) [ Np 1Q(S)] [ Nn(s}] o (total
Real 26,1 2.3 26 ¢ 4.7 7 25.9  Real
Imag -36.8i -3.71 -8.9i -31.9i1 -81.2i Imag
Mod l45.1] [4.4] 19.2| {32.31 19n.91 Mod

*Modulus of I" {total) is sum of moduli of ;.




Table VD
511 Saclay, Second Pole

Real 164.-4 = 0.4 , Twive Imay 103.6 2.4

Tinm Onae) Tine, 090 FNns) T(total)
Real 18.8 0,4 -2,7 7 8.4~ 24.8 Real
Imag -41,2i -7.91 -5.01 -31.0i -B5.1i Imag
Mod {45.3 17.9] 5.7 [32.1, 91,0 Mod

S31 CERN, Pole
Real - 1600.3 % 4.8 Twice Imag 79.2 £ 10.4
Y

ONm T'iamD) F(Npl/z(S)I T itotaly
Real -3.2 22,0 ° -5,3 " 13.4 Real
lmag -19.31 15.81 101.91 98,21 Inway
Mod 198 271 102.0: 148.9°%  Mod

531 Saclay
Real - 1602.4 + 3.9 ! Twice Imag : 74.1% 6.1
r

TN Team)  TInNp, o] (total)
Real -4.2 24,5 -56.6 -36.3 Real
Imag -19.2i 7.0i 56.4i +4.2i1 Imag
Mod 119.7 125.51 179.9| 125,11 Mod

aMadulua of I" {total) is sum of moduli of Fi .
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Table 1V ¢

P11 CERN, First Pole

; Twive Imag

Real = 1384, £ 2.5 23T £ 4.3
r
Finm Flangeyl  Tinets) {total)
Real 36.0 21,0 51 " 62.1 Real
Imagp -109.24 -25.51 ~5.1i -'59.9i Imag
Med  |115.0} 133.0! 17.2] 1155.2] % Mad
P11 Saclay, First Pole
Real = 1391.0 £ 0.5 / Twice lmag = 206.3 £ 1.8
) Ytar®)]  TiNets)) Tltoral)
Real 29.5 29.5 2.0° 61.0 Real
Imag -85.4i -30.9i 0.6i ~115.7i Imag
Mod {90.3] l42.8] 2.1 135,142 Mod
P11 CERN, Sccond Pole
Real = 1724.5 % 5.5 / Twice Ilmag = 282.6 = 8.2
Tinm Dane)]  Fines)) Cirotal)
Real -39.4 16.6” 07 38.1 Real
Imag -115.0i 5.3 -55.9i -165.6i Imag
Mod  421.3] ' 46.9] 1 63.9) |232.3)2 Mod

2Modulus of T

(total) 18 5um of moduli of T

- 69-



Table IV d

P11 Saclay, Second Pole

Real = 1744.1 % 1.0 / Twice Imag = 293.7 = 5.0
inm) Flanpy] Pl Neis)) Fleotal)
Real -22.6 38,47 60.5 " 76 Real
Imag -126.31 3.1 -57.6i -180.2i Imag
Mod 1128.3} | 38.61 | 83.5) 25041 Mod
P13 CERN Pale
Real = 1724.2 % 2.3 / Twice Imap = 159,3 £ 3,0
Ty F[Np‘/Z(P)] Fltatan)
Real 0.5 42,3 " 42,8 Real
Imag -25.3i «72.70 -97.9i  Imag
Mod | 25.31 | 84.1] [109.3]* Mod
1
-~
P{3 Saclay Pole [=]
]
Real = 1727.7 + 2.1 / Twice Imag = 156.9 £ 4.9
r r r
{N) [Npl/z(P)] (total)
Real 1.5 38.5 7 40.0 Real
Imag -26.0i -69.8i -45.8i Imag
Mod l26.01 t79.71 105.8'% Mod

a
Modulus of r(tolal)

is sum of raoduli of Fi'




Table IV e

D13 CERN, First Pole
Real = 1514.6 £ 2.1 / Twice Imag = 142.1 £ 5.4
T flans) TNy ] TINe@)]  Tlaso)] oty
Real 88.1 5.1 7 337t 3.4 3.2 126.7  Real
Imag 12.54 35.9i 5.71 0.3i 13.51 67.9i  Imag
Mad 89,0 '36.3| | 34.2) I'3.4] “13.8! i176.7'*  Mod
D13 Saclay, First Pole
Real = 1514.9 = 4.8 7 Twice Imag = 148.9 £ 6.4
Ty Tlawe)] Tingy o] Tive@]  Tlaso)]  Tootay
Real 91.3 7.9 " 35.6 F -4.0 " 3.3° 1342 Real
Imag 10.41 40.1i 5.3 0.3i 14,31 70.5i  Imag
Mod 191.9¢ }20.9] ] 36.0] "4.0] '14.7! 1187.5|% Mod
1
-]
D13 CERN, Second Peole L
‘
Real = 1646.9 = 6.5 j Twice Imag = 116.6 £ 5.4
Tom Tlams)]  TiNey 1] Tine@)]  Tlanmy)  Tieoran)
Real 5.3 80t -1 -56.9 ~ 0.3° -60.0  Real
imag -14.0j -22.2i 3.6i -31.7i -2.4i -67.51 Imag
Mod }15.8} f23.6} 13.7] | 65.1] l2.4| 1110.7'*  Mod

*Modulus of T is sum of maduli of T';.

(total)




Table IV f

D13 Saclay,

Sccond Poale

Real - 1650.4 £ 12.4

/

Twice Imag = 125.

r r r
{Nm) [an(e)] [Ney ] Tne)]  Tlamo)) Titotan)
Real 5.0 9.2t -5 " -63.3 " 0.2" -67.8  Real
Imag -12.6i -23.1i 4.4 -39.8i -3 -72.81  Imap
Mod '13.6] | 24.9] f4.1] | 74.8| 1.3 1118.61% Mod
D13 CERN, Third Pole
Real = 1971.0 + 11.5 / Twice Imag = 452.1 # 37.4
r r
) Tlamsl TiNey ] Tinee)] Tlamo)] o Tioran
Real -1.9 4.0 " 110.6 ~ 20t g3 " 67.0  Real
Imag -87.2i 51.0i -177.9 1.3 -27.4i -240.3i  Imag
Mod | 87.2}| | 70.1] {209.5| | 2.4] | 28.6| 1397.81* Mod
]
~
Dt3 Saclay, Third Pole 0
Real = 1970.7 + 32.0 / Twice Imag = 401.8 £ 52.4
r r
Ty Tlane)] Tiney ) TiNer)]  Tlawo)] (tatal)
Real 14,14 -ag.3 7t 82.7 ° -10? 067 48.2  Real
Imag -54,81 47.34 -170.21 0.4i -25.9i -203.1i  Imag
Mod 1 56.6) | 67.6] | 189.2] ENY | 25.9] {340.31% Mod

a
Modulus of r(total)

is sum of moduli of I‘i.




Table IV g

D33 CERN Pole

Real = 1656.7 + 5.3 / Twice Imag = 109.3 £ 2.3
r
Ty Hane]  Tinp, 080 "teotal)
+ +
Real 6.9 -6.6 35.9 36.2 Real
Imag -3.4i -45. 14 7.51 -40.9i Imag
Mod A 145,5] [36.6] | 89.812 Mod
D33 BSaclay Pole
Real .654.4 % 1.4 / Twice Imag = 117.5 < 2.4
T (i) Blams) T Ney /(5] Titotal)
Beal 6.9 89" 36,0 7 34,0 Real
Imag -4.21 ~49.5; 8.51 -44.9i Imag
Mod [ 8.1] 150.1} | 37.0] J95.1] Mod
D15 CERN Pcle
Peal = 1665.7 + 2.8 / Twice Imag = 159.0 £ 11.1
Tom -~ Tamo) T(eotal)
Real 67.7 91.0 ~ 158.8 Real
Imag -13.8i ~40.4i -24.2i Imag
Mod | 69.1] | 9t.6] "160.7!%  Mod

a . :
Modulns of F(total) is sum of moduli of Fi.
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Table IV h

D15 Saclay Pole
Real = 1662.1 £ 2.2 / Twice Imag = 139.7 £ 9.2
T (Nm Hanimy] Titotal)
Real 55.8 71.2 7 127.0 Real
Imag -18.21 -21.2i -39.4i Imag
Mod 158,71 | 74.3! 1433.0'%  tod
¥F15 CERN Pole
Real = 1672.0 £ 2.4 /' Twice Imag = '54.6 * 5.2
r
Foem) fanP)] TNy P11 T(ne()) Ctotals
Real 99.3 53° 2.5 % 14.5 % 151.6 Real
Imag -17.1i 10.6i -27.0i -15.71 -49.1i Imag
Mod | 100.7| {11.9} [42.2| 121.4} i176.2'*  Mod
F1i5 Saclay Pole
Real = 1668.6 = 2.0 / Twice Imag = 145.0 = 4.8
Finmp Flane)]  Tiney 0] TINe)] Cltoray)
Real 88.7 7.4t 29.9 * 1.7 7 137.6 Real
Imag ~20.41 9.2i -24.9i -14.91 -51.0i Imag
Mod 1 91,0 l11.8} | 38.9} | 18.91 {160.61  Mod

a
Modulus of r(total)

is sum of moduli of I‘i.
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Table IV i

F35 CERN Pole

Real = 1B24.1 £ 7.5

/ Twice Imag = 282.1 £ 25.6

r r

(N [ar(F)] 1"[prz(r’)] Fltoran
Real 36.3 1914 * .20.2 ° 351 Real
Imag  -25.5i 1770 -104.7i S148.0i  Imag
Mod | 24.3] ] 26.1] | 106.7] (177.11*  Mod

F35 Saclay Pole

Real = 1B31.9 £ 20.7 / Twice Imag = 277.5 £ 34.9
C r
Fay  Tlammy] Tiney p00) (total)
Real 36.2 15.7 F 71 34.8 Real
Imag -24.81 -10.23 -107.71 -151.74 Imag
Mod | 43.9] | 24.8) | 109.0| 1177.8'*  Mod
F37 CERN Pole 4
o
/ 1
Real = 1B66.1 £ 5.8 / Twice Imag = 254.9 = 21.4
r r
L inm) Tt anw)] [Nps/z(F)] Tlape] {total)
Real 78.2 12,0t -34.9t 51.8 % 107.1 Real
Imag 23.0i 54.7i 22.4i -84.21 15.9i Imag
Mod | 81.6] | 56.0]| | 41,2} | 98.8] |277.8(* Mod

“Modulus of T

{total)

is sum of moduli of I"i.




Table IV j
F37 Saclay Pole
Real = 1876.8 + 6.2 Twice Imap = 297.8 + 30.2
r r T r r
(Nm) [an(F)}] [Np3/2(F)] {ap(P)) (total)
Real 48,5 92.3 1 X 58.0 * 189.8 Real
Imag -37.1i 26.0i 50.01 -29,2i 9.8i Imag
Mod fo1.1] | 96.0} 51,0 | 64,91 j272.8|*  Mod
2Modulus of r(total) is sum of moduli ol I‘i.
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Table V. Comparison of parameters of K-matrix, T-matrix, and Breit-Wigner refit, all in MeV.

Table V 2

2 Channel, Small Background, D15 CERN(EPSA}+Nnm

Parameter
Mass r r r
Origin (total} {Nm) { ar(d}
r K-matrix _
% pole Real 1684 164 66 95
"5 from Table 111
a
'.5 T-matrix Real 1666 159 68 91~
¥ pote® Imag 2% -24i -14i -10
from Table IV Mod 161 69| 92|
iy Unitarized ~
= (UB+BW) Real 1692 176 " 105
E BW parameter
m
S Unitarized Real 1666 156 68 88 =
2 (UB+BW) Imag 138 -24i -12i 113
BW pole® Mod ] 158 I 69| | 89|
UB+BW .
E BW parameter  Redl 1683 167 68 99
@ UB+BW Real 1659 134 57 T
B I -150i . . .
mag - -45i <22i -23i
| BW pole® Mod l141] 61| | 8al
D15 CERN (EPSA) Ornly
Parameter
Mass r ) 3 r
Origin {total) (Nw} {an(D)}]
l K-matrix Real 1682 156 64 92
= pole
=
£ T-mnatrix Real 1660 125 54 71
E -140i
M Imag 5+ -43i 208 -23i
1 pole? Mod |133] | s8] |75
i UB+BW
z BW parameter Real 1682 153 63 90
:
a UB+BW Real 1661 55
= ' -140i .
mag — -18i
BW pole® Mod | 58]

Real

Real
Imag
Mad

Real

Real
lmag
Mod

Real

Real
Imag

Real
Imag
Mad

AT -matrix pole has complex position and

of the moduli of r;.

p ttial width (l‘il. Modujus of T

‘total)




Table Vb

2 Channel, Small Background, D15 Saclay(EPSA}+Nnrw

Parameter
~.

Mass r r I3
Origin {total) {NT) [ an(D))
‘ K-matrix -
«  pole Real 1683 153 64 89 Real
. from Table III
E B,
9 -
E T-matrix Real 1662 127 56 71 Real
P a -140i . . .
% pole Imag —5— -39i -18i -21i Imag
] from Table IV Mod 1133 I'sg| [ 74! Mol
r Unitarized R
T (UB+BW) Real 1684 153 64 29 Ri-al
m BW parameter
&
2 Unitarized Real 1663 130 56 74 " Reel
S (uB+BW) Imag 2130 -36i -18i -18i fmag
l BW pole® Mod [t35) |59 | 76] Maod
' UB+BW R ,
2 BW parameter Real 1684 153 64 89 Rual
0
&  UB+BW Real 1662 127 55 71 ° Foul
> Imag 130 -40i  -18i -22i Firsay
] BW pale® Mod 1133] |58 175] Ml
D15 Saclay {EPSA) Only
~ Parameter
D Mass Fhotaiy  Dixmy  Tlan(m)
Origin
E] K';:SZ”" Real 1682 154 &4 90 Real
5 I -
£ T-matrix Real 1660 122 53 49 Real
; .
< Imag :—l—;i -44i -2Ci -241 imap
] pote? Mod 129!  1se’  '73° Mad
¥
= UB+BW R )
E BW parameter Real 1684 150 62 88 Real
3 I
=] UB+BW Real 1663 56 Real
-143% .
Imag - -15§ Imag
l BW pole® Mod 54 Maod

aT-mal:ri); pole has conmiplex rasition and partial width (l‘i‘;. Modulus of T

of the moduli of I‘.‘.

i ¢ sum
(tota]) 15 the su
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Table V ¢

3 Channel, Large Background, ¥35 CERN(EPSA)}+Norm

AT.matrix pole has complex position and partial width (l‘i).

of the moduli of I‘i.

Modulus of r\mtal)

Parameter
Mass r r I T
Origin {total) (Ne} Clan(F)] C (Npy u(PY]
T K-matrix + _
% pole Real 2169 3401 178 47 3177 Real
‘i from Table III
o -
E T-matrix Real 1824 35 16 Th -20 Real
1) . .
¥ pole® mag 282 1488 -26i 17 -105i Imag
J from Table IV Mod {177} | a4} |26} |.107] Mod
l Unitarized +
T (UB+BW) Real 1907 125 51 55 219~ Real
E BW parameter
] -
D Unitarized Real 1824 53 43 16t -6 Real
2 (UB+BW) Imag —282L -183i 27 12 -95i Imag
L BW pole? Mod [173] |51} |23} | 99] Mad
B'—Bw“l?:i‘fnem Real 1957 391 75 4t 215~ Real
[-«]
é UB+BW Real 1783 13 37 18 ¥ 42" Real
Imcg <256L 2308 -62i  -36i -206i Imag
l BW pole® Mod [323] |%2] 41} j210] Mod
F35 CERN (EPSA; Only
Parameter
Origin Mass  Tiawny  Tante))
» K-matrix Real 2042 1746 154 1592 Real
= pole
o
E T-matrix Real 1810 33 Real
: ~2754
% Imag —S5— -25§ - Imag
l pole™ Med [ 42| Mod
l UB+BW
s BW parameter A 1891 300 36 264 Real
% uB+BW Real 1815 20 Real
2] -2224
2 imag =3~ -13i Imag
! BW pole Mod | 24| Mod
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Tabie Vd

3 Channel, Large Background, F35 Saclay (EPSAMNmT

Parameter

Mass

r r r r
Origin (total) (Nm) [ar(F)] [Np3/2(l—‘)]
K-matriy N
. pole Real 2136 2545 165 135 2246 °
£ [rom Table I
el
£ T-matrix Real 1832 35 36 16+ a1v T
:£ pulea Imap LZB)._ -152i 28 -19i -108i
l from Table IV Mod 11781 44 25| ‘109’
l Unitarized . A + 5 i T
T (UBBW) Real 1911 320 50 50 220
$ BW parameter
i+ - . —
5  Unitarized Real 1833 50 16 15 * -1t
2 (uB+BW) Imap —£821 - 146i 25 -14i S10b1
l BW pole® Mod 1801 53" 21 106
| UB+BW . + o -
2 BW parameter Real 1942 3u 70 47 274
& UB+BW Real 1798 -10 39 15t Y
2 VAN
Imap 3—23—‘ -290i .52 -36i -262,
l BW pole ® Mod 1316 C65! '39! ‘212
535 Saclay (EPSA) Only
Parameter
Mass r r r
Origin (total) (NT) [ an(Fyl
I K-matrix Real 2062 1808 156 1652
B3 pole
P [
2 T-matrix Real 1822 35
‘.2 Imag ;Zgi -26i
I polea Mod | 431
t UB+BW 5
B Bw paramcter R€2I 1901 ay 35 256
i el
) UB+BW Real 1833 22
=4 I -219; .
‘ mayp — -11i
| BW pole? Mod 24

2T-matrix pole has complex position and partial width (Fi).
of the moduli of T,.

Modulus of T

{total}

is the sum

Rual

Ruyal
Inayg

Muod
Real
Raatl

Imayp

Mad
Real

Real
Imag
Mord

Real

teal
Imag

Mad
Real

eal
Imiay

Muod
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4 Channel, Medium Background, F15 CERN+Nanr

Parameter

~.
Ma r r T r r
Origin ° frotal) T (Nm)  C[AWP)] T {Npy () F[Ne(D)]
K-matrix 5 +
ale Real 1684 156 83 5 ¥ 53 15+
¥ from Table Il
= ] + + +
2 T-matrix Real 1673'\ 152 99 5 33 15
S pole? Imag =132 TR 13 27 -16i
J from Table IV Mod J176] | 101} | £2] | 42 | 21|
1 Unitarized + + +
£ (UB+BW) Real 1681 149 86 16 31 16
@ BW paramecter
i
8 Unitarized Real 1672 148 92 77 37 % 12 *
4 1%8—‘- -33i -11i 8i -14i -14i
l BW pole ® Mod | 162 | 92| [11] | 40f l19]
1 ussaw + + L4+
= BW parameter Real 1679 148 84 12 36 16
m
&  UB+BW Real 1672 152 93 10t 37t 137
R Imag 21 304 -10i -9 -18i 411
J BW pole ? Mod |165] | 931 | 14| la1] {171
Fi5 GERN (EPSA) Only
Parameter
Mass T r T
Origin .‘(tOtal) (Nm) [an(P)]
I iomatrix Real 1693 183 107 77
R pole ea
~
E T-matrix Real 1659 70
N Imag ——-1581 -24i
l pole & Mod ’ 74[
I upsnw
E BW parameter Real 1678 135 82 53
m TN e
2 UB+BW Real 1664 75
Imag -1'—5-9—" =154
l BW pole ? Mod i77!

*T-matrix pole has complex positio

of the moduli of l‘i.

n and partial width (Fi)'

Modulus of r(toial)

is the sum

Rcal

Real
Imayg
Mod

Real

Reat
Imag
Mo

Real

Real
Imag
Mod

Real

Real
Imag
Mod

Real

Real
Imap
Mod

-.;8_



Table V

4 Channel, Medium Backaround, F15 Saclay (’EPSAHN'rn
Qheter
Mass r r r Iy
Origin {total} (Nw) [ An{p}] (NPS/Z‘p)] F[NE(D)]
K-matrix
i ole Real 1682 152 81 7t 50 * 14t
% from Table II
=~
 T-matrix Real 1669 138 89 7* 0*t 12 ¥
& pole? tmag 1331 -51i -20: 9 -25i 151
l from Table IV Mod | 161} o1, h12] ' 39 ot
l Unitarized + . +
T (UB+BW) Real 1678 142 81 16 30 15
m BW parameter
m
B Unitarized Real 1669 137 84 gt 35t 10 F
5  (UB+BW) Imag 1201 2351 o120 7 158 -15i
l BW pole ? 151 | 85! D11 "38 f1T!
r UB+BW + + +
L B¥ paramete Real 1679 141 80 12 34 15
D yB+BW Real 1672 144 87 107 35+ 12 %
A 1ofe.
= Imag % 254 -7 9 -16i S1ti
l BW pole Mod ‘154 ls7] 113§ DY t1g]
F15 Saclay (EPSA) Only
Parameter
Mass Tiotay Tivmy  Tlame)]
Origin
| K-matrix Real 1692 179 104 75
™ pole
[e]
@ T-matrix Real 1658 64
5 Imag <i21i -26i
| pote 2 Mod | 69]
r UB+BW
2 BW parameter Real 1677 77 50
= e
L UB+BW Real 1665 71
o Imag ;1? -13i
J BW pole® Mod 173

3T -matrix pole has complex position and partial width (I‘i). Modulus of T

of the moduli of .

(total) is the sum

Real
Imag
Mod

Real

Real
Imag

Mod

Real

Real
Imag

Mod

Feal

Real
fmag
Mod

- ?9-



Table VI. Sign of all couplings from Breit-Wigner refit made by
eyeball in sequence S, P, D. F,

Table Via
Wave S11 CERN, First pole
{a)
Channel Naq L =0 Ne, L = 1 Npi/Z'L:() Nun L=20
Sign
coupling t + * +
Angle -20° 10° -10° 40°
Wave S11 Saclay, Firat pole
(a)
Channel N L =0 Ne L =1 Npi/z.Lzo Nnqn, L=20
Sign + + + +
coupling
Angle -20° 20° -20° 40°
&
w
1
Wave 511 CERN, Second pole
Channel Nw~, L=0 Ne L= 1 Npi/z,Lzo Nnq, L=20
Sign
coupiing + - + ' -
Angle -20° -40° -40° -30°

aNq channel is not in N wx; this sign has been defined as positive.




Table VIb

Wave S11 Saclay, Second Pole
Ck~nnel Nw L .0 Ng¢ L=1 NPI/Z'L 0 Ny L0
Sign . + _ ; _
coupling
Angle 20° -40° ~40° -20°
S34 CERN
Channel N# L=0 Aw L =2 Npi/Z’L‘:O
Sign
. + - -
coupling
Angle -45° 0 45°
3
i
531 Saclay 1
Channel Nw, L=20 Anx, L =2 Npi/Z’L:D
Sign
: + - -
coupling
Angle -45° 0° 45°




Table Vic

Wave P11 CERN, First Pole
Channel N L=z Am L= 1 Nc¢ L=0
Sign + 4 -
coupling
Angle -30° -60° -40°
Wave P11 Saclay, First Pole
Channel Nw L =1 Awx, L=1 Ne L=0
Sign . . 4 _
coupling
Angle -30° -60° -40°
Wave P11 CERN, Second Pole
Channel NrL-=1 Am L=1 Ngcg L=0 1
@
Si i
ign + _ + 1
coupling
Angle -50° -10° -40°




Table VIA4 -

Wave

P11 Saclay, Second Pole

Channel

Sign
coupling

Angle

Nmw L -

-50°

Arw, L 1 N¢, L =0

~10° -30°

Wave

Pi3 CERN

Channel

Sign
coupling

Angle

NPi/Z'L'j

-45°

Wave

P13 Saclay

Channel

Sign
coupling

Angle

Na L -

-45°

1

—98_

Npi/z,L:‘.l

-45°




Table Vie

Wave D13 CERN, First Pole
Channel mn L =2 Awm L=0 Np3/2,L:0 N ¢ L=t Aw L-=2
Sign . 4 . + . B
coupling
Angle 5o 35¢° 5¢ -65° -5°
Wave D13 Saclay, First Pole
Channel m L= 2 Aq L:=0 Np3/2,L:0 N g Lis1 A, L2
Sign )
. 4 - + + -
coupling
Angle 5° 35° 5e -65° -5°
Wave D13 CERN, Second Pole
Channel m, L= 2 A rm, L=0 NPB/Z’L:O N ¢ L:=1 Am L-=:-2
Sign . s - _ R
coupling
Angle -20° -60° 70° -80° -60°

_LB-



Table VI

Wave D13 Saclay, Second Pole
Channel Nwm L -2 Aw L =0 Np3/2,L=0 Ne L1 A, L 2
Sign . N _ - _
coupling
Angle -20° -60° 70° -80° ~-60°
Wave D13 CERN, Third Pole
Chrannel Nm L =2 Aq, L=0 Np3/2,L=0 NeL:1 Aw L2
Sign R 4 _ ? 5
coupling
Angle -40° 8a- -40° ? ?
Wave D13 Seclay, Third Pole
Channel N L =2 Aw, L =0 Np3/2,L:O Ne Lo:2 Aw, L 2
Sign . + + _ » »
coupling
Angle -40° 80° -40° ? ?

-88_



Table Vig

Wave D33 CERN
Channel Nm L =2 Aw, L=0 Np3/2,L:O
Sign + + +
coupling
Angle -30° -60° 0°
Wave D33 Saclay
Channel Nqq L -2 Aqm, L=0 Np3/2’L:0
Sign R 4 + 4
coupling
Angle -30° -60° 0°
Wave D15 CERN o
N
'
Channel Na L =2 Aq, L =2
Sign 5 _
coupling

Angle

-10° -20°




Table VIh

Wave D15 Sactay
Channel Nm L - 2 An L =2
Sign . _
coupling '
Angle -10° -20°
Wave FIs CERDN
Channel Nm L - 3 A qw, L =1 Np3/2,I_.: 1 N¢, L 2
Sign . + 4 4 -
coupling
Angle -10° 10° -10° -30°
Wave F15 Saclay '
JE— 0
o
Channel Naw L -3 A« L =1 N P3/z L 1 N ¢, L 2 !
Sign . + + +
coupling
Angle -10° 10° -10° -30°




Table VIi

Wave F35 CERN
Channel Nw L=3 Aqw, L=3 N pB/Z,L: 1
Sign ~ . ~
coupling ’ ’
Angle -25° -50° -75°
Wave F 35 Saclay
Channel Mg L 3 Awm L 3 Np 3/2° I.:1
Sipn
. 4 4 -
coupling
Angle -25° -50° -75°
Wave F 37 CERN
Channel N w L=-3 Aw, L=3 Np3/2'L:3 Ap, L 1
Sign a
: 4 1 - ¢
coupling
Angle -10° 20° -80° -40°

a . .
A p channel is not in

Now; its sign has been defined as

positive.

_'Fé-.



Table VIj

Channel NmL=3 Awm L=3 NPB/Z’L:3 Ap, L =1
Sign 3 3 - @
coupling

Angle -10° 20° -80° -40°

a

2 p channel is not in Nwm its sign has been defined as positive.




Cross-section ratio for n N, assuming

Table VII,
S-wave dominance at 1520-1590 MeV, c.m.
Energy 1520 1530 1540 1560 1590
C, .120 425 125 130 40
c, .025 .025 .025 .01 0.0
‘P11 .01 .01 .01 .0015 0.0
%511
c, .01 .045 .055 .07 .06
“p13
{only) .001 016 .024 .036 .045
g
S11
D15
{only) .001 .010 016 .024 .63 5
w
H
C, 0.0 0.0 0.0 0.0 -.05
o]
UF”’ 0.0 0.0 0.0 0.0 .02
S11




FIGURE CAPTIONS

Fig. 1. S-channel diagram for isobar a outgoing and isobar B incoming,
where B{q,£) is square root of Blatt-Weisskopf8 barrier factor for
momentum q in an angular momentum state £. Wa is the Watson
final state factor for the « isobar. A, is the elastic Argand ampli-
tude for particles that make up the isobar.

Fig. 2. Diagram of 1-112 for the six different rescnances used in de-
termining the cverall phase.

Fig. 3. Flow diagram for the reduction of four sets of d)i’s to one set
of ¢i's, using Eqs. (33) and (35).

Fig. 4.1, Argand diagrams and partial wave cross sections for the
elastic and inelastic channels, The smooth curve on the Argand
diagrams is the amplitude obtained from the K-matrix when the
description was possible. Cross-hatched marks on the curvce
correspond to the energies D, E, F, etc. the arrows indicate the
known resonances of Table V. The total inelastic contribution in
each elastic wave (#) is compared with the sum of the inelastic con-
tributions we observe (*). Facing each inelastic Argand diagram,
we give the variation with energy of the square modulus of the wave.
{This caption also applies to Figs. 4.2 through 4.16.)

Fig. 5. Three different paths &, A', A" in the E plane. E is the di-
particle mass that makes up the isocbar. W is the complex N's
{three body) where one searches for poles in the three-body

- T-matrix.

Fig. 6. The paths of Fig. 5 deformed so that they only differ by inte-
gration around the pole.

Fig. 7. The branch cuts in the A's or W plane (total c.m. cnergy)

generated by the pole in the final state interaction of the isobar.

~Fh~



Fig. 8. Three different paths of integration in the E plane at four dif-
ferent values of W. The dashed line is the projection of the branch

cut from the W plane which is not crossed by W-m3 as it moves

from (a) to {d).

Fig. 9. ‘"Three points on the A, A', and A" sheets and how one has to
travel from them to the physical region in a continuous way.

The poles of the F15 T-matrix which lies near pN threshold.

Fig. 10.
Each sheet is generated by the pN cut.
Fig. 11. Argand diagrams from U(UB + BW) refit to F35 wave. Solid
line is the U(UB + BW) amplitude, while dashed line is the unitary
background UB. Energy range is from 1740 to 1900 Mé&V, where
arrows point direction of increasing energy. Ae.l is the change of
rotat;on angle of Breit-Wigner in this energy range. See Eq. (65).

Fig. 12. K-matrix prediction for Nn S11 first moment plotted against

total cross section.
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