

UNCLASSIFIED

X-822

OAK RIDGE NATIONAL LABORATORY
Operated By
UNION CARBIDE NUCLEAR COMPANY

UCC

POST OFFICE BOX P
OAK RIDGE, TENNESSEE

ORNL

CENTRAL FILES NUMBER

CF-57-1-107

External Transmittal Authorized

COPY NO. 96

DATE: January 8, 1957

SUBJECT: HRT Source Shield Calculations

TO: S. E. Beall

FROM: P. N. Haubenreich and
G. W. Rivenbark

Distribution

1. HRP Director's Office	32. P. N. Haubenreich	59. G. W. Rivenbark
2. G. M. Adamson, Jr.	33. J. W. Hill, Jr.	60. R. C. Robertson
3. W. L. Albrecht	34. R. F. Hughes	61. J. N. Robinson
4. H. F. Bauman	35. J. P. Jarvis	62. A. M. Rom
5. S. E. Beall	36. G. H. Jenks	63. H. C. Savage
6. E. G. Bohlmann	37. R. W. Jurgensen	64. H. K. Search
7. N. C. Bradley	38. S. I. Kaplan	65. C. H. Secoy
8. R. E. Brooksbank	39. P. R. Kasten	66. C. L. Segaser
9. N. A. Brown	40. A. S. Kitzes	67. M. J. Skinner
10. F. R. Bruce	41. J. O. Kolb	68. I. Spiewak
11. J. R. Buchanan	42. R. B. Korsmeyer	69. R. W. Stoughton
12. W. D. Burch	43. K. A. Kraus	70. J. A. Swartout
13. C. A. Burchsted	44. J. A. Lane	71. E. H. Taylor
14. R. D. Cheverton	45. R. E. Leuze	72. W. Terry
15. C. J. Claffey	46. R. B. Lindauer	73. D. G. Thomas
16. E. L. Compere	47. M. I. Lundin	74. D. S. Toomb
17. J. S. Culver	48. R. N. Lyon	75. T. C. Weeks
18. N. W. Curtis	49. J. P. McBride	76. K. W. West
19. W. K. Eister	50. H. A. McLain	77. R. R. Wiethaup
20. J. R. Engel	51. H. M. McLeod	78. H. D. Wills
21. D. E. Ferguson	52. R. A. McNees	79. R. H. Winget
22. J. D. Flynn	53. E. C. Miller	80. R. Van Winkle
23. D. F. Frech	54. R. C. Moren	81. C. E. Winters
24. C. H. Gabbard	55. E. O. Nurmi	82. W. L. Wright
25. W. R. Gall	56. L. F. Parsly	83. F. C. Zapp
26. E. H. Gift	57. W. D. Reel	84. ORNL Div. Ref. Lib., Y-12
27. T. H. Gladney	58. D. M. Richardson	Central Res. Lib.
28. J. C. Griess		85. REED Library
29. J. D. Grimes		86-87. ORNL-RC
30. R. H. Guymon		88. Lab. Records
31. P. H. Harley		89-91. EXTERNAL DIST.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

UNCLASSIFIED

926-1 96-110. TISE, AEC,

92-94. Westinghouse PAR Proj.
95. F. C. Moesal, Div. of
Reactor Dev., AEC, Wash.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

DO NOT
PHOTOSTAT

HRT SOURCE SHIELD CALCULATIONS

INTRODUCTION

The antimony-beryllium neutron source for the HRT critical experiment will be shielded in the lead-filled HRT sample carrier which will be temporarily located inside a small tank of borated water. The lead carrier will be removed from the water tank and placed over the reactor while loading the source into the reactor.

An estimate of the effectiveness of these shields was necessary because the carrier and water tank were not originally intended to be used as shields for the source.

SUMMARY

Calculations indicate that the proposed shielding arrangement will give a dose rate at the surface of the water tank of about 100 mrem/hr, practically all gammas. This is adequate for transportation and handling, but if the radiation actually proves to be this high, a storage location isolated from normal working areas must be provided. The isolation area need not be large, however, since the calculated dose rate at ten feet from the shielded source is only 3.5 mrem/hr.

For the short time required to transfer the source from the water tank into the reactor, the lead carrier alone will provide sufficient shielding. At one meter from the source shielded by the lead carrier, the dose rate is estimated to be 170 mrem/hr, with neutrons contributing the major part. Thus, with reasonable care, the operation should be carried out without excessive exposures.

The results of the calculations are summarized in Table I.

CALCULATIONS

The HRT antimony-beryllium source (shown on ORNL Dwg. C-25527) is being irradiated in the LITR lattice. At the time of removal from the reactor, the estimated source strengths will be as follows:²

0.08 Mev neutrons	$8 \times 10^8 \text{ sec}^{-1}$
1.7 Mev gammas	$8.4 \times 10^{12} \text{ sec}^{-1}$
2.06 Mev gammas	$7.2 \times 10^{11} \text{ sec}^{-1}$
2.3 Mev gammas	$6 \times 10^9 \text{ sec}^{-1}$

The sample flask holder carrier is shown on ORNL Dwg. D-21590, and the water tank on ORNL Dwg. E-27750.

¹C. A. Burchsted and C. L. Segaser, HRT Source Handling Facilities, ORNL CF-56-11-58 (Nov. 15, 1956).

²The neutron source strength was estimated by comparison with another antimony-beryllium source of known strength.

Unclassified

-3-

TABLE 1

Dose Rates, rem/hr

Type of Radiation	0.8 Mev Neutrons	Thermal Neutrons	Primary Gammas	Secondary Gammas	Total
Dose Location And Type of Shielding					
Unshielded Source at One Meter	0.10	0	240	0	240
Surface of Carrier Out of Water	3.2	0	2.2	0	5.4
Surface of Borated Water Tank	0	0	0.078	0.020	0.098
One Meter From Source in Carrier- No Water	0.10	0	0.070	0	0.17

Unclassified

226 5

Dose at Surface of Lead Carrier

For these calculations the source was treated as a point at the center of a sphere having a radius equal to the thickness of the side walls on the carrier.

Gammas

The flux of primary gammas at the surface of the carrier is given by:

$$\phi_{\gamma i} = \frac{s_{\gamma i} e^{-\sum \mu_i x}}{4\pi r^2}$$

The wall thickness is 17.86 cm: 15.3 cm of lead and 2.56 cm of steel. Absorption coefficients are tabulated below (mass absorption coefficients from Table 2.3.1, Reactor Handbook I, multiplied by density).

Gamma Absorption Coefficients μ_i , cm^{-1}

E_i , Mev	μ_i , cm^{-1}		
	Lead	Iron	Water
2.00	0.56	0.36	0.054
2.06	0.51	0.32	0.049
2.3	0.50	0.31	0.046

The dose rate due to gammas of a particular group is

$$D_{\gamma i} = B_i \phi_{\gamma i} / a_i$$

where "a" is a factor converting flux to dose rate and "B" is a dose buildup factor which accounts for the buildup of scattered radiation. For the gamma energies around 2 Mev and for the number of attenuation lengths through the carrier wall, the buildup factor is about 4. Flux-dose rate conversion factors are shown below.³ Also, tabulated are the fluxes of primary gammas and the dose rates at the surface of the carrier.

³T. Rockwell III, Reactor Shielding Design Manual, Fig. 2.2.

E_i , Mev	$a, \frac{\gamma \cdot hr}{cm^2 sec R}$	$\phi_{\gamma_i}, \frac{\gamma}{cm^2 sec}$	$D, \frac{R}{hr}$
1.7	3.5×10^5	1.58×10^5	1.81
2.06	3.0×10^5	0.31×10^5	0.40
2.03	2.8×10^5	0.3×10^3	0.00
			2.21

The fast (~ 80 kev) neutrons will stream through the lead with practically no reduction in intensity or energy. Thus at the surface of the carrier

$$\phi_n = \frac{S_n}{4\pi r^2} = \frac{8 \times 10^8}{4\pi (17.86)^2} = 2.00 \times 10^5 \text{ n/cm}^2 \text{ sec}$$

The flux of 80 kev neutrons corresponding to 1 rem/hr is $6.2 \times 10^4 \text{ n/cm}^2 \text{ sec}$.⁴ Thus the neutron dose rate at the carrier surface is

$$D_n = \frac{2.00 \times 10^5}{6.2 \times 10^4} = 3.2 \text{ r/hr}$$

Dose at One Meter From Unshielded Source

With no shielding around the source, the fluxes are given by

$$\phi = \frac{S}{4\pi r^2}$$

⁴Ibid., Fig. 2.3.

Fluxes and dose rates one meter from the unshielded source are shown below:

	<u>ϕ, cm⁻² sec⁻¹</u>	<u>D, r hr</u>
Fast Neutrons	6.4×10^3	0.10
1.7 Mev gammas	6.7×10^7	223
2.0 Mev gammas	5.7×10^6	19
2.3 Mev gammas	4.8×10^4	0.17
		242

Dose One Meter From Source Inside Carrier

The doses at one meter from the source shielded by the carrier are

$$D_y = 2.21 \left(\frac{17.86}{100} \right)^2 = 0.070 \text{ r/hr}$$

$$D_n = 0.10 \text{ r/hr} \text{ (same as for no shield)} .$$

Dose at Surface of Water Shield

The flux of primary gammas at the outside of the water shield is obtained in the manner indicated above for the flux at the surface of the lead. The effective dose buildup factor is taken as the product of the buildup factors for the lead and for the water. The total dose rate for primary gammas is found to be 78 mrem/hr.

The neutron flux at the surface of the water tank can be estimated by assuming an isotropic source of 0.08 Mev neutrons at the surface of the lead. For a source strength of $2.0 \times 10^5 \text{ n/cm}^2 \text{ sec}$ and with pure water in the tank, the thermal neutron flux at the surface was calculated by age-diffusion treatment to be $22 \text{ n/cm}^2 \text{ sec}$. This is equivalent to 0.05 mrem/hr. The uncollided flux is insignificant.

In order to reduce secondary gamma production due to neutron capture in the water and outer regions of the lead, boron should be added to the water. With 6.7 gm B/kg H₂O (maximum solubility of H₃BO₃ in H₂O at 20°C), about 95 percent of the absorptions in the liquid will be in boron. For this concentration, the secondary gamma dose rate at the surface will be approximately 20 mrem/hr. (Based on the conservative approximation that all the source neutrons are

Unclassified

-7-

absorbed and that all the capture gammas escape.) The boron will cause the neutron leakage to be much lower than the already low figure given above for pure water.

Paul N. Haubenreich
P. N. Haubenreich

G. W. Rivenbark
G. W. Rivenbark

PNH-GWR:be

Unclassified

926 7

127