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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendatijon, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




TUESDAY, APRIL 9TH

SESSION I
Topic: Session Chair: Room A
Nonlinear Homer Walker
8:00 -8:30 M.D. Tocci Method of Lines Solution of Richards' Equation
8:30 - 9:00 C.T. Kelley A Multilevel Method for Conductive-Radiative Heat Transfer
9:00 - 9:30 H. Walker An Adaption of Krylov Subspace Methods to Path Following
9:30 - 10:00 J. Neuberger A Numerical Method for Finding Sign-Changing Solutions of

Topic: Session Chair: Room B
Parallel Loyce Adams
8:00 -8:30 A. Basermann Parallel Preconditioning Techniques for Sparse CG Solvers
8:30-9:00 M. Field Optimising a Parallel Conjugate Gradient Solver
9:00 - 9:30 A. Grama Parallel Iterative Solvers and Preconditioners Using Approximate
Hierarchical Methods .
9:30 - 10:00 G. Li A Block Variant of the GMRES Method on M:;

B s

Topw Session Chair:
Preconditioning  Seymour Parter
8:00 -8:30 C. Brooking Using Sparse LU Factorisation to Precondition GMRES for a Family
of Similarly Structured Matrices Arising from Process Modelling
8:30-9:00 C.H. Guo Incomplete Block Factorization Preconditioning for Indefinite Elliptic Problems
9:00 - 9:30 S.D.Kim Preconditioning Cubic Spline Collocation Method by FEM and FDM
for Elliptic Equations
9:30 - 10:00 S. Parter Preconditioning Chebyshev Spectral Methods by Finite-Element and

Finite-Difference Methods

SESSION II
Topic: Session Chair: Room A
Nonlinear Homer Walker
10:30 - 11:00 D. Knoll Enhanced Nonlinear Iterative Techniques Applied to a Non-Equilibrium
Plasma Flow
11:00 - 11:30 V. Pan Newton's Iteration for Inversion of Cauchy-like and Other Structured Matrices
11:30 - 12:00 M. Drexler _Erz}g:tal ects 31-1(.1 "C_qpver ence qf lfl_gw?pn_'s Method
Topic: T Session Chair: '
Parallel Loyce Adams
10:30 - 11:00 G.C.Lo Tterative Solution of General Sparse Linear Systems on Clusters of
Workstations
11:00 - 11:30 Q. Yao New Concurrent Iterative Methods with Monotonic Convergence
11:30 - 12:00 R. McLay Improving Matrix-Vector Product Performance and Multi-Level

Preconditioning for the Parallel PCG Pac};a




Topic: Session Chair: Room C
Preconditioning  Seymour Parter

10:30 - 11:00 M. Tuma Approximate Inverse Preconditioning of Iterative Methods for
Nonsymmetric Linear Systems
11:00 - 11:30 I. Mishev Comparison of Different Preconditioners for Nonsymmetric Finite Volume
' Element Methods
11:30 - 12:00 C.W. Qosterlee An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for
Topic: Session Chair: Room A
Nonlinear Homer Walker
4:45 - 5:15 M. Pernice NITSOL: A Newton Iterative Solver for Nonlinear Systems
5:15-5:45 M. Trummer Nonsymmetric Systems Arising in thé Computation of Invariant Tori
\5 : R R-en-;a-.yf\.\"?*\'-w%gf%ir}eaiiﬂ%gaﬂSaq'u?—rgsaPQ>N:()—llﬁnearPfoPl'e'{ns ------- R AT
Topic: Session Chair: Room B
Parallel Loyce Adams )
4:45-5:15 V. Menkov Solving Block Linear Systems with Low-Rank Off-Diagonal Blocks is
Easily Parallelizable
5:15-5:45 Y. Shapira ‘ Parallelizable Approximate Solvers for Recursions Arising in Preconditioning

D

pric.‘ Session Chair: . Room
Preconditioning  Seymour Parter

4:45-5:15 J.D. Moulton .Approximate Schur Complement Preconditioning of the Lowest Order
Nodal Discretizations ‘

5:15-5:45 K. Chen On Preconditioning Techniques for Dense Linear Systems Arising from
Singular Boundary Integral Equations

5:45-6:15 .L. Fast Wavelet Based Sparse Approximate Inverse Preconditioner

6:15 - 6:45

L

Room TBA Workshop Chair
7:30 p.m. I Duff Sparse Matrix Test Collections




Topic:
FOSLS

8:00 -8:30

8:30 - 9:00

9:00 - 9:30

9:30 - 10:00

Topic:
Parallel

8:00 -8:30

8:30 - 9:00

9:00 - 9:30

9 30 10 00

Toptc
Preconditioning

8:00 -8:30

8:30 - 9:00

9:00 - 9:30

9 30 lO 00

Topic:
FOSLS

10:30 - 11:00

11:00 - 11:30

..............

W Ji oubert Evaluauon of Parallel Lmear Solvers for 011 Reservmr Slmulanon Problems

T Huckle

WEDNESDAY, APRIL 10TH

SESSION I
Session Chair: Room A
Steve McCormick

T. Manteuffel First-Order System Least Squares (FOSLS) an Overview

S. McCormick First-Order System Least Squares (FOSLS) for the Pure Traction Problem

in Linear Elasticity
P. Bochev Tterative Least-Squares Solvers for the Navier-Stokes Equations
G. Starke Least-Squares Finite Element Discretizations of Neutron Transport

uatlons m 3 Dlmensmns

Sesswn Chazr' e . ' Room B

Paul Saylor

K. Maschhoff A Portable Implementation of ARPACK for Distributed Memory Parallel
Archetectures

P. Gray Tteration Schemes for Parallelizing Models of Superconductivity

S. Veroneses Scalable Implicit Methods for Reaction-Diffusion Equations in Two & Three
Space Dimensions

Sesszon Chazr'a e .koom C
TBA
X. Wang A Necessary and Sufficient Symbolic Condmon for the Existence of
Incomplete Cholesky Factorization
V. Il'in Advanced Incomplete Factorization Algorithms for Stiltijes Matrices
S. Holmgren Convergence Acceleration for Time-Independent First-Order PDE Using
Optimal PNB-Approximations

& e § 1

Iteratlve Methods for S etric Ill-Condltloned Toe litz Matnces

SESSION II
Session Chair: Room A
Steve McCormick
G. Fix Application of Least-Squares Principles in Optimal Shape Design Problems
B. Bloechle First-Order Least-Squares for Second-Order Elliptic Problems with

Discontinuous Coecficients: Further Results

_ .Least-S uares Methods Involvmg H"{ -1} Inner Prod

S. Hutchinson AZTEC: A Parallel Iterative Package for the Solving Linear Systems

11:30 - 12 00 00 L Pgsc1ak
Topzc Session on Chair:
Farallel Paul Saylor
10:30 - 11:00

11:00 - 11:30

11:30 - 12:00

D. Young On the Implementation of Parallel Implicit USSOR Methods for Solving
Discrete Periodic Problems




Topic: Session Chair: ) Room C
Arnoldi's Method TBA :

10:30 - 11:00 F. Raeven A New Arnoldi Approach for Polynomia{ Eigenproblems

11:00 - 11:30 RB.Lehoucq  Re-Starting an Arnoldi Iteration

11:30 - 12:00 1. Elfadel Stable Reduced-Order Models of Generalized Dynamical Systems Using
Coordmate-Tr’msformed Armnoldi Algonthms

SESSION IIT

Topic: Session Chair: Room A
FOSLS Steve McCormick

4:45 - 5:15 B. Lee First-Order System Least-Squares for the Hemholtz Equation

5:15-5:45 C-Y Lai Multilevel Solvers of First-Order System Least Squares for Stokes Equatiox/fs
5:45-6:15 W.T. Mahavier A Numerical Method for Solving Singular DE's

615 645 11 liti

Topzc. Session Chair: Room B
Integral Equations Van Henson

M.A. Noor. Generahzed Qua51 Variati
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4:45-5:15-
5:15-5:45 J. Tausch Preconditioning First & Second Kind Integral Formulations of the
‘Capacitance Problem
5:45 - 6:15 B. Singer Green's Function of Maxwell's Equations and Corresponding Imphcatlons
for Iterative Methods
6 15 6 45 B S 1z Iteratlve Solutlon of Hl h Order Com act S sten_ls ...... .
Topw. o Sesszon Clxaxr ‘ T Room C
Software Tain Duff
4:45-5:15 R. Pozo Library Designs for Generic C++ Spaf'se Matrix Computations of Iterative
Methods
5:15-5:45 F. Saied MGLab3D: An Interactive Environment for Iterative Solvers for Elliptic
PDE:s in Two and Three Dimensions
5 45 6 15 S. Salvini New Iterative Solvers for the NAG Libraries

Room TBA Workshop Chair
7:30 p.m. P. Forsyth Navier-Stokes & Euler Equations




THURSDAY, APRIL 1ITH
SESSION I
Topic: Session Chair: Room A
Navier-Stokes Howard Elman
8:00 -8:30 V. Sarin An Efficient Iterative Method for the Generalized Stokes Problem
8:30 - 9:00 P. Fischer A Deflation based Parallel Algorithm for Spectral Element Solution of the

Incompressible Navier-Stokes Equations

9:00 - 9:30 A. Wathen An Iteration for Indefinite and Non-Symmetric Systems and its Application
to the Navier-Stokes Equations

9:30-10:00  H Elman

T opic: Sesswn Chair: am};“
Krylov Methods M. Gutknecht

8:00 -8:30 T. DeLillo Numerical Conformal Mapping Methods for Exterior and Doubly Connected
Regions

8:30 - 9:.00 M. Sosonkina A New Adaptive GMRES Algorithm for Achieving High Accuracy

9:00 - 9:30 E. de Sturler Truncation Strategies for (Nested) Krylov Methods

Hybrid Lan

9:30 - 10

Type Product Methods

Topu:.

Eigenvalues Homer Walker

8:00 -8:30 K. Wu Preconditioned Krylov Subspace Methods for Eigenvalue Problems

8:30 - 9:00 J. Baglama A Numerical Method for Eigenvalue Problems in Modeling Liquid Crystals
9:00 - 9:30 A. Knyazev A Subspace Preconditioning Algorithm for Eigenvector/Eigenvalue

Computation

9:30 - 10:00 Z Drmac

......................................................
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' SESSTON T
Topic: Session Chair: Room A
Navier-Stokes Howard Elman

10:30 - 11:00 I. Yavneh Fast Multigrid Solution of the Advection Problem with Closed Characteristics

11:00 - 11:30 A.A. Lorber Accelerated Solution of Non-Linear Flow Problems Using
Chebyshev Iteration Polynomial Based Runge-Kutta Recursions

Towards an Ideal Preconditioner for Lmeanzed Nawer-Stokes Problems

11.30 1200 MM h

T,

1; opic: I Sesszon Chalr- e Room B
Krylov Methods M. Gutknecht

10:30 - 11:00 M. Gutknecht Look-Ahead Procedures for Lanczos-Type Product Methods Based on
Three-Term Recurrences

11:00 - 11:30 E. Gallopoulos Solving Modified Systems with Multiple Right-Hand Sides

11:30 - 12:00




Topic: Session Chair: Room C
Eigenvalues Homer Walker

10:30 - 11:00 A. Stathopoulos Thick Restarting of the Davidson Method: an Extension fo Implicit Restarting

11:00 -11:30 X. Zou Splitting the Determinants of Upper Hessenberg Matrices & the Hyman Method

11:30 - 12:00 M. Fernandes A Combined Modification of the Newton's Method for Systems of Nonlinear
Equations .

Topic: Session Chair: Room A

Student Papers T. Manteuffel &

Winners 8. McCormick

4:45-5:15 S. Knapek Matrix-Dependent Multigrid-Homogenization for Diffusion Problems

5:15-5:45 M. Horn A Superlinear Convergence Estimate for an Iterative Method for the
Biharmonic Equation

5:45-6:15 A. Klawonn Triangular Preconditioners for Saddle Point Problems with a Penalty Term

Cash Bar Room TBA

6:45 - 7:30 p.m.
Banquet Room TBA

7:30 -9:30 p.m.




Topic:

Domain Decomp.

8:00 -8:30

8:30 - 9:00
9:00 - 9:30

930 '1000

.....................................................................................................................................................................................

Session Chair:
Olof Widlund

X.C. Cai

D. Keyes
U. Trottenberg

0. Wldlund

FRIDAY, APRIL 12TH

SESSION 1
Room A

Newton-Krylov-Schwarz Algorithms for the 2D Full Potential Equations

Newton-Krylov-Schwarz Methods in Unstructured Grid Euler Flow
Adaptive Parallel Multigrid for Euler & Incompressible Navier-Stokes Equations

Domain Decom sition Methods for Mortar Flmte Elements

..............................

Toptc'
Erylov Methods

8:00 -8:30

8:30 -9:00

9:00 - 9:30

Topic:
CFD

8:00 -8:30

8:30 - 9:00

9:00 -9:30

9:30 - 10:00 _

2085

9:30 -1 '.00.“

Session Chair:

Anne Greenbaum

V. Druskin

D. Sorensen

T. Tamarchenko

_A eenbaum

Extended Krylov Subspaces Approximations of Matrix Functions;
Application to Computational Electromagnetics

Krylov Subspace Methods for Computation of Matrix Functions

Application of Spectral Lanczos Decomposition Method to Large Scale
Problems Arising Geophyics
S

U fthS

Sessron Charr'
TBA

Toptc.
Doman Decomp.

10:30 - 11:00

11:00 - 11:30

11 30 12 00

Topw'
Krylov Methods

10:30 - 11:00

11:00 - 11:30

11:30 - 12:00

Room A

Anne Greenbaum

F. Campos

T. Barth

J. Cullum

X. Zheng Multigrid Solution of Incompressible Turbulent Flows by Using Two-Equation
Turbulence Models

S. Kumar Nonlinear Krylov Acceleration of Reacting Flow Codes

M.D. Tidriri Schwarz-based Algorithms for Compressible Flows

C Liao Multllevel Local Reﬁnement and Multigrid Methods for 3-D 3-D Turbulent Flow

Session Chair:

Olof Widlund

X. Feng A Mixed Finite Element Domain Decomposition Method for Solving
Nearly Elastic Wave Equations in the Frequency Domain

A. Jemcov Representation of Discrete Steklov-Poincare Operator Arising in Domain
Decomposition Methods in Wavelet Basis

J. Xu Sl E 1ﬁed Approach to Some Nonoverlappmg Domam Decomp Methods

Sesszon Chazr

Room B
The Adaptive CCCG(n) Method for Efficient Solution of Time Dependent
Partial Differential Equations

Conjugate Gradient Algorithms Using Multiple Recursions

Tterative Methods for Solving Ax=b, GMRES/FOM versus QMR/BiCG

N




: SESSION 111
Topic: Session Chair: Room A
Domain Decomp. Olof Widlund

4:45-5:15 S. Maliassov Domain Decomposition Metliod for Nonconforming Finite Element
Approximations of Anisotropic Elliptic Problems on Nonmatching Grids

5:15-5:45 H. Zhao Analysis of Generalized Schwarz Alternating Procedure for Domain
Decomposition

5:45-6:15 R. Tezaur Substructuring by Lagrange Multipliers for Solids and Plates

6:15 - 6:45 X.C. Tai ition Algorithms

2

“..Toplc: . Session Chair: = k;omB

Krylov Methods  Anne Greenbaum ’

4:45-5:15 E. Bobrovnikova  Iterative Methods for Weighted Least-Squares

5:15-5:45 A. Lumsdaine Kirylov Subspace Acceleration of Waveform Relaxation

5:45-6:15 C. Wagner Tangential Frequency Filtering Decompositions

6:15-6:45 J. Zhang II:I/Iulti)gerid Solution of Convection-Diffusion Equation with High-Reynolds
umber

: :S‘e.fszon Chair:
Markov Chains Daniel Szyld

4:45-5:15 T. Dayar State Space Orderings for Gauss-Seidel in Markov Chains Revisited
5:15-5:45 G. Horton On the Multi-Level Solution Algorithm for Markov Chains

5:45-6:15 D. Szyld Threshold Partitioning of Sparse Matrices and Applications to Markov Chains
6:15-6:45

Room TBA Workshop Chair
7:30 p.m. Mike Heroux Sparse and Parallel BLAS




SATURDAY, APRIL 12TH

SESSION I

Topic: Session Chair: Room A
Multigrid Joel Dendy
8:00 -8:30 R. Alchalabi Multigrid Method Applied to the Solution of an Elliptic, Generalized

Eigenvalue Problem
8:30 - 9:00 J. Dendy Some Multigrid Algorithms for SIMD Machines
9:00 - 9:30 C. Douglas Multigrid on Unstructured Grids Using an Auxiliary Set of Structured Grids
9:30 - 10:00 M. Griebel Multiscale Iterative Methods, Coarse Level Operator Construction and

Applications BA

8.00 - 8:30 H.C. Chen Embedding SAS Approach Into Conjugate Gradient Algorithms for
Asymmetric 3D Elasticity Problems

8:30 - 9:00 M. Clemens Iterative Methods for the Solution of Very Large Complex-Symmetric
Linear Systems of Equations in Electrodynamics

9:00 - 9:30 T. Cwik Matrix Equation Decomposition and Parallel Solution of Systems Resulting

from Unstructured Finite Element Problems in Electromagnetics

S.W.

i’opzc: - Session Chair:

Room C.

Multiple RHS Roland Freund

8:00 -8:30 W. Boyse Multiple Solutions to Dense Systems in Radar Scattering using a
Preconditioned Block GMRES Solver

8:30 -9:00 R. Freund The BL-QMR Algorithm for Non-Hermitian Linear Systems with Multiple
Right-Hand Sides

9:00 - 9:30 M. Malhotra Iterative Solution of Multiple Radiation and Scattering Problems in

Structural Acoustics Using the BL-QMR Algorithm

9:30 - 10:00 Galerkin Projection Methods for Solving

e SESSION II

Topic: Session Chair: Room A

Multigrid Joel Dendy

10:30 - 11:00 R. Hornung Adaptive Mesh Refinement and Multilevel Iteration for Multiphase,
Multicomponenet Flow in Porous Media

11:00 - 11:30 J. Jones Semi-Coarsening Multigrid Methods for Parallel Computing

11:30 - 12:00 P. Vanek An Algebraic Multigrid Algorithm for Symmetric Positive Definite Linear

S




Topic: Session Chair: Room B
Applications TBA

10:30 - 11:00 A, Frommer Lattice QCD Computations: Recent Progress with Modern Krylov
Subspace Methods
11:00 - 11:30 R. Karamikhova  Numerical Solution of High-Kappa Model of Supérconductivity
11:30 - 12:00 M. Heroux The Impact of Improved Sparse Linear Solvers on Industrial Engineering
| pplicati
% LR U S R D N R N R Sa 5433
Topic: Session Chair: Room C
Projection Methods Roland Freund
10:30 - 11:00 A. Popov Projection Preconditioning for Lanczos-Type Methods
11:00 - 11:30 R. Bramley Partial Row Projection Methods
11:30 - 12:00 P. Kolm Generalized Subspace Correction Methods ‘
p SN T LN DI I 2 L e s o :-:.:.:.545{#{-:%::.-,-?.-:-25?%
SESSION III
Topic: Session Chair: ‘ , i Room A
Multigrid Joel Dendy '
4:45-5:15 S. Oliveira A Multigrid Method for Variational Inequalities
5:15-5:45 W. Schmid A Multigﬁd Solution Method for Mixed Hybrid Finite Elements
5:45-6:15 . H.J. Bungartz A Unidirectional Approach for d-Dimensional Finite Element Methods of
Higher Order on Sparse Grids

Two-Level Method with Coarse Space Size Independent Convergence

Applications Tom Russell

4:45-5:15 C. Yang Numerical Computation of the Linear Stability of the Diffusion Model for
Crystal Growth Simulation

5:15-5:45 L. Borges Highly Indefinite Multigrid for Eigénvalue Problems

5:45-6:15 G.S. Lett An Adaptive Nonlinear Solution Scheme for Reservoir Simulation

6:15 - 6:45 v A. Cardona An Iterative Method to Invert the LTSn Matrix

e R

Topic: Session Chair Room C

Helmholtz Roland Freund

4:45 - 5:15 E. Larsson Iterative Solution of the Holmholtz Equation

5:15-5:45 S.Kim Tterative Procedures for Wave Propagation in the Frequency Domain

5:45-6:15 J. Yoo Mutltigrid for the Galerkin Least Squares Method in Linear Elasticity:

The Pure Displacement Problem

6:15 - 6:45
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TUESDAY, APRIL 9TH
Topic: Session Chair: Room A
Nonlinear Homer Walker
8:00 ~8:30 M.D. Tocci Method of Lines Solution of Richards' Equation
8:30 - 9:00 C.T. Kelley A Multilevel Method for Conductive-Radiative Heat Transfer
9:00 - 9:30 H. Walker An Adaption of Krylov Subspace Methods to Path Following
9:30 - 10:00 J. Neuberger A Numerical Method for Finding Sign-Changing Solutions of

Superlinear Dirichlet Problems




Method of Lines Solution of Richards' Equation

C. T. Kelley, C. T. Miller, and M. D. Tocci
Speaker: M. D. Tocci

We consider the method of lines solution of Richards' equation, which models flow
through porous media, as an example of a situation in which the method can give incorrect
results because of premature termination of the nonlinear corrector iteration. This
premature termination arises when the solution has a sharp moving front and the Jacobian
is ill-conditioned. While this problem can be solved by tightening the tolerances provided
to the ODE or DAE solver used for the temporal integration, it is more efficient to modify
the termination criteria of the nonlinear solver and/or recompute the Jacobian more
frequently. In this paper we continue previous work on this topic by analyzing the
modifications in more detail and giving a strategy on how the modifications can be turned
on and off in response to changes in the character of the solution.




A MULTILEVEL METHOD FOR CONDUCTIVE-RADIATIVE HEAT
TRANSFER *

J. M. BANOCZI'AND C. T. KELLEY?

We present a fast multilevel algorithm for the solution of a system of nonlinear
integro-differential equations that model steady-state combined radiative-conductive
heat transfer. The equations can be formulated as a compact fixed point problem with
a fixed point map that requires both a solution of the linear transport equation and
the linear heat equation for its evaluation. We use fast transport solvers developed
by the second author {12], [10], to construct an efficient evaluation of the fixed point
map and then apply the Atkinson-Brakhage [2], [3], method, with Newton-GMRES
as the coarse mesh solver, to the full nonlinear system.

1. Introduction. We consider the normalized dimensionless form of the equa-
tions [17), [26], [27]. The radiative transport equation is

® e rven=2[ vem)d+a-de'e),

for z € (0, 7) with boundary conditions

1
2 $(0, ) = &10F + pj (0, — ) + 2pf /0 P(0,—p)p dp', p > 0
and

1 .
(3) P(r, ) = €:OF + p2 (7, —p) + 20 /0 P(r, 1) dp', p < 0.

In the boundary conditions (2) and (3) &; > 0 for ¢ = I, . The coefficients for specular
(p;,p2) and diffuse (pff, p?) reflection satisfy

(4) pdpi>0and g +pi+pf=1fori=1r.
The local albedo ¢(z) satisfies
0<c(z)<1lforallzel0,7].

Even though we consider the dimensionless form of the equations, we will still
refer to © as temperature, 9 as intensity, and

() f(=) = % / :1/)(1:,#’) dy’

as the scalar flux.

* C. T. Kelley will present the paper.

t North Carolina State University, Center for Research in Scientific Computation and Department
of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA. This research was supported by National
Science Foundation grant #DMS-9321938 and a Cray Research Corporation Fellowship. Computing
activity was partially supported by an allocation of time from the North Carolina Supercomputing
Center.




The temperature © satisfies the diffusion equation.

© 20 Q).

for # € (0, 7) with boundary conditions ‘

(7) o 0(0) = ©,0(r) = 6y,

and coupﬁng to the radiative iransport equation by

® o) = g [ ey ai.
2N.dzJ _;

In (8) N, is the conduction to radiation parameter [17]. ‘
As in [9] the order of integration and differentiation in (8) can be changed and
we obtain

- d ! ’ ’ r_ 1 v 0 ! !
© &) Fe@maw = [ H e
Hence, for 0 < z < 7, '
(10) Qz) =(2)(0*(z) - f(2)),
where f is the scalar flux given (5) aid
(11) | a(z) = (1 — c(z))/N..

2. Formulation as a Fixed Point Problem. Following [9j, we express the
nonlinear system as a compact fixed point problem in the function © alone. ‘The fixed
point map © — 7(©) is computed as follows. ‘ A ’

1. Solve the transport problem (1), (2), (3) and obtain f. This problem has a
unique solution for any ©. i

2. Use © and f to form the right hand side of (6) using (10).

3. Solve Tz = @ subject to the boundary conditions (7) and set 7(0) = T.

The map 7 is a completely continuous map on C[0, 7], [9], and it is natural to
apply fast algorithms for compact fixed point problems, such as those from [2], [3], [7],
[12], or [10]. The most efficient of these, when applicable, is the algorithm described
in [10] and [12}, which requires only one fine mesh fixed point map evaluation at each
level. In order to apply that algorithm the discretization and fine-to-coaise intergrid
transfers must be managed carefully. That can be done at least for the transport
solve (step 1) in the problem under consideration here. We hope to report on the
application of the method of [10] to the complete problem in the full paper.

Currently we solve the full problem with the method of [2]. In order to apply
this method, we construct a strongly convergent and collectively compact [1] sequence
of approximations to 7, {7;}. This is done with a finite difference discretization of
© in space and a diamond-difference discreté ordinate discretization of the transport
equation in space-angle. The transport solver for step 1 uses the method of [12] for
efficiency with GMRES, [25], as the coarse mesh solvet. Having formed the right hand
side of (6), step 3 is carried out using a standard direct tridiagonal solver.

e — e e o e =
pa R

e e e -



Using interpolation and restriction operators where necessary, we can regard 7;
as a map on C[0, 7], [24], [12]. Nonlinear fixed point problems for the approximate
maps

u—Ti(u)=0

are solved by first solving finite dimensional nonlinear equations and then using a
variant of Nystrdm interpolation [2], [16], [22], to recover the values of the solution
at arbitrary points in [0, 7]. As will become clear from the description of the solver
in § 3 we must only perform this solve at the coarsest mesh. Similarly the linearized
problems

w—T/(Ww=yg,

when solved by a Krylov method such as GMRES, require only finite dimensional
matrix-vector products to compute the operator-vector products.

3. Solver. For the full nonlinear problem we use the Atkinson-Brakhage method
with a Newton-GMRES method as the coarse mesh solver. We give a short description
of this approach. Letting [ = 0 denote the coarsest mesh, the Atkinson-Brakhage
iteration for the solution at level L > 0 can be written as

(12) up = e — [+ (I = T3) " TF] (e — Tyuc)
which is a modified Newton or Chord method [6], [23], [11] with
I+(I-13)'7;

used as an approximation to (I — 7/)~1. Here, 7;' is the Fréchet derivative of 77, the
approximation at level I. The action of (I — 7g)~! on a vector, which is required in
the right side of (12), is approximated by a GMRES iteration which terminates on a
sufficiently small relative residual. Collective compactness and strong convergence of
the sequence {7;} imply that if the coarse mesh is sufficiently fine, this iteration will
converge [12], [10], [2], [3]. Moreover, the convergence can be made sufficiently rapid
so that if a nested iteration, [7], or grid sequencing approach is used, where the fine
level is increased as the iteration progresses, only a single iteration need be taken at
each level (i. e. the update of u; in step 2(b) in Algorithm nestab is only done once).
Denoting ! = 0 as the coarse level and I = L as the level of approximation at which
a solution is required, the nested iteration form of the algorithm can be expressed as
ALGORITHM 3.1. nestab(7, L) ‘
1. Solve uo = To(uo).
2. Forl=1,...,L
(a) Initialize u; = w1y

(b) While ”u; —’I}(u;)]] > € ‘
w=w — [+ —T3) " T — Ti(wr))

4. Numerical Results. In our implementation, level I corresponds to a uniform
mesh of N; = 2o 1 points, where Iy = 4 for the computations reported here.
The difference scheme is second order accurate [16] for a fixed angular mesh. The
cost of an evaluation of 7; is O(N;) and therefore the cost of a complete solve using
Algorithm nestab is O(Ng).




The transport solve uses the method from [12]. We use an angular mesh of 40
points, corresponding to a double 20 point Gaussian quadrature on [—1,1]. This
solver is more efficient than an Atkinson-Brakhage solver or a second-kind multigrid
[8] approach. Transport solvers of this type require only the source iteration map
and do not need a diffusion solver as a preconditioner as do some other multilevel
approaches [18], [19], which are based on diffusion-synthetic acceleration, [14], [15].
However these other methods extend directly to more than one space dimension and
Atkinson-Brakhage solvers have not, as yet, been applied to other than one dimen-
sional transport problems. Using an existing fast 2D or 3D transport solver would
extend the algorithm in this paper immediately to higher space dimension.

The coarse mesh solve in Step 1 was done with a Newton-GMRES code which
terminated when the nonlinear residual was below 10~%. This was implemented in
a straightforward manner and converged without any need for globalization of the
nonlinear iteration. ’

Step 2(b) could also be replaced with a Newton-GMRES solve of the full equation
at level I, requiring that the nonlinear residual be reduced by a fixed factor < 1/4.
Because of the compactness of 7 and the resulting clustering of the spectrum [4], [5],
[13], [21], [20}, [28], a solve using such an approach would also cost O(Ny) floating
point operations, but would be more expensive than one using Algorithm nestab
because more than two Fréchet derivative-vector products would be required.

‘We report on computations for three problems, the data for which are summarized
in Table 1. The finest spatial mesh had 2049 points for all three problems and the
coarese mesh had 9 points for problems A and B and 33 points for problem C, which
has reflecting boundary conditions. These meshes were the coarsest possible that
allowed the loop in step 2(b) in Algorithm nestab to terminate after a single iteration.
Since we expect (and obtain) second order accuracy [16], [24], we set

& = -1 — Ti(w-1)1/10,

with a view that a reduction by a factor of 10 in the nonlinear residual will safely
ensure a reduction by a factor of 4 in the error.

We compare the Atkinson-Brakhage method to a nested Newton-GMRES ap-
proach, which replaces step 2(b) with a Newton-GMRES loop. The GMRES inner
iterations terminated when the relative residual had been reduced by a factor of 10.
Coarse mesh solves were done with Newton-GMRES and the coarse mesh residual
was reduced by a factor of 10~° from that for the initial iterate of u = 0.




TABLE 1
Data for the test problems

Problem | 7 N, ¢ |©1 ©;| & e | i py | pf P
A 1.0 005 09|10 00|10 10|00 0.0]0.0 0.0
B 1.0 005 09|10 05|10 10|00 0.0]0.0 0.0
C 30 005 09|10 05[07 06|01 03|02 0.1

We report both function evaluations at the fine mesh levels (FMF) and timings
in Table 2. The number of function evaluations at the fine mesh levels did not vary
as the mesh was refined, consistent with the theory from [2] and [5]. One can see a
clear relation between the function evaluations and the timings, indicating that for
both algorithms the cost of the work internal to the solver itself was minor.

TABLE 2
Timings and Function Evaluations

Atkinson-Brakhage | Newton-GMRES

Problem | Time FMF Time FMF
A 10.02 2 17.78 4
B 10.27 2 17.82 4
C 16.25 2 29.95 5

The computations reported here were done on a SUN SPARCstation 5 work-
station running SunQS 4.1.3_U1 version 1 with the SUN {77 compiler version 3.0.1.
Some of the prelimnary computations for this work were done at the North Carolina
Supercomputing Center.
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An Adaptation of Krylov Subspace Methods to Path Following

Homer F. Walker*
Mathematics and Statistics Department
Utah State University
Logan, UT 84322-3900
walker@math.usu.edu

Abstract.

Krylov subspace methods at present constitute a very well known and highly developed class
of iterative linear algebra methods. These have been effectively applied to nonlinear system solving
through Newton—Krylov methods, in which Krylov subspace methods are used to solve the linear
systems that characterize steps of Newton’s method (the Newton equations). Here, we will discuss
the application of Krylov subspace methods to path following problems, in which the object is to
track a solution curve as a parameter varies. Path following methods are typically of predictor-
corrector form, in which a point near the solution curve is “predicted” by some easy but relatively
inaccurate means, and then a series of Newton-like corrector iterations is used to return approxi-
mately to the curve. The analogue of the Newton equation is underdetermined, and an additional
linear condition must be specified to determine corrector steps uniquely. This is typically done by
requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-
determined system with this orthogonality condition in a straightforward way typically works well
if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with
this approach. We will discuss recent work in which this orthogonality condition is imposed directly
as a constraint on the corrector steps in a certain way. The means of doing this preserves problem
conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has
certain other advantages. Experiments on standard PDE continuation test problems indicate that
this approach is effective.

* Research supported in part by United States Department of Energy Grant DE-FG03-94ER25221 and National
Science Foundation Grant DMS-9400217, both with Utah State University.




A NUMERICAL METHOD FOR FINDING SIGN-CHANGING SOLUTIONS OF
SUPERLINEAR DIRICHLET PROBLEMS

John M. Neuberger

In a recent result (See Castro-Cossio-Neuberger, to appear in Rocky Mountain J. of
Math.), it was shown via a variational argument that a class of superlinear elliptic
boundary value problems has at least three nontrivial solutions, a pair of one sign and one
which sign changes exactly once. These three and all other nontrivial solutions are saddle
points of an action functional, and are characterized as local minima of that functional
restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an
appropriate higher codimension subset of that manifold.

In this paper we present a numerical Sobolev steepest descent algorithm for finding these
three solutions. Of primary interest is the method of projecting iterates of elements in our
Hilbert space onto the submanifold and its subsets. When applied to the ordinary
differential equation, the algorithm is extended to find additional solutions possessing a
greater number of internal zeroes, and in that case the solutions are compared to
independent numerical calculations obtained by Euler's method. We further test the
algorithm on partial differential equations on the unit square. With or without a symmetric
nonlinearity, numerical computations for PDEs on the square yield four exactly-once sign-
changing solutions of Morse Index 2 and supply evidence that suggests that there may
exist four more of MI 3.

In modifying the code to run on arbitrary regions such as the disk, annulus, and dumbell,
we are obtaining numerical evidence complementary to our current analysis. In particular,
as we show in a current paper (in submittion), the minimal action function valued sign-
changing solution on the disk is nonradial. This also holds on the annulus.

This algorithm can be used to investigate the nodal structure of a wide range of
superlinear elliptic PDEs and should be modifiable to include Neumann boundary
conditions. Accuracy and convergence are quite satisfactory though improvements and
refinements are clearly possible. Particularly gratifying are the ways we can use the
algorithm to visualize the infinite dimensional submanifold's structure and its relation

to the eigenfunctions of the negative Laplacian.
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Parallel Preconditioning Techniques
for Sparse CG Solvers

A. Basermann, B. Reichel, and C. Schelthoff

Central Institute for Applied Mathematics
Research Centre Jiilich GmbH, 52425 Jiilich, Germany
Phone: +49/2461/61/2433, Fax: +49/2461/61/6656
Email: a.basermann@kfa-juelich.de

Conjugate gradient (CG) methods to solve sparse systems of linear equa-
tions play an important role in numerical methods for solving discretized
partial differential equations. The large size and the condition of many tech-
nical or physical applications in this area result in the need for efficient par-
allelization and preconditioning techniques of the CG method. In particular
for very ill-conditioned matrices, sophisticated preconditioner are necessary
to obtain both acceptable convergence and accuracy of CG [2] [3]. Here, we
investigate variants of polynomial and incomplete Cholesky preconditioners
that markedly reduce the iterations of the simply diagonally scaled CG and
are shown to be well suited for massively parallel machines.

The basic operations of the pure CG iteration as well as of the poly-
nomially preconditioned method [1] [8] are matrix-vector products with the
coefficient matrix and vector-vector computations. For incomplete Cholesky
preconditioning, the factorization of the matrix before the CG iteration and
a forward /back-substitution per iteration [6] are required in addition.

To parallelize these operations on a multiprocessor system with distribu-
ted memory, we present a data distribution and a communication scheme
based on the analysis of the non-zero matrix elements. By a suitable block-
reordering of the matrix, the overlapped execution of computation and com-
munication is supported to reduce waiting times [4] [5]. Factorization and
forward /back-substitution of the developed incomplete Cholesky precondi-
tioner are only performed on local blocks so that these operations do not




require communication. Hence, this preconditioning technique is fully par-
allel. The data distribution and the communication scheme are determined
before the execution of the solver by preprocessing the symbolic structure
of the sparse matrix, and they both are exploited in each iteration. The
schemes can be reused as long as the sparsity pattern of the matrix, which
is determined by the discretization mesh and the element types, does not
change. For example, they can be used in each time step of a time depen-
dant problem or in each iterative step of a nonlinear problem that is solved
by linearization.

On massively parallel systems, the computation of inner products in the
CG iteration may be very costly since it needs global communication. To save
synchronization points, inner products are grouped so that each iteration
of the developed algorithms only requires one global communication. In
addition, the contribution of inner products to the costs per iteration is
considerably reduced by the preconditioning techniques used.

Performance tests of the developed parallel preconditioned CG methods
were carried out on the distributed memory system PARAGON XP/S 10 of
the Research Centre Jillich. We demonstrate by case studies with matrices
of different sparsity from various real finite element applications that the
developed data distribution and the communication scheme together with the
reduction of synchronization do result in an advantageous scaling behavior
of the algorithms on massively parallel machines.

With respect to the developed parallel preconditioning techniques, we ob-
serve that efficient preconditioning depends on both the structure and the
condition of the coefficient matrix. To decide for which case which parallel
preconditioning method is suited, we draw the following conclusions. For
well-conditioned matrices, it is hard to beat diagonal scaling by more sophis-
ticated preconditioners since this method is effective and cheap to compute
(see also [7]). Polynomial preconditioning shows the best resilts if the coeffi-
cient matrix is so sparse that matrix-vector multiplications do not dominate
the solver’s total execution time. Especially for high processor numbers,
this preconditioner markedly reduces synchronization costs. Moreover, the
preconditioning effect is stable for varying processor numbers. Opposite to
polynomial preconditioning, the developed fully parallel incomplete Cholesky
preconditioner performs best if matrix-vector operations dominate the iter-
ation’s total execution time. The preconditioning effect is the better, the
more significant matrix elements are close to the diagonal. These two condi-
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tions are usually given for matrices from structural mechanics applications so
that CG with parallel incomplete Cholesky preconditioning shows the most
advantageous time behavior for this kind of matrices in our investigations.
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Optimising a Parallel Conjugate
Gradient Solver

Martyn R. Field
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Abstract

This work arises from the introduction of a parallel iterative solver to a
large structural analysis finite element code. The code is called FEX and it
was developed at Hitachi’s Mechanical Engineering Laboratory. The FEX
package can deal with a large range of structural analysis problems using a
large number of finite element techniques. FEX can solve either stress or
thermal analysis problems of a range of different types from plane stress to
a full three-dimensional model. These problems can consist of a number of
different materials which can be modelled by a range of material models.
The structure being modelled can have the load applied at either a point or
a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a
thermal load can be applied with a given initial temperature. The displace-
ment of the structure can be constrained by having a fixed boundary or by
prescribing the displacement at a boundary.

The original version of FEX uses a skyline direct solver. This solver re-
quires a large amount of storage and limits the size of problem which can be
solved on a single processor to a few thousand degrees of freedom. Using a
sparse storage format with an iterative solver the size of problem which can
solved increases to about 100,000 degrees of freedom. For problems in com-
plicated domains with fine meshes this is still not sufficient. Also the time for
convergence can become unacceptably large. Therefore the code was paral-
lelised. The matrices produced by FEX are symmetric and positive definite
therefore we use a conjugate gradient solver with a diagonal preconditioner.

The main results in this paper concern the optimisation of the conjugate
gradient solver for both the sequential and the parallel version. A profil-
ing of the first version of FEX with the iterative solver showed that both
the sequential and parallel codes spent more than 80% of their time in the




CG subroutine and that over 95% of this time is spent in the matrix-vector
product subroutine. Therefore we concentrate on optimising this subroutine
first. We show that with a few small changes, such as introducing a couple of
temporary variables into the main loop and using the Fortran 90 INTENT dec-
laration, we achieve a 40% improvement. To gain any further improvement
we need to take advantage of the structure of the matrices. In particular
we look the matrices generated by FEX for three dimensional problems since
these are the largest and therefore take the longest to solve. For three dimen-
sional problems we have 3 degrees of freedom at each vertex of the mesh (the
displacements in the 3 Cartesian ditections). Therefore the stiffness matrix
generated consists of 3 by 3 blocks. We show that we can take advantage of
this structure to improve the matrix-vector subroutine by a further 20%.

We also show that, for the types of problems we are interested in, a further
improvement in the execution time for conjugate algorithm can be gained
by replacing the diagonal scaling preconditioner with an a, priori diagonal
scaling.

Finally we look at ways of optimising the communication between pro-
cessors in the parallel version. The communication is performed using MPI
and there are three points in the parallel version of the CG algorithm where
communication is required between the processors. Two of these are in per-
forming the vector dot-products where the ALLREDUCE operation is used. On
a modern parallel computer this operation is performed very efficiently so
there is little opportunity to improve this. The second point where com-
munication is required is in the matrix-vector product subroutine. After
performing a local matrix-vector product the values for nodes shared be-
tween two or more processors need to communicated to calculate the correct
value. We show that the performance of this operation can be improved by
using nonblocking sends and receives. We also show that the quality of the
mesh partition is very important. Mesh partition algorithms will balance the
number of elements on each processor well but this does not necessarily lead
to balance in the number of nodes and hence the size of the local matrix. We
tested the parallel code on Hitachi’s SR4300 with up to 32 processors and
we present results for problems of up to 278,000 degrees of freedom.




Parallel lterative Solvers and Preconditioners Using
Approximate Hierarchical Methods
(An Extended Abstract) *
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Abstract

In this paper, we report results of the performance, convergence, and accuracy of a parallel -
GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate
matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the
impact of various accuracy parameters on the convergence and show that with minimal loss
in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel
efficiency and scalability of our solver. The combined speedups from approximation and paral-
lelism represent an improvement of several orders in solution time. We also develop fast and
paralellizable preconditioners for this problem. We report on the performance of an inner-outer
scheme and a preconditioner based on truncated Green’s function. Experimental results on a
256 processor Cray T3D are presented.

1 Introduction |

Boundary Element Methods (BEM) are often used to solve integral equations using po-
tential theory. These methods discretize the boundary of the domain into panels. Using
the associated Green’s function, the potential at each panel is represented as a sum of
contributions of every other panel. Applying the Dirichlet boundary condition yields a large
scale linear system of equations.

For an n panel boundary discretization, the nx» linear system arising from this approach
is dense. Solving the system using direct factorization methods has a computational
complexity of ©(n®). This limits the values of n to a few thousands. Therefore iterative

*This work was supported by IST/BMDO through Army Research Office contract DA/DAAHO04-93-G-0080, NSF grant
NSG/1RI-9216941, and by Army High Performance Computing Research Center underthe auspices of the Department
of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-
95-C-0008, the content of which does not necessarily reflect the position or the policy of the government, and no official
endorsement should be inferred. Access to computing facilities were provided by Minnesota Supsrcomputer Institute,
Cray Research Inc. and by the Pittsburgh Supercomputing Center. Related papers are available via WWW at URL:
hitp//www.cs.umn.edu/ kumar.




methods are used to solve these systems. The complexity of the underlying matrix-vector
product (mat-vec) is ©(n?). For large values of n, this becomes extremely expensive.
The physical properties of the underlying domain allow us to use approximate hierarchical
techniques that can compute this mat-vec in ©(n) or ©(nlogn) time.

Parallel formulations of hierarchical methods have been explored in the context of
particle dynamics for regular distributions [1, 12, 6, 8, 5] and irregular distributions [3,
4, 2, 9, 11, 10]. These techniques have been explored to solve integral equations by
Nabors et al. [7]. In [3], we presented a highly scalable parallel formulation of a dense
matrix-vector. product for unstructured and adaptive discretizations based on hierarchical
methods. Here, we present the performance and accuracy of a GMRES solver based on
this parallel mat-vec. We also present techniques for preconditioning these systems and
study their performance. i

2 Parallel Formulation of Hierarchical Matrix-Vector Product

Hierarchical methods rely on aggregating the effect of distant panels into a series. The
combined effect of these panels is then applied using the series rather than individual
interactions. Algorithms such as Barnes-Hut and Fast Multipole FMM) are traditionally
used for such computations. We use a hybrid of the Barnes-Hut and FMM codes for
computing mat-vecs. The hierarchical representation of the domain is identical to FMM.
The interactions are computed using the multipole acceptance criteria of the Barnes-Hut
method. ' '

Parallel formulations comprise two major steps: tree construction (the hierarchical
representation of the domain) and tree traversal. Starting from a distribution of the panels
to processors, each processor constructs its local tree. Processors communicate the top
nodes in the tree to form a globally consistent image of the tree.

Each processor now proceeds to compute the potential at the panels assigned to it by
traversing the tree. On encountering a node that is not locally available, there are two pos-
sible scenarios: the panel coordinates can be communicated to the remote processor that
evaluates the interaction; or the node can be communicated to the requesting processor.
We refer to the former as function shipping and the latter as data shipping. Our paraliel
formulations are based on the function shipping paradigm. We discuss the advantages of
function shipping in [3]. Table 1 presents the runtimes, efficiency and computation rates
for up to 266 processors of a Cray T3D for a variety of highly unstructured problems.

Our parallel formulation of the hierarchical mat-vec yields excellent performance for
a wide range of processors. The speedup scales almost linearly up to 256 processors
even for very small problems (4elt.xyz and g_28060). For the range of problem sizes
where hierarchical methods are really useful (pscan and g_108196), the formulation yields
a relative speedup of over 3.5 on going from 64 to 256 processors. Clearly, for these
problem instances, the overhead due to communication and load imbalance is low. The per-
processor performance of the code is about 20 MFLOPS which is respectable considering
the code is highly unstructured in nature.




Problem p==64 p =256
Runtime | Eff. | MFLOPS | Runtime | Eff. | MFLOPS
4elt.xyz 0.44 |0.84 1220 0.15 | 0.61 3545
pscan 3.74 |[0.93 1352 1.00 [0.87| 5056
g-28060 0.53 |0.89 1293 0.16 | 0.75 4357
g-108196 | 2.14 | 0.85 1235 0.61 0.75| 4358

Table 1: Runtimes (in seconds), efficiency, and computation rates of the T3D for different
problems for p = 64 and 256.

3 GMRES Based on Hierarchical Matrix-Vector Product

We implement a parallel restart-GMRES around the hierarchical matrix-vector product.
The accuracy of the mat-vec is impacted by a number of parameters such as the degree
of the multipole expansion and the multipole acceptance criteria. We study the impact of
inaccuracies in the matrix-vector product on the convergence of the solver. We demonstrate
that it is possible to get accurate convergence with significant savings in computation time
using hierarchical methods. Table 2 presents the Log of relative residual norm for GMRES
with various degrees of approximation executed on a 64 processor T3D. The parallel
runtime indicates that hierarchical methods are capable of yielding significant savings in
time at the expense of slight loss of accuracy.

Table 2: Convergence (Log,, of Relative Error Norm) and runtime (in seconds) of the
GMRES solver on a 64 processor Cray T3D. The problem consists of 28060 panels.

lter | Accurate =05 a = 0.667 a=10
degree — 4 8 4 8 4 8

0 [ 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000
10 [-3.015280 | -3.015172 | -3.015274 | -3.015179 | -3.015274 | -3.018524 | -3.015268
20 | -4.066225 | -4.067801 | -4.069889 | -4.062450 | -4.068376 | -4.066583 | -4.073438
30 |-4.964690 | -4.972114 | -4.976746 | -4.961868 | -4.973845 | -4.968101 | -4.986162
40 | -5.722380 | -5.828296 | -5.836648 | -5.816061 | -5.832452 | -5.824179 | -5.858259
S0 | -5.895243 | -6.527266 | -6.527266 | -6.548455 | -6.570732 | -6.594213 | -6.619036
60 -6.673394 | -6.673394 | -6.770304 | -6.770304 | -6.895243 | -6.895243
Time 53.93 64.91 35.245 41.34 21.64 25.10

Figure 1 plots the reduction in residual norm with iterations for the accurate and the worst
case (most inaccurate mat-vec). It can be seen that even for the worst case accuracy, the
residual norms are in near agreement until a relative residual norm of 10-¢. Furthermore,




the approximate iterative method runs significantly faster than the accurate one.
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Figure 1: Relative residual norm of accurate and approximate iterative schemes.

4 Preconditioning Techniques

We implement two preconditioning strategies to accelerate the convergence of the GMRES
solver:

The hierarchical representation of the domain provides us with a convenient way of
approximating the system matrix. Increasing the accuracy of the mat-vec increases the
number of direct interactions (and thus the runtime). Conversely, reducing the accuracy
(by increasing the « parameter of the Barnes-Hut method, or by decreasing the degree of
the multipole series) reduces the runtime. It is therefore possible to visualize a two level
scheme in which the inner scheme runs a low accuracy mat-vec. The solve from the inner
iteration can be used to accelerate the convergence of the outer iteration. The accuracy of
the inner iteration can be increased as the system converges. We have implemented this
scheme and preliminary results indicate that for certain accuracies of the inner iteration,
this scheme works well.

A primary drawback of the two level scheme implemented above is that the inner
iteration is still poorly conditioned. We have also implemented a single level scheme
based on truncated Green's functions. In this scheme, the system matrix is approximated
by assuming that a panel’s influence on another can be neglected if it is sufficiently small.
The scheme identifies the & nearest neighbors of each panel. The corresponding matrices
are constructed for each panel and factorized. Since we assume that the meshes are
not adaptive, the factors need to be computed just once. These factors can be used
to precondition the original system. We are currently in the process of evaluating the

performance of this scheme. Preliminary results suggest good convergence properties for
this scheme.




We expect to present a complete evaluation of both of these schemes in the full-length
version of this paper.
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A Block Variant of the GMRES Method on Massively Parallel Processors
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Abstract: This paper presents a block variant of the GMRES method for solving general
unsymmetric linear systems. This algorithm generates a transformed Hessenberg matrix by
solely using block matrix operations and block data communications. It is shown that

this algorithm with block size s, denoted by BVGMRES(s,m), is theoretically equivalent
to the GMRES(s*m) method. The numerical results show that this algorithm can be more
efficient than the standard GMRES method on a cache based single CPU computer with
optimized BLAS kernels. Furthermore, the gain in efficiency is more significant on MPPs
due to both efficient block operations and efficient block data communications. Our
numerical results also show that in comparison to the standard GMRES method, the more
PEs that are used on an MPP, the more efficient the BVGMRES(s,m) algorithm is.
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Using sparse LU factorisation to precondition GMRES
for a family of similarly structured matrices arising
from process modelling

Chris Brooking
University of Bath, UK
cgb@maths.bath.ac.uk
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Process engineering software is used to simulate the operation of large chemical plants.
Such simulations are used for a variety of tasks, including operator training. For the
software to be of practical use for this, dynamic simulations need to run in real-time. The
models that the simulation is based upon are written in terms of Differential Algebraic
Equations (DAE’s). In the numerical time-integration of systems of DAE’s using an
implicit method such as backward Euler, the solution of nonlinear systems is required at
each integration point. When solved using Newton’s method, this leads to the repeated
solution of nonsymmetric sparse linear systems. These systems range in size from 500
to 20,000 variables. A typical integration may require around 3000 timesteps, and if 4
Newton iterates were needed on each time step, then this means approximately 12,000
linear systems must be solved. The matrices produced by the simulations have a similar
sparsity pattern throughout the integration. They are also severely ill-conditioned, and
have widely-scattered spectra.

To take adventage of the similar sparsity pattern, the current solution strategy is to
perform a sparse LU factorisation of the initial matrix, and re-use this factorisation on
subsequent matrices. However, this direct method can lead to bottlenecks can occur in
the solution procedure if subsequent matrices require additional factorisations. If several
factorisations are required on a timestep, then this can result in the simulation taking
much longer than real-time for that step.

Applying an iterative method such as GMRES requires effective preconditioning to
obtain convergence. Numerical experiments on these matrices with incomplete factori-
sation methods such as ILU indicate that such preconditioners require large subspace
dimensions to obtain convergence, rendering them unsuitable for application to real-time
solution of problems of this type.




The method proposed here is to perform a sparse LU factorisation of the matrix from
the first linear system to be solved, and to use this to precondition restarted GMRES
for subsequent matrices. New preconditioners (ie additional factorisations) are calculated
only when GMRES convergence is deemed too slow. The motivation for this approach is
to avoid having to perform as many factorisations per timestep as required for the direct
method, thus improving real-time performance. Results will be present to show that this
method can outperform the direct sparse LU method for real-world simulations that are
several times slower than real-time.




Incomplete block factorization preconditioning

for indefinite elliptic problems

Chun-Hua Guo

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta
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Summary. The application of the finite difference method to approximate the so-
lution of an indefinite elliptic problem produces a linear system whose coefficient
matrix is block tridiagonal and symmetric indefinite. Such a linear system can be
solved efficiently by a conjugate residual method, particularly when combined with
a good preconditioner. We show that specific incomplete block factorization exists
for the indefinite matrix if the mesh size is reasonably small. And this factorization
can serve as an efficient preconditioner. Some efforts are made to estimate the eigen-

values of the preconditioned matrix. Numerical results are also given.

Mathematics Subject Classification (1991): 65F10, 65F35, 65F50

1. Introduction

In this paper we consider the numerical solution of the elliptic problem




-V (a(z,y)Vu)=p(z,y)u=f in,

(1.1) u=g on Jf).
Here Q is a connected bounded region in R?, a(z,y) and p(z,y) are real continuous
functions on ), while f and g are real continuous functions on  and 8, respec-
tively. We further assume that a(z,y) > 1. (Weé may assume this without loss of
~ generality when a(z,y) > 0.) The function p(#,#) can take large positive values, so
the problem (1.1) is generally indefinite. |

We discretize (1.1) by using the standard five-point finite difference method (see
[15]) with a constant mesh spacing k in both directions. (We always assume that h is
small enough so that the discretization makes sense.) The region {2 is replaced by a
region formed by connecting the mesh points near 9 in an obvious way. The values
of the approximate sqlution at the mesh points on the new boundary are obtained
from the original boundary condition by simple transition. Arranging the unknowns
in the natural ordering, we get a linéar system
(1.2) . . Wz =1,
where the matrix W (assumed to be nonsingular) is symmetric but generally indefi-

nite, and has the block tridiagonal form

W, F

E, W
(1.3) w=|- °

The matrices W; are symmetric, (point) tridiagonal, and may have zero elements on

the two diagonals adjacent to the main diagonal when {? is not convex. The matrices




E;(= FT) have at most one nonzero element in each row or column. The reader may
wish to form the matrix W for a fixed region £ (not necessarily simply connected).
Our analyses will rely heavily on the formation of the matrix. We denote by W, the
matrix (1.3) corresponding to the case p(z,y) = 0. W is a symmetric M-matrix and
thus positive definite (see [15]).

The linear system (1.2) can be solved efficiently by conjugate gradient type meth-
ods. In this paper we use the MCR method proposed in [5](see [14] for other efficient
methods). The convergence of the MCR method will depend on the distribution
of the eigenvalues of the matrix W. A good preconditioner is thus desirable. Nor-
mally we can use a symmetric definite matrix C as a preconditioner even though the
matrix W. may be indefinite. The MCR method is then applied to the equivalent
linear system W'z’ = b with W' = C-:W(C~3,¥ = ~3b, and 2’ = C3z. After
rewriting the resulting algorithm we get the preconditioned MCR algorithm. This
new algorithm takes the same form as the original MCR algorithm except that the
solution of a linear system of the type Cy = d is needed in each iterative step. Thus
the preconditioning matrix C should be chosen such that the solution of Cy = d
is inexpensive and the distribution of the eigenvalues of C-2W (-3 (or C71W) is
much more favorable for the MCR method.

When the values of the function p(z,y) are small in magnitude, it is a good idea
to use a good preconditioner for the matrix Wy also as'a preconditioner for the ma-
trix W (cf.[17],[18]). But this strategy tends to be unsatisfactory as the values of the
function p(z,y) get larger. It is tempting to consider the incomplete factorization of
the matrix W since it is a perturbation of an M-matrix.

The incomplete factorization method has been extensively studied over the past




eighteen years or so. The analyses have been made mostly for M- or H-matrices (see,
e.g., [11,[41,[6],[8],[11],[16]). In fact, it was shown in [16] that only for H-matrices can
incomplete factorizations be universally carried out. However, for matrices arising in
applications, only specific incomplete factorizations are of practical interest. And for
these incomplete factorizations to be well defined, the matrices need not necessarily
be H-matrices.

In Section 2, we show that specific incomplete block factorization exists for the
matrix W if the mesh size k is reasonably small. In Section 3, we give a result on
bounds for eigenvalues of preconditioned matrices. In particular, we get a specific
upper bound for the eigenvalues of C~1W, where C i§ the preconditioner obtained
from the incomplete block factorization. In Section 4, we present some numerical
results to illustrate the effectiveness of incomplete block factorization as a precondi-

tioner for indefinite matrices.
2. Existence of incomplete block factorization

We begin with some notations. If A = [a;;] and B = [b;;] are real matrices, then
A> Bif a;; 2 by for all 4,j. For square matrix A = [ay;], we let A®) denote the
matrix [b;;] with
) @ -l <y
b,'j =
0, ‘7’ - j l > p-




Let A be a square matrix in block tridiagonal form

Al U2

Lz Az :

A= R =D+L+T0,
. Um

L An

where the A;’s are square matrices, not necessarily of the same size; L and U are
strictly lower and upper block triangular matrices, respectively. Consider the recur-
sion (cf.[6])
X1 = Ay,

(2.1) X, =A, - L (XU, r=23,..,m.
If the X;’s are nonsingular, C = (X + L)X~1(X + U) is called the incomplete block
factorization of A, where X =diag(X;)%,.

Now let D =diag(D;), be any nonsingular (point) diagonal matrix of the same

size and partitioning as A, and

Zl ﬁz
A=DAD = . =D+ L+U
. m
Lo An
We can then consider the recursion
:)Zl = Zla
(2.2) X, =A -L(X21)P0, r=223,..,m.

If the X;’s are nonsingular, € = (X + IL)X-1(X + U) is the incomplete block factor-
ization of A, where X = diag(X;)™,.
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It can be easily checked that the matrices X; from (2.2) are nonsingular if
and only if the matrices X; from (2.1) are nonsingular. Moreover, X; = D;X;D;
(i=1,2,..,m),C =DCD, and -4 = D1C*AD.

With the above observation in mind, we turn our attention to the matrix W
described in Section 1.

Since a(z,y) is uniformly continuous on £, for every € (0 < € < 1) there exists
an hg such that for all (z1,y;) and (z2,%2) in (9]

(2.3) la(z2, y2) — a(z1,31)| < €0 whenever |2z — 1] + |y2 — 11| < ho.
Let D' be the diagonal matrix whose diagonal elements are the values of a(z,y) at

the mesh points (in natural ordering) and

~ zent a(z,y)

C; = max 2(2,9) >0, C5 = min p(z,y)

zett a(z,y)

It is not difficult to see that for A < 2ho the nonzero elements of the matrix

i

W = ((1 + eo) D) 2W((1 + €0) D')~% are such that

—en)—Cy k2 = ; €0 )—=Cbh2
(2.4) i(l_lo_mg'i < (W) 1(5—124)-?092',""
and
(2.5) 1S (W) SRR <0 #£))
Let i )
W, E
—~ Ez ff’z T
(26) W = . .. ~ ]
. . E,
Em Am

and consider the recursion

:X\].:Wl,




(2.7) X, =W, - EX)OF, r=23,..,m.

We will show that the symmetric matrices X; are all M-matrices if the mesh size &

is reasonably small. The following lemmas will be needed.

Lemma 2.1. (cf.[7),[12]) Let A € R™™ be an M-matriz. If the elements of B € R™

satisfy the relations ‘
bii 2 aii, @;; S b;; <0,i# 5,1 <4,5<n,

then B is also an M-matriz. Moreover, B~ < A™1.

Let

- “nXn

we have
Lemma 2.2. (cf.[13]) For j > ¢, and p > 2,

_ (rf*_ - 7'5_)(1'_','_"‘“'1 - r’_'._j“)

O ks = e ST =y

where 7+ are the two solutions of the quadratic equation r* — pr +1 = 0.
The next lemma provides a Toeplitz matrix upper bound for the matrix (T, H,
It follows readily from Lemma 2.2.

Lemma 2.3.

1 -1 -1 p—VpP*—14
vemr O e =0 < S

Proof. ri — ) (rn L i) L et g il il
+ + + + +

(T; 1) <

< ,._rlz_+1 I G S S pHL gl




so
1 1
T-1.. < = .
0= = = s
Similarly, ,
(ri_ —r ) - ) B A Sl (i ),
SO
- - - p—/r?—4
(T Viinr = (T i1 £ 5 e 3 \/;Z_ ik a

We now return to the recursion (2.7), and let

b

_ 4(1 ot 60) - Clh2

. 14+ ¢
By (2.4) and (2.5),
1 N
- - z
Xi=W1 2 . ' =7
S
| ' ’ -1 1 ]

with z; = b and y; = 1. If z; > 2y;, then Z; is an M-matrix. By Lemma 2.1 and

(2.5), X is also an M-matrix, and X' < Z7t. Thus
% =W - By(XHYOR > T - yléz(Tgf)sz,
1 v1

where the matrices £z and F; are obtained from E, and F; by replacing all of their

nonzero elements by —1.




Now we have, by Lemma 2.3,

T2 Y2

= Y2 22

—Y2 T2

- 1 " 1+z1-\/:z:§—4yf
2= =, Y= .
Vol — 4y} 2y1\/z? — 4y}

If z; > 2y,, then Z; is an M-matrix. So )?2 is also an M-matrix, and )?{ 1<z

where

Continuing with the recursion (2.7), we have the following result.
Proposition 2.1. The symmetric matrices X; in (2.7) are all M-matrices if the
recursion

€Bl=b(b>2), n=1
Tn—/TE~4y2 |
(2:8) 1 = b= oo Y =14 _2/;
n=12.. -
is well defined, i.e., if z, > 2y, for all n.

We record some simple properties of the recursion (2.8).

Proposition 2.2.

L. If {z.}t_; and {yn}E_, can be generated for some b> 2, then 1 > 23 > ... >

zr and Y1 < Yo < oo < Yo

2. If ¥ > b, then {z!}E_, and {y.}:_, can also be generated for ¥, moreover,

x>z, and yl, < yn, n=1,2,..., k.

3. If b > 3.7, then the sequences {z,}2; and {y.}2, can be generated, i.e.,

Ty > 2yn for all n.
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Proof. (1) and (2) can be easily checked. In view of (2); we need only prove (3) for
b=3.7. But when 4=3.7, we can prove by induction that z, > 3.233, y, < 1.210 for
all n. 0

Consider the matrix W in (1.3) and the recursion

X1 =W,

29) X, =W, — B(XL)OF, r=23,.,m,
we have the following result.
Proposition 2.3. The symmetric matrices X; in (2.9) are all M-matrices if
(2.10) h < min (2ho, /23T
for some pair (o, ho) satisfying (2.8) with e < 2,
Proof. This follows from the observation we made earlier in this section, Proposition
2.1 and Proposition 2.2(3). O |

The restriction on % in the above proposition is much less strigent than in an ear-
lier result ([9]). That result was obtained by a careful application of a more general
result therein.
" Ezample 2.1. ¥ Q= (0,1) x (0,1), a(z,y) = 1, and p(z,y) = 800. then we know
from Proposition 2.3 that the incomplete block factorization exists when b < <.
Ezample 2.2. Q= (0,1) x (0,1), a(z,y) = 1+ 2? +y?, and p(z,y) = 400, then the

incomplete block factorization exists when & < 315
3. Estimates for eigenvalues of precont‘iitioned matrices

In Section 2, we have seen that the recursion (2.9) for the symmetric matrix W in

(1.3) is well defined if condition (2.10) is satisfied. We denote by C the corresponding
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incomplete block factorization of W.. Clearly C is symmetric positive definite. The
matrix C will then be used as a preconditioner for the linear system (1.2). Although
C~'W has the same number of negative eigenvalues as W, the distribution of the
eigenvalues will hopefully be more favorable for the iterative method.

When a matrix A € R™" is symmetric or similar to a symmetric matrix, we

arrange its eigenvalues in an increasing order:
M(4) < Xa(4) < ... < An(A).

The following general result gives some information about the eigenvalues of the
matrix C~1W.

Theorem 3.1. ([10]) Let A € R™" be a symmetric matriz, S € R™™ be a symmetric
positive definite matriz. Then

(1) If }i(A) > 0 and A, (pS — A) > 0 with p > 0, then

pri(4) .
+ An(pS — A)’

A(S714) 2 A

(2) If \i(A) > 0 and M\ (eS — A) > 0 with p > 0 then

£Ai(A)

A(S71A) < X(A) + W (pS — A’

(3) If \i(A) < 0 and Ao (pS — A) < 0 with g < 0, then

et £Ai(4) .
MSTA) 2 e S =AY

(4) If Mi(A) < 0 and A\ (pS — A) <0 with g < 0, then

pAi(A)
+ M(pS — A)

Ai(S714) < (A
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Next we will apply part (2) of the theorem to get a more specific upper bound
for the eigenvalues of C™1W. .

We express the matrix Win (2.6) as W =D+1L+0, where L and U are strictly
lower and upper block triangular matrices, respectively. When condition (2.10) is
satisfied, we let € be the incomplete block factorization of W obtained from the
recursion (2.7). So € = (X + D)X-Y(X + U) with X =diag(X;)™,. The matrix
is again symmetric positive definite. Since C-1W is similar to C~*W, we will apply
Theorem 3.1(2) to the pair of matrices W and C.

Asin 2], welet V = (1— 1/)X + L and find
WO~ W = wVEVT + (2~ )X -D.
Since ;LVX\ -1VT is positive semidefinite for any g > 0, it follows that
M6l =) 2 (2= DX - D).

We will find g > 1 such that
(3.1) M(@2-1)X-D)>0.
This g will then be an upper bound for the eigenvalues of C~1W.
(3.1) is clearly equivalent to
(3.2) M(@-1X-W)>0,1<i<m.
Consider the recursion (2.8) with 3.7 < b < 4; let =* = limy 0 Zn, ¥* = liMpo0 Un
(the limits exist by Proposition 2.2). It is readily found that 3.234 < z* < 3.654,

1134 < y* < 1.210. If ¥; has no zero elements on the two diagonals adjacent to the
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main diagonal, we have by (2.4) and (2.5)

a '-bl
|- '
- < 1T 3 ,
< . _bl
—bl a;
with

a’_ 4(1+60)—02h2 b _1—60
1T 146 Y M T 1t e

By the argument leading to Proposition 2.1 and in view of Proposition 2.2, we have

) o -
e —_yx z*
X; > Y .
—y* z*
Thus X _
as -bz
—~ o~ —b a
@-HZ-Wiz| 7 ,
£ —b,
—bz as
with

1 1
as = (2—;)X*—(11, b2 = (2-—;)3/*—'61.

Since p > 1, the offdiagonal elements of (2—1/ p))?, — Wi are nonpositive. Therefore,
(3.2) is satisfied for the given 7 if ag > 2by, or (22* — 4y* — a; + 2by )p > z* — W™~
If W; has zero elements on the two diagonals adjacent to the main diagonal, the

corresponding elements in the above lower bound for X; can also be changed to zero
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(this can be seen by examining the procedure leading to Proposition 2.1). And the
above analysis can be made on proper submatrices of X; and W,.
We have thus reached the following conclusion.

Proposition 3.1. With previous notations, if

0.3 —"7.7¢

k < min(2h,, c. ),

and

k __ ok
* — 2y >1,
z* —4dy* — a3 + 25, —

p=3
then p is an upper bound for the eigenvalues of CW.
From the above proposition we can conclude that, in the k — 0 limit, g = 1.7 is

an upper bound for the eigenvalues of C~1W.

Ezample 8.1. ¥ Q = (0,1) x (0,1), a(z,y) = 1 + 2% + 92, p(z,y) = 400, and b = 3,
100

1

5000 and € = ﬁl)—o We find by application of Proposition 3.1 that

we can take hg =

p = 2.87 is an upper bound for the eigenvalues of C~1W.
4. Numerical results

For test purposes we consider the following special case of problem (1.1):
-Au—ou=1 in = (0,1) x (0,1),
u=20 on 01,
where o is a real constant.
The corresponding linear system Wz = b will be solved by the MCR method,
with or without preconditioning. The matrices W and W, are now related by W =

Wo — oh?I.
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For preconditioning, we use the following two preconditioners:

e Method 1: Preconditioner C is the incomplete block factorization of W. Its

existence will be guaranteed by Proposition 2.3 (cf. Example 2.1).

e Method 2: Preconditioner Cj is the modified incomplete block factorization of

Wo. Cp is a very good preconditioner for Wy (see [2,p346]).

We note that (for variable coefficient problems) the computational work per iteration
for the preconditioned MCR method is less than twice that for the unpreconditioned
MCR method. '

In our numerical experiments we use double precision and use the zero vector as
initial guess. The algorithm is terminated as soon as || 7 ||z / || 7o ||2< 10~¢, where
ro and ry, are the residuals at the initial step and the kth iterative step, respectively.
We give the number of MCR iterations in Tables 1 and 2. The numbers in paren-
theses for Method 1 are the upper bounds for the eigenvalues of C~*W, obtained by
application of Proposition 3.1.

From the test results we observe that Method 2 works well only when o is rel-
atively small. When o gets larger, Method 1 gives much better performance than
Method 2. Compared with the unpreconditioned MCR method, Method 1 becomes
less effective as o gets larger. But it still gives improvement when o is as large as
800. When the mesh size is halved, the number of MCR iterations increases normally

by a multiple of 2 if no preconditioner is used. But the increase is generally much

slower for both Method 1 and Method 2.

Table 1. The number of MCR iterations for k = %




o No preconditioning Method 1 VMethod 2

0 148 29 (1.70) 19
50 158 30 (1.72) 28
100 188 49 (1.73) 41
150 182 46 (1.74) 44
200 191 48 (1.76) 46
250 201 YK () 79
300 200 71 (1.78) 70
350 207 3(1.80) 85
400 207 78 (1.82) 109
450 226 84 (1.83) 119
500 257 103 (1.85) 156
550 250 101 (1.87) 157
600 g 95 (1.89) 174
650 248 98 (1.91) 198
700 955 111 (1.93) 208
750 262 117 (1.95) 220
800 201 147 (1.97) 208

Table 2. The number of MCR iterations for h = T;_é

o No preconditioning Method 1 Method 2
0 297 49 (1.70) 28
50 316 55 (1.71) 43

100 375 92 (1.71) 64
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150 354 71 (1.71) 66
200 382 87 (1.72) 78
250 428 106 (1.72) 122
300 425 107 (1.72) 116
350 436 133 (1.73) 164
400 436 115 (1.73) 176
450 471 128 (1.73) 196
500 516 183 (1.73) 250
© 550 495 149 (1.74) 244
600 491 141 (1.74) 364
650 489 159 (1.74) 353
700 510 158 (1.75) 338
750 523 187 (1.75) 384
800 572 210 (1.76) 452
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Preconditioning Cubic Spline Collocation method
by FEM and FDM for Elliptic Equations
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ABSTRACT

In this talk we discuss the finite element and finite difference technique
for the cubic spline collocation method. For this purpose, we consider the
uniformly elliptic operator A defined by Au := —Au 4+ ayu; + aguy + aou
in Q (the unit square) with Dirichlet or Neumann boundary conditions and
its discretization based on Hermite cubic spline spaces and collocation at
the Gauss points. Using an interpolatory basis with support on the Gauss
points one obtains the matrix Ay(h = £).

We discuss the H? condition numbers and the distribution of fy-singular
values of the preconditioned matrices (Ay)~1An or (Ly)~1An where Sy
and Ly are the stiffness matrix and the matrix of finite difference opera-
tor respectively associated with the finite element or finite difference dis-
cretization of the positive definite uniformly elliptic operator B given by
Bv := —Av+bov in Q with boundary conditions matching to the boundary
conditions of A.

The finite element and the finite difference spaces are considered as the
space of continuous functions which are bilinear on the rectangles determined
by Gauss points. When A = B we obtain results on the eigenvalues of
,@X,l Ap. Such estimates are used for the iterative method like CGM, damped
Jacobi iteration, GMRESS or other methods.

*Mathematics Department, Teachers College, KyungPook National University, Taegu,
Korea. Supported by KOSEF, Korea
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Abstract

Let © be the square [—1,1] X [—1,1] and let T be its boundary. Consider the
elliptic boundary value problem

(1.1a) Au = — [ugg + uyy] + a1(z, Y)us + a2z, y)uy
+a(z,y)u=f, inQ

with Dirichlet boundary conditions
(1.1a) u=0 onT.

The coefficients a;, az, a are smooth and f(z,y) € C(R). We assume the operator
A is invertible. A popular and very accurate method for obtaining approximate
solutions of this boundary value problem is the method of Chebyshev Spectral
Collocation.

Let P} denote the space of polynomials which are of degree N in z, of degree
N in y and satisfy the boundary condition (1.1b). Let
(1.2a) x,-:-cosf]fvl, j=0,1,2,....N

so that

(12b) —l=zy<31 < --rzny1 <zy =1
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These are the Chebyshev-Gauss-Lobatto [CGL] points. The two dimensional [CGL]
points are defined as

(1.2c) @ = (zs,25), n=i+V-1)F—1).

The Chebyshev (spectral) collocation method for the solution of (1.1a), (1.1b), is:
find p(z,y) € P} such that

(1.3) [4p)(2n) = f(an) = f(=i,25)-

The solution p(z,y) € PY is a very good appro’ximation‘ito u(z,y), the solution
of (1.1a), (1.1b). Indeed, we have “spectral accuracy”. That is, there is a constant
¢ > 0 such that if the solution u(z,y) € H3 (), then

(1.4) [u = pl,w + Nllw — pllo,w < N 7™ |ltflm,w
where » . A | |
(1.52) g, = //ﬂ u2tl;2dmdy

(1.5b) 2, = / /9 VuPwsdody

and

(1.5¢) wa(z,y) = [(1 - 2*)(1 ~ )72

We choose the Lagrange basis for P%;. That is

H#k(a’ — ;)

Hj;ek(wk —z;)’

or(z) = k=1,2,...,(N =1).
Then
@77(3:7 y) = (Pi(x))ﬂoj(y)a =i+ (N - 1).7

is the Lagrange basis for P;. Using this basis the system (1.3) is represented as a
system of linear equation '

(1.6) ANP=F.

The matrix Ay is badly conditioned and (essentially) full.
In this talk we consider two preconditioners based on the space of continuous
piecewise bilinear functions determined by their values at the two dimensional [CGL)]
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points (z;,z;). Specifically, let ;(z) be the continuous piecewise linear hat function
which satisfies

(1.7a) Yi(z;) =6, i=1,2,...,N—-1, j=0,1,...,N.
and let
(1.7b) Uy(z,y) = pi(z)b; (), n=i+ I -1)j.
Our first preconditioner is the symmetric positive definite matrix Qu given by
(1.8) Q) = / / VT, - VU, wsdsdy.
Q

Our second preconditioner is the matrix Ly associated with the finite-difference
operator for the Lapace operator bsed on the two dimensional [CGL] points.

In both these cases we are dealing with preconditioners which arise from dif-
ferent finite element spaces and different discretization approaches.

The main results are

Theorem 1: Consider the special case where A is o Helmholiz operator, i.e. a; =
az =0 and

(1.9) a>0.

There are constants 0 < Ag < Az (independent of N ) such that

(1.10a) Re )j >Ny, j=1,2,...,N?

(1.10b A< A, §=1,2,...,N?

where {)\;,7 =1,2,...,N?} are the eigenvalues of either the preconditioned matriz
(1.11a) QN An

or the preconditioned matriz

(1.11b) L An.

O

Theorem 2: Let A be the general invertible operator given by (1.1a), (1.1b). There
i3 an integer No and two constants a, f such that; for all N > Ny we have

0<a<o;<pB, §j=1,2,...,N?

where {0;;7 =1,2,...,N?} are the Qn singular values of QR,IAN or LI"VIAN. O
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Enhanced Nonlinear Iterative Techniques
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Abstract

We study the application of enhanced nonlinear iterative methods to the steady-state
solution of a system of two-dimensional convection-diffusion-reaction partial differential
equations that describe the partially-ionized plasma flow in the boundary layer of a
tokamak fusion reactor. This system of equations is characterized by multiple time
and spatial scales, and contains highly anisotropic transport coefficients due to a strong
imposed magnetic field. We use Newton’s method to linearize the nonlinear system of
equations resulting from an implicit, finite volume discretization of the governing par-
tial differential equations, on a staggered Cartesian mesh. The resulting linear systems
are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned
Krylov iterative techniques are employed to solve these linear systems. We investi-
gate both a modified and a matrix-free Newton-Krylov implementation, with the goal
of reducing CPU cost associated with the numerical formation of the Jacobian. A
combination of a damped iteration, one-way multigrid and a pseudo-transient continu-
ation technique are used to enhance global nonlinear convergence and CPU efficiency.
GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) fac-
torization preconditioning. The goal is to construct a combination of nonlinear and
linear iterative techniques for this complex physical problem that optimizes trade-offs
between robustness, CPU time, memory requirements, and code complexity. It is shown
that a one-way multigrid implementation provides significant CPU savings for fine grid
calculations. Performance comparisons of the modified Newton-Krylov and matrix-free
Newton-Krylov algorithms will be presented.

1 Introduction

In this paper, we study the performance of Newton-Krylov algorithms applied to an ad-
vanced fluid transport model of the partially-ionized tokamak edge plasma. The tokamak is
a toroidally shaped magnetic confinement fusion device, and the tokamak edge plasma fluid
equations are a highly nonlinear set of convection-diffusion-reaction equations that describe
the boundary layer plasma of this device. They contain widely varying time and spatial
scales, and the transport coefficients and reaction rates are strong functions of density and
temperature. These equations describe the flow of plasma particles and energy from the
edge of the reactor core into what is called the divertor region, which serves as the exhaust
system. The transport model used in this paper is unique in that it is the first to include a




full Navier-Stokes treatment of momentum in the neutral component of the partially-ionized
plasma [1].

The presence of multiple time scales and the desire for a steady-state solution moti-
vates a highly implicit algorithm. The nonlinear coupling between conservation equations
motivates the use of a strongly convergent Newton-typd method. However, this choice
presents formidable obstacles such as: the potentially small.radius of convergence of New-
ton’s method; the solution of very large, ill-conditioned, nonsymmetric linear systems; and
the CPU cost associated with the numerical formation of a complicated Jacobian matrix.

A combination of damped iteration, pseudo-transient continuation, and one-way multi-
grid are used to help overcome the small radius of convergence issue and to increase CPU
efficiency [2, 3]. The preconditioned GMRES algorithm [4], employed within an inexact
Newton framework [5, 6] , is used to solve the linear systems that arise on each New-
ton step. We investigate both a modified Newton-Krylov method [7, 8] and 2 matrix-free
Newton-Krylov method [9, 10] to help reduce the CPU cost associated with repeated nu-
merical Jacobian evaluations.

2 Solution Algorithm

Finite volumes are used to discretize the conservation equations on a staggered Cartesian
grid with velocities located at cell faces and thermodynamic variables located at cell centers.
This produces a nonlinear system of algebfaic equatiohs, which is then solved using the
Newton- Krylov methods discussed below.

2.1 Nonlinear Iterative Method
Application of Newton’s method requires the solution of the linear system
JE6xk = —F(x"), (L

where J is the Jacobian matrix, F(x) is the nonlinear system of equations, and x is the
state vector. The new solution approximation at iteration %k + 1 is obtained from,

xFH = xF 4 s6xF, (2)

where s is a damping scalar, which is adaptively chosen to be less than or equal to one
[2]. This iteration is continued until the norm of F(x*) and/or §x* falls below a specified
tolerance level.

A pseudo-transient relaxation techniguie is used to increase the radius of convergence,
and is implemented as:

(g + 358 = (") (3)
It is important to note that in Eq.(4), F(x*) is the steady-state residual, and Vis a diagonal
matrix whose entries consist of the volumes of the computational cell corresponding to that
row 'of the Jacobian. The time step is adaptively varied based upon the current level of
convergence in a manner similar to the switched evolution relaxation (SER) algonthm of
Mulder and Van Leer [11]. Here, At* is determined from

HF(X")HooAt"

At W ‘ (4)

T TR Rt Dhaind




where At° is the initial time step and 7 is a chosen scaling constant. Use of Eq. (4) enables
the time step to automatically increase as the steady-state residuals decrease.

A one-way multigrid technique is also used to improve the convergence of the nonlinear
iteration. In this case, an interpolated coarse grid solution is used as an initial guess on a
finner mesh. Thus, less expensive coarse grid calculations are used to furnish an improved
starting point on the fine grid, where iterations are more expensive.

2.2 Linear Iterative Method

We use the restarted Generalized Minimal RESidual (GMRES) algorithm [4] to solve
Eq. (3). The linear system is preconditioned in order to improve the performance of the
GMRES algorithm. Since our Jacobian exhibits a sparse banded structure, only nonzero di-
agonals are stored. These nonzero diagonals then constitute the Jacobian sparsity pattern,
whether or not some diagonal entries are zero. Thus, the ILU(k) preconditioners used here
are derived assuming this diagonal sparsity pattern using the ”level-of-fill” idea of Watts
[12].

Since the use of an iterative technique to solve Eq. (3) does not require the exact solution
of the linear system, the resulting algorithm is labeled an “inexact” Newton’s method [5, 6).
This feature is advantageous in the sense that the tolerance of the linear equation solve can
be relaxed when far from the true solution, and tightened as the true solution is approached.
This behavior is controlled using an linear iteration convergence criteria similar to that
proposed by Averick and Ortega [5] and Dembo et. al. [6]. Specifically, the GMRES
iteration is assumed converged when,

| 3¢5t 1+ () |l
< Y. 5
IR )

The effect of ; on CPU performance will be studied.

2.3 Reduced Jacobian Evaluation Techniques

The GMRES algorithm requires the action of the Jacobian only in the form of matrix-vector
products, which may be approximated by [9],

~ F(x+ev)— F(x)’

Jv

(6)

where J is the Jacobian matrix, v is a Krylov vector, x is the state vector, € is a perturbation
constant, and F represents the system of nonlinear equations. Eq. (6) enables the action
of the Jacobian without explicitly forming or storing the matrix. This property can be
extremely advantageous in problems where forming the Jacobian represents a significant
fraction of the total CPU time, and/or storing the Jacobian matrix is prohibitive. In many
instances, however, the Jacobian or parts thereof are still needed to generate an effective
preconditioner. In this situation, the primary advantage of this matrix-free implementation
may lie in reducing the total number of required discrete function evaluations by amortizing
the cost of forming the preconditioner over several Newton steps [10]. Note that although
storage is required for the preconditioner, storage is not required for the Jacobian.

In the full length paper, this matrix-free method will be compared to a modified Newton
method [7, 8], where the same ”frozen” Jacobian is used for a number of Newton iterations




without employing Eg.(6). This is in contrast to the matrix-free implementation where the
same ”frozen” preconditioner is used for a number of Newton iterations, but the effects of
the current Jacobian are captured within the accuracy of the a.ppromma,tlon in Eq. (6).

Note that the time step, At*, in the pseudo-transient is ipdated only when a new Jacobian
and preconditioner are formed.

3 Equation System

The tokamak edge plasma (scrape-off layer, boundary layer) is that plasma which lies be-
tween the last closed magnetic flux surface, called the separatrix, and the vessel wall. This
plasma is made up of hydrogen ions, electrons, impurity ions from the vessel structure, such
as carbon, as well as hydrogen and impurity neutral atoms and molecules. The system of
equations solved in this paper only models hydrogen ions, atoms and electrons. For more
details regarding the equations system, boundary conditions, and geometry see [1]. The
following equations are solved on a two-dinfensional (z,y) Cartesian grid after they are first
nondimensionalized to improve scaling.

Plasma continuity:

a;; +V. (n,U ) = VionTo = VrecTi- (7
Neutral continuity:
Bano +V- (n,,U ) = —VienTo + VrecTi- (8)
Jon parallel momentum:
DI - (il — - V) = ~ (G + 52
+Vion MU0 = VreeMty + Vimamns (Yo — ¥yp)- 9)

Neutral vector momentum (three components):

Omn;U,
ot
—Vion AUy + VreeminUs — vi_gmny (T, — U). (10)

+ V. (mngﬁoﬁo) = V . T,',j

Ion + neutral internal energy:

2 B me+n) 4 V- Lol + 002 = (B T) - 9T3) =
~(B:VT; + P,VU,) + keo(T. — T3). (11)
Electron internal energy:
%(gneTe) +V- (gn,ﬁ,-zzx — R, VT =
—PCVﬁi — ch(Te - ‘I';) - Ip(noVion - ninec) — L.qa- (12)

Here, n; is the ion number density, n, is the electron number density (equal to n; assuming
quasi-neutrality), n, is the neutral atom number density. w is the ion velocity along the




total magnetic field (B), with the parallel direction being a combination of the x and z di-
rections. v is the x-direction ion velocity which is equal to Z=u), where Bz is the magnetic
field pitch. v is the y-direction ion velocity which is obtained from a diffusive approxima-
tion. Ambipolar flow is assumed so that the electron velocity is equal to the ion velocity. ﬁ,,
is the neutral atom velocity, with U, =u,3+ Vo +w,2. m is the ion/atom mass. T} is the
ion temperature, T, is the electron temperature. The equation of state gives the following
relations for pressure, P, = n.T,, P; = n;T;, and P, = n,T;. v;,, and v,., are the ionization
and recombination frequencies, and »;_, is the ion-atom elastic collision frequency. 7 is
the viscosity, x is the thermal conductivity, 7;; is the neutral (atom) fluid stress tensor,
and k., is a thermal energy transfer coefficient. I, is the ionization potential energy, and
L, 4 represents energy loss due to atomic line radiation. Because we solve for three compo-
nents of neutral momentum there is a total of eight equations with the dependant variables
being n;, 7o, ¥)|, Uo, Vo, Wo, T3, and T,. These equations are strongly coupled through nonlin-
ear source/sink terms which represent the effects of ionization, recombination, ion-neutral
elastic collisions, and ion-electron coulomb collisions. The transport coefficients are highly
nonlinear and some are anisotropic due to the magnetic field. Additionally, the problem
exhibits large spreads in time scales and space scales.

4 Algorithm Performance Summary

Fig. 1 shows the convergence history for a 3-grid solution starting on a 32x16 grid and
finishing on a 128x64 grid. This simulation was run using the matrix-free implementation
and evaluating the Jacobian/preconditioner every 10 Newton steps. GMRES(40) was used
with point ILU(1) preconditioning. The inexact Newton convergence tolerance -;, was set
equal to 0.05. The initial time step on the coarse grid was very small ( 5 X 10~%sec ) due
to the poor initial guess. However, the time step at convergence on the 32x16 grid was
approximately 1 x 10™*sec. 7, in Eq. 4 was set to 1.0. On each successive grid the time
step was initialized 1 order of magnitude below the final value on the previous grid. The
total number of Newton iterations on each grid was 74, 19, and 7 respectively. The gap, or
delay, between the convergence of the 32x16 grid and the first triangle for the 64x32 grid
represents the time to form the first Jacobian and preconditioner on the 64x32 grid. The
distance between the last triangle and the first circle represents the time required to form
the first, and only, Jacobian and preconditioner on the 128x64 grid. We can see that by the
time this grid is reached, nearly two thirds of the total solution time required for the grid
is spent forming the Jacobian and preconditioner. When plotted as a function of Newton
iteration, one observes an increasingly rapid convergence as we move up in grid.

Fig. 2 is used to quantify the cost incured to obtain the 64x32 grid solution when the
intermediate 32x16 grid is not employed. For completeness, we include the 32x16 and 64x32
grid convergence plots from Fig. 1, in addition to displaying the convergence plot for the
64x32 grid solution with a poor initial guess. A CPU savings of a factor of 4 is observed by
employing a coarse grid. Note that while the two 64x32 grid convergence plots have roughly
the same maximum steady-state residual at approximately 0.5 hours, the one obtained using
one-way multigrid exhibits a much faster convergence rate beyond that point.
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Abstract

We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation
to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton’s iteration, where
the input, output, and all the auxiliary matrices are represented with their short generators defined
by the associated scaling operators. The computations are performed fast since they are confined to
operations with short generators of the given and computed matrices. Because of the known correla-
tions among various structured matrices, the algorithm is immediately extended to rapid refinement of
rough initial approximations to the inverses of Vandermonde-like, Chebyshev—Vandermonde-like and
Toeplitz-like matrices, where again, the computations are confined to operations with short generators

of the involved matrices.

1 Introduction

Computations with structured matrices ( such as Toeplitz, Cauchy, and Vandermonde matrices ) can
be facilitated ( so that the computational time and memory space decrease dramatically ) by means of
representing these matrices with their low rank generators associated with operators of displacement
(shift) and/or scaling [KVM], [KKM], [CKL-A], [GKK], [GKKL], [HR], [P90], [GO], [BP], [H], [GKO],
[GO1], [KO], [KS].




Such a generator is a matrix associated with a given structured n X n matrix A and representable

in one of the forms

A(rsy(4) = A— RAS = GH”, (1.1)
Vins)(A) = RA— AS =GH", )

for a fixed natural o, for two fixed matrices R and S, representing scaling and/or displacement, and
for some 7 X o matrices G and H. In this paper we will deal with Vg s}-generators of A, of the form
(1.2), and will specify R and S according to the next equations (1.3) — (1.5): Scaling is represented
by diagonal matrices

D, = diag( ©1,%2,°**»%n ), (1.3)

for fixed 1,22, -+, %y, Whereas such » X n matrices as
Z; = (z5), #ia=1, =zap=f 2;=0 if j#14i—1modn, (1.4)

or

aZs +bZL + cZyt (1.5)

for some fixed scalars a, b, ¢, f, @, and ¥ # 0, represent displacement.

The key-idea is that the original matrix A can be easily recovered from its generators (1.1) or (1.2);
moreover, the basic operations ( such as multiplication, addition, subtraction, and inversion ) with
n X n structured matrices of certain classes can be reduced to operations with their generators that
are represented by O(an) parameters. This leads to a dramatic saving of the computational time and
memory space, if « is much less than n.

For Toeplitz, Cauchy ( generalized Hilbert ), and Vandermonde matrices, the length « of the
associated generators (1.1) and (1.2), for some appropriate choices of the matrices R and S among the
matrices of the classes (1.3) and (1.4), is as small as 1 or 2. These 3 classes of matrices are naturally
extended to Toeplitz-like, Cauchy-like, and Vandermonde-like matrices, for which « is bounded by a
fixed ( and not too large ) constant. ( These classes include or are closely related to some other well-
known classes of structured matrices, such as Sylvester, subresultant, Hankel, Hankel-like, Lowener,
Begout, and Chebyshev-Vandermonde matrices [HR], [BP], [H], [GO1], [KO]. ) It was observed in
[P90] that some simple correlations among the operators associated with the matrices of the 3 cited
classes can be exploited in order to reduce the computations for matrices of any of the 3 classes to
computations with matrices of the class for which most effective algorithms are available.

On the other hand, due to a simple reduction ( available via FFT ) from Toeplitz-like and
Vandermonde-like matrices to Cauchy-like matrices, [H] and [GKO], effective algorithms for com-
putations with Cauchy-like matrices could play most fundamental role.

In this paper, we consider the solution of a nonsingular Cauchy-like linear system,

CZ = ¥, and the inversion of a nonsingular Ca:uchy-like matrix, C. These operations can be im-
mediately extended to the Vandermonde-like and Toeplitz-like cases, as well as to the Chebyshev-
Vandermonde cases [GO1] and [KO].

Tt is well-known that Newton’s iteration rapidly improves a rough initial approximation to the
maitrix inverse ( cf. e.g. [BP] ), but such an iteration also rapidly destroys the structure of Cauchy-
like, Toeplitz-like, and Vandermonde-like matzices. In [P92], [P93], and [P93a], Newton’s iteration has




been modified so as to preserve the initial displacement structure of a Toeplitz-like input matrix during
the iteration. The idea was to control the growth of the length of short displacement generators by
periodically chopping-off their components corresponding to the smallest singular values in the SVD of
these generators. This made all the iteration steps of the resulting algorithms computationally simple;
moreover, such a simplification was achieved with no significant slowdown of the convergence.

In the present paper, we consider a similar problem of controlling the length of the associated
generators in a modification of Newton’s iteration, where the inverse of a fixed Cauchy-like input
matrix C is sought. Our solution of the problem is substantially simplified in this case ( in particular,
we do not need to involve the SVD ), due to the formula for the inverse matrix ! available from
[H]. This may motivate the reduction of the Toeplitz-like case to the Cauchy-like case ( by means
of FFTs) and applying the techniques of the present paper, instead of the inversion of Toeplitz-like
matrices by applying the techniques of [P92], [P93], and [P93a].

2 Modified Newton’s Iteration for the Inversion of Cauchy-like

Matrices

Let C be an n X n nonsingular Cauchy-like matrix with the associated scaling operator

V{Dt,Ds}(C) = Dtc - C-Ds = ZYT ’ (21)
7y; T T
C=[t___—;]7 Z" =[z1, 2 ), Y =[9,"¥], (2.2)
i~ 85
where z;, y; € C®*Y, Dy = diag( t1,-++,tn ), Ds = diag( s1,+-,8n ), ti # 5, forall ¢, j =1,2,--+,n
( cf. [H] and [GKO] ). Assume that an initial approximation Xo to C™* is available with its V(p, p,}-
generator of length at most o. Then we recursively define matrices Xy, Xi, X3, X2, -+, as follows:

X;:_l_l:Xk(zI—'CXk ), k=0,1,"', (2-3)
(uly+1)Twlg+1 n
Xk+1="'[—t_"—]'] ’ k=0,1,---, (2'4)
si—1j ij=1
where the vectors u¥*?, wh*? € C**! are defined by

oy 7
Ven=| : |=xt.2, 2z=|:], (2.5)

(ke z,ff
W;cz-‘l-l =[w{c+1,"')wﬁ+1 ]=YT-XZ+1 ’ YTz[yla"',yn] . (2'6)

Equation (2.3) represents a step of Newton’s iteration for matrix inversion ( c¢f. eg. [BP] ), and
equation (2.4) "corrects” the results Xy ; of (2.3) so as to turn Xj,, into a Cauchy-like matrix,
associated with the same scaling operators as C~*. Namely,

V0,0 Xk41) = —Urs1Wiy1

that is, Xg41 is a Cauchy-like matrix whose Vp, p,}- generator has a length of at most c. Further-
more, we have




Proposition 2.1 For any k = 0,1,---, the matriz X, = 2X; — X3CX; is a Cauchy-like matriz
whose V{p, p,}-generator has a length of at most 3c.

3- Computational Complexity of an Iteration Step

Next, we estimate the arithmetic cost of computing the matrices Xz41, Ur41, Wk.,;l, and X7, based
on the equations (2.3)—(2.6). Given Cauchy-like matrices C and X}, the computation of the V(p, p,}-
generator of-length 3 for X} +1 ( according to (2.3) ) uses O(o*nlog?n) ops ( see e.g. [GO] or
[BP], chapter 2, section 4, 11, and 12 ). (Here and hereafter, ops stands for arithmetic operations).
Therefore, (2.5) and (2.6) together enable us to compute the n X o matrices Ug41 and Wiy by
using O(c?nlog?n) ops. An additional attractive feature of this computation is the economization of
computer memory, that is, representation of all involved matrices by means of their short generators
requires only O(an) words of memory. We also refer the reader to [BP], pages 130, 261262, on some
alternative methods for faster numerical approximation of the product of a Cauchy matrix C by a

vector, which may lead to a further decrease of the computational cost of our iteration steps.

4 Estimating Convergence Rate of Newton’s Iteration

In the following, we will estimate how rapidly X; approaches C~1. From [H], we have

T
-1_ _ | MY
oo n], s
U=[ul, -, F=Cc12Z, WL =[wy,-,w, | =YTCT, (4.2)

where ZT =[z,--,2z,], and YT =[y1, -,y ] (cf (2.1) and (2.2) ).
We recall from (2.4)-(2.6) and (4.2) that

?

X { A
k= - *

si~t; R
Up = X1Z=(X;-C')Z+CZ2=(X}-C1)Z+TU,
wf = YIxt=vT(xt-c1)+wT.
Then, we obtain the following matrix equation:
UWE = (Xt - CcOHzyT(X; - Cc Y+ UwT + YT (X; - C™Y) + (X} — c~H)zwT.

From this equation and (4.2), we obtain that

Wi —vwT
= (X;-CcVO)ZYT(X;f-Cc V) +CzyvT(X; - C YY)+ (X - cYzyTCe.

E

(4.3)

Hereafter, we will use the column-norm of matrices ||W]| = [|[W]|[1 ( [GL], p.57 ).




Proposition 4.1 Let e} = || Xz —C™' ||. Then
1Bl = || UsWF —UWT || < (|27 |lek(ek + 2lIC7) -
Proof: Proposition 4.1 immediately follows from (4.3) . u|

Proposition 4.2 Let ex = || Xx — C™* ||, for a nonsingular mairiz C, and let X} be defined by
(2.3), for k=0,1,2,---. Then we have

ety1 < ICllef - (4.4)

Proposition 4.3 For any k =1,2,---, we have ex < Sk € , €r41 S (sketlICl , where

. T * -1 — _
e = AllZY TN +2ICTD, o= mae 45)
Proposition 4.4 If
;<1 (4.6)
and if
@ liclist <1, (4.7)
for 8 < 1 and for s; of proposition 4.3, then
i < (@7 < (@D, for E=1,2,-. 49)
Proposition 4.5 If eo/[[C]| < 1 and if
elicIMs? <1, (4.9)
for 0 <1, for s = pl|ZYTI(IICI + 2/IC 1), and for p of (4.5), then
ehra < (BICIE",  for E=0,1,--.
We write %ol
+ __ TollA0
€& =T (4.10)
_avk 2l X
st = AV LCEVICDE + 28], k=1, (41)
so that e > eq and sf,; > g1 if 5544 < ((ef)?IIC]I )2=9* | and
2)1X, .
st < PllZYT (14 1_”_%‘ ), forallk, i ery/IClI<1. (4.12)

We now summarize our results, including the bound ex41 < Spya1€54q ( from proposition 4.3 ), which

enables us to estimate e as soon as we estimate ej; .




Corollary 4.1 Let

ro=|II-CXoll <1, efy/lICII<L, 6<1, (4.13)
E)PICIM? (sF)* < 1 (4.14)

for e of (4.10) and st of (4.11). Then

et < ((PlCIHED,  Ek=0,1,---,

er+1 < s;:'_i_lez_i_l, k=0,1,---

Let us write

B = [ log =B ) /log(2-0)1, @)

Tog( (& ICT)
s - loge
k=1 Cog g eyenem

) [log(2-0) 1, (4.16)

where 6 < 1, €} and sf,, are defined by (4.10) aiid (4.11), so that (4.12) holds. Then, under the
assumptions (4.13) and (4.14) of corollary 4.1, it suffices to perform k41 > k* + 1 recursive steps of
the iteration (2.3), (2.4) in order to ensure that

€1 = | XI’:+1 -C<e,

and it suffices to perform £ + 1 > & + 1 recursive steps in order to ensure that

er1 = || Xpra —C71 || £ 63}:'-{-1 .

[ Note that (4.13) implies, in particular, the bounds of (4.12). ]
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Fractal Aspects and Convergence of Newton’s Method
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1 Introduction

Newton’s Method is a widely established iterative algorithm for solving non-linear systems. Its
appeal lies in its great simplicity (see [8] for a geometric interpretation), easy generalisation
to multiple dimensions and a quadratic local convergence rate. Despite these features, little
is known about its global behaviour. In this paper, we will explain a seemingly random global
convergence pattern using fractal concepts and show that the behaviour of the residual is entirely
explicable. We will also establish quantitative results for the convergence rates. Knowing the
mechanism of fractal generation, we present a stabilisation to the orthodox Newton method that
remedies the fractal behaviour and improves convergence.

Tt is well known that the basins of attraction of different roots have fractal boundaries when
Newton’s method is used to determine the complex roots of polynomials; the simplest example
being Cayley’s problem 23 = 1 that arose as early as 1879. Basic properties of the boundaries
were explained by Julia [5] in a substantial paper. With the advent of computer graphics,
interest in iterated polynomial mappings re-emerged, but much attention was devoted to the
Mandelbrot set ([1], [7], [9]) and Newton’s method was treated historically as an accessible
example to introduce the general concept of Julia sets [10].

In this work, we take a different approach and do not seek to establish general properties
related to Julia sets, but the mechanism by which Newton’s method generates a fractal structure
and how modifications affect that mechanism. Using these results, we are able to close the
gap between the theoretical results of fractal geometry and the problems arising in numerical
analysis. In addition, we are able to give quantitative results on Cayley’s problem that are
hitherto unknown.

2 The Orthodox Newton Method

In this section, we will give results for applying the orthodox Newton method to complex poly-
nomials of the form z® = 1. After briefly defining the necessary terms, we give results for
Cayley’s problem and discuss their generalisation for higher-order polynomials. This work will
be restricted to functions of a complex variable, which can always be stated as two-dimensional
systems via a splitting into real and imaginary part. However, these are only exemplary for
general two-dimensional systems which can just as well exhibit fractal behaviour.

2.1 Definitions
The orthodoz Newton method on f(2) is defined by the iteration

(k)

with z(*) denoting the kth iterate, and f, denoting -f—g. The view we shall take of the Newton
method is slightly different to that implied by (1). Rather than finding the next iterate given a




starting point z(¥), we shall ask which points zF) = 2 = (z + ¢y) are mapped into a given point
2:+1) = 25 = (a + 4b) by (1).
For f(z) = 2¥ — 1, we then define the complex Newton polynomial of order v to be

(v —1)2" —vzz"t +1=0, z,7p € C. (2)

For the rest of this paper, we assume f(z) to be the aforementioned polynomial unless stated
otherwise.

To give a brief, yet comprehensive definition of a fractal is not a straightforward task. We
refer to the very instructive discussion in [3] and, coherent with the concepts presented there,
define the Newton fractal of order v as the union of all points that are mapped into the singular
origin (the Julia points) by the Newton mapping (2). Fig. la depicts the Newton fractal of
order 3 in the complex plane.

We also assume general facts about Julia sets as given in [3], [1]. In particular, we denote
the order of a Julia point by the number of Newton iterations it takes until its image coincides
with the origin. '

oot L1

1.5

20— 7 !
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(a) (b)
Figure 1: (a) Newton Fractal » =3 (b) Images of the inverse Newton mapping

2.2 Generation of the Fractal for Cayley’s Problem

Throughout this subsection, we shall be concerned with the case f(z) = 2% — 1. We can write
the general solution {xy} to (2) for » = 3 in the complex plane as

x31 =by +baz+t
X2 = Riggbi + Ragobogz + t 3)
x3 = Raqob1 + Riggbas +t

where

o = (of-2+2/TGoF
€

= Re(¥%), n = Im(\?'/@)
I
1 2aby — (b2 — a?)¢ a
b2z = E(_57-1712—)(2ab2+((bz—a?‘;'17) o= %(b)




Riy20 and Rz40 denote the two-dimensional rotation matrices about an angle of Z* and 47,
respectively. In accordance with its definition, the fractal emerges by successive mappings (3)

from the images of the trivial real Julia point x; = ——3\}—5 (obtained from (2) for zp = 0) and its

rotations by :l:%”. By substituting b = 0 for the real axis, we can get a parametric description
of the image of the real axis and determine that points on the real axis approach the origin as
a geometric progression, and the image of the real axis sufficiently close to the origin can be
approximated by

yre Yz, z< '2—%—\/5 5)
T~ 5oz, a> 1.

This arc and its rotations by :1:257E determine the first-order approximation to the fractal struc-
ture. It can also be seen that the origin and points at infinity are images of each other. From

[b2sll - [Iba]l = [1£]?, (6)

we can infer that t will never be the dominant vector and hence that the x) will always be
separated by angles of approximately %” These define three branches of the fractal at angles of
%,w,%’! with respect to the positive real axis, as can be seen in Fig. la. A closer analysis for
|20] < 1 shows that the maximal perturbation of this angle is y ~ 0.62134. We also obtain from
(3) that t is the bisector of the angle between bz and bj.

For large |z|, we can approximate

o~ (), Exa, nzb.‘ (D

In this case, all three vectors by, bag,t point in the same direction and are of approximately
equal length. Therefore, one of the three mappings in (3) generates an image of zp in the same
general direction, but scaled by a factor of

3 -
A300 = 3 (8)

As the mappings (3) are locally conformal, this scale factor determines the far-field similarity
of the fractal. As can be seen from a geometrical argument, the two other mappings generate
points close to the origin.

For small |z], that is ||(a,b)||*> < 1, we can approximate by binomial expansion of ¢

pr -G, £n S Yo, ©)

We denote the circle with radius -315 as the attractive circle. Choosing zg inside the attractive

circle, it can be established that of the three mappings in (3), one generates an image outside
the circle (prolongation) in the same direction as (a,b) and the other two generate an image on
each of the two remaining branches (rotation). One of the images will be reflected with respect
to the central symmetry axis £ of the branch. Fig. 1b depicts the arrangement of the images
for (a,b) lying close to the negative real axis. The bold lines are the symmetry axes £;. The
dotted circle is the attractive circle. Point 1 is a result of prolongation and points 2 and 3 emerge
from rotations. The basin of attraction for the root (1,0) is greyshaded in the background.
From this description, we can infer that the Newton iterates can only change from one
branch of the fractal to another inside the attractive circle. Any movement of iterates outside
the attractive circle is confined to a lateral movement along the branch towards the origin. Due
to local conformity, the iterate between Julia points of order (n+ 1) and n can only move to the




region between Julia points of order n and (n —1) - a point that will be useful in understanding
the convergence rate of the orthodox Newton method. .

By the same argument about the order of Julia points, we see that the changing of branches
via rotations of the iterate inside the attractive circle leads to a "nesting” of images. The images
are basically slightly deformed copies of the arc in (5). Therefore the self-similar structure can
be thought of as emerging in the attractive circle and then being copied to the infinite series of
lobes on each branch outside the attractive circle which grows as a geometric progression with
ratio Az co-

Concerning the change of branch inside the attractive circle, we examine the fixed points of
(2) for cycle 2 and 3 (cycle 1 yields the trivial solution of (2)). Using alocal linear approximation
around zp, we obtain the scale factor associated with such a change of branch for an infinitesimal
€ as
Aa(i0) = lim #(z0 + ez z(?o) _ % (10)
Choosing z and zp according to the definition of fixed points of cycle 2 or 3 (for example
2(2(6)) = G, 2(G1) = G, 2(¢2) = (1 for cycle 2), we arrive after some algebra at scale factors of
Agz = \/—, Mgz = ﬁ ' (11)
for mappings associated w1’ch branch changes. These factors (which can be confirmed numeri-
cally) can be used together with A3, and the formation of the fractal explamed above to give
an estimate of the fractal dimension of 1.801.

z .

z—2z0|"

2.2.1 Generalisation to Higher-order problems

We remark that many of the results obtained for » = 3 generalise to the case of larger v. For
example, it is possible to state global and local symmetries (3- and 6-fold for » = 3) for the
general case, obtain the global scale factor A, o, and also several local scale factors. The fact that
the v** order fractal exhibits a v(» — 1)-fold local symmetry is worth mentioning, as it means
that the fractal gets more dense with v increasing. It can also be established that the fractal
generation mechanism is similar to the case » = 3, although an explicit form of the inverse
mapping as in (3) is not available for the general case. However useful in predicting properties
of the v** order fractal, these results add no further insight into the numerical behaviour over
what can already be inferred from v = 3. They are therefore not considered further in this

paper.

3 A Stabilised Newton Method

After having established the fractal properties of the orthodox Newton method, we consider
stabilising modifications that have been established for engineering problems ([2], [4], [6]) and
examine how their use affects the fractal pattern.

3.1 Definitions

We define two positive limiters s,,sq and with these state Newton’s method with dynamic shift
scaling in one dimension for a scalar function h(z) as

(z(k))
s h}:(z(")) (12)
oy = -—mi.n(lm| ) Su) %f s<0 (13)
mm(z(sk »84) ifs>0 .
) = g (1 - sy). (14)
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In multiple dimensions, the Newton shift s is of course a vector obtained by solving the Jacobian
system Js = f(x(*)). The scaling restrictions sy are then found independently for all components
of s and the most restrictive one is used.

We note that in the limit s,,sq4 — 00, the method with shift scaling is equivalent to the
orthodox Newton method. We also remark that a change of sign in any component of the updated
iterate x(*) is impossible for positive components for s < 1 and for negative components for
Sy < 1.

3.2 Changes to the Fractal Structure

We consider Cayley’s problem with » = 3. From the discussion of the orthodox Newton method
we know that the fractal is generated by rotations of :I:%”, thus involving changes of the quadrant
by the iterates in the complex plane. By the above argument, these changes cannot occur for
54 <1 or s, <1, and hence the fractal structure cannot emerge. However, points with positive
real part that would normally converge to one of the roots in the negative half-plane are forced
to stay positive. Therefore, convergence is greatly impaired by such radical shift limits. It is
therefore not sensible to allow the limits to™be less than 1.

For limits greater than 1, the chain of Julia points leading to the attractive circle on each
branch of the fractal can still exist. For a more detailed description of this case, we consider
Newton mappings from close to the origin on the arc defined by (5) inside the attractive circle
onto the negative real axis. In this case, we can write for the Newton shift

s=—(a+z) ) (15)

with —a being the image of z after one Newton step. Using the approximation (5) close to the
origin, we obtain the shift limiting condition

sa <1+9a° (16)

ag = {/3(s4—1). an

This means that for a given limit s4, no point left of —ay on the negative real axis will have
an image inside the attractive circle under the inverse Newton mapping (3). Therefore, none
of the Julia points to the left of —ay can have an image on another branch and be the *parent’
of a sequence of Julia points on that branch. The closer sq gets to 1, the shorter the sequence
of Julia points approaching the origin on the arc described by (5) becomes. For some value
84 = 1 + ¢, the first Julia point on the negative real axis x; has no longer an image inside the
attractive circle, and the fractal chain on this side breaks down completely. The corresponding
value can be determined from (17) as sq = 5.5. As the shift scaling breaks the global symmetry,
the critical values for the other branches of the fractal are lower and also involve conditions
on s,. The general argument, however, prevails and can be verified in Fig. 2. As every nth
order Julia point is by definition an image of the origin after n locally conformal inverse Newton
mappings (3), the presented argument holds throughout the fractal structure.

and hence

4 Numerical Relevance

Having understood the formation of the fractal, we now turn to numerical experiments. Re-
lating the theoretical results presented in section 2 to numerically observable quantities, a case
study on the orthodox method and v = 3 is discussed. Then, the method with dynamic shift
scaling is compared to the orthodox method for several v and finally a problem involving a
transcendental function is solved to demonstrate that the presented results generalise beyond
simple polynomials.
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Figure 2: Julia sets for z° = 1 with various shift limits.

4.1 The orthodox method

We start numerical experiments from the points giverr in table 1. The distance to the nearest

root in the Ly norm is denoted by d.

i T U ] i U .l
08 06 04 02 00 02 04 06 08

z Y d
z1 | -0.593573840026322 | -0.146431149219563 | 0.7257
zz | 0.538607827019894 | -0.417205032532133 | 0.6220
z3 | 0.538607827019894 -0.35 { 0.5791
z, | 0.538607827019894 | -0.417205031032133 | 0.6220
zp | 0.538607829019894 | -0.417205031032133 | 0.6220

Table 1: Starting points for numerical experiments

We see that the three points 23,2, and z only differ after the 8% digit of one of their
coordinates. Their convergence history is depicted in Fig. 3. As expected, their residuals are
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Figure 3: Convergence history for three sta,'r‘ting points close to a Julia point

identical in the beginning and differ slightly after iteration 18. Then the path of their iterates
leaves the attractive circle, on what can be thought of as an inverse prolongation step, hence
the increase in residual. It emerges that the starting points converge to different roots, namely

(18)

From the slight differences in residual after step 18, we can infer that the inverse prolongation
was by almost the same distance, but onto three different branches of the fractal. As the three

2= (1,0), z—(-3%), a-(-3-%).




points have been chosen to lie close to a Julia point, this confirms the well-known result that
each Julia point lies on the boundary of the basin of attraction of all roots. It should also be
noted that, as each Julia point by definition eventually is mapped onto the origin, a fractal
pattern contains infinitely many singularities.

From the principles of fractal formation, we can predict four convergence patterns.

e A stationary residual with magnitude 1, when the iterates stay inside the attractive circle
and constantly change branches.

e A sharp increase in residual when the iterates leave the attractive circle with a change of
branch. This has to be followed by

e Linear convergence with an approximate rate (A3,00)~! as the iterates move laterally along
the branch. This is the only type of convergence possible outside the attractive circle for
large iterates.

¢ Quadratic convergence once the iterates get sufficiently close to the root.
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Figure 4: Convergence history for starting points inside the attractive circle

These patterns are confirmed by Fig. 4.  The iterates starting from 2o stay inside the
attractive circle until iteration 18, when they leave for the branch with angle 7 and after some
lateral movement along that branch converge to (1,0). The sequence of iterates starting from
21 leaves the attractive circle four times before finally arriving on the correct branch and then
converging to (1,0). Finally, 23 converges immediately as it was chosen to lie outside the fractal
region.

4.2 'The stabilised method

The main advantage of a method with no fractal character is a drastic reduction in the number of
singularities. Another point is a higher predictability of the convergence path, avoiding situations
as depicted in Fig. 3 where a small initial perturbation leads to completely different results.
To examine this, an array of 240 x 240 starting points was cast over the region [—2,2] X [-2, 2]
and each point converged to a root. The number of iterations for that was averaged to give a
measure of how fast the method converges and times to convergence were taken. Table 2 lists
the results. The limits given refer to the upward and downward limits s = s,,. The hardware
used was an Intel-80486/100 based system. The results confirm the predictions of the theory.
Limiting the shifts depletes the fractal structure and therefore improves convergence - however,
excessively restrictive limits penalise the change of quadrants and slow convergence down.

The positive effects of stabilisation are more obvious for increasingly ill-conditioned problems,
for which the fractal structure is more dense. This is confirmed by the results in table 3. A




Method | limits | average iteration # | time [sec]

orthodox - 7.997 23.4

stabilised | 10.0 7.529 27.4
1.1 7.667 27.7
1.01 8194 30.0

Table 2: Comparison of convergence for 23 = 1

breakdown denotes failure to converge within 500 iterations and is excluded from the averaging
(in favour of the method showing the breakdown).

Method | limits | av. iteration # | time [sec] | breakdowns
orthodox - 10.948 36.7 84
stabilised | 5.0 8.910 36.4 4

1.1 8.789 36.3 0
1.01- 9.458 39.5 0

Table 3: Comparison of convergence for 2* =1
As an example of a transcendental function, as such not being a finite polynomial,

) z
sinz=g (19)
was chosen. There exist three roots of this system obtained by spliting into real and imaginary
part, all of which are real. The non-trivial roots are the symmetric solutions of sinz = Z,
with z ~ +1.9. Table 4 gives the convergeénce results which are remarkably similar to those of
polynomials. Even more striking is the fact that a fractal depletion similar to that described
for polynomials can be observed. Fig: 5 shows this effect in the complex plane. For clarity, the
black area has been chosen as the union of the basins of attraction for the two non-zero roots.

Method | Limits | av. iteration # | time [sec] | breakdowns
orthodox - 6.087 77.7 30
stabilised | 10.0 5.918 78.4 10

5.0 5.845 77.2 6

1.1 5.911 74.8 0

Table 4: Comparison of convergence for sin z = £

5 Concluding Remarks

In this paper, we have established an understanding of how Newton’s method generates fractal
structures: Quantitative results for the orthodox Newton method applied to polynomials 2™ =1
have been given and modifications proposed which can remedy the fractal structure gradually.
The same modifications are used as stabilisations for engineering problems and their convergence
behaviour in these cases suggests a connection with the fractal explanation we have given. For
example, in many applied problems, sudden sharp jumps in residual followed by a long period of




linear convergence or stagnation phases of the residual occur. Analysing the convergence path
of a test problem, it was shown that the fractal results for this problem tramslate directly into
numerical properties.

This work has been mostly concerned with polynomials in two dimensions, but the numerical
effects of fractal properties can also be observed for transcendental functions. It appears therefore
very likely that the results obtained generalise to other classes of problems, for example higher-
dimensional systems, and that fractal properties of Newton’s method play an important role
in engineering problems. Although quantitative results for these will be much harder, if not
impossible, to obtain, it is hoped that the qualitative understanding gained from simple model
problems such as polynomials will lead to better adaptions of Newton’s method for engineering
and physics applications.

Acknowledgements

The author would like to acknowledge the financial support of the German Academic Exchange
Service (DAAD) through the programme HSPII/AUFE. He also wishes to express his gratitude
" to Dr. Ian Sobey, Numerical Analysis Group, Oxford University, and Christian Bracher, Dpt.
of Theoretical Physics, Technical University at Munich, for many fruitful discussions and their
continued interest in the results.

References

[1] Barnsley, M. Fractals everywhere. Academic Press. London. 1988.

[2] Drexler, M. and Rollett, J.S. An adapted Newton Method for the turbulent k — ¢ Equa-
tions. in: Morton, K.W. and Baines, M.J. Numerical Methods for Fluid Dynamics. Oxford
University Press. 1996.

[3] Falconer, K. Fractal Geometry. John Wiley and Sons. Chichester. 1990.

[4] Gwilliam, C.S. Parallel Algorithms for Navier-Stokes Modelling. D.Phil. thesis. Numerical
Analysis Group, University of Oxford. 1993.

{5] Julia, G. Sur literation des fonctions rationelles. Journal de Mathématique Pure et Ap-
pliquée sér. 8, 47-245. 1918.

[6] Knoll, D.A. and McHugh, P.R. An inexact Newton Algorithm for Solving the Tokamak
Edge Plasma Fluid Equations on a Multiply-Connected Domain. Journal of Computational
Physics 116, 281-291. 1995.

[7] Mandelbrot, B. The Fractal Geometry of Nature. W.H. Freeman and Company. New York.
1983.

(8] Ortega, J. and Rheinboldt, W. Iterative Solution of Nonlinear Equations in Several Vari-
ables. Academic Press. New York. 1970.

[9] Peitgen, H.O. and Saupe, D. The Science of Fractal Images. Springer-Verlag. New York.
1988.

[10] Peitgen, H.O., Saupe, D. and Haeseler, F.v. Cayley’s Problem and Julia Sets. The Mathe-
matical Intelligencer Vol. 6, No. 2. Springer-Verlag. New York. 1984.




Limit 100.0 Limit 20.0

Limit 10.0 Limit 1.1
SR R | I B |

-1.2 -1.1 -1.0 -0.9 -0.8

Figure 5: Basins of attraction of non-trivial roots for sin z = £, stabilised Newton method.

10

S TR T e




Topic: Session Chair: Room B

Parallel Loyce Adams

10:30-11:00 G.C.Lo Iterative Solution of General Sparse Linear Systems on Clusters of
Workstations

11:00-11:30 Q. Yao New Concurrent Iterative Methods with Monotonic Convergence

11:30-12:00 R. McLay Improving Matrix-Vector Product Performance and Multi-Level

Preconditioning for the Parallel PCG Package




*
ITERATIVE SOLUTION OF GENERAL SPARSE LINEAR SYSTEMS ON CLUSTERS OF WORKSTATIONS

Gen-Ching Lo and Yousef Saad

Department of Computer Science, and
Minnesota Supercomputer Institute
University of Minnesota
Minneapolis, MN 55455

March 15, 1996

Abstract

Solving sparse irregularly structured linear systems on parallel platforms poses sev-
eral challenges. First, sparsity makes it difficult to exploit data locality, whether in a
distributed or shared memory environment. A second, perhaps more serious challenge,
is to find efficient ways to precondition the system. Preconditioning techniques which
have a large degree of parallelism, such as multicolor SSOR, often have a slower rate
of convergence than their sequential counterparts. Finally, a number of other computa-
tional kernels such as inner products could ruin any gains gained from parallel speed-ups,
and this is especially true on workstation clusters where start-up times may be high. In
this paper we discuss these issues and report on our experience with PSPARSLIB, an
on-going project for building a library of parallel iterative sparse matrix solvers.

1 Imntroduction

In the past few years, there has been a flurry of activity on the use of distributed memory
computers to solve challenging scientific problems. Of particular interest is the recent surge
of activity on the use of workstations clusters. Connecting a small number of workstations
by fast communication networks is increasingly gaining acceptance as a low-cost and ef-
fective alternative to large supercomputer engines. However, in using iterative methods to
solve large sparse linear systems on workstation clusters several problems emerge. First,
if few processors are used then any gains that are made from parallelism can easily be
wiped out by the overhead, particularly communication. This is not untypical of paral-
lel processing in general but the problem is more acute with workstation clusters because
communication costs can be quite high. Second, inner products and other global operations
which normally cause few problems can now cause a serious bottleneck. The reasons are the
same: the overhead in doing the global sum of the smaller inner products can overwhelm
the actual time to carry out the arithmetic. On the other hand, workstation clusters present
several advantages over traditional distributed computers. For example, we found that one -
of the main advantages is that memory is not a serious limitation: in massively parallel
architectures, the global memory can be very large but local memory is often small, being
limited by physical constraints. In earlier experiments on the CM-5 for example we found

*Work supported in part by ARPA under grant number NIST 60NANB2D1272 and in part by the
National Science Foundation under grant NSF/CCR-9214116
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Figure 1: A local view of a distributed sparse matrix.

that in order to obtain satisfactory speed-ups, the problems to be solved would have to be
very large, so large in fact that they would not fit in memory given the relatively small size
of local memory available. This is not the case on wortkstation clusters.

2 Tterative Solution of Distributed Sparse Systems

We consider a linear system of the form
Az =b, (1)

where A is a large sparse nonsymmetric real matrix of size n. When mapping such a
system into a parallel computer, it is natural to assign pairs of equations-unknowns of a
given sparse linear system to the same processor. Each processor holds a set of equations
(rows of a sparse linear system) and a vector of the variables associated with these rows.
These sets, i.e., the mapping of the unknowns to processors, can be determined by a graph
partitioner or ad koc from knowledge of the problem. We assume (for simplicity only) that
each processor is assigned only one subgraph (or subdomain, in the PDE literature). This
natural way of distributing a sparse linear system is fairly general and is closely related
to the physical viewpoint. Rather than starting from the standard natural ordering used
in the sequential setting, we look at the system as a distributed object and try to develop
techniques for the global system. This is often done in the domain decomposition literature
— but it has rarely been exploited in sparse matrix methodology.

2.1 Basic Concepts

Figure 1 illustrates the viewpoint adopted in defining solution techniques for distributed
sparse linear systems. This representation borrows from the domain decomposition litera-
ture — so the term ‘subdomain’ is often used instead of the more proper term ‘subgraph’.
Each point (node) in a ‘subdomain’ in the figure) is actually a pair representing an equation
and an associated unknown. It is important to distinguish between three types of unknowns:
(1) Interior variables are those coupled with local variables only; (2) Local interface vari-
ables are those coupled with non-local (external) variables as well as local variables; and (3)
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External interface variables are those variables in other processors which are coupled with
local variables.

For example, a block SOR iteration can be easily carried out as a sequence of anni-
hilations or eliminations of the residual components of the system which are local to the
processor. Each elimination provides a correction to these local variables of the unknown
vector. These variables are then updated as well as the global residual vector. In order to
implement this, all that is required is a global order in which to perform these eliminations
as well as some global stopping criterion.

2.2 Distributed Krylov accelerators

In this paper we only consider the GMRES algorithm introduced in [12], which is a technique
that minimizes the 2-norm of the residual vector b — Az over z in the so-called Krylov

subspace
Knp = Span{ro, ATO) ceey Am_1T0}7

where 7 is the initial residual vector b — Azy.

The main operations in a standard Krylov subspace acceleration are (1) vector updates,
(2) dot-products, (3) matrix-vector products and (4) preconditioning operations. In some
algorithms, such as GMRES, most of the operations (1) and (2) are imbedded in an orthog-
onalization procedure such as Gram-Schmidt.

2.3 Preconditioning

Most of the preconditioning discussed in this paper are block preconditioners in which
blocking is based on the domains. When using these block preconditioners, we solve with
large blocks associated with entire domains and it becomes important to allow the pre-
conditioner itself to be an iterative solver. This means that the GMRES iteration should
allow the preconditioner to vary from step to step within the inner GMRES process. One
variant of GMRES which allows this is called the Flexible variant of GMRES (FGMRES)
[8]. It is derived by observing that in the last step of the standard GMRES algorithm,
the approximate solution is formed as a linear combination of the preconditioned vectors
2= M"lv;,i=1,...,m, where the v;’s are the Arnoldi vectors [12]. Since these vectors are
all obtained by applying the same preconditioning matrix M~ to the v’s, we need not save
them. We only need to apply M1 to the linear combination of the v's. If the precondi-
tioner varies at every step, then we need to save the ‘preconditioned’ vectors zj = MJT'lvj to
use them when computing the approximate solution. For further details on the algorithm,
see [8].

Our implementation of FGMRES exploits a feature referred to as a “reverse commu-
nication mechanism” whose goal is to avoid data structures. When calling a standard
FORTRAN subroutine implementation of an iterative solver, we normally need to pass a
list of arguments related to the matrix A and to the preconditioner. This can be a burden
on the programmer because of the rich variety of existing data structures. The solution is
not to pass the matrices in any form. Whenever a matrix — vector product or a precon-
ditioning operation is needed, we can simply exit the subroutine and have the subroutine
caller perform the desired operation and call the subroutine again, after placing the desired
result in one of the vector arguments of the subroutine.
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Distributed Block Jacobi Preconditioner One of the most natural preconditioners
to use for solving distributed linear systems is the block Jacobi approach. The blocks here
refer to a solve with an entire domain. We use a standard (sequential) ILUT preconditioner
[10] combined with GMRES. A factor which can affect convergence is the tolerance used for
the inner solve. As accuracy increases the cost increases with little additional reductions in
the step number. On the other hand using too inaccurate inner solves increases the number
of outer iterations and increases the cost. This is illustrated in table 3 in the next section.
We should note that the implementation of a Block-Jacobi step is very similar to that of a
matrix-vector product.

SOR and SSOR preconditioners As was mentioned earlier, a block SOR iteration can
be easily implemented provided a global ordering for the domains is chosen. Thus, if the
global ordering of the domains is the ordering defined by their labels, the SOR iteration as
executed in Processor loc would be as follows:

ALGORITHM 2.1
1. Receive external interface variables from domains j with j < loc
2. Update local residual v, = (b — Az)j0c
3. Compute 50 = ZTjoe + Al ocTloc
4. Send external interface variables to domains j with j > loc

Algorithm 2.1 is executed on each processor and a convergence test on the global residual
or some measure of the error must be included. This block SOR algorithm is the simplest
form of the Multiplicative Schwarz procedure used in domain decomposition techniques
[1, 6, 7, 5]. Many variations are possible, including overlapping of the domains, inaccurate
solves in step 4, inclusion of a relaxation parameter w, etc.

The global ordering can be based on an arbitrary labeling of the processings provided
two neighboring domains have a different label. The most common global ordering is a
multi-coloring of the domains, which maximizes parallélism [4, 3, 2, 9].

2.4 Matrix-by-vector products

Consider the matrix-vector (matvec) operation. For a distributed matrix, we can view a
matrix-vector product essentially as a local operation. To be more precise, in order to
carry-out a matvec, we need to perform the local-matrix by local-vector product and then
add to the result any contributions from external interface points. The rows of the matrix
assigned to a certain processor, say processor k, can be split in two pieces: a local matrix A;
which acts on the local variables and a interface matrix B; which acts on remote variables.
These remote variables must be first communicated to the processor(s) which need them
before the matrix-vector product can be completed in these processors.

Thus, a matrix-vector product can be performed by the following sequence of operations:
(1) Multiply the local matrix B, by the local variables; (2) Receive the external variables;
(3) Multiply these external variables by the external matrix B,y associated with them and
add the result to that obtained from the first multiplication. The first and second steps can
be performed simultaneously: A processor can be multiplying By, by the local variables
while waiting for the external variables to be received. For details on the implementation
and data structures used in P_.SPARSLIB see [11].
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2.5 Iterative Solvers

One of the potential bottlenecks in a parallel implementation of GMRES is the orthogo-
nalization of the Krylov vectors in the Arnoldi procedure. As will be seen, the parallel
performance of FGMRES can be strongly affected by the (parallel) performance of the
orthogonalization procedure used.

In sequential implementations, orthogonalization is typically carried out by a Modified
Gram-Schmidt Orthogonalization (MGSO) procedure which is usually sufficient. However,
as it is well-known, a difficulty with MGSO in a parallel computing environment is that
each of the inner products must be done in sequence. Each global inner product requires
one global communication and this counts as one synchronization point. At step j of GM-
RES we would have exactly j + 1 synchronization points. This overhead can overwhelm the
whole computation when the dimension of the matrix is small. The Classical Gram-Shmidé
Orthogonalization (CGSO) algorithm is an alternative to MGSO which reduces these syn-
chronization points and is thus more attractive in parallel environments. In contrast with
MGSO, we now have two synchronization points at each step. The first is when we compute
all inner products with previous vectors and the second is required when we normalize the
vector resulting from the linear combination with previous vectors.

In fact we can further reduce these two synchronization points to only one by reordering
the computations in the CGSO algorithm. This ‘synchronized version’ (referred to as the
‘Synchronized Classical Gram-Schmidt Orthogonalization’ (SCGSO0)) is based on the obser-
vation that the normalization of the vector resulting from the linear combination mentioned
above can be delayed until the next step of the algorithm.

It is known that CGSO is numerically not as viable as MGSO. Thus, CGSO with
reorthogonalization is used. For larger Krylov subspace sizes, orthogonality between basis
vectors generated is quickly lost. This can be remedied by selecting a smaller subspace
dimension which, unfortunately, often leads to more steps to achieve convergence. A better
alternative is to use reorthogonalization.

Table 1 compares MGSO, CGSO, and SCGSO on the SGI cluster with two different ma-
chine configurations. In the 4 workstations case, 4 processors means running one processor
on each machine; while 8 processors means running two processors on each machine.

3 Results

We report some of our results obtained on the IBM SP2 and the SGI Challenge cluster. The
IBM SP2 available to us has a maximum of 10 processors. The SGI challenge workstation
cluster consists of three 4-processors Challenge workstations one 8-processors Challenge
workstation. First, we compare the iterative solver FGMRES using the distributed ‘block
Jacobi preconditioner with three different ways of overlapping domains. The results ob-
tained are summarized in table 1. In the table, Jaco_no stands for block Jacobi with no
overlapping, Jaco-ov_av for block Jacobi with overlapping and averaging the overlapping
data, and Jaco-ov for block Jacobi with overlapping and exchange of overlapped data. In
the table its is the number of FGMRES iterations. The comparison shows that overlapping
can reduce total number of iterations. Comparing Jaco_ov with Jaco.ov_av, we find that
Jaco-ov is faster.

The next results are obtained on the IBM SP2. Table 3 shows how the accuracy of the
inner solver can affect the outer solver on both number of iterations and time.

Figures 2 presents the the break-down of the times spent in a typical solution. The re-
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Table 1: The behavior of Gram-Schmidt algorithms on SGI cluster

1 workstation
Matrix Size | Procs | MGSO | CGSO | SCGSO

21200 1 107.8 107.8 109.5
4 87.3 . 53.1 46.7
: 8 102.6 448 36.0.
62424 1 335.1 357.0 358.2
4 170.2 116.5 111.5
8 - 138.8 80.1 69.3

4 workstations
21200 1 107.8 107.8 109.5
4 167.3 110.5 70.9
8 184.6 117.0 67.1
62424 1 335.1 357.0 358.2
4 261.5 272.0 225.8
8- 208.8 159.4 96.1

sults are for the matrix VENKATO01, using a relative tolerance of eps = 10~6 and a Krylov
subspace dimension of #m = 15. The figure shows that the total time decreases as the num-
ber .of processors increases. The FGMRES time (which is dominated by orthogonalization)
increases slightly because of the inner products.

4 Conclusion

Thanks to the availability of communication libraries such as MPI and PVM, and inex-
pensive network technologies, workstation clusters have recently become one of the most
promising paradigms for high performance computing. Our main conclusion from the ex-
periments in this work is that workstation clusters can be effectively used to solve very large
sparse linear systems. Small systems can be handled more efficiently on a single worksta-
tion. The break-even point depends on many factors and is & function of the architecture
parameters and the iterative solution techniques used. For example, any improvements
in latency and bandwith will allow us to solve smaller problems efficiently. For very large
problems, communication becomes less of an issue as it is small relative to computation. For
these problems, avoiding idle time and achieving a more effective utilization of the memory
and the processors becomes more important.

References

[1] P. E. Bjgrstad and O. B. Widlund. Iterative methods for the solution of elliptic prob-
lems on regions partitioned into substructures. SIAM Journal on Numerical Analysis,
23(6):1093-1120, 1986.

[2] X. C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general
sparse matrices. Numerical Linear Algebra with Applications, 1996. To appear.




SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

Table 2: The comparison of FGMRES with distributed block Jacobi preconditioner and
three different domain overlappings

Matrix Size | Algorithm Number of Processors

1 2 4 8 16

its time | its time | its time its time | its time

SHERMANS5 Jac._no 0.42 042 |19 116 {31 232 |8 27.08

n = 3312 Jac_ov_av 0.50 0.49 12 072 116 1.44 |23 8.10

nnz = 20793 Jacoov

RAEFSKY3 Jac.no 12.71 1944 11 117313 6.58 [8 3.63

6
7
049 |7 049 12070 |16 1.22 |30 10.41
9
5

n = 21200 Jac_ov_av 14.88 1036 |6 872 [7 626 |6 398

nnz = 1488768 | Jac_ov 14.78 9.71 7 816 |7 405 [7 322

VENKATO1 Jacmo 3071 | 13 4529 |14 2397 |16 1520 ] 16 12.04

n = 62424 Jac_ov_av

Cy oy oyl i i x| ~3| ~3| o

5
1

3092 18 28379 2880 |11 16.79 | 11 12.69
9

nnz = 1717792 | Jac_ov 30.97 308019 163911 11.26 |11 825

Table 3: The comparison of different accuracies for the inner solver on IBM SP2

Matrix size inner its Number of Processors

1 2 4 8

its time | its time | its time | its time
ex37.mat 1 5 017 |5 015 |6 014 |7 0.25
n = 3565 3 5 014 |5 013 |6 0.11 |7 0.12
nnz = 67591 5 5 014 |5 013 |6 0.11 |7 o0.11
RAEFSKY3 1 9 452 |8 226 (7 114 {7 0.73
n = 21200 3 6 392 (5 175 |7 160 |6 0.71
nnz = 1488768 | 5 4 277 |4 159 |7 207 |6 0.91

10 4 396 [4 208 |7 239 |6 1.31

[3] X. C. Cai and O. Widlund. Multiplicative Schwarz algorithms for some nonsymmetric
and indefinite problems. SIAM Journal on Numérical Analysis, 30(4), August 1993.

[4] Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some
domain decomposition and ILU preconditioned iterative methods for nonsymmetric
elliptic problems. J. Numer. Lin. Alg. Appl., June 1993.

[5] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica,
pages 61-143, 1994.

[6] Maksymilian Dryja and Olof B. Widlund. Towards a unified theory of domain decom-
position algorithms for elliptic problems. In Tony Chan, Roland Glowinski, Jacques
Périaux, and Olof Widlund, editors, Third International Symposium on Domain De-
composition Methods for Partial Differential Equations, held in Houston, Tezas, March
20-22, 1989. SIAM, Philadelphia, PA, 1990.




SPARSE ITERATIVE SOLVERS ON WORKSTATIONS

35 u . 1

"fotal" ——
30 "precond" ----- .

25

20

15

Time in secs

10

Processors

Figure 2: Distributed block Jacobi preconditioner with overlapping

[7] Maksymilian Dryja and Olof B. Widlund. Some recent results on Schwarz type domain

decomposition algorithms. In Alfio Quarteroni, editor, Sizth Conference on Domain
Decomposition Methods for Partial Differential Equations. AMS, 1993. Held in Como,
Italy, June 15-19,1992. To appear. Technical report 615, Department of Computer
Science, Courant Institute.

[8] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on

9]

[10]

(11]

[12]

Scientific and Statistical Computing, 14:461-469, 1993.

Y. Saad. Highly parallel preconditioners for general sparse matrices. In G. Golub,
M. Luskin, and A. Greenbaum, editors, Recent Advances in Iterative Methods, IMA
Volumes in Mathematics and Its Applications, volume 60, pages 165-199, New York,
1994. Springer Verlag.

Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear
Algebra with Applications, 1:387-402, 1994.

Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed memory
sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of Parallel Com-
puting Technologies (PaCT-95), 3-rd international conference, St. Petersburg, Sept.
1995, 1995.

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Com-
puting, 7:856-869, 1986.




New Concurrent Iterative Methods With Monotonic
Convergence

Qingchuan Yao

Department of Mathematics
Michigan State University

E. Lansing, MI 48824
yao@math.msu.edu

Abstract

This paper proposes the new concurrent iterative methods without using
any derivatives for finding all zeros of polynomials simultaneously. The new
methods are of monotonic convergence for both simple and multiple real-zeros of
polynomials and are quadratically convergent. The corresponding accelerated
concurrent iterative methods are obtained too. The new methods are good
candidates for the application in solving symmetric eigenproblems.

1 Introduction

Several iterative methods for concurrent inclusion of polynomial zeros can be found
in the Petkovic’s book [1]. But none of them are of monotonic convergence for finding
real zeros of polynomials. In this paper we propose new concurrent iterative methods
with monotonic convergence for both simple real zeros and multiple real zeros of poly-
nomials. Our new concurrent iterative methods without derivatives are quadratically
convergent.

Recently Li and Zeng have used Laguerre iteration in solving symmetric tridiago-
nal eigenproblems successfully.The monotonic convergence of the iteration has played
an important role. The comprehensive numerical results in this direction can be found
in [2]. But in Laguerre iteration, one needs to compute first derivative and second
derivative for each iteration. In the application of solving symmetric eigenproblems,
it is very expensive to compute first and second derivatives. In this direction, our new
concurrent iterative methods with monotonic convergence and without any deriva-
tives are good candidates. The numerical results of our new concurrent iterative
methods in solving symmetric eigenproblems will be reported in a separate article.

In §2 we propose a new concurrent iterative method without derivative for simple
real-zero of polynomials. We show that the new method is of monotonic convergence
and is quadratically convergent. Then we introduce an alternative scheme which
reduces the computational cost of each iteration. In §3 we present the corresponding

1




concurrent iterative method for multiple real-zero of polynomials. In §4, by applying
the Gauss-Seidel approach, the accelerated concurrent iterative methods called Single-
step Methods are obtained both for simple-zero and multiple-zero of polynomials.

2 Monotonic convergence of the concurrent itera-
tive method and its alternative scheme

In this section we propose a new concurrent iterative method without derivative.
The new concurrent iterative method has the monotonic convergence with quadratic
convergent rate for approximating the zeros of a polynomial.

Consider a monic polynomial of degree n > 3

P(z) = H( Y (1)

with simple real zeros _
A <A < ee < A (2)

We define the pair of sequences {w,(k)}}‘;l and {y,(k)}?=1 by means of the following
iterations:

(%)
(k+1) *) _ P(z”) .
x; = T T A T n % % 7Z=17"'$n’ (3)
j=11($t( ) =v§ )) Hj:i-{-l(xt( = yg(' ))
. (k)
(k1) _ . (R) Py:™) .
Y: = Y T T ® DN k Bt =1 n. (4)
j=]i(yz§ ) - w§ )) Hj=i+1(yz( - yg(' ))

with the initial pair of values {a:,(o)}?=1 and {y,go)}?ﬂ. The above (3) and (4) are con-
current iterations which can be used to find the approximation zeros of the polynomial
P(z) simultaneously. In the following theorem, we will show that the concurrent it-
erations (3) and (4) are monotonically convergent.

Theorem 1 For the polynomial (1), if the initial pair of values {:z:,(o)}?=1 and {y,go)}?=1
satisfy
2@ <n <@ <aP < h <yP < <D <0 <0, (5)

then
() The sequence {mgk)}i‘_’__o generated by (3) converges to \; monotonically. That is

k—oc0

e <a < <P ER N i=1,n (6)

(b) The sequence {y,(k)}z‘_’__o generated by (4) converges to \; monotonically. That is

k—oo

N = y,gk) < yfk_l) < e < y,(l) < y,(o),i =1,.---,n. (7




Proof Let sgk) = A — :z;,gk) and 6§k) = y,(k) —Aifori=1,---,n. By (3) we have

(k) n (k)

(1) _ ) j — A
& = +(z H KON (k) H (k) —
J

(k) -\ (k) — s

(K i
= 5:') H (k) ® H (k) (2) . (8)
i=1Z; (U j=i+1 Z5 y]

Then let k = 0 and by (5), if ¥ # 0,

29 L
=1 j o i=idl T

i-1 _(0) n @
(1 _ (0 :L', A .'I:i -_ /\ 0
O<€z)_6i)[1—H-“(JO)H_(6)—J.J<€z()1
or 5,(1) =0 if e,(o) = 0. So
:v,(o) < :v,(l) < A; or a:,(O) = :z:gl) = A
Similarly, by (4), we have
(k) n (k)

(k+1)  _ o(R) (k) 7
d; = & —(y —N) H (k) (k) H (k) (k)
(k) n (k)
() J Y
= § [ H L L® (k) H (k) (k)J )

Then let k = 0 and by (5), if 5 £ 0,

0<6® =611 H = f[ s~ < 89
: : 190 _ (0) 0 _ (0)
J=1 3 _7 J=i+1 Y;

or M =0 if 6 = 0. So
N<y <yl or g =y =

Therefore, by mathematical induction and the above expressions (8) and (9), we can
easily obtaln (6) and (7). O

Theorem 2 The convergent rate of the concurrent iterations (3) and (4) is quadratic
for the simple zeros of the polynomial (1).

Proof Let e,( )= — mf ) and Jgk) = y,gk) —A;fori=1,---,n. Then, by (8), we have

() _ N1 Ny
[ 1 Dl

EA



where

i—1 n i—-1 n
N = P -af) IT @ - o) - TP -2 II @ -X)

7=1 j=i+1 j=1 j=i+l

= T =) +<®) T 160 -3 - 891 - TP - A) T @2 -x)

7=1 j=i+1 ) j=1 j=i+1
t—1 n n n

= W TTEP -] — 268 TT @ — A1 + 0P e + Pl + 561
I=1 i I=i41 J#il

and -
Di =[P - =) IT (o —y).

j=1 =i+l
Since A1, - -, A, are distinct, Vk, 3d and D such that
d < o — 2], 18 -y, [y — 4] < D,vi # 5, Vk;
d < |z — A1, 1P — Aj| < D, Vi # 5,V
Let e® = ma:z:{s,(k), 5§k)|i =1,---,n}, then

() o (R N ‘
81 —_— 61 D
(2 Dr-2 (F))3
< ()P -2 +O(EP)).

Similarly, we can obtain

Dn—2
55 < (W)~ 1) + O((W)°).
Thus, |
(k+1) D2 G2 (13
et < (n — I)F(e )2 + 0((eW)?).

O

In the rest of this section, we introduce a suitable alternative scheme of the con-
current iterations (3) and (4) which reduces the computational cost of each iteration.
Fori=1,---,n, consider the midpoint c,(k) = (.'zzgk) +y§k)) /2 of the interval [:vgk), y,gk)].
We may detect if the zero ); belongs either to the left half or to the right half of the

interval [w,(k),y,(k)]. In the former case we apply (4) in the later case we apply (3).
That is: ‘ '

(1) I ¥ > \;, then

o = 2 (10)
(k+1) *) P(cM)
R p— * )

1 k k n k )\
Hj:l(cz(' - 3’2 )) j=i+1(cz(' = yg(' ))




(2) It c,(k) < A, then

K
g = B % kP (CS )) k k) (12)
(6 =2 M (P - o)

i=1

gt = B, (13)

It is easy to see that the above alternative scheme has monotonically convergence for
the zeros of the polynomial (1) too.

3 Monotonic Convergence for Multiple Zeros and
Non-overshoot Properties for Cluster of Zeros
From Theorem 2 we know that the concurrent iterations (3) and (4) are of quadratic

convergence only for simple zeros. In this section we will consider the multiple-zero
case. For a monic polynomial of degree n > 3

m

P(z) = [](z =X (14)
Jj=1
with zeros .
A<A<---< )\, and an=n, (15)

Jj=1
we can modify the iterations (3) and (4) to the following Modified Concurrent Itera-
tions:

k
et = 2B | 3 % Pe.) 3 5| = An(=); (16)
VI ~ 2l I (o — 5P
| P
yz§k+1) = y§k)_ n; (y ) EBni(yzgk))’ (17)

i— k E)\n: 1im k k)\n;
\ TEZi™ — o) Ty (o ~ 4P

fori=1,---,m and k = 0,1,---. In the next theorem, we show that the Modified
Concurrent Iterations (16) and (17) are monotonically convergent for the multiple
zeros of the polynomial (14).

Theorem 3 For the polynomial (14), if the initial pair of values {:1:,(0)},-"‘=1 and {y,go)}z’;l
satisfy :

7 << <ol Sh <y < <2 <0 <y, (18)
then
(a) The sequence {mgk)},‘f’:o generated by (16) converges to A; monotonically. That is

x§°)<a:,(1)<-'-<$§k)bﬁ>°Aiai=l""’m- (19)




(b) The sequence {y,gk)}z":o generated by (17) converges to A; monotonically. That is

niEE y® <yl <<y <0 i= 1, (20)
Proof Let e(k) =X ¥) and J(k) ) — ) fori=1,---,m. By (16) we have
i—1 (k) o (k) ™
(kD) _ (B _ () n; T —Aj Aj
e = 1o NN T | — B
JH (=) 0.E5p)

i—1 (k) )Y oom (%) — X\: el
k n; Ti
= 6,(- ) ll - \jH (—(k)' (;c)) H ( w(k) __(Z)) } . (21)
=1 J=t+1 1 yJ

Then let k = 0 and by (18), if 6 # 0,

i-1 (0 _ 3. \¥ m © _y.\"™
1 0) n; Zi - (0).
0<6$)=e§’[1— \‘H(ﬁ) 11 (—(0)—*(%)) }<6;,
i=1 j =i+l \Ti "~ Y;

r 6,(1) =0if e§°) = 0. So

:12,(0) < :z:gl) <X or :z:,(o) = :1:,(1) = A
Similarly, by (17), we have

(%) "om (R "
k+1 k k n; v = A R -
s = 50— - ) _H e 1w
(a2 Y

j=1 =141 yJ

i1 (k) oo (k) il
k ng yz A A'
5 [1 - JH (_—_y(k) (k)) H (y(k) (i)) } : (22)

Then let k = 0 and by (18), if 6 # 0,

i-1 @ Moom ‘(0) i
1) _ +(0) Yi = Aj Aj (0.
0<om =4 [ iH ('—_(0) (0)> 11 ('('0) __(0)) }<5, ’
j=1 j=i+l Y;

f

or 5,(1) =0 if 5,(0) =0. So
A <y < 4@ M) = @ = ),

or y;
Therefore, by mathematical induction and the above expressmns (21) and (22), we
can easily obtain (19) and (20). - O
In the next theorem we will show that the modified iterations (16) and (17) have
non-overshoot properties for a polynomial with cluster of zeros. That means the
modified iterations (16) and (17) will not overshoot n; zeros of a polynomial. The
non-overshoot properties are important for the application of finding the eigenvalues
of a symmetric matrix.




Theorem 4 If P(z) = [T}, (2 — A;) has the cluster of zeros {\P,\? ... /\,(n")},-”;1

with )\,(1) < /\,(2) << < )\,(_ll_)l and the initial pair of values {z;}7, and {y;}7,
satisfy

2 < A< aM <y <a <aP <
S MV << <e, <A< <A <y (23)
where 371, n; = n, then
i < A1(3:) < Ag(:) <+ < Ang2) < A i=1,....m (24)
and )
MY < Buy(4i) < Buiea () < -+~ < By(gs) < giri = 1,+--,m (25)

where An,(z:) and By, (y;) are the same as in the iterations (16) and (1 7).
Proof By (16), (17) and (23), we have

| vt AO\Y m (o )\
MW Az > ) —zy) — "jlwi—xf"')lnfﬂ(m’ J ) 11 ($ ; )

=1 \ T j=i+1 Ti—Yj
= M _g)|1-m ﬁ LA AN ﬁ ﬂ,—) "
’ =\ BT ) s\ BT Y
> 0;

' i-1 (. AW\ m c_\m\ ™
Bn.’(yi) - /\1(1) > (yi - ’\z(l)) - 'd(yi - ’\gl))ni H (y’ . ) H (%“J—

i W\™ = (ny)\ ™
= (yt —_ /\(1)) 1 — % l_j:l u_ H ___yi — /\j_J
=t \ ¥i—Zj j=ig1 \ Yi—Yj
> 0.

and it is easy to check the followings:

942 o ang OBulsd g
6n,~ Bn,-
Therefore, we have proved (24) and (25). ]

Theorem 5 The convergent rate of the Modified Concurrent Iterations (16) and (17)
are quadratic for a n;-fold zero )\; of the polynomial (14).

Proof It is similar to the proof of Theorem 2. o




4 Single-step Methods

We call the concurrent iterations (3) and (4) for simple-zero or the modified concurrent
iterations (16) and (17) for multiple-zero Total-step Methods. In this section we
consider their corresponding Single-step Methods which have the similar convergent
properties, but have faster convergence speed.

First consider the simple-zero case. For the polynomial (1), we define the following
Single-step Concurrent Iterations (denoted by SSCIS):

(k)
(k+1) *) P(z;”)
z; = ;’ — i A % =1 y o, (26)
j=11($z(' ) (k+1)) I jitl (:1:( ) (k)) ’
(%)
(k+1) * _ P(y;") -
Y: = U . )Z—'l)”')n' (27)
Tt — o M 0 — )

Similarly to Theorem 1, we can prove the following monotonic convergence theo-
rem.

Theorem 6 For the polynomial (1), if the initial pair of values {x( N and {y, },=1
satisfy -
2P <n <y <a® <h <y < <20 <0 <y, (28)

then
(a) The sequence {:z:gk)];,;";o gen,emtedr by (26) converges to \; monotonically. That is

e <z <. < a:(k) AR N, i=1,000 1 (29)

b) The sequence y(k) ©  generated by (27) converges to A; monotonically. That is
i k=0

koo (k)

NE2 B D g < yi =1, (30)

For the convergent speed of the single-step iterations (26) and ( 27), we use the
R-order of convergence concept by Ortega and Rheinboldt in [4].

Theorem 7 Let o, > 1 be the unique posztwe oot of gu(0) = 0™ —0 —1=0. Then
for the R-order of (SSCIS), we have

Or((SSCIS), A:) > 1+ on.

Proof The proof is very long. Omitted here. The idea is similar to the one in [3]. O
Now consider the multiple-zero case. For the polynomial (14), we define the
following Single-step Concurrent Iterations (denoted by SSCIM):

C I P _ i 1P(:c(k)) i _ = C,.(«): (31)
\ 1_1("’7( ) ( -+ ))n_, z-l-l(w( ) y§ ))nj
(k) '
k+1) _ (R n P(y;”) = (k)
Y; = ¥ — = Dn,(y:), (32)
\ T2 (s M (k+1))"’ Hm_i+1(y(k) yz('k))nj

fort=1,---,mand k=0,1,---
Similarly to Theorem 3 and Theorem 4 we can show the following two theorems.
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Theorem 8 For the polynomial (14), if the initial pair of values {a:( Nm }2, and {y,(o)}}"él
satisfy :

2@ < <yl <aP <h <P < <@ <, <40, (33)

then
(a) The sequence {m,(k)},;“;o generated by (31) converges to A; monotonically. That is
2 <ol <o < a2 N i1, m. (34)

(b) The sequence {y,(k):'(z"_0 generated by (32) converges to A; monotonically. That is

N2 B gDy @ i1 m, (35)
Theorem 9 If P(z) =1II;-,(z — A;) has the cluster of zeros {/\(1) )\(2) ,\("') ™,
with )\,(1) < ,\1(2) <...< ,\f"') )\( 11 and the initial pair of values {z;}, and {y;}2,
satisfy
gz < W< <M<y <o <P <.
< MNP <y < <wm5A£,?s---SA,<,?m>5ym (36)

where 37> n; = n, then

2; < Ci(w:) < (@) <+ < Cilms) <A™ i=1,---,m (37)
and
’\1(1) < Dﬂi(yi) < Dni—l(yi) <---< Dl(yi) <Yt = 1eoe,m (38)
where Cy,(z:) and Dy, (y;) are the same as in the iterations (31) and (32).

Similarly to Theorem 7 we can show the following theorem.

Theorem 10 Let 0,, > 1 be the unique positive root of gn(0) = 6™ —o —1 = 0. |
Then for the R-order of (SSCIM), we have

Or((SSCIM) A) > 14 o1,
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ABSTRACT
Improving Matrix-Vector Product Performance and Multi-Level Preconditioning for the
Parallel PCG Package.
R. T. McLay and G. F. Carey

In this study we consider parallel solution of sparse linear systems arising from discretized
PDE’s. As part of our continuing work on our parallel PCG Solver package, we have made
improvements in two areas. The first is improving the performance of the matrix-vector
product. Here on regular finite-difference grids, we are able to use the cache memory more
efficiently for smaller domains or where there are multiple degrees of freedom. The second
problem of interest in the present work is the construction of preconditioners in the context
of the parallel PCG solver we are developing [1, 2]. Here the problem is partitioned over
a set of processors subdomains and the matrix-vector product for PCG is carried out in
parallel for overlapping grid subblocks. For problems of scaled speedup, the actual rate of
convergence of the unpreconditioned system deteriorates as the mesh is refined. Multigrid
and subdomain strategies provide a logical approach to resolving the problem. We consider
the parallel trade-offs between communication and computation and provide a complexity
analysis of a representative algorithm. Some preliminary calculations using the parallel
package and comparisons with other preconditioners are provided together with parallel
performance results.
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APPROXIMATE INVERSE PRECONDITIONING OF ITERATIVE
METHODS FOR NONSYMMETRIC LINEAR SYSTEMS

MICHELE BENZI * AND MIROSLAV TUMA !

Abstract. A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix
A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative
solution of Az = b by Krylov subspace methods.

1. Imtroduction. We describe a method for computing an incomplete factorization of the
inverse of a general si)arse matrix A € IR®*". The resulting factorized sparse approximate inverse,
which is guaranteed to exist if A is an H-matrix, can be used as an explicit preconditioner for the
solution of Az = b by conjugate gradient-type methods. The application of the preconditioner only
requires matrix-vector products, which can be advantageous on vector and parallel architectures.
In contrast, implicit preconditioners (such as ILU) involve the solution of triangular linear systems,
whose efficient implementation can be problematic in a parallel environment. The results of our
experiments with a sequential implementation of the new method indicate that the approximate
inverse preconditioner results in good convergence rates (comparable to those obtained with standard
ILU techniques). A detailed study of this method can be found in [3].

2. An incomplete inverse triangular factorization method. A standard approach for
constructing an approximate inverse G & A~! is to compute G as the matrix which minimizes
[T — AG]| (or ||I — GAJ|), subject to some sparsity constraint. Here the matrix norm is usually the
Frobenius norm and the sparsity structure of G is determined adaptively (see, e.g., [4], [9], [8]; [3]
contains a fairly complete list of references). The optimization approach to constructing approximate
inverses is not the only possible one. In this section we describe an alternative procedure based on a
direct method of matrix inversion, performed incompletely in order to preserve sparsity. This results
in a factorized sparse G ~ A~1. Being an incomplete matrix factorization method, our procedure
resembles classical ILU-type implicit techniques. The construction of the preconditioner is based
on an algorithm which computes two sets of vectors {z;}2;, {w;}2;, which are A-biconjugate, i.e.
such that wf Az; = 0 if and only if  # j. Given a nonsingular matrix 4 € IR™*"| there is a close
relationship between the problem of inverting A and that of computing two sets of A-biconjugate
vectors {z;}7; and {w;}% ;. If we introduce the matrices

Z =z, z2,...,2] and W =[w1, wa,...,ws)],

* Dipartimento di Matematica, Universita di Bologna, Italy, and CERFACS, 42 Ave. G. Coriolis, 31057

Toulouse Cedex, France (benzi@cerfacs.fr).
! Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodirenskou vézf 2,

182 07 Prague 8 - Libeii, Czech Republic (tuma@uivt.cas.cz).




then
WTAZ = D = diag(p1,p2;---:Pn)

where p; = wl Az # 0. It follows that W and Z are necessarily nonsingular and

n

@ a7t =zZpTWE =)
i=1 :

Z3 w,T

Hence, the inverse of A is known if two complete sets of A-biconjugate vectors are known. Note
that there are infinitely many such sets. Matrices W and Z whose columns are A-biconjugate can
be explicitly computed by means of a biconjugation process applied to the standard basis vectors
e1,...,en. This algorithm is essentially due to L. Fox, see Ch. 6 of [7]. In order to describe the
procedure, let af and ¢l denote the ith row of A and AT | respectively (i.e., c; is the ith column of
A). The basic A-biconjugation procedure can be written as follows.

THE BICONJUGATION ALGORITHM
(1) Let wgo) = zgo) =¢ (1<i<n)
(2) fori=1,2,...,n
for j=4i+1,...,n
p§i—1) — ag*zj(‘i—l) . q§i-—1) — cfg’w§i—1)
end
if i=n go to (3)

forj=:i4+1,...,n

(i-1) ' (i=1)
' 3 o . , . q; i—1
im0 [ B0 o)=Y - | Sy wf ™
D; %
end
end

(3) Let 2 := zgi_l), w; 1= w,(i_l) and p; = p,(i_i), for 1<i<n.
Return Z = [z1, 22,---,2n), W = [w1, w2,..~,wp] and D= diag(p1,p2,- - -1Pn)-

Some observations regarding this algorithm are in order. In the first place we note that the
above formulation contains some redundancy, since in exact arithmetic

p; = wg’Az,- = ,—TAT'wi = ¢;.

Therefore, at step i the computation of the dot product qii—l) = c?wgi_l) may be replaced by
the assignment q?_l) = pgz_l). Another observation is the fact that the procedure, as it stands,
(i-1)

is vulnerable to breakdown (division by zero), which occurs whenever any of the quantities p;




(= ¢;"™"’) happens to be zero. It can be shown that in exact arithmetic, the biconjugation algorithm
will not break down if and only if all the leading principal minors of A are nonzero. For any
nonsingular matrix A there exists a permutation matrix P (or Q) such that the procedure applied
to PA (or to AQ) will not break down. As in the LU decomposition with pivoting, such permutation
matrices represent row (or column) interchanges on A which can be performed, if needed, in the
course of the computation. In finite precision arithmetic, pivoting may be required to promote
numerical stability. If the biconjugation process can be carried to completion without interchanges,
the resulting Z and W matrices are upper triangular, they both have all diagonal entries equal to
one, and satisfy the identity

(2) A=wTpz",

We recognize in (2) the familiar LDU decomposition A = LDU, where L is unit lower triangular,
U is unit upper triangular and D is the diagonal matrix with the pivots down the main diagonal.
Because this factorization is unique, we have that the biconjugation algorithm explicitly computes
W = L™T, Z = U7! and the matrix D, which is exactly the same in (2) and in A = LDU.
Hence, the process produces an inverse triangular decomposition of A or, equivalently, a triangular
decomposition (of the UDL type) of A~1. In exact arithmetic, the p;’s returned by the algorithm
are equal to the pivots in the LDU factorization of A.

In {3] we introduced an explicit preconditioning strategy based on the biconjugation process
described above. Sparsity in the Z and W factors of A~! is preserved by removing “small” fill in
the z- and w-vectors. Because we are interested in general (unstructured) sparse matrices, we use a
drop tolerance T" > 0 to decide which fill-in is to be discarded: new nonzeros are dropped if smaller
than T in absolute value. In a previous paper [2] this technique was applied to symmetric positive
" definite matrices (for which W = Z) to construct factorized approximate inverse preconditioners for
the conjugate gradient method. A trivial extension of the results in [2] shows that the incomplete
biconjugation process (incomplete inverse factorization) will never break down, in exact arithmetic,
if A is an H-matrix. For more general matrices it is necessary to safeguard the computation in
order to avoid breakdowns. This requires pivot modifications and perhaps some form of pivoting
—we refer to [3] for details. The incomplete biconjugation algorithm computes sparse unit upper
triangular matrices Z ~ Z, W ~ W and a nonsingular diagonal matrix D ~ D such that

G:=Z2D'WT = A7!

is a factorized sparse approximate inverse of A which can be used as an explicit preconditioner for
conjugate gradient-type methods for the solution of Az = . Theoretical properties of the incomplete
inverse factorization are studied in [3].

3. Numerical experiments. In this section we present the results of numerical experiments
on a range of problems from the Harwell-Boeing collection [6] and from Tim Davis’ collection [5]. A
comparison between preconditioners based on Frobenius norm minimization and the no-fill ILU(0)
preconditioner (see [1]) was carried out in [8]. Here we make a similar comparison between ILU(0) and
the approximate inverse preconditioner based on the biconjugation process. Additional experiments
can be found in [3], together with implementation details.




On input, all our codes for the computation of the preconditioners check whether the coefficient
matrix has a zero-free diagonal. If not, row reordering of the matrix is used to permute nonzeros
on the diagonal. For both the ILU(0) and the approximate inverse factorization, we introduced
a simple pivot modification to avoid breakdown. Whenever some diagonal element in any of our
algorithms to compute a preconditioner was found to be small, in our case less in absolute value than
the IEEE machine precision € = 2.2 - 1072%, we increased it to 10~3. It is worth mentioning that in
our numerical experiments, this safeguarding measure was required far more often for ILU(0) than
for the approximate inverse factorization. All matrices used were rescaled by dividing their elements
by the absolute value of their largest nonzero entry. No other scaling was used. The right-hand side
of each linear system was computed from the solution vector z* of all ones.

We present results for the biconjugate gradient method (denoted BCG in the tables), the conju-
gate gradient-squared method (CGS), and GMRES with no restarting and Householder orthogonal-
ization (denoted GMR in the tables). See [1] for a description of these algorithms. We deliberately
avoided the use of restarting with GMRES because we are interested in the effect of precondition-
ing on the rate of convergence rather than in the performance of a particular solver. However, in
practical applications restarting should be used in order to reduce the cost of GMRES.

Its Time
MATRIX N NNZ | BCG | CGS | GMR | BCG | CGS | GMR
ADD20 2395 | 17319 388 | 255 337 | 7.562 | 5.494 | 198.6
FS1836 183 1069 355 | 336 24 | 0.446 | 0.460 | 0.770
FS5414 541 4285 8721 813 213 | 4.953 | 4.679 | 14.19
FS7601 760 5976 100 87 46 | 1.193 j 6.075 | 2.515
HOR131 434 4710 t t 425 t T 42.35
JPWH991 991 6027 60 39 56 | 0.797 | 0.806 | 4.817
ORSIRR1 1030 6858 857 t 408 | 6.721 11 119.0

ORSIRR2 886 5970 | 593 | 726 312 | 3.966 | 5.371 | 56.37
ORSREG1 2205 | 14133 [ 166 | 180 145 | 2.699 | 3.258 | 33.99

PORES? 1224 | 9613 t i t t t t
RAEFSKY1 | 3242 | 294276 | 277 | 366 | 254 | 68.43 | 95.51 | 180.9
SAYLR3 1000 | 3750 | 501 | 437 | 34028372794 | 75.12
SAYLRA 3564 | 22316 n Pt t t t
SHERMANL | 1000 | 3750 | 505 | 449 | 340 | 2.975 | 3.122 | 75.29
SHERMANS | 5005 | 20033 it P n n t
SHERMAN4 | 1104 | 3786 | 135 | 106 | 119 | 1.433 | 1.271 | 22.46
SHERMANS | 3312 | 20793 i n t t t n
SWANGL | 3169 | 20841 | 31| 18| 29|0.797 | 0514 | 2.411
WATTIL 1856 | 11360 | 174 | 144 | 157 | 4.759 | 3.896 | 10.02
WATT2 1865 | 11550 | 335 | 473 | 46 | 7.819 | 8.447 | 6.534

Table 1: Test problems (N =order of matriz, NN Z =nonzeros in matriz) and convergence resulls

for the iterative methods without preconditioning.




The order N and number NN Z of nonzeros for each test problem are given in Table 1, together
with the number of iterations and computing times for the unpreconditioned iterative methods. A
f means that convergence was not attained in 1000 iterations for BCG and CGS, and 500 iterations
for GMRES. All tests were performed on a SGI Crimson workstation with RISC processor R4000
using double precision arithmetic. Codes were written in standard Fortran 77 and compiled with the
optimization option -O4. CPU time is given in seconds. The initial guess for the iterative solvers was
always zg = 0. The stopping criterion used was [|rg||2 < 10~8, where 7y is the (unpreconditioned)
updated residual.

The following two tables present the results of experiments with the ILU(0) preconditioner and
with the approximate inverse preconditioner based on the biconjugation process (hereafter referred
to as AIBC). Observe that the number of nonzeros in the ILU(0) preconditioner is equal to the
number NNZ of nonzeros in the original matrix, whereas for the AIBC preconditioner fill-in is
given by the total number of nonzeros in the factors Z, W and D. In the tables, the number of
nonzeros in AIBC is denoted by Fill. Right preconditioning was used for all the experiments. In
Table 2 we give the timings for the preconditioner computation, iteration counts and timings for
the three iterative solvers preconditioned with ILU(0). The same information is given in Table 3
for AIBC corresponding to two choices of the drop tolerance T'. For AIBC we give two timings for
the construction of the preconditioner, the first for the DDS implementation using dynamic data
structures and the second for the SDS implementation using only static data structures (see [3]).

ILU(0) — Its ILU(0) — Time
MATRIX P-time | BCG | CGS | GMR | BCG | CGS | GMR
ADD20 0.071 | 172 | 119 149 | 7.002 | 5.008 | 44.21
FS1836 0.003 7 5 51 0.016 | 0.012 | 0.015
FS5414 0.007 7 4 6 | 0.067 | 0.042 | 0.063
FS7601 0.014 2 2 21 0.031 | 0.032 | 0.036
HOR131 0.008 62 46 39 ] 0.566 | 0.427 | 0.618
JPWH991 0.009 19 12 18 [ 0.286 | 0.191 | 0.434
ORSIRR1 0.009 42 24 38 | 0.717 | 0.418 | 1.450
ORSIRR2 0.008 44 24 37 ] 0.634 | 0.361 | 1.216
ORSREG1 0.019 50 27 42 | 1.828 | 1.049 | 4.475
PORES2 0.013 40 27 32 | 0.884 | 0.608 | 1.412
RAEFSKY1 2.457 37 30 35 | 17.93 | 14.30 | 15.06
SAYLR3 0.005 46 35 45 | 0.491 | 0.427 | 1.639
SAYLR4 0.030 41 38 39 | 2.413 | 2.357 | 5.746
SHERMAN1 | 0.005 46 34 44 | 0.502 | 0.393 | 1.578
SHERMAN3 | 0.134 82 71 79 | 5.030 | 4.630 | 26.91
SHERMAN4 | 0.006 34 27 32 1 0.365 | 0.340 | 1.056
SHERMANS5 | 0.034 35 29 33 | 1.801 | 1.576 | 3.940
SWANG1 0.031 12 7 10 | 0.661 | 0.404 | 0.766
WATT1 0.015 22 14 9]0.771 | 0.191 | 0.345
WATT2 0.016 64 57 54 | 1.892 | 1.757 | 4.992

Table 2: Time to form the ILU(0) preconditioner (P-time), number of iterations and time for BCG,
CGS and GMRES with ILU(0) preconditioning.




P-time AIBC - Its AIBC - Time

MATRIX Fill | DDS | SDS | BCG | CGS | GMR | BCG | CGS | GMR
ADD20 7525 | 0.639 | 1.470 15 8 14 | 0.529 | 0.306 | 0.747
9752 | 0.639 | 1.499 15 8 14 | 0.561 | 0.321 | 0.774

FS51836 2191 | 0.180 | 0.067 7 4 7 | 6.022 | 0.013 } 0.027
4169 | 0.226 | 0.095 7 4 6 | 0.026 | 0.014 | 0.026

FS5414 4199 | 0.298 | 0.148 42 37 28 | 0.385 { 0.354 | 0.457
5204 | 0.339 | 0.168 | . 18 10 15 | 0.175 | 0.102 | 0.198

FS7601 859 | 0.173 | 0.128 2- 1 2 | 0.022 | 0.013 | 0.027
1428 | 0.201 | 0.139 1 1 1} 0.013 | 0.014 | 0.018

HOR131 5196 | 0.234 | 0.121 65 41 53 | 0.592 | 0.389 | 1.020
8394 | 0.339 | 0.203 45 29 40 | 0.499 | 0.331 | 0.750

JPWH991 7063 | 0.309 | 0.262 27 17 25 | 0.411 | 0.280 | 0.733
11981 | 0.367 | 0.309 24 16 22 | 0.438 | 0.312 | 0.671

ORSIRR1 5219 | 0.249 | 0.245 46 27 43 | 0.706 | 0.439 | 1.736
13117 | 0.346 | 0.307 26 15 24 | 0.517 | 0.316 | 0.788

ORSIRR2 5284 | 0.233 | 0.193 47 27 41 | 0.646 | 0.388 | 1.439

12634 | 0.316 | 0.250 23 15 22 | 0.417 } 0.287 | 0.638
ORSREG1 11886 | 0.452 | 0.975 59 29 49 | 2.007 | 1.056 | 5.093
24454 | 0.598 |. 1.073 44 24 36 | 1.809 | 1.051 | 3.315
PORES2 18691 | 0.547 [ 0.504 102 85 90 | 2.721 | 2.363 | 8.660
. 23867 | 0.655 | 0.568 103 82 87 | 3.062 | 2.521 | 8.448
RAEFSKY1 56607 | 5.494 | 12.62 |. 75 62 72 | 22.24 | 19.75 | 25.10
145951 | 16.48 | 25.14 52 42 50 { 18.88 | 16.30 | 18.54

SAYLR3 3650 | 0.174 | 0.197 64 43 56 | 0.724 | 0.528 | 2.492
11002 | 0.236 | 0.239 35 25 34 | 0.547 | 0.414 | 1.203
SAYLR4 42768 | 0.665 2.571 46 37 42 | 3.172 | 2.736 | 7.012
48362 | 0.676 | 2.631 44 37 41 | 3.183 | 2.891 | 6.870

SHERMAN1 3650 | 0.170 | 0.198 | 64 43 56 | 0.751 | 0.530 | 2.466
- | 8692 | 0.239 | 0.228 36 25 36 | 0.509 | 0.378 | 1.268
SHERMANS | 24439 | 0.755 | 5.111 | 121 | 115 109 | 8.233 | 8.331 | 50.02
36296 | 0.882 | 5.195 | 100 | 95 95 | 7.579 | 7.697 | 39.38
SHERMAN4 3936 | 0.197 | 0.248 50 40 48 | 0.622 | 0.530 | 2.115
4957 | 0.203 | 0.157 46 35 44 | 0.592 | 0.484 | 1.871
SHERMAN5 | 21387 | 0.765 | 2.358 56 43 52 | 2.881 | 2.425 | 8.574

26654 | 0.891 | 2.447 48 35 43 | 2.671 | 2.141 | 6.309

SWANG1 7723 | 0.508 | 1.938 13 8 13 | 0.577 | 0.397 | 0.892
7 13252 | 0.640 | 1.988 10 6 10 | 0.481 | 0.323 | 0.662
WATT1 | 10215 | 0.369 | 0.693 31 19 12 | 0.848 | 0.565 § 0.487
17998 | 0.463 | 0.763 19 16 10 |-0.604 | 0.558 | 0.432

WATT2 9394 | 0.402 | 0.762 72 52 13 | 1.969 | 1.536 | 0.541
13547 | 0.458 | 0.760 63 48 11 | 1.844 | 1.504 | 0.460

Table 3: Time to form the AIBC preconditioner (P-time) using DDS and SDS implementations,
number of iterations and time for BCG, CGS and GMRES with AIBC preconditioning.

It appears from these results that the ILU(0) and AIBC precondif,ioners‘are roughly equivalent
from the point of view of the rate of convergence, with ILU(0) having a slight edge. We also notice
that using a more dense approximate inverse preconditioner (obtained with a smaller value of T')
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nearly always reduces the number of iterations, although this does not necessarily mean a reduced
computing time since it takes longer to compute the preconditioner and the cost of each iteration is
increased.

As for the time required to compute the preconditioners, it is obvious that ILU(0) can be
computed more quickly. On the other hand, the computation of the AIBC preconditioner is not
prohibitive. Our experiments with AIBC show that the overall solution time is almost always
dominated by the iterative part, unless convergence is extremely rapid, in which case the iteration
part takes slightly less than the computation of the preconditioner. This is in contrast with the
sequential behavior of approximate inverse preconditioners based on the optimization approach, for
which the construction phase can be extremely time-consuming (see the experiments reported in
[8]). However, the situation could be reversed in a parallel environment.

4. Conclusions and future work. We have described a new approach to explicit precondi-
tioning with sparse approximate inverses, based on an inverse triangular factorization of A. The
results of numerical experiments show that this technique can be quite effective for accelerating
the convergence of conjugate gradient-type methods, with convergence rates comparable to those
obtained with a standard ILU(0) implicit preconditioner. We conclude that the new preconditioner
shows some promise and is competitive with other approximate inverse preconditioners.

We are currently working on vector and parallel versions of our code. In the near future, we
plan to carry out a comparison between the technique described in this paper and the methods based

on the optimization approach.
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Comparison of Different Preconitioners for Nonsymmtric Finite Volume Element
Methods

Ilya D. Mishev

We consider a few different preconditioners for the linear systems arising from the
discretization of 3-D convection-diffusion problems with the finite volume element

method. Their theoretical and computational convergence rates are compared and
discussed.




An evaluation of parallel multigrid as a solver and a preconditioner for
singular perturbed problems
Part I: The standard grid sequence

C.W. Oosterlee * and T. Washio ¥

Abstract:

In this paper we try to achieve h-independent convergence with preconditioned GMRES ([13])
and BiCGSTAB ([18]) for 2D singular perturbed equations. Three recently developed multigrid
methods are adopted as a preconditioner. They are also used as solution methods in order to
compare the performance of the methods as solvers and as preconditioners.

Two of the multigrid methods differ only in the transfer operators. One uses standard matrix-
dependent prolongation operators from [3], [5]. The second uses "upwind” prolongation opera-
tors, developed in [24]. Both employ the Galerkin coarse grid approximation and an alternating
zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of
a matrix and on an approximate Schur complement. This multigrid variant is presented in [11].
All three multigrid algorithms are algebraic methods.

The eigenvalue spectra of the three multigrid iteration matrices are analyzed for the equations
solved on a 332 grid, in order to understand the convergence of the three algorithms. Further-
more, the construction of the search directions for the multigrid preconditioned GMRES solvers
is investigated by the calculation and solution of the minimal residual polynomials.

For Poisson and convection-diffusion problems all solution methods are investigated and evalu-
ated for finite volume discretizations on fine grids. The methods have been parallelized with a
grid partitioning technique, and are compared on an MIMD machine.

AMS(MOS) 65N55, 65F10, 65Y05.

Keywords: Krylov subspace methods, multigrid, robustness, parallel computing, grid partition-
ing

*GMD, Institute for Algorithms and Scientific Computing, D-53754 Sankt Augustin, Germany
(email: oosterlee @ gmd.de)

$C&C Research Laboratories, NEC Europe Ltd., D-53757 Sankt Augustin, Germany
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NITSOL: a Newton Iterative Solver for Nonlinear Systems

Michael Pernice* Homer F. Walkert
Utah Supercomputing Institute Mathematics and Statistics Department
University of Utah Utah State University
Salt Lake City, UT 84112 Logan, UT 84322-3900
usimap@sneffels.usi.utah.edu walker@math.usu.edu

Abstract.

Newton iterative methods, also known as truncated Newton methods, are implementations of
Newton’s method in which the linear systems that characterize Newton steps are solved approxi-
mately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative
algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an in-
exact Newton method globalized by backtracking, in which each initial trial step is determined by
applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementa-
tion, the user can specify inexact Newton criteria in several ways and select an iterative linear solver
from among several popular “transpose-free” Krylov subspace methods. Jacobian-vector products
used by the Krylov solver can be either evaluated analytically with a user-supplied routine or ap-
proximated using finite differences of function values. A flexible interface permits a wide variety of
preconditioning strategies and allows the user to define a preconditioner and optionally update it
periodically. We give details of these and other features and demonstrate the performance of the
implementation on a representative set of test problems.

*Presenting author.
'I'The work of this author was supported in part by United States Department of Energy Grant DE-FG03-

94ER25221 and National Science Foundation Grant DMS-9400217, both with Utah State University.




Nonsymmetric systems arising in the
Computation of Invariant Tori

Manfred R. Trummer
Department of Mathematics and Statistics

Simon Fraser University
Burnaby, British Columbia, Canada V5A 1S6
trummer@sfu.ca

January 11, 1996

Abstract. We introduce two new spectral implementations for computing
invariant tori. The underlying nonlinear partial differéntial equation although hy-
perbolic by nature, has periodic boundary conditions in both space and time. In
our first approach we discretize the spatial variable, and find the solution via a
shooting method. In our second approach, a full two-dimensional Fourier spectral
discretization and Newton’s method lead to very large, sparse, nonsymmetric sys-
tems. These matrices are highly structured, but the sparsity pattern prohibits the
use of direct solvers. A modified conjugate gradient type iterative solver appears
to perform best for this type of problems. The two methods are applied to the van
der Pol oscillator, and compared to previous algorithms. Several preconditioners
are investigated .

Key words. dynamical systems, nonlinear ODEs, invariant torus, pseu-
dospectral method, iterative methods for nonsymmetric systems .

AMS(MOS) subject classifications. 65P05, 65N30, 35K55.




Multisplitting For Linear, Least Squares and Nonlinear Problems
Rosemary Renaut
Arizona State University

In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS)
method of block relaxation type was utilised for the solution of the least squares problem,
and nonlinear unconstrained problems. This talk will focus on recent developments of the
general approach and represents joint work both with Andreas Frommer, University of
Waupertal for the linear problems and with Hans Mittelmann, Arizona State University for
the nonlinear problems.

The least squares problem can be solved using MS at the domain level. This amounts to a
column partitioning of the underlying system matrix. Equivalently, it can be shown that
the MS solution actually finds the solution of the normal equations using MS on the |
system matrix defined by the normal equations. Hence, this corresponds to the solution
of a system of equations with SPD system matrix. According to the standard theory for
MS methods this iteration will converge if and only if the underlying split is P-regular.
The theory for convergence of the least squares problem shows, however, that
convergence is in this case guaranteed. Hence the splitting must be P-regular. This leads
us to suppose that the MS of any SPD linear system is necessarily P-regular, and provides
a convergent iteration. In this talk I will indicate the convergence theory that leads to this
conclusion and investigate how we might seek an alternative proof using the usual
techniques from linear algebra.

Block-Jacobi methods are practical for parallel implementations but the rate of
convergence is limited. To attempt to remedy this inherent problem MS can be
reformulated as a two-phase process. Two-stage methods, in which a splitting is applied
to the already split method have already shown to be advantageous in some cases, see
Szyld et al. Here a different strategy, which originates in the Parallel Variable Distribution
idea of Mangasarian et al, is suggested. At each iterative step there is some flexibility in
the manner in which the updated global solution is obtained. Standard MS uses a convex
combination of the recent local solutions with a fixed choice of weights. Instead the
minimal solution can be found by carrying out a local optimization with respect to these
weights. Typically the number of subproblems indicated by the MS is substantially less
than the original size of the problem. Therefore this optimization can be carried out locally
to one processor with minimal extra cost. For the linear problems this minimization can
actually be formulated as a least squares problem with a system matrix that only needs to
be factorized at the very first iteration. Results demonstrating the increased efficiency will
be presented.

These ideas have also been applied for the solution of large-scale unconstrained convex
minimization problems. Again, in order to not have the convergence order limited to
linear we have started to explore an alternative approach. This combines an exact
augmented Lagrangian with a truncated Newton iteration. Preliminary results will be
presented.
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SOLVING BLOCK LINEAR SYSTEMS WITH LOW-RANK
OFF-DIAGONAL BLOCKS IS EASILY PARALLELIZABLE
V. MENKOV ‘
DEPARTMENT OF COMPUTER SCIENCE
INDIANA UNIVERSITY - BLOOMINGTON"

Abstract. An easily and efficiently parallelizable direct method is given for solving a block linear
system Bz = y, where B = D 4 Q) is the sum of a non-singular block diagonal matrix D and a matrix
@ with low-rank blocks. This implicitly defines a new preconditioning method with an operation
count close to the cost of calculating a matrix-vector product Qw for some w, plus at most twice
the cost of calculating D~'w for some w. When implemented on a parallel machine the processor
utilization can be as good as that of those operations. Order estimates are given for the general case,
and an an implementation is compared to block SSOR. preconditioning,.

1. Introduction. Solving a large linear system of equations
(1) Az =y

is 2 common subproblem encountered in the numerical solution of differential and inte-
gral equations. Such linear systems are usually solved with preconditioned conjugate
gradient (PCG) like methods, which involve solving an auxiliary system

(2) Cz=y,

with a preconditioner C on each iteration.
This paper examines parallel preconditioners of the form

(3) Cy = (D+Qr)D™N(D + Qu),
or
4) Cy=D+Q.

Here D is a non-singular block diagonal matrix; Q7 and Qu are block strictly lower
and upper triangular matrices composed of low-rank blocks; and @ has zero diagonal
blocks and low-rank off-diagonal blocks (ODBs).

Both preconditioners require solving one or two block linear systems of the form

(5) Bz =y,

where the non-singular n X n matrix B has the splitting B = D+ @ with a non-singular
block-diagonal matrix D = diag {D11, D22, -..,Dpp} and some block matrix Q. *
Block diagonal preconditioning (C2 with @ = 0) is typically used in parallel com-
putations. If diagonal blocks are assigned to processors, the preconditioner can be ap-
plied without interprocessor synchronization or communication. Unfortunately, block

* WORK SUPPORTED BY NSF GRANTS CDA-9303189, ASC-9502292 AND ROME LABS
AF 30602-92-C-0135

! In fact, the preconditioner C1 (3) can be more efficiently dealt with as a product of two matrices
(Cy = B1Bs, with By = (D + Q.)D~! and B> = D + Qu), only one of which (Bz) is of the form
D + Q. But the system with the matrix By (which has the form (D + Q)D™!, rather than D + Q)
can be solved in almost the same way as (5); one only needs to remove step 5 from the SMW solve
algorithm (Sec. 5, p. 5).
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diagonal preconditioned systems often fail to converge, especially for non-symmetric
A. Block symmetric Gauss-Seidel (C; with Qr, and Qr the corresponding parts of A)
is significantly more robust, but the block lower and upper triangular system solves
are inherently sequentml One way to recover parallelism is to increase the number
of blocks in the partitioning of A and use a leve] scheduling [1, 2]. however, this also
causes the quality of preconditioning to fall, and in the limiting case becomes pointwise
symmetrized Gauss-Seidel, which typically provides poor quality of preconditioning.

In this paper we borrow an idea from the solution of integral equations, and use
low-rank approximations (LRA) of the off-diagonal blocks. In [3] the characteristics
of such an approximation are analyzed; this paper shows how such a preconditioner
can be implemented with parallelism almost as good as that of block diagonal precon-
ditioning. By varying the rank of the ODBs the new method can be parametrized to
vary in quality between that of block diagonal and block SSOR [9] preconditioner.

We assume that the n variables are divided into p blocks (so that B and other
matrices of the same dimension consist of pxp blocks). A typical source of the blocking
would be from domain decomposition, with p < n.

Let rx = rank Qgi, let M = 34 ;71 be the sum of ranks of all blocks of @, let
my = Y, Tk be the sum of ranks of the blocks of Q in the I-th block column, and let
m be the maximum of the sum of the ranks of the blocks in any one block column
or block row of @. If no block of @ has rank higher than one, then M becomes the
number of non-zero blocks in @, and m the maximum number of non-zero blocks in
any one row or column of Q. Let P be the set of all the pairs (k,[) such that Qp # 0.

Each block of @ can be represented as

v Tkl i N
- . T T
(6) : Q=Y vk = UuVi,
=1, -
with Uy = [u};, ufy - wiland Va=[v} v} --- o]

Since (5) is used in iterative solving of (1), we assume that problem (5) needs
to be solved for many right-hand sides y, which are not available at the same time.
Blocks of D and Q are constructed and represented to allow: (1) solving systems with
the diagonal blocks Dy, and (2) performing matrix-vectors multiplications with the
blocks Q. E.g. each block of D is represented as aproduct of a lower and an upper
triangular matrices obtained by incomplete LU factorization of the diagonal blocks of
A. ‘

The goal is a direct preconditioner whose operation count is comparable to that
of any method that uses the two above-mentioned operations (such as, e.g., the usual
block elimination method, in the case when B is block-triangular), but which can be
efficiently parallelized.

2. Data représentation and distribution. The data are distributed among
the processors with
® Dy stored on processor k;
e Uj; (composed of the vectors {uf;}s=1,...,r,,) Stored on processor k;
e Vi (composed of the vectors {v§;}s=1,..r,) i stored on processor .
Here processor k may be a virtual processor, and if fewer than p processors are avail-
able, several virtual processors are mapped to one physical processor.




3. Representation of B~1. From (6), @ = UVT, with M-column matrices U
and V:

Un o --- 0 U o ... o ... Ulp 0 - 0

Ug ++ 0 0 Up -« 0 -« 0 Upy - 0

(U= 21 o : 22 o : 2p . .
O 0 Upl 0 0 Upz coe 0 0 Upp

Vu Vo - V2 0 0 -~ 0 - 0 0 --- @

(8) V= 0 0 . 0 I/'12 Voo --- "[/;72 . e : 0 .
: : R )

0 0 -« 0 0 o --- 0 ... Vip I/2p . .Vpp

The block column ordering shown above is chosen so that & will have the same block
structure as @), see Section 4. Block columns in (7) and (8) corresponding to zero
blocks Q; are absent (have no columns).

Since B = D + UV, the Sherman-Morrison-Woodbury formula, [8] gives

(9) Bl=D+U0vh)y1=D'-DWUI+&)vTD,

with G = VTD~1U of order M.
Since the non-zero eigenvalues of @ are the same as those of DUV,

ol +G)\ {1} =o(D'B)\ {1},

where o(H) is the set of eigenvalues of the square matrix H. Since B is non-singular,
s0 is I+@. Furthermore, if M' < n (i.e. if the ranks of the blocks of @ are low enough),
then rank (UVT) < M < n, and 1 € o(D'B). Therefore (I + G) C o(D~1B), and
cond (I + G) < cond (D~1B).

4. Structure of G. The following proposition shows that the block sparsity pat-
tern of G is contained in that of Q:

PROPOSITION 4.1. If Q= 0, then G = 0.
Proof. Let G can be partitioned as

Gu --- Gy
G+ Gy
where an my x m; block Gy; has the structure
0 - 0 VI 0 ... 07 [DiUn 0 0
Gu = O 0 Vg 0 0 . 0 Dz Un :
[0 -0 VI 0 - 0 0 e 0 D;p?Upl
[0 -+ 0 Hyg 0 --- 0
ay = |7 9 Hm 0o 0
H T




with zeros in the first £ — 1 block columns, and the last p — k block columns, and
Hip = V;{D,:klUkz of size 7jx X r1. The equation for Hjx shows that the block Gyl
can be non-zero only if Uy; is non-zero, which, in its turn, can be non-zero only if Qi
is non-zero. O

If we use no-cancellation assumption [6, Section 2.2.2] (i.e., disregard the possi-
bility that a potentially non-zero element becomes zero simply because a given dot
product happens to be zero), it follows from Proposition 4.1 that G has the same
non-zero block structure as Q.

COROLLARY 4.2. If Q is strictly block upper or lower triangular, then so is G.

Since Hjx is Tjk X Tk, the total number of non-zero elements in G is mnz (G) =

Tk ((Ej k) (201 Tkz)) = L(rrme) < mM.
If no block of Q has rank higher than one, then mM < p3. If Q is block-tridiagonal,
with all non-zero blocks of rank one, then mM < 3p.

5. Outline of the solution method. The parallel solution method for the
solving Bz = y is based on (9), and will be referred to later as LRA SMW.

Computing the preconditioner.
begin
1. foreach k=1:p (in parallel)
Preprocess Dy for solving Dyxay = yx (if necessary)
endfor
2. foreach k =1:p (in parallel) /* Compute entries of G */
for Il = 1:p such that (k,I) € P
Za. Solve Dkl = Uni
for j =1 :p such that (j,k) € P
2b. Set Hip = Vﬁ U
endfor '
endfor
endfor
2c¢. If desired, gather all block rows of G on a single processor
3. LU-factor I+G
end
Computing G consists of two steps. On step 2a, processor k computes Uy for all
I’s by solving the linear system

Dk [Un Uke -+ Uipl=1[Un1 Ukz -+ Usp]

with 3, 7 right-hand sides. On step 2b, processor k computes the blocks Gy for all
values [, i.e. the blocks Hj; in the matrix

Hypy -+ Hugp Vlzc

Hypy -+ Hogp Vak . . .

. = o [Ua Uk - Usp |
Hpkl Hpkp Vﬁ

As a result of this step, G is distributed among the processors by block row. A gather
step is needed if one wants G to be stored on a single processor.

Unless G is triangular, some LU-factorization of I + @ is needed (step 3). If G is
stored on a single processor, factoring is done by that processor; otherwise, it is done
in parallel.




Applying the preconditioner. Applying the preconditioner (4) or (3) involves solv-
ing one or two systems of the form (5), using formula (9):
begin Solving Bz =y

1. foreach k =1:p (in parallel) /¥z = D7y ¥/
Solve Dyrzr, = yi
endfor
2. foreach I =1 :p (in parallel) /¥t = VTz #/
fork=1:p
Settyy = ngl
endfor
endfor
3. Solve (I+@)s = ¢ J¥s = (I+@) 1t *
4. foreach k =1:p (in parallel) /¥y =y — Us ¥/
Sety, = yr — 3 Unsu
endfor
5. foreach k =1: p (in parallel) /¥ z = Dy */
Solve Dy = yj
endfor
end
Step 3 solves
(11) I+Q)s=t,

where s is partitioned conformally with ¢.

Only step 3 involves interprocessor communications. On step 2, the j-th processor
produces all components of ¢ in its block column (t; for all k); on step 4, the j-th
processor needs all components of s in its block row (s;; for all ). Depending on how
(11) is solved, step 3 can be implemented in different ways:

1. Store the entire factors of I+ G on a single processor, which solves the system

(11). First, ¢ is gathered on this processor; after solving, components of s are
scattered to the processors that will need them at the next step. Both steps
2 and 4 send M floating-point values between the processors.
What processor should be used for solving (11)? Normally, it can be one of
the processors 1,...,p that perform all other operations. However, if mini-
mizing the memory allocation per processor is a priority, and there are extra
processors available, it may be expedient to use p + 1 processors, the extra
(p + 1)-st processor being used to store the factors of I + G and solve (11).

2. Have each processor, redundantly, solve (11). (This option was used in the
test.)

3. Use a parallel method for solving (11), distributing the factors of I + G
among all processors. At most pM floating-point numbers are sent between
processors. Factors of I + G can be distributed among the p processors by
block row. If this scheme results in poor data balance (as in the case of a
block-triangular or block-tridiagonal @), linear speed-up can be achieved by
distributing the factors of I + G cyclically by row.

The preconditioner can be applied with one D-solve per iteration instead of two,
by replacing steps 4 and 5 with .

4. foreach k=1:p (in parallel) /[*z = z — Us */

Setzr = zx — ¥; Unsw
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endfor
where U = DU (see step 2a of the preconditioner-preparing algorithm). The disad-
vantage is that the DAXPY operation in 4’ is done with dense vectors, while that in
5 uses sparse ones. In the remainder of the article, we use 4 and 5 instead of 4'.

6. Operation count analysis. Solving (5) requires the following number of
operations:

Cp=Cp+Cy+Cg+Cu+Cp=2Cp+Cn+Cg.

The five terms of the first sum correspond to the five steps of the algorithm. Cp is
for solving Dz = w, Cy is for one local dot product for each column of the blocks
Vi, Cy is for one DAXPY with each column of the blocks Uy;’s, and Cg is for solving
(11). The sum Cp = Cv + Cy is the number of operations needed to perform a
matrix-vector multiplication Qw = UVTw.

7. Timing models. During solving Bz = y, only solving system (11) requires
interprocessor communications; all other operations are parallel. From the operation
count data in Section 6, the time ¢p the method needs to solve (5) is approximately
the following:

(12) tp = 2tp +tv +ty +tg = 2tp +inm + ta-

The three main terms here, tp, tv, and ¢y, are times this parallel computer will take,
respectively

tp: to solve Dz = w,

ty: to calculate a dot product with each column of each block Vi,

ty: to perform a DAXPY operation with each column of each block Ug;,
with the matrices distributed as described in Section 2. The sum t,, = ty +{y is the
time needed to calculate .2 matrix-vector product Qu = UVTw.

Cost of solving (11). The term g is the time needed to solve (11). When @Q is
strictly block triangular, so is G, and tg = O(Mm).

When the matrix G is not triangular, tg it still does not depend on the right-
hand side 3, and so I + G needs to be LU-factored once for all future B-solves. The
sequential solve time £522 is O(M?); parallel solve time ;" = O(mM). This {g can
be reduced if the block structure of Q is such such that fill-in is limited in some way.
E.g., for block-tridiagonal @, £* is O(mM) and tg" = O(M max{1,m/p}).

Costs of preparing G. Computing G involves solving M linear systems of the form
Dj;@;; = wj;, and then calculating no more than Mm dot products of the form 'vgjﬂji.
The total number of operations involved is under m(Cp + Cy) = 5 Cp. Since both
D-solves and dot products can be done in parallel,

m
(13) tprepG = -EtB.

The cost of LU-factoring the matrix I +G depends greatly on the structure of this
matrix (and thus on the structure of Q). For a general Q, the operation count for this
factoring is, is the worst case, Cacy(rq) = O(M?), which implies t?:gt(l +q) = OWM 3)
for sequential factoring, and

(14) oGy = O(mM?)
6




for factoring on p processors in parallel (the p-th processor calculates the p-th block
row of the factors). This result may be better if Q has some special structure making
LU-factoring G less expensive than O(M3) operations. For example, if Q is block-
tridiagonal, tg.% 1 o) = O(m?M) and

(15) t}’;rt(l_i_G) = O(mM max1,m/p).

The timing model provides a practical definition of “low-rank” for blocks of Q:

(2) The time spent preparing and factoring I + G must be small compared to the

iterative solve time for (1), and

(b) tg must be small relative to tp + ty, so that tp ~ 2tp + tp,.

Below we will show what restrictions this conditions impose on m, for a general matrix
@, as well as for the special cases of block-triangular and block-tridiagonal Q. We
suppose that:

1. p processors are used.

2. The maximum dimension of a block Dy, is O(n/p).

3. m = O(M/p), i.e. the maximum sum of block ranks in a block row of Q is of
the same order as the average sum.

4. Factoring I+G and solving (11) is done in parallel on p processors. (Estimates
for sequential operations can be obtained in a similar way.)

9. tp is the dominant term in tp + ¢y, i.e. tp +1, = O(tp). This is usually the
case with many matrices; and if off-diagonal block computations are expensive
relative to the diagonal block computations, i.e. ift,, > ptp, then parallelizing
the solution of the system (5) is easy.

The time £p spent solving the system Dz = w depends greatly on the structure
of D. The two obvious limiting cases are

e tp = O(n/p) (Dix is a diagonal matrix, or a product of LU-factors with few
NOn-zeros per row);
o tp = O(n?/p?) (Di is a product of dense I~ and U-factors).

Estimates below will be made for a Q of arbitrary block structure, as well as for
block-triangular and block-tridiagonal Q.

Equation (13) indicates that #yrepg is on the order of the time taken by m itera-
tions. Thus the criterion (a) implies that m needs to be small in comparison to the
total number of iteration.

In order for the term Lact(1+G) DOt to make this ratio much worse, it needs to be
of the same order as tpepg, i.e. the condition

(16) tact(i+G) = O(mip)

should hold. For a block-triangular @, this is not an issue (no factoring is needed);
for a general @, the parallel LU-factoring time estimate (14) is used to rewrite the
condition (16) as

) - { 0 (%73), ifto=0(n/p),

0 (I—?g) , iftp =0 (n%/p?)
For a block-tridiagonal @, the parallel L'U-factoring time estimate (15) gives
__[o (max{, 27}), iftp=0(n/p),
O (max{Z5,2}),  iftp =0 (n?/p?).
7
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IfQis... | To ensure that... Iftp = O(n/p) If tp = O(n*/p?)
arbitrary | teact(rra) = O(mip) m=0 (1;-%; m=0 (fg)
te = o(tp + tm) m=o(Lp/2) m=o(5—%§)
blk- tractec) = O(mip) | m = O (max{%, Z7z}) [m=0 (max{Zs,2})
tridiag. tg = o(tp + tm) m=o0 (ma.x{;f‘;, ;%;}) m=o0 (max{’;—:-, %})
blk-triang. | tg = o(tp + tm) m=o0 (max{;f‘g, %1—;;}) m=o (max{%;, %})
TABLE 1

Low-rank criteria (in the case of parallel solving of (I +G)s =t).

fQis... To ensure that. .. T ip = O(n/p) | H tp = O(n®/p?)
arbitrary tact(r+q) = O(mip) | m=0 (%3) m=0 (p—;’,;)
te = o(tp + tm) m=o(§;7/;) m=o(£g)
block-tridiagonal | teeyria) = O(mip) | m =0 (2Z2Z) | m=0 (:25)
te = o(tp +tm) m=o(a;{_2) m=0(_pwn_2_)
block-triangular | tg = o(tp + tm) m=o (%/‘2) m=o0 (an)

TABLE, 2
Low-rank criteria (in the case of sequential solving of (I +G)s=1).

Restrictions on m that are necessary to satisfy criterion (b) can be derived from
the estimates of tg given earlier in this section.

These results for parallel factoring of I + G and parallel (I + G)-solve are sum-
marized in Table 1. Table 2 presents analogously obtained results for sequential LU-
factoring and (I 4 G)-solve.

If the symbol o in the restrictions on m is replaced with O, then instead of tp =
2tp + ty, we will have tg = O(tp + tm)-

8. Preliminary computational results. The LRA SMW preconditioner with
conjugate gradients stabilized [4] iteration was implemented in pC++ [5] on an SGI
Power Challenge. Only sequential solving of (I + G)s = ¢ was implemented in this
version.

Two test problems with p = 8, coming from a 2D finite element problem in CFD,
were solved using a number of preconditioners: )

1. BSSOR with low-rank ODB (C = (Qr + D)D" (Qu + D); blocks of the
strict lower and upper triangular Q7 and Qu are obtained by a lumping-
based low-rank approximation method [3] of the respective blocks of A, with
rank Qy; < 3);

2. SMW with low-rank ODB (C = D + (Qr + Qu), with the same Qr and Qu
as above), SMW method used;

3. BSSOR, with original ODB (C = (L+ D)D~Y(U + D); strict lower and upper .
triangular L and U are composed from the ODBs of A);

4. SMW with full-rank ODBs (C = D + (L + U) with the same L and U as
above).

In all preconditioners, blocks of D were obtained by an incomplete LU-factorization
[7] of the diagonal blocks of A with 3 levels of fill allowed.

8




In Tables 3 and 4, the first number in each cell is the total time spent to solve
the problem on the specified number of processors with the specified preconditioner;
it is followed by the preconditioner preparation time (LU-factoring D, generating Q,
generating and factoring I + G) plus the number of iterations times the time per
iteration. All times are in seconds.

Table 5 presents partial breakdown of SMW iteration time. For four iterative
processes, it gives the total time spent during the iterations, as well as the amount of
time that was spent solving Dz = w and solving (I + G)s = t. (The rest of the time
was spent mainly doing matrix-vector multiplications).

Data in Tables 3 and 4 show that in the low rank case, LRA SMW has a parallel
efficiency of 0.91 or better, compared to 0.19 of block SSOR. For higher ranks, LRA
SMW only slightly increases the parallel efficiency from 0.20 to 0.22 or 0.26; the main
reason for this is that, as Table 5 shows, while D-solve time decreases as the inverse
of the number of processors, the (I + G)-solve time stays constant. Thus, when M is
large, parallel (I + G)-solve needs to be implemented.

Further note that fewer iterations are required for LRA SMW, indicating that
it provides a better quality preconditioner. These results confirm that LRA SMW
can provide parallel efficiency while maintaining and even improving the quality of
preconditioning that block SSOR. provides.
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Num. SSOR, LRA SMW, SSOR, LRA SMW,
proc. || low-r. ODB | low-r. ODB | orig. ODB full-r. ODB
(M=84) (M=84) (M=1234)
1 U5.3 = 8.6+ | 78.8 =10.83+ | 40.9 =79+ 1 78.3 =064.(+
+67 - 1.29 452 -1.31 +23.1.44 +6-2.26
2 675 =47+ | UL =03+ | 28.7 =4.1+ 55.8 = 46.3+
+60 -1.05 +53 - 0.63 +23-1.07 +6-1.59
4 64.2 =3.6+ | 20.6 =4.1+ 24.1 = 3.0+ 1 47.1 = 39.6+
+66 - 0.92 +51 -0.32 +32 0.96 +6-1.24
8 60.8 =27+ | 12.4=32+ | 21.9=2.0+ | 42.2 = 30.7+
+66 - 0.88 +51-0.18 +22-0.90 +6-1.09
TABLE 3
Timing results for Problem Str389. n = 9275.
Num. SSOR, LRA SMW, SSOR, LRA SMW
proc. low-r. ODB low-r. ODB orig. ODB full-r. ODB
(M=66) (M=66) (M=2214)
1 730.2 = 18.9F | 223.7 = 22.6+ | I14Al.4 =161+ | 453.1 = 349.0+
+72-2.93 +68-2.96 +39.3.21 __+19-548
9 1810 = 10.3F | 112.4 = 12.1F | 105.4 = 8.2+ | 3587.7 = 282.0+
+70 - 2.45 468 -1.47 +39 - 2.49 +19-3.95
4 167.7 = 6.2+ 540 = 1.5+ 954 =42+ 315.2 =251.1+
+7 10 +68 - 0.69 +43-2.12 +19-3.38
8 156.1 = 4.2+ 283 = 5.0+ 850 = 2.0F | 359.6 = 30L.3+
- +77-1.97 +68 - 0.34 +43-1.95 +19-3.07
TABLE 4
Timing results for Problem 20284.mlp, n = 20284.
n = 9275 n = 9275 n = 20284 n = 20284
Num M=284 M=1234 M =66 M =2214
proc D |I+G| Tot || D | I4+-G | Tot D | I4+G| Tot D | I+G | Tot
1 4771021 | 68.0] 6.1 ] 4.83 | 13.5 || 142.3 | 0.18 | 201.1 || 40.6 | 46.49 | 104.1
2 2251018 | 33.2 |{ 3.0 | 482 | 9.6 68.4 | 0.18 | 100.3 || 19.8 | 46.05 [ 75.1
4 10.8 1017 | 165 || 1.5 | 4.82 | 7.4 30.7 | 0.16 | 47.0 9.7 | 46.08 | 64.1
8 50 | 0.17| 9.2 || 0.7 | 4.80 | 6.6 14.3 | 0.16 | 23.3 4.5 | 46.08 | 58.3
TABLE 5

Breakdown of iteration time.

spent solving (I + G)s = t; “Tot” is the total time spent during iterations.
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“D” is the total time spent solving Dz = w; “I+G” is the total lime




Parallelizable Approximate Solvers for Recursions Arising in
Preconditioning

Yair Shapira *

Abstract

For the recursions used in the Modified Incomplete LU (MILU) preconditioner, namely, the
incomplete decomposition, forward elimination and back substitution processes, a parallelizable
approximate solver is presented. The present analysis shows that the solutions of the recur-
sions depend only weakly on their initial conditions and may be interpreted to indicate that the
inexact solution is close, in some sense, to the exact one. The method is based on a domain de-
composition approach, suitable for parallel implementations with message passing architectures.
It requires a fixed number of communication steps per preconditioned iteration, independently
of the number of subdomains or the size of the problem. The overlapping subdomains are either
cubes (suitable for mesh-connected arrays of processors) or constructed by the data-flow rule
of the recursions (suitable for line-connected arrays with possibly SIMD or vector Processors).
Numerical examples show that, in both cases, the overhead in the number of iterations required
for convergence of the preconditioned iteration is small relatively to the speed-up gained.

1 Introduction and Main Results

The Incomplete LU (ILU) decomposition of a sparse matrix [14] [15] [21] is considered as one of the
most powerful and robust methods for the solution of sparse linear systems of equations. The idea is
to construct sparse triangular matrices L and U such that LU approximates the coefficient matrix
in some sense. Then LU serves as a preconditioner in a Krylov-space acceleration method. The ILU
decomposition process, as well as the back substitution and forward elimination in the triangular
matrices I and U, is basically sequential, and parallelizable and vectorizable algorithms for solving
it are of great interest. In the following, we list some of the well known approaches. A vectorization
based on the "data flow” of the recursions is presented in [3]. In this implementation, the recursion
is done data flow front by data flow front, where a data flow front is a set of variables which can
be computed simultaneously in a certain step of the recursion. A parallel "pipeline” strategy is
proposed in [4]. An inexact vectorizable algorithm is presented in [22]. All these approaches are

compared in [23].

A case of special interest is the one for which the coefficient matrix may be considered an

operator acting in the space of grid functions defined on a d-dimensional grid. This situation arises

*Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000, Israel, e-mail:
yairs@csa.technion.ac.il.




(2) (b)
Figure 1: A domain decomposition with overlapping square subdomains. It is assumed that the re-
cursion goes left to right and dowriward. The truncated recursion for, e.g., the subdomain including

the * is initiated on the thin lines.

often in the numerical solution of elliptic PDEs. The domain decomposition approach, based on
substructuring the grid into a collection of suBgrids; is ‘considered suitable to this case, especially
when implemented on message passing parallel architectures with mesh connected processor arrays.
In [8], 2 domain decomposition approach based on an iteratﬂe solution (using ILU) of the Schur
complement system corresponding to the inteiface unknowns is presented. In [17], an alternating
Swartz algorithm with inexact solvers for the overlapping subdomains is presented. We will also
consider ”star” schemes, namely, (2d 4 1)-coefficient stencils arising, for example, from central
second order finite difference discrétizations of second order elliptic PDEs. For such problems, one
may order the variables in a red-black ordéring and obtain an efficiently parallelizable ILU method.
However, with this ordering the convergence is much slower than with the standard (lexicographic)
one [3]. A nested dissection orderiﬁg may give better convergence rates in the price of a more

complicated parallel implementation (5]

Next, we consider some inexact solvers for the recursions used in the ILU preconditioning. In [20]
a domain decompositioned inexact solver based on d-dimensional cube subdomains is developed.
It is shown there that the solutions of the exact recursions depend only weakly on their initial
conditions; a good approximation is thus obtainable when an inexact (truncated) recursion is
performed in all the subdomains simultaneously. For a triangular system, this is equivalent to
performing one block Jacobi iteration, where a block corresponds to a subdomain. This, of course,
requires the transfer of internal boundary conditions from adjacent subdomains. For message-
passing parallel architectures with mesh-connected processor arrays, though, this requires only one
communication step per approximate recursion. Numerical experiments show that the method
converges nicely for standard ILU, but deteriorates for the Modified ILU (MILU) version of [11].
It is also mentioned in [20] that it is possible to use extended subdomains as in Figure 1(a); this,

however, requires d communication steps per recursion.




(a) (b)
Figure 2: A domain decomposition with triangular subdomains, suitable for vector computers. The
values for variables on the thin lines in Picture (b) are computed by one SIMD or vector operation.

A vectorizable inexact solver for the recursions, which may be also viewed as a domain decom-
positioned one, is presented in [24]. Its implementation to star schemes is illustrated in Figure 2.
The recursion is done in both domains simultaneously. It is vectorizable on each oblique line paral-
lel to the interface between the subdomains. When such a line reaches a boundary, it is continued
as if the region was periodic, exploiting the maximal vector length of the machine. As in [20], the

method deteriorates when applied to MILU; this is cured by using overlapping (see Figure 3).

In this work we present convergence analysis which shows that, under some algebraic conditions,
the solution of the recursion for a certain variable converges when the initial conditions of the
recursion are given on a data flow front farer and farer away from the location of this variable. An
estimate for the rate of convergence of this limit process is also given. This analysis is related to
the theory of continued fractions [19] and may also serve as a justification for the infinite domain
analysis used in [7] and [13]. The results are stated in pure algebraic manner, avoiding the use
of the grids, orders and norms defined in [20]. In the case of [24], this convergence means that
when the overlapping in Figure 3 is large enough, the approximate values in the lower right domain
almost reach their exact values. Consequently, the analysis supports the numerical results of [24].
Furthermore, it motivates the definition of a domain decompositioned approximate solver for the
recursions, in which each subdomain consists of several consecutive data flow fronts. For star
schemes, this results in the oblique domain decomposition of Figure 4. This algorithm is especially
suitable to message passing parallel architectures with line connected arrays of vector or SIMD
processors. For such architectures, the solution in each subdomain may be optimally vectorized as
in [24], and additional speed-up is gained via parallelism. Of course, it is also suitable to shared
memory architectures with several vector processors, such as that of the CRAY. Our numerical
examples show that the rate of convergence of the algorithm is not far from that of the standard
one. Finally, we present an implementation of the method of [20] which is efficient also for MILU

and requires only one communication step per approximate recursion (see Figure 1(b)).




Figure 3: A domain decomposition with overlapping triangular subdomains. The truncated recur-
sion for, e.g., the subdomain including the * is initiated on the thin line.

We do not deal in this paper with the problem of parallelizing the inner product computa-
tions required in the acceleration scheme. One may assume that, for this task, some broadcasting
or shared memory device is available, which takes care of collecting the pieces of inner product

computed over the subdomains.

2 Numerical Examples

Here we present a numerical comparison of the standard and parallelizable versions of MILU. The
following 2-d examples are tested: (1) the Poisson equation, (2) an anisotropic diffusion equation,
(3) a circulating convection equation, (4) a diffusion equation with discontinuous coefficients and
(5) an anisotropic diffusion equation with discontinuous coefficients. The 5-coefficient discretization
schemes of [1] and [6] are used on a 128 X 128 grid. The MILU parameter is 0.95 (except of Example
1, where the optimal parameter of [7] is used). The amount of overlapping is 8 grid points in each
spatial direction. The Transpose Free Quasi Minimal Residual method (Algorithm 5.2 in [10]) is
used for acceleration. The numbers of iterations required for reducing the I, norm of the residual

by 6 orders of magnitude are displayed in Table 1.




Figure 4: A domain decomposition with oblique subdomains, suitable for a parallel computer
consisting of four vector processors. The subdomains denoted by 1, 2, 3 and 4 are assigned to the
first, second, third and fourth processor, respectively. The vectorization is done as in Figure 2(b).
Overlapping is used; the recursion for a subdomain is initiated on the thin line on its left.

Table 1: A comparison of the standard and parallelizable versions of MILU.

example | standard MILU | Figure 1(a) | Figure 1(b) | Figure 3 | Figure 4
1 40 47 53 63 54
2 33 54 53 74 59
3 97 145 152 112 135
4 160 162 155 152 166
5 149 144 166 187 188




3 Conclusions

The present analysis shows that the recursions used in the ILU iteration depend only weakly
on their initial values. This motivates the construction of inexact. algorithms using truncated
recursions. These approximate recursions can be done in various subdomains simultaneously. When
overlapping subdomains are used, the method applies also to Modified ILU (MILU). Two types
of domain decomposition, suitable to two types of parallel architectures, are introduced. The first
one, based on [24], is suitable to line connected arrays of SIMD or vector processors. The other
one, based on [20], is suitable to mesh connected processor arrays. The analysis may be interpreted
to indicate that these algorithms converge in almost the same rate as does the standard one. This

is illustrated numerically for several examples.
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NEW PARALLEL SOR METHOD BY DOMAIN PARTITIONING *
DEXUAN XIE!

Abstract. In this paper, we propose and analyze a new parallel SOR. method, the PSOR method,
formulated by using domain partitioning together with an interprocessor data-communication tech-
nique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering
of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR
and the SOR using the row-wise ordering have the same convergence rate. However, in general, the
ordering used in PSOR may not be “consistently ordered”. So, there is a need to analyze the conver-
gence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method
can have the same asymptotic rate of convergence as the corresponding sequential SOR method for
a wide class of linear systems in which the matrix is “consistently ordered”. Finally, we demonstrate
the parallel performance of the PSOR method on four different message passing multiprocessors (a
KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point
Red-Black and four-color SOR methods.

Key words. parallel computing, SOR, JSOR, PSOR, convergence analysis

AMS subject classifications. Primary 65Y05; Secondary 65F10.

1. Introduction. The successive over-relaxation (SOR) iterative method is an
important solver for large linear systems [21]. It is also a robust smoother in the
multigrid method [19]. However, the SOR method is essentially sequential in its
original form. With the increasing use of parallel computers, several parallel versions
of the SOR method have been studied by a number of authors. Adams and Ortega
[1], Adams and Jordan [2], and Adams, Leveque and Young [3] have written about the
multicolor SOR method; Block, Frommer and Mayer [5] wrote about a general block
multicolor SOR method; and White [18] wrote about the multisplitting SOR method.
We also note the papers by Evans [6] and Patel and Jordan [12], which presented two
parallel SOR methods for particular parallel computers. Moreover, several different
parallel SOR methods which are defined by domain decomposition have been described
in Farhat [7], Rice [14], and White [18].

Recently, we analyzed a simple parallel version of the SOR method, the JSOR
method, in [15]. The idea of JSOR can be simply described below. Let a grid mesh
domain be partitioned into p disjoint subgrids. The JSOR method is obtained by
concurrently applying one sweep of the SOR algorithm to each subgrid, using the
previous iterates as the “boundary values”. Because it is based on a domain de-
composition, JSOR can be easily implemented on MIMD computers. Moreover, each
JSOR iteration requires interprocessor-date-communication only once. However, since
its convergence speed may be slow down almost linearly with respect to the number
P, JSOR is rarely used as a parallel solver for linear systems. Instead, JSOR can be a
efficient smoother for parallel multigrid methods as shown in [19] and [20].

In this paper we will show that the convergence rate of the JSOR method can be
greatly improved by only reordering the positions of the data communication. The
resulted algorithm is referred to as the PSOR (parallel SOR) method.

* Submitted to 1996 COPPER MOUNTAIN CONFERENCE ON ITERATIVE METHODS This
work was supported in part by the National Science Foundation through award number DMS-9105437.
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Although PSOR is generated from the JSOR method [15], it can be regarded
as a SOR method using a new ordering. For the 5-point stencil model problem, we
show that the new ordering based on a strip partition leads to a consistently ordered
matrix, and hence the SOR theory in [21] follows that PSOR has the same asymptotic
rate of convergence as the SOR using the row-wise ordering. However, in general,
the ordering used in PSOR cannot lead to a consistently ordered matrix and so the
SOR. theory does not apply. Thus, there is a need to study the convergence of PSOR
directly. In this paper, we propose a PSOR theory, and prove that the spectral radius
of the PSOR iteration matrix can be the same as that of the SOR iteration matrix for
a wide class of linear systems in which the matrix is “consistently ordered”. ,

Moreover, we demonstrate the parallel performance of the PSOR method on a
shared memory MIMD computer (2 KSR1) and three distributed memory MIMD
computers (the Intel Delta, an Intel Paragon L38 and an IBM POWERparallel System
9076 SP2). The numerical results show that PSOR is very efficient on these distinct
multiprocéssor machines.

Finally, we present a comparison of the parallel performance between the PSOR
method and the multicolor SOR method. We considered the Red/Black SOR method
for the 5-point stencil @nd the four-color SOR method for the 9-point stencil [3]. We
let both PSOR and the multicolor SOR have the same date structure as the SOR
with a natural ordering. Our mimierical results show that PSOR has a much better
performance than multicolor SOR on both computation and date-communication.

The remainder of the paper is organized as follows. In Section 2 we consider
the PSOR algorithm for the 5-point differerice stencil of the Laplacian eqitation on a
square. In Section 3 we give & general description of the PSOR method. Section 4 is
devoted to a convergence analysis of the PSOR method. In Section 5 we present the
numerical results on four different MIMD comiputers to show the parallel performance
of PSOR. We conclude in Section 6 with & comparison beétween PSOR and multi-color
SOR.

2. The Model Problem.
3. The PSOR Method.
4. PSOR Analysis.

5. Numerical Examples.

6. A Comparison between PSOR and Multi-Color SOR.
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Approximate Schur Complement Preconditioning
of the Lowest Order Nodal Discretizations

J. David Moulton !, Jim E. Morel 2 and Uri M. Ascher 3
Abstract

Particular classes of nodal methods and mized hybrid finite element methods lead to equivalent, robust and
accurate discretizations of 2" order elliptic PDEs. However, widespread popularity of these discretizations has
been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which
provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate
Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is
compatible with Dendy’s black boz multigrid code.

1 Introduction

Nodal methods have long been one of the most popular discretization techniques employed within the reactor
physics community to solve multi-group diffusion problems [4]. This success is a result of their exceptional
accuracy which may be attributed to three distinct aspects of the nodal ideology. Specifically, akin to finite
volume methods, nodal methods are physically motivated cell-based discretizations that by construction,
rigorously enforce cell balance. They utilize an intriguing choice of unknowns which, in two dimensions for
example, consists of cell and edge moments, making the nodal discretization naturally compatible with the
various homogenization techniques that are crucial to reactor modelling. Moreover, comparable to mized
finite element methods, the neutron current is obtained explicitly from the discretization thereby avoiding
problematic finite difference approximations. Thus, it is not surprising that most nodal methods may be
derived using non-conforming and mized hybrid finite element formulations [3], hence extending their realm
of interest to the entire numerical analysis community.

Since our primary interest is the development of preconditioners which exploit the underlying structure of
the resulting sparse linear system, we may avoid the unnecessary complications of multi-group diffusion and
restrict our discussion to linear 2°¢ order elliptic PDEs of the form (ie. conservative one-group diffusion),

VI = Qzy) . (1a)
I = —D(z,y)Vvs (1b)

for (z,y) € Q and subject to the Dirichlet boundary condition,
¢=g(z,y) Y(z,y) €90 (2)

The discretizations which follow assume Q is a rectangular domain and employ a tensor product mesh
having cells, §; ; = (:L‘,'_.%, 2:,'+%) X (yj_é,yj.*..]z.) with Qp = UQi,_‘i fort=1,...,Land j=1,...,M. Itis
convenient to denote the mesh spacing, Az; = Tipy — Ti-g and Ay; = Yi+i —Yj-3%-

1.1 The Nodal Discretization

Common to all nodal discretizations is the choice of cell and edge based unknowns. Generally these are taken
to be moments up to some specified order, hence in the lowest order case simple averages are employed.
Specifically, the cell based unknowns are averages defined by,

1 /”i+% /yj+-;
;= — z,y)dzd 3
P Az;Ay; 7oy Yy #ly)dzdy ®
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while the edge based scalar unknowns, namely edge averages of the scalar flux are given by,

. X 1 [Yi+d
bags= Jim @) HE) =g, / #(z,3)dy @

with analogous definitions of ¢; ;11 and ¢;(y)- Finally the edge integrated currents are written,

P4 . Yird 0

Jfys= lim [—D(x,y)-a— {¢(w,y)}] dy (5)
T+ 1793 z

while ij +1 is defined analogously.

Since all lowest order membeérs of the nodal method family yield equivalent discretizations of (1) we have
chosen to present a brief discussion of the Nodal Integration Method (NIM). The first step in the NIM
discretization is the positig of the cell based transverse integrated ODEs which govern ¢;(z) and éi(y). To
this end we assume an homogenized diffusion coefficient, D;,; is defined on each cell and transverse integrate
(1) to obtain a set of two ODBEs which are coupled through pseudo—source terms. The definition of the edge
averages, (4) naturally yields Dirichlet boundary conditions for each cell. Moreover, we are deriving the
Jowest order or constant-constant NIM ‘and hence the pseudo-source terms (ie. J;.!::F +(z) and Jg:F 1 (y)) are
assumed to be constant along their respective cell edge. By further assuming the soutce Q(z,y) is constant
over each cell, we finally obtain % set of two constant coefficient ODEs, with a constant source and Dirichlet
boundary conditions that are readily solved. :

With expiéssions for ¢;(#) aid ¢;(y) in hénd we begin the construction of the discrete relationships
which comprise the.discretiiatioh. Specifically we first note two independent definitions of the cell average
(ie. 2LM equations) are possible. Furtherrhiore, under the assumption of an homogenized diffusion coefficient
the order of integration and differéntiation may be reversed in (5) to yield expressions for JfF 140 ij; 3 on
each cell. Although thesé comprise only 3LM independent equations as the balance equation arises from
both J;, 35 JE 1. and Ji, 1= J;':j_ e Imposing continuity of J - n yields an equation for all interior
edges (ie. (L — 1)M + L(M — 1) equations) while the boundary conditions give rise to 2L -+ 2M discrete
boundary equations. Thus we have TLM + L + M equations in as many unknowns.

Although the constant-constant NIM discretization is complete at this point it is seldom used in this
form. Specifically, for our work we proceed by eliminating the currents, Jits,i and J; j+1, followed by the
trivial elimination of the cell averages, ¢;; to obtain the 7-point nearest neighbour hexagonally coupled
stencils that govern ¢;11 and é;,j+1- Using a finite difference style analysis it is possible to prove that
with constant mesh spacing and constant diffusivity the constant-constant NIM discretization is second order
convergent in the scalar variable.

1.2 Mixed Hybrid Finite Element Methods

The most common mized finite element methods (FEMs) arise in problems that contain an equality con-
straint. In the context of (1) the mixed method ideology views (1a) as the differential equation and (1b) as
the constraint. This has the distinct advantage of obtaining independent approximations of ¢ and J. How-
ever, the resulting system is difficult to solve as it is indefinite. In contrast hybrid FEMs are a Special class of
mized FEMs which temporarily relax certain inter-element continuity conditions, ultimately enforcing them
in only the weak variational sense as constraints. . Of particular interest to this work is the inter-element
continuity of the normal current, J - n, which may be treated as a constraint. Remarkably hybridization of
the mized finite element formulation yields an indefinite system, that may be recast as a positive definite
system, in which the sparsity structure is largely preserved.

To initiate the discretization process we first define the function spaces for each unknown. In particular,
to accommodate the definition of spaces involving edge-based unknowns or constraints we denote the set of




edges E of the rectangles, Q;; as & such that defining £f = {E € &| E C 09} yields &) = E,\EP. Thus,
the lowest order Raviart—-Thomas space may be written,

RTg () ={qlq€RT31 () ,/E+q-nds=/

RT%, (%) = {ala € I? (@) x I* (@) , dlq, , € {{L, €}, {Ln}} VO, € )

where RT{ C H (div; Q) is the conforming subspace in which the solution J, will ultimately be found. The
space of Lagrange multipliers, M2, () is defined as,

M2y (@) = {n|n € 17 (@), plp € {1} VE € £y plp=0 VEe£l}

q-nds VEE&',?}

while the cell-based unknowns are defined over,
U2 (@) ={olp € I* (), vl € {1} Vs €0}
Thus the discrete mized hybrid variational formulation of (1) may be expressed as,

find (Jh,¢h,ph) € RTﬁ, (Qh) X UEI(Q;.) X MP.,(&',‘Z) such that,

/Q[D"‘] Jh - qudzdy — '2;{/91 ¢hV-qhdzdy—fm B (qh-n)ds} =—/aﬂy(qh-n)ds Yan € RT2, ()

63

- E / @nrV - Jpdzdy = —/ Q(z, y)pndzdy Yon € U2, {179)]
ij Q5,5 Q
E / v(Jr-n)ds=0 Yun € M*, (&)
i, JoRi,j

Substitution of the corresponding basis functions and integrating then yields a system of the following form,

A BT CT Js Qs
C 0 0 248 0

Certainly this system is indefinite, however, unlike the mized FEMs A is block diagonal with each block
corresponding to a cell, §; ;. Moreover, each block of A is itself block diagonal, with each block corresponding
to a coordinate direction, hence A~! retains the sparsity structure of A. The underlying accuracy has also
improved over mized FEMs as it is possible to show that the Lagrange multipliers, p, are nothing more
than the edge unknowns introduced in (4) and are second order convergent. Combining this with the cell
average, ¢, which is also second order convergent it is possible to construct a non-conforming approximation
of ¢(z,y) over each cell, ; ;, which is second order.

2 Approximate Schur Complements

2.1 Lumping the Edge Based Schur Complement
The block elimination of J and ¢ in (6) leads to the Schur complement of the edge unknowns,
Suty = Qs, (7)

where 8y = C(A™} ~ A7' BT S5 BA™*)CT, Qs, = C(A™BTS3'BA™ — A1) Q; ~ CA~1BT 55 Q, and
the partial Schur complement is Sg = BA~1BT. The relative sparsity of the system is preserved in Sy




because Sp is strictly diagonal. Moreover, it is possible to prove that Sy is symmetric positive definite.
In fact, it is this combination that has made (7) the most common formulation of the mized hybrid finite
element system. Finally we note that (7) is precisely the edge based formulation of the constant-constant
NIM discretization. ‘ ‘

To understand the inherent complexity of creating fast iterative solvers for (7) and to motivate our
approach we partition the edge unknowns by orientation, vertical and horizontal, p, = {u, v} such that (7)

may be rewritten,
e Auwl [2] _ Q.
e )= %] ®

where Ayu, Ay are tridiagonal and Ay, is bidiagonal. ADI methods appear to be a natural choice and have
been investigated by a number of authors. In addition most standard preconditioners such as polynomial
and incomplete factorizations have been studied. However, none of these methods can attain the efficiency of
multi-level solvers, the development of which has been hindered by the difficult hierarchy of grids and inter-
grid transfer operators which must be defined for these edge based stencils. Certainly multi-level solvers
would be much easier to, develop if only a single orientation of the edge unknowns remained. However,
the choice to eliminate either u or v is arbitrary and moreover it is apparent that the respective Schur
Complements,

Sy = Ayy — A?"v (Auu)_l Auv; Sv = Ayu — Auy (Avv)—l Az‘u

suffer an equivalent loss of sparsity as a result of (Ayy)~! and (Avy)™?, respectively. Thus posed purely as
a problem in linear algebra, a suitable objective is to minimize the fill generated during the formation of
Sy (or S,). Further noting that (Auu)—1 is pre and post multiplied by bidiagonal matrices the minimal fill
attainable through approximations of (Auu')}_1 results. when it is diagonal. Determining the optimal diagonal
approximation is a foreboding task, however, if we recall the best incomplete Cholesky factorizations preserve
row sums it is reasonable to construct a diagonal approximation, Ayy which is composed simply of row sums

of Ayy. A simple inversion then gives (Auu)t m (Auu)~. Hence the preconditioner may be written,

"9::‘ — [Auu ﬁuu]‘ ' ’ , (9)
vu vy

The incredible potential of this approximation becomes apparent if we note that 3’: = Ayy —Af,, (Z:,)’IAW
is not only symmetric positive definite but also a second order 9-point approximation of an elliptic PDE.
Thus, Dendy’s black boz multigrid code [2], a robust and optimal solver, can be employed to invert it.

2.2 Lumping the Cell Based Schur Complement

Conversely, the Schur complement for the cell based unknowns may be written,

3¢¢h = Q.s¢ (10)

where Sy = B(A™! — A"1CTSZI1CA™ )BT, Qs, = Q4 — B(A™1 - A"1CTS;'CAY)Q; and the partial
Schur complement is S¢ = CA-1CT. 1t is possible to prove that Sy is symmetric positive definite and
hence an interesting candidate for iterative solvers. Of particular importance to the robustness of the
resulting solvers is that this reduced system (10) governs only the cell-based unknowns. However, the relative
sparsity structure of the system has been compromised because S¢ is block diagonal, with each block itself
tridiagonal. Thus the matrix-vector multiplication, Ss¢;, will involve the inversion of L, (L-1)x(L-1)
and M, (M — 1) x (M — 1) tridiagonal matrices.

To develop a preconditioner for Sg, and in particular one which is suitable for multigrid inversion we
return to the full system (6) and note that Sy > 0 if A > 0 and range(B) [ range(C) = {0}. Hence the
primary objective is the minimization of fill through symmetric positive definite approximations of A. To
this end we follow the success of the previous section and replace A, a block diagonal matrix, with A a




strictly diagonal lumped approximation,

2

_ JAziAy ] |1
As,] - { 6 -Di,j } 0
0

where I is the 4 x 4 identity matrix. This simple approximation has the profound effect of transforming
8¢ — Sy where Sy is in fact the well known 5-point cell-centred discretization of (1). Thus we have derived
an approximate Schur complement which may be used as a preconditioner and which may be inverted with
Dendy’s black boz multigrid code [2].

We also note that A may be derived by approximating the linear basis of J;, (ie. {{1,¢},{1, n}}) with
a piecewise constant basis. Such a basis preserves the 0** moment of J; but introduces an error in the first
moment. It is this property in combination with the mutual second order consistency observed by 8¢ and

3; which suggests a true multi-level solver should be pursued in the future.

= Az;Ay;
A; ;= 222Y
A { 2D;; }I4

O O N
HNOO
N =Oo O

2.3 Approximate Multi-level Inversion of the Preconditioner

Using either of the aforementioned preconditioners is clearly impractical if we actually intended to invert
them to some strict level of accuracy. However, this is unnecessary as multi-level solvers provide a uniform
reduction of the error over all frequencies and hence it is sufficient to employ only a single V or W cycle of
black bor multigrid per conjugate gradient iteration.

3 Numerical Tests

Tests of the robustness and efficiency of the preconditioners developed in Section 2 have been performed over
a large class of problems. In both cases these tests have demonstrated that on a uniform mesh the resulting
condition number appears to be independent of the grid spacing. In addition it is only weakly dependent on
the spatial dependence of the diffusion coefficient. However, the condition number arising from the simple
lumping of Ayy is sensitive to high aspect ratio cells with, » = Az/Ay > 1. Conversely, the cell-centred
preconditioner is not hindered by high aspect ratio cells.

This failing is readily understood if we employ Theorem 2.4 of Demko et al. [1] which bounds the
exponential decay rate of elements in the inverse of a banded matrix. Specifically we consider constant mesh
spacing and constant diffusivity with Dirichlet boundary conditions such that the diagonal blocks of A,
are given by,

= r : 2 2 2 .
(Auu)jj—D(1+r2>trl[2-—7',8-{-21‘,2—r], i=1,....M (11)
and of dimension (L — 1) x (L —1). A bound on the elemental decay rate may be written in the form,

{4z}, | < o2 (12
where the decay rate is itself bounded,

at —a~
at+a~’

A7) € Ao(r) = ot = /A +r) L2 (13)
One interesting property of the discretization, namely that the 5-point approximation is exact for r = V2,
is observed here with A(v/2) = 0. In addition we note that Ao (1) = 0.101... which is a fantastic bound.
Perhaps most importantly, Figure 1 reveals that not only does Ao (1) = 1 as r — co but Ae (r) is disastrously
close to 1 for even moderate values of r (eg. A (8) =0.65...).




10

.8 |- -1

0.6 |- -1

<

04| ]

02+ B

0.0 - " N . -1

:
1072 107 10° 10! 10? 10°
T

Figure 1: Upper bound on the decay rate oo (T)-

3.1 A Toy Problem
Consider the following Dirichlet problem with constant diffusivity, D(z,y) =1 and solution,

é(z,y) = 2 +sin (arz) sin (By)
where {a, 8} are free parameters. Substitution of the solution into (1) yields the required source,
. Qz,y) = (oz2 + ﬂz) 72 sin (amz)sin (Bry)

A comparison of the edge-based, Sy and the cell-based Sy preconditioners is presented in Table 1 for the
domain [0,1] x [0,1] with @ = 8 = 2. It is clear from these results that both preconditioners generate an
average residnal reduction which is independent of the mesh size. Moreover, there is essentially no difference
in the iteration counts for those runs which inverted the preconditioner ezactly (ie. columns marked, C)
and those which only used a single V(2,1,1) cycle (ie. columns marked, S). Thus, it is possible to claim that
these solvers are indeed optimal. _

Unfortunately we must also demonstrate the vulnerability that S,y has regarding high aspect ratio cells
and hence we conducted several runs in which the size of the physical domain ([0, a] x [0,B]) was varied
while the mesh size remained fixed. The results for the preconditioned edge-based solver are summarized
in Table 2. Here it is apparent that for » sufficiently close to 1, this solver demonstrates optimal efficiency.
Performance is still excellent as r approaches zero. However, just as the bound on A predicts, the efficiency
is degraded as r increases. Conversely, it is apparent from Table 3 that high aspect ratio cells do not hinder

the cell-based preconditioner.

Table 1: A comparison of iteration counts for the two preconditioners, 5;; and :S'; for the toy problem
with constant mesh spacing on the domain [0, 1] x [0, 1]. (Convergence criteria of 10-9).

Mesh Size | CG(Sy) Suin Se
| ClS|[CI[s
10 x 10 47 7 ] 7 | 1] 12
30 20 101 7 [ 7 |12 | 12
40 x 40 201 7 7 | 12 | 12

4 Conclusions

The family of nodal methods and mized hybrid finite element methods embody many desirable properties
of the underlying PDE which contribute to their robustness and accuracy. Unfortunately their very design




Table 2: Iteration counts for the lumped preconditioner, g,:, with constant mesh spacing on the domain
[0,a] x [0,b] and a convergence criteria of 10~¢. {Note: a = 2/a,B =2/b}

Domain Parameters: (a,b) with r = b/a
Mesh Size (8) 1) (4a 1) (2: 1) (1) 1) (la 2) (ls 4) (11 8)
cCl S C S C S C | S C S C S C S
10 x 10 9 9 9 9 9 9 7 7 7 7 14 1 156 [ 21 | 24
20 x 20 9 9 9 10 9 9 7 7 7 7 14 | 15 | 26 | 27
40 x 40 9 9 10 | 10 9 9 7 7 7 7 15 | 15 | 27 | 28

Table 3: Iteration counts for the cell-based preconditioner, :S’; with constant mesh spacing on the domain
[0, 4] x [0,8] and a convergence criteria of 10~5. {Note: & = 2/a, f = 2/b}

Domain Parameters: (a,b) with r = b/a
C 1S C S c1ls C | s c1ls C S c | S
10 x 10 1M j1n 121212 1211712121212 1271 11 [ 11
20 x 20 Bi13j12j12(12212[12]1212 1212 [12] 13 [ 13
40 x 40 Bl [1B|13|12]12]12 12|12 [ 13| 13 | 13| 13 | 13

makes their solution awkward and costly, thwarting many potential users. Yet we have demonstrated that
this awkwardness may be exploited in the development of preconditioners as it provides a natural partitioning
of the system. Clearly the existence of such a partitioning, suggests the investigation of various reduced
systems (eg. Schur complements) iwnjune@on with suitably sparse approximations. In particular, we
presented two such approximations, S,;. and Sy, and demonstrated that the preconditioning which resulted
was optimal in the sense that a fixed number of iterations, independent of the mesh spacing, was required
to reduce the residual by a fixed amount. But ultimately these solvers are competitive with multi-level
methods because the preconditioner is only approximately inverted with a single V or W cycle of Dendy’s
black boxr multigrid. _

Unfortunately, Sy, which preconditions the most popular form of the discretization, is sensitive to high
aspect ratio cells having r > 1. This shortcoming, an artifact of arbitrarily approximating A,, as opposed to
Ay, can in fact be alleviated by defining a preconditioner which is composed of two half steps. Specifically,
the fixst half step approximates Ay, — Ayy while the second approximates Ay, — A,y Conversely, an
identical approximation is made in both coordinate directions during the development of Sy and hence
it’s preconditioning is insensitive to high aspect ratio cells. A result which suggests that this form of the
discretization may be of significant practical interest. Moreover both preconditioners are robust with respect
to spatial variations in the diffusion coefficient.
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“ON PRECONDITIONING TECHNIQUES FOR
DENSE LINEAR SYSTEMS ARISING FROM SINGULAR
BOUNDARY INTEGRAL EQUATIONS”

KE CHEN *

Abstract. We study various preconditioning techniques for the iterative solution of boundary
integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas
are explored here: singularity separation and inverse approximation. Our preliminary conclusion is
that singularity separation based preconditioners perform better than approximate inverse based while
it is desirable to have both features.

Key words. Dense and Sparse matrices, Boundary integral equations, Preconditioners,
Iterative methods.

1. Introduction. The numerical solution of boundary integral equations gives rise
to dense linear systems that often have unsymmetric matrices. As all boundary integral
equations posses some kind of singularity, iterative methods (two-grid and multi-grid
type, CG-type) generally do require preconditioning for any convergence. Only in the
case of weak singularities, has preconditioning been found non-essential.

Recently various practical preconditioning techniques have been proposed for the
difficult case of strong singularities that include [1-4] -among others. Such precondition-
ers or their inverses are sparse, requiring only O(n) flops to implement at each step.
They were mostly proposed based on efficiency considerations and heuristic arguments
and have not been fully justified in theory.

Here we present two new contributions towards understanding and designing such
sparse preconditioners.

Firstly we have generalized the work of [5] on singular integral equations to singular
boundary integral equations and have shéwn that operator splitting offers a new way
of regularizations into compact operators. Essentially, by studying the discretization
process, we can identify part of an integral operator representing all singularities and
follow its corresponding discretization leading to part of the full matrix, that is usually
sparse. Then such a sparse matrix is used to construct a suitable preconditioner. With
this approach, we can see the close link between matrix splitting and integral operator
splitting. More importantly the preconditioned matrix like the preconditioned integral
operator can be shown to have its eigenvalues clustered at a fixed point.

Secondly we have investigated the possibility of constructing an approximate inverse
preconditioner [2,4,6] that may involve the solution of a least squares problem. We
show that the method of [1], while approximately solving such a least squares problem,
possesses the nice property of singularity separation and leads to a robust preconditioner
that clusters eigenvalues.

* Computational Mathematics Group, Department of Mathematical Sciences, The Uni-
versity of Liverpool, Liverpool L69 3BX, UK. Email: K.Chen@liverpool.ac.uk. URL:
hitp://www.liv.ac.uk/~cmchenke/cm.himl




Numerical experiments that support the theoretical results will be reported. For
comparison purpose, we also report results on using the fast wavelet transform (FWT)
as a preconditioner. Our conclusion is that singularity separation based precondition-
ers perform better than approximate inverse based while it is desirable to have both
features.

2. Preconditioning techniques. To give a flavour of some of these techniques,
we illustrate each sparse preconditioner by a small system so that their implementations
may become more transparent. Further and complete details will be given in a full paper
in preparation. For equation Au = f, denote a preconditioner by M. For boundary
element equations, we have A = af — K, where o may be 0 for first kind equations.

Then a (left) preconditioned system can be written as MAu = Mf. In general,
two requirements are imposed. Firstly a system Mz = y for any vectors z,y should be
efficiently solved in less than O(n?) operations or O(n) operations if a more sophisti-
cated method like the panel clustering is also used. This normally means that M or its
inverse must be sparse and so it natural to seek sparse preconditioners. Secondly the
preconditioned matrix M A should possess some better properties than A e.g. eigenval-
ues are more clustered. Often we hope the condition number of MA to be smaller than
that of A. In this sense, the best preconditioner should approach the inverse of A.

2.1. Two grid based sparse column preconditioners. Let o =1 and n =nm

with 5,m integers. Then from matrix K = (k1,k,--- ,ky), construct column vectors
by

B =< ki, if i=4n, 1S£§m)
7 1.0, otherwise,

and define a new matrix by K' = (k{, k3, -+, k). Then we use M=A={I+1K')as
a preconditioner. With n = 9, .

X
X

[ X X LX X\
X X X X
Bi1 Bis Bz X X X X
M= B21 Bg2 Bg3 = X X X X ,
Bsy Bs; Bss
X X X
X -X X

\

where each B;; denotes a 3 X 3 block matrix.

SN—

2.2. Mesh neighbour based approximate inverses. Here we wish to find a
matrix such that AM =~ I and this M should have its diagonal elements and imme-
diate neighbours possess more importance as A usually comes from singular integral
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equations. In particular, assume that M is a quasi-tridiagonal matrix; for n = 9 we
have

X\

X
X

X X X
X X X
X X X
X

(1) M=

X
X X X
X X X

X X X

X
\ x X /
Then to find M = (p1,p2,---,pn) in terms of A = (ay,az,---,a,), a direct approach is

used. Let AM =1 <= Ap; = e;. Then, as p; only has three nonzero positions i.e.
Diy, Piy Pia, @D approximate solution is obtained by solving a 3 x 3 system

Ai] 2 Ail 12 Ailis pil O
Aizil A‘izt'z Aizia pi2 = 1 ’
Aisi;l Aiaiz A‘i3ia pt'a 0

where iy =i~ 1,4y =443 =7+ 1for column s =2,--- ,n — 1, 4y = n,ip = 1,23 = 2 for
¢=1and 4 =n—1,i3 =n,i3 =1 for ¢ = n due to the wrap around nature of M.

2.3. Approximate inversion techniques. Here we wish to construct approxi-
mations, M, to the inverse of matrix A for which || AM —I|| is small in some norm. Once
such an M has been constructed, we solve the preconditioned linear system AMw = 7,
u = Muw.

Consider all possible choices of M that have the same sparsity as in (1). To this
end, let S be the set of (7, j)’s corresponding to all nonzeros in (1), and Gs be the space
of all » x n matrices that have entries in positions indexed by S. For each column index
J =1,--+,n, define its row indexes S; = {¢ : (4,7) € S} and let its vector space Gs;
contain all vectors that have entries in positions indexed by S;. Then the approximate
inverse M is calculated by solving the least squares problem (LS) in the Frobenius norm

n n
(2) o [AM -]l = j;lmfjgiggj [[Am; — ejllz = 2o l45m; — ez
where M = [my,---,my], I = [e1,---,e,] and A; is a n x 3 submatrix of A. The

full problem of finding M is thus reduced to n standard least squares problems for its
column vectors.
2.4. Sparse LU decompositions. Instead of looking for M of form (1) that

approximates the inverse of A, we choose M to be explicitly that part of A that has the
same sparsity as (1). Refer to [3] and [5]. To illustrate, for n = 5, we have M = LU or

A1 A2 A1s L1a 1 Uze U5
A21 A2 A3 L2,y L2p2 1 Uzs Uz,5
A32 A3z Azg = L322 L3z 1 Uss Uzs
Ag,3  Agq A4 L4z L4y 1 Uss

As,1 Ase  Ass Ls,y Ls2 ILsz Lss Lsgs 1
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Note that the inverse of a sparse matrix of form (1) is, though sparse, not of the same

I-K

sparsity pattern; see Figs 1-2 where the inverse pattern of a 32 x 32 matrix M

(entries of K are randomly generated in (0,1)) is illustrated.
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Our recent work, attempting to

2.5. Singularity separation preconditioner.
devise a theory suitable for singular boundary integral equations,

following choice of M as a good preconditioner

has suggested the




Such a matrix can be factorized into L, U efficiently.

3. Operator and matrix splitting. Corresponding to every preconditioning tech-
nique for matrices, there must exist an underlying preconditioning strategy for the in-
tegral operator. But it is not always obvious to work out such a strategy. It turns out
that, for most of the above mentioned preconditioners, there exist operator splittings
giving rise to matrix splittings. _

Further eigenvalue properties of the preconditioned matrix equations follow that
of the preconditioned operator equations. This leads to a theory of preconditioned
matrices and, more importantly, opens up new possibilities for new constructions.

4. Variants of the normal equation. All preconditioning techniques have been
implemented on test problems using the conjugate gradient method based on the normal
equation. What is interesting about the normal equation is that, when a preconditioner
M is involved, the normal equation can take any of the four forms

(MAYT MAu = (MA)TMF,
MA(MAY 2 = M7,
(AM)TAMy = (AM)" f,

AM(AM) T w = §,

where u = My = (MA)Tz = M(AM)Tw. Here there are two issues. Firstly one may
use left or right preconditioners. But once a preconditioner is available, it might be
applied either way. Secondly for non-normal matrices, left and right multiplications
produce different results. So a left preconditioner may be applied on the right to have
better results and vice versa.
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FAST WAVELET BASED SPARSE APPROXIMATE INVERSE
PRECONDITIONER

W. L. WAN*

Abstract. Incomplete LU factorization is a robust preconditioner for both general and PDE
problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote [15] and Chow
and Saad [6] showed that sparse approximate inverse could be a potential alternative while readily
parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their
preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no
good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this
kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage
of this fact and use wavelet compression techniques to construct a better sparse approximate inverse
preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

1. Introduction. Consider solving the right preconditioned linear system,
(1) AMy=b, =My,

where A is large, sparse matrix and M is a right preconditioner. We want to find a sparse M so that
|AM — I|| is small. This approach has been studied by Benson [2] and Benson and Frederickson [3].
More precisely, we want to minimize the residual,

() - min||AM - I}

The Frobenius norm is particularly chosen for parallelism. Notice that

n
IAM — II[F = 37 || Am; — &3,

i=1

where m; and e; are the jth column of M and I respectively. Thus solving (2) leads to solving n
independent least square problems,

3) min [|Am; — e;|2, i=1,...,n,
mj

which can be done in parallel.

In practice, it is desirable to look for sparse solution of (8). However, this poses two difficulties:
how to determine the sparsity pattern of M and how to solve (3) efficiently. Recently, there are
two approaches. One is discussed by Cosgrove et al [7] and Huckle and Grote [15] and the other is
by Chow and Saad [6]. For the former approach, they solve the least square problems (3) by QR
factorization, which apparently sounds costly. But because m; is sparse, the cost of QRF can be
greatly reduced. Moreover, they derive some algorithm to determine the positions of fill-in adaptively.
Similar approaches can be found in [17], [16], [18], [13], [14], in which case, the sparsity pattern of M
is fixed.

For Chow and Saad’s approach, they use standard iterative method to find an approximate solution
to

Amj = &,

* Dept. of Mathematics, Univ. of Calif. at Los Angeles, Los Angeles, CA 90024. E-mail:
wlwan@math.ucla.edua.
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and apply some dropping strategy to m; to control the number of fill-in. We should also mention that
they have suggested several other possible approaches of solving (2) in [6].

For more details in classical approximate inverse methods, we refer the reader to [1].

There is a potential difficulty in approximate inverse preconditioning. Its idea bases on the as-
sumption that A~! can be approximated by a sparse matrix M. It is well known that A~! can be
structurally dense even A is sparse. Yet one might expect rapid decay in the A~! entries away from
the diagonal [10], [5], [11] for some class of matrix A. However, as rentioned in [7], [6], if we fequire
[|AM —1I||; < 1, we can always find a sparse matrix A while M has to be dense. Even if A is symmetric
positive definite or A comes fiom PDE problems, the inverse entries still need not decay.

For example, consider the following near tridiagonal symimetric positive definite matrix of size
40x40, derived from some periodic boundary problem, |

2.01 -1 -1
-1 201 -1
-1 201 -1
A= L
-1 201 -1
-1 -1 201]

The inverse entries are all greater than one and hénce have no decay at all, as we can see from fig 1.
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Fic. 1. Mesh plot of A~1.

In such case, approximate inverse preconditioners may not work very well. Actually, it is too
much to ask for decay of inverse entries. We want to weaken this assumption and still get a sparse
approximate inverse. One observation is that if A corresponds to a differential operator of some elliptic
PDE, the inverse would be the corresponding Green’s function. See appeéndix for a simple example
illustrating this idea. Similar observation in the case of solving integral equation can be found in [4]
and in the case of hyperbolic and parabolic PDE can be found in [12]. Since A~! corresponds to the
Green’s function, we would expect piecewise smooth changes in the inverse entries. In other words,
if we treat the inverse matrix as a graph of a function of two variables, then we will get a'piecewise
smooth graph. Note that for piecewise smooth inverse, the entries need not have decay as shown in fig
1.

For matrix A that comes from elliptic problems, its inverse is typically piecewise smooth with
singularity along the diagonal. Its entries may or may not decay. From now on, we focus our attention
to this kind of matrices and try to derive an efficient approximate inverse preconditioner. In fact the
idea is similar to that of Beylkin et al [4] and Engquist et al [12]. Our strategy is to apply wavelet
transform to compress these piecewise smooth inverse matrices. Then we combine this idea with Huckle
and Grote’s'implementation to construct the sparse approximate inverse. We shall show that our new
approach gives rise to a more effective preconditioner in this class of matrices. '
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In section 2, we show how to adopt wavelet transform in the least square approach of solving (3).
In section 3, we estimate the extra cost for the wavelet transform. In section 4, we present several
numerical examples to compare various methods. Finally, we conclude our approach in section 5.

2. Fast Wavelet Based Approximate Inverse. Assuming A~! is piecewise smooth, our idea
is to apply wavelet transform to compress A~! and then use it as a preconditioner. Apparently, this is
impossible since we don’t even have A~!. Our trick is the observation that

A7l = WATTWT = (WAWT)! = A-1,

where W is an orthogonal wavelet transform matrix. We first transform A to its wavelet basis repre-
sentation A and then apply Huckle and Grote’s method to find an approximate inverse for A, which
is the preconditioner that we want to compute. We will make all these ideas precise in the next two
sections.

2.1. Wavelet Formulation. We shall show how we adopt wavelet transform in the least square
approach. Consider equation (2) again. Let W be an orthogonal wavelet transform matrix, i.e. & = Wz
is the vector z in the wavelet basis. (Note that W can be 1-level or full log, n-level wavelet transform
matrix.) Then

min[|AM ~ Illp = rr}x}n”WAWTWMWT ~I||F
= m.m“A‘.M —Ij|r,
M

where A = WAWT and M = WMWT are representations of A and M in the wavelet basis respectively.
Thus, our n least square problems become

4) min || Ai; — ej |z, i=12,...,n.
mj

A is sparse (but probably denser than A) since A is. Because of the wavelet basis representation, if M
is piecewise smooth, we would expect 3/, neglecting small entries, to be sparse too. Proof can be seen
in [12]. Therefore, the sparse solution of (4) would probably give a more effective approximate inverse
than both previous approaches. We shall justify this numerically in section 4.

2.2. Algorithm. In previous section, we derive the wavelet formulation of approximate inverse.
Then we can simply apply Huckle and Grote’s method, which is called SPAI algorithm [15], to solve
the n least square problems (4) in parallel. Here is the algorithm.

Wavelet Based SPAI Algorithm

(a) Wavelet transform A to get A = WAWT.

(b) Apply SPAI algorithm to solve for M. .

(c) Use M as preconditioner to solve: A% = b, where b = Wb.
(d) Apply backward wavelet transform to # to get z = W7'3.

It should be noted that if we know the sparsity pattern of M a priori, we can simply use that
pattern to solve the least square problems (4) instead of using Huckle and Grote’s adaptive approach.
It will then be much more efficient. Actually, for M being piecewise smooth, the significant nonzero
entries of M are determined by the location of the singularities of M. In the special case that A is
the 1D or 2D Laplacian operator, then the singularity of M _will concentrate at the block diagonal.
We can simply use block diagonal as the sparsity pattern for M and save time for searching new fill-in
elements. ’

3. Complexity and Implementation of Algorithm. In this section, we try to analyze the
complexity of each step of our algorithm. We shall show that it is not much more expensive than the
SPAI algorithm although it seems to be. In the following discussion, we assume that the wavelet used
is of compact support, [8], [9].
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Step (";)' In general, to compute wavelet transform of a vector requires O(n) operations. To
compute A = WAWT, it is equivalent to transform the columns and then the rows of A (or vice
versa). Thus it will cost O(n?) operations. However, since A is sparse, if we assume that there are
only O(1) nonzeros in each column and each row, the cost will reduce to O(kn) where k, ranging from
1 to logy n, is the number of levels in the wavelet transform. In fact, in the implementation, we do not
need to form A explicitly. Notice that solving each least square problem only need a few columns of
A. We just form those columns and the cost will then become O(n).

Step (b). In each level of transform, we will introduce a fixed amount of fill-in. Even though there
are only O(1) nonzeros in each column and row of 4, there will be O(k) nonzeros in each column and
row of A. We can choose k so small that the number of nonzero introduced is not significant. We
may further reduce the cost by solving the least square problem (4) only locally since the singularities
of M cluster around the diagonal. More precisely, first we fix the sparsity pattern of M to be block
diagonal. Second, we use the nonzero indices, i, of 7i; for the column and row indices of A and then
we compute the QR factorization for the submatrix A(i,1) when solving (4). This reduces the cost to
_ O(1) when solving each column. B

Step (c). When we solve A% = b by some iterative method, we need to perform A times a vector.
If we do it directly, the cost will be O(kn). Note that

Av =WAWT .

If we first backward transform v, apply A and then transform back, the overall process will only be
O(n).
Hence, with above modifications, the overall complexity of the wavelet based algorithm is only

O(n).

4. Numerical Results. In this section, we compare our preconditioner with those by Huckle
and Grote’s SPAI and ILU(0). We choose several ma;trices that come from different elliptic PDE.
The inverses of all these matrices are piecewise smooth and the singularities are cluster around the
diagonal. For efficiency, instead of applying SPAI to solve for M adaptively in step (a) of our algorithm,
we specify a block diagonal structure a priorifor M and then solve (4) by QR. In all the test, we use
the compact support wavelet Dy by I. Daubechies [8], [9]. We apply 6 levels of wavelet transform to

. matrix of order 1024 and 8 levels of transform to matrix of order 4096. Note that the number of levels
is arbitrary. One could use different number in different situation. '

We apply these preconditioners to GMRES(20) and BICGSTAB. The initial guess was zg = 0,70 = b
and the stopping criterion was ||rall/||7o|| < 10~¢. All the experiments were done in MATLAB.

Example 1: We first consider a slightly modified artificial case of (4) where the diagonal entries are
changed from 2.01 to 2.00001 and the size is 1024x1024. The bandwidth is 0,0,0,0,5,5 for the 1st to 6th
level of the block diagonal structure of M respectively. The convergence of different preconditioners
is shown in fig 2. We can see that SPAT(0.2) and SPAI(0.4) converge very slowly in this somewhat
artificial but illustrating case. On the other hand, the wavelet based preconditioner converges rapidly.
This shows the importance of taking advantage of the piecewise smoothness of A~L. We do not show
the convergence of ILU(0) since it only takes 3 iterations for convergence. This is exceptional because
of the special near tridiagonal structure of A. Table 1 shows the number of nonzero (nnz) for the
preconditioners. Moreover the wavelet based preconditioner requires the least number of nonzero as
expected.

Example 2: In this case, A is the 2D Laplacian operator with size 1024x1024 and 4096x4096. For
n=1024, we choose the bandwidth as before. For n=4096, we choose the bandwidth = 0,0,0,0,5,5,5,5
for the 1st to 8th level of the block diagonals respectively. The convergence is shown in fig 3. We can
see the wavelet based preconditioner is still very efficient. Fig 4 and table 2 show similar result for
n=4096. We can see that the wavelet based preconditioner saves much more storage than the others.
Actually, this is typical throughout our tests.

Example 3: We try to solve something more complicated than the Laplace equation but still have
piecewise smooth inverse. Consider the following PDE with variable coefficients,

(1 + 2%)ug)z + uyy + (tany)?uy = —1002.
4
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F1a. 2. Convergence behavior of (a) GMRES(20) (b) BICGSTAB using different preconditioners when

solving the artificial problem.

n=1024

GMRES | BICGSTAB | nnz
Wavelet SPAI 32 16 3544
SPAI(0.4) >200 >200 5120
SPAI(0.2) >200 60 21504
ILU(0) 3 3 4096
No preconditioning >200 >200 ~

TABLE 1

Number of iterations for artificial case
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F16. 3. Convergence behavior of (o) GMRES(20) (b) BICGSTAB using different preconditioners when

solving 2D Laplacian. n=102/.
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F1G. 4. Convergénce behabit‘};i‘ of (a) G’MRES(QO) (6) BICGSTAB using different preconditioners when
solving 2D Laplacian. n=4096:

n=1024 1n=4096

GMRES | BICGSTAB | nnz || GMRES | BICGSTAB | nnz
Wavelet SPAI 25 17 3544 50 36 6616
SPAI(0.4) 67 30 4624 160 44 ) | 19472
SPAI(0.2) 37 19 16440 63 34 69688
ILU(0) 25 17 6016 57 33 24320
No preconditioning 116 55 ~ >200 88 ~

TABLE 2

Number of iterations for 2D Laplacian




We solve the 32x32 and 64x64 grid cases. The bandwidth of the block diagonal of M is the same as
before. Again, we can see from fig 5, 6 and table 3 that a significant amount of storage is saved but
still getting best performance.
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F1G. 5. Convergence behavior of (a) GMRES(20) (b) BICGSTAB using different preconditioners when
solving variable coefficient problem. n=102.
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F1G. 6. Convergence behavior of (a) GMRES(20) (b) BICGSTAB using different preconditioners when
solving variable coefficient problem. n=4096.

Example 4; In this case, A comes from a PDE of helical spring. Same setting as before. The wavelet
preconditioner does not outperform the others very much but still among the best. Yet, the amount
of storage is much less than the others.

5. Conclusion. We have shown that SPAI could fail if there is no decay in the inverse entries,
even though the inverse may be piecewise smooth. We have also shown that the fast wavelet based
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n=1024 n=4096
GMRES | BICGSTAB | nnz || GMRES | BICGSTAB | nnz

Wavelet SPAI 26 18 3544 66 41 6616

SPAI(0.4) 100 36 4514 >200 81 18616

SPAI(0.2) 40 22 17260 129 49 73936

ILU(0) 34 24 6016 93 45 24320

No preconditioning >200 75 ~ >200 163 ~

TABLE 3
Number of iterations for variable coefficient problem
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FiG. 7. Convergence behavior of (a) GMRES(20) (b) BICGSTAB using different preconditioners when
solving helical spring problem. n=1024.
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n=1024 n=4096

GMRES | BICGSTAB [ nnz [[ GMRES | BICGSTAB [ nnz
Wavelet SPAI 26 20 3544 68 44 6616
SPAI(O.4) 84 33 4624 >200 67 19472
SPAI(0.2) 36 25 16387 126 41 69628
ILU(O) 31 23 6016 89 41 24320
No preconditioning 183 65 ~ >200 112 ~

TABLE 4

Number of iterations for helical spring problem

preconditioner is a very effective alternative if A~ is piecewise smooth, especially when the singularities
are clustered around the diagonal. Moreover, significant amount of storage can be saved. However, for
more general case when the number of singularities of A~? is large and they are not cluster around the
diagonal, further study and investigation is needed.

Acknowledgments. We would like to thank Tony Chan and Barry Smith for their helpful com-
ments throughout the paper and also W.P. Tang for his active discussion and suggestion on the imple-
mentation of our algorithm.

Appendix. We shall show that for 1D Dirichlet problem, the inverse of the discrete Laplacian
operator A is actually a discrete Green’s function. Consider the following problem,

—u'(z) = f(z) vz €(0,1)
u(0) = y(1)=0.

Then the solution is given by u(z) = fol G(z,y)f(y)dy, where G(z,y) is a Green’s function defined as

_f y(1-2) 0<y<e,
G(“”y)“{ 2(1—y) r<y<lL

Let a partition of [0,1] be {zo,21,...,2n41}. We want to evaluate y at the points {z;}. By definition
of u,

| 1 |
u(es) = /0 G(z:, 1) (3)dy.

We compute the integral by trapezoidal rule and we obtain

1 n
] ; G(zi, z5)f(z;)

_ =~ 1 i J J
- Zn+1G(n+1’n+1)f(n+1)
i=1

= > Gl
ji=1

u(z;) =~

where
1 1 J
o= el
Gij n+1q(n+1’n+1)
_ | wmoplile+1-4)] j<i,
wrneli(n +1—7)] i<j.

On the other hand, let A be the corresponding discrete Laplacian operator (second order central
differencing) and b = (b;) = (f;). Then the solution for Az = b is precisely z = Gb, where G = (Gj;)
is defined above. Thus, rows of A~! can be viewed as a discrete Green’s function.
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Combined Incomplete LU and Strongly Implicit Procedure
Preconditioning

Ernst A. Meese*
December 14, 1995

Abstract

For the solution of large sparse linear systems of equations, the Krylov-subspace methods have gained
great merit. Their efficiency are, however, largely dependent upon preconditioning of the equation-
system, A family of matrix factorisations often used for preconditioning, is obtained from a truncated
Gaussian elimination, ILU(p). Less common, supposedly due to it’s restriction to certain sparsity pat-
terns, is factorisations generated by the strongly implicit procedure (SIP). The ideas from ILU(p) and
SIP are used in this paper to construct a generalised strongly implicit procedure, applicable to matri-
ces with any sparsity pattern. The new algorithm has been run on some test equations, and efficiency
improvements over ILU(p) was found.

1 Introduction

The discretisation of systems of partial differential equations often leads to very large sparse systems of linear

equations,
Az =0, (1)

AR z b e R™ One of the most prominent classes of methods for the solution of these equations, is
the Krylov-subspace methods. However, crucial for the efficiency of these methods is the preconditioning of
the system (1).

If we represent a right preconditioner by the matrix M € R™*", the Krylov-subspace method should

solve the system
AM ly=b, =M1y, 2

instead of system (1). The matrix M is often realised in the form of an iterative method, e.g. Jacobi
iteration, SSOR, et c., or even a member of the Krylov-subspace methods.

Another common approach, which is pursued in this paper, is to express M as a product LU, where
L and U are lower and upper triangular matrices respectively. The solution of (LU)z = y is then easily
obtained by successively applying a forward and a backward substitution. For a good preconditioner, LU
should approximate A well. However, for the substitution to be computationally cheap, L and U should also
be sparse.

To compute such sparse LU factors, some form of truncated Gaussian elimination may be used [7, 8, 16).
As we shall see, the incomplete LU factorisation ILU(p) by Watts [16] combines naturally with the strongly
implicit procedure (SIP) developed by Stone [14].

SIP was originally developed as a iterative solver based on a splitting matrix. However, this splitting
matrix has also been used as a preconditioner [2, 3, §]. But, a major limitation to SIP is the restriction to
a limited number of differential equations, to specific discretisation stencils, and to certain ordering of the

*Student for a Dr. Ing. degree at the Department of Applied Mechanics, Thermo and Fluiddynamics, Div. of Mechanical
Engineering, The Norwegian Institute of Technology, The University of Trondheim, Norway. Student member of SIAM.




grid nodes. Common are one equation on the five-point stencil [14], and on the nine-point stencil [6, 10].
Methods for systems of two differential equations on these stencils also exists [5, 17].

Tn this paper, ILU(p) and SIP are combined to give a more general SIP factorisation (GSIP). The new
algorithm is applicable to a general matrix. It also accepts any level of fill-in in the factors L and U, as does
the ILU(p) method. However, some knowledge of the location of the grid nodes inust be available to the
factorisation algorithm. ‘ (

With CFD applications in mind, the Poisson equatioxn and a convection-diffusion equation has been chosen
for testing purposes. These kinds of equations are common in various strategies for solving the Navier-Stokes
equations. However, as yet only a structured five-point discretisation has been implemented.

To study the effects of diﬁ'ef,eni; fill-in levels on GSIP, and to see whether the new algorithmi give factori-
sations that is sufficiently better than the ILU(p) factorisatiori to warrant a move to more general problems,
the preconditioned Krylov-subspace methods BICGSTAB, GMRES(m), and CGS has been run on the test
problems for a wide range of paramieters. BICGSTAB, stabilised further as suggested by Sleijpen and Van
der Vorst [11], was found to be the most efficient on almost all runs,

Optimal fill-in level is always larger than zero. For the Poisson equation a fill-in level of 2 is the best
choice for all but the smallest matrix where p = 1 is best. For the convection-diffusion equation the fill-in
levels 1 and 2 alternate on being optiinal. ,

Generalised SIP factorisation show considerable benefits over ILU(p) in several test runs, particularly
on the Poisson equiation. GSIP, however, has serious problems with the test matrices with a weak main
diagonal.

2 A generalised family of factorisations — GSIP(, p, G)

Before the generalised SIP algorithm is developed, the two methods from which it is motivated are briefly
reviewed.

The ILU(p) factorisation. To obtain the factors L and U, Watts [16] proposed to truncate a Gaussian
elimination process. The elimination induces new elements, deqqi;gg ‘as fill-in elements, in the L and U
factors. That is, elements with indices not in NZ(A) (the set of indices for the non-zero elements of A).
Truncation is done by ighoring sofe of these new eleirienits; and the tool used for selecting which elements
to discard is the notion of the level for an elements irdices. ‘

In Gaussian elimination, an element a;; id the lower tfiangular part is zeroed by the product l;puxk. This
elimination will create fill-ins of the fofm lizuz; (see algorithm 1 below). Let indices in NZ(A) be of level
zero and define the level of fill-in as

lev(i, j) =lev(, k) +lev(k, j) + 1. 3)

when a new fill-in element is created or the level is previously set to a larger value.

Typically, for diagonal dominant matrices, the higher the level of fill-in of an element the smaller its
magnitude and this suggests dropping any fill-in element whose level is higher than a certain integer p.
However, for more general matrices the size of an elément is not necessarily related to its level of fill-in.
Stated below is an algorithm for truncated Gaussian elimination that is discarding elements with indices of
level larger than p.

ALGORITHM 1 Incomplete LU factorisation — ILU(p)

Define u;; = a;; and for all non-zero elements ai; set lev(i, j) = 0.
Fori=2,...,N do
Foreach k=1,...,i—1 and if ujx #0do -
Compute l;; = u;k/ukk.
Set uzr +— uip — lipuee = 0. S
! Forj=k+1,...,n and if ux; # 0 do
Compute lev(i, j) using (3).




if lev(i, j) < p Compute ug;  uz; — lipug;j.
End For
End For
End For

One drawback of this algorithm is that the computational work for p > 0 is generally not predictable. But,
most notable is the problems inherited from the Gaussian elimination for non diagonal-dominant matrices,
with the possible growth of elements with p.

The SIP factorisation. SIP is developed for matrices appearing from the discretisation on a five point
stencil (figure 1a) of a two-dimensional partial differential equation. The matrix A, as in equation (1),
resulting from this discretisation, using natural ordering of the nodes, will be a block tridiagonal matrix
(figure 1b). The elements of a diagonal is referenced by its matrix row number — that is, By denotes the
element of the B-diagonal that is located on the k-th row of the matrix.

Firstly, look at the result of a multiplication of a lower and an upper triangular matrix containing only
diagonals also present in A. The product will contain an additional two diagonals, C' and G, placed just
above and below diagonals B and H respectively. We may then talk about an altered matrix A + S that is
exactly factorisible into this sparse LU form,

A+S=1LU, 4)

where S is non-zero only on the new diagonals C and G. This altered matrix represent a set of equations
where the left hand sides acquire the form

B; zi—m + D; 2im1 + B zi + Fi zig1 + Hi Tiym + Ci Zimme1 + Gi Tigm—1. (5)

In order to reduce the influence of the new diagonals, and get an altered equation that is hopefully closer
to the original equation, Stone [14] introduces the concept of partial cancellation. That is, the unknowns
Zi—m+1 and iym-—1 are estimated by Taylor-series expansions in the variables appearing originally in the
stencil (figure 1a),

Zigm-1 = —Zi+Ti-1+ Titm (6a)
Ziemil = =T+ Tip1+ Tiem (6b)
and the result, weighted with a factor a € [0, 1], is subtracted to give
Biziim+ Dizia+ Eizi+ Fizipn + Hi Tjym
+ Ci [Ziemi1 — a(Ti1 + Tigm — 25)] + Gi [Zigm—1 — &(Zi41 + Tiem — 2)] Y]

for the left hand side of the equations.

It is straightforward, albeit somewhat tedious, to perform the matrix LU multiplication by hand and to
compare the result with equation (7). However, doing this we convince ourselves that the elements of the L
and U matrices must obey the following recursion rules.

bi = B; /(1 + afi—-m) ,' Cz’ = bi fi—m (83)

di = D;/(1+eahi), Gi=d;hi—y (8b)
e = Eij+aCi+aGi—bihi_pym—d; f;—1 (8¢c)
fi = (Fi—aG)/e (8d)
hi = (Hi—aGi)/e i (8e)

Again the indices refer to matrix row number, and the lower case letters refer to diagonals in the L and U
factors with labelling corresponding to the upper case letters for A (figure 1b).

A further scrutination of the LU product will reveal that coefficients with index such that they fall outside
the matrix (e.g. b1) may be set to zero. Further, it is noted that due to the block structure of the matrix




1—m-1
Vo
N\

JE
X

i—l‘ 'i‘ i+1. N
¥ @- C

—m Vz—m-i—l

'Figure la:’e: Nodes in the five-point stencil. Figure 1b: Matrix representing the five-

o: Additional nodes introduced by the SIP point stencil on a rectangular domain with

factorisation. m X n. Tt has n x n blocks, each of size
m X m.

A some ¢;, €;, D;, and F; will be i&gnti,cal to zero. Having thus defined the matrix M = LU, the strongly
implicit procedure uses M as the §plittin'g"maf.rix in the ife;a.igion Mé,=b— Az, 241 = 2r + 8.

The generalised S,IP-factorisaf_i:oﬁ.‘ To acquire an algorithm applicable to more general problems,
and with arbitrary levels of fill-in, start out with ILU(p). For ‘!:!}e LU factors produced from this algorithm,
set up an altered matrix A+ S = LU in the same manner as for SIP in equations (4) and (5). The i-th
altered equation will be on the form s o ‘ ’

i LU= Yo @zt > 8ij - (9)
FENZ(as,e) FENZ((LU);,e)
JENZ(ai,e)

In order to use equation (9) in an algorithm we need a means of locating the non-zero elements of S.
This may be done by considering the fill-in levels calculated by the ILU algorithm 1. The process of finding
the levels of the elements is often called a symbolic cancellation since it is not concerned with the values of
the elements, but only with the placement and level of possibly non-zero elements. The following lemma is
what we need. . ) '

LEMMA 1 Apply the symbolic cancellation on the matriz A € R"*", and assume the process not to break
down. Then, for the matriz S as defined by equation (9), sij # 0 only if lev(i,j) is defined and found to be
greater than p. ' : '

Proof. If lev(%, 7) is undefined this means that l;zux; = 0 for any & and (LU)i; = i« - thej = 0. Further,
if lev(i,7) < p, (LU)ij = ai; by the elimination. This leaves elements with index of level greater than p to
be non-zero in S. 0

Partial cancellation is now introduced into equation (9). That is, make an estimate #; of all the z;
multiplying S, and subtract a weighted form of this estimate from z;. This gives us

LU= Y, asm+ D, si(@i— o) (10)
JENEZ((a:,0)) FENZ((L);,0)
3€NZ(ai,0)




as the altered equations. In order to leave the sparsity patterns in L and U unchanged by the partial
cancellation, the estimate £ must be of the form

£j=) wjnza (11)
h

where the sum is over some or all indices in NZ((LU);,.). That is, the indices j such that lev(%, j) is defined.

Most SIP-like methods use some form of Taylor expansion to calculate £. In these methods a;; is set
o a constant « because there is seen no significant gain for the cost of complexity of a varying «. We will
adopt this approach.

To construct our generalised algorithm we start out with algorithm 1. But, when the symbolic cancellation
finds an element in S, we will correct the incomplete LU factorisation according to equation (10). However,
due to equation (11), this may include elements of A that is already eliminated. This prevents us from just
correcting the factorisation, and forces us to put up a set of equations to solve for the elements on row ¢ of
L and U.

For the elements of L and U, we see from the Gaussian elimination that if nothing else happen, they will
satisfy the equations

urklix = aik (12)

and
Ui = Qjj. (13)

There will be one such equation for each I;; or u;; to calculate, and we number them by the second index
on the right hand side. Since k < i, uj is already found by the algorithm.

The Gaussian elimination will introduce new terms into the equations. This is a result of the operation
uij + uij — ligug;, which will add ug;l;x into the left hand side of equation (12) number j for j < i. For
j > 1, it will add the same into equation (13) number j.

As the process comes to an element with level greater than p, we halt the elimination and tend to
inserting equation (11). We have s;; = lixux;, and together with equation (11) we reformulate the first term
in equations (10) to the form Y (a;n — @ wjnlixtx;) zn. That is, we add & wjslixus; into the left hand side
of either equation (12) or (13) number h, depending on whether j belongs to the indices of non-zero L.or
non-zero U.

As the symbolic cancellation of row i is done, we end up with a system of equations on the form

EEIHER

where | and # are vectors containing the unknown elements of L and U respectively. & and d, are vectors
containing the corresponding elements of A. P will be a square matrix. Both P and @ may be empty
matrices. This happens if A contains no elements in the lower triangle on row 7. Further, @ is non-empty
only if P is non-empty. We may break system (14) into two parts,

= g (15)
du— Q1. (16)

P and @ are typically very small matrices for sparse A and small p. Gaussian elimination is therefore
efficient to solve equation (15). If we set & = 0 we get the system ILU(p) would produce, and this gives
a lower triangular matrix P. For a # 0 all elements of P may be non-zero. More typically, we then get a
few additional elements, and may expect more zeroes in the upper triangle than in the lower triangle of P.
A less costly solver for equation (15) can therefore be constructed by eliminating the upper triangle of P,
contrary to the conventional elimination of the lower triangle.

Given that the algorithm does not break down, ILU(p) is applicable to any matrix with no regards to the
geometry of the underlying problem. In GSIP it is just this knowledge of geometrical properties we try to
exploit. When the matrix A is generated by some discretisation of a differential equation, there exists a grid
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Figure 2: Fill-in elements for the five-point stencil on a uniform grid. The label up to the left of a node is it’s

index, and the number down to the right is the fill-in level for which it’s coefficient in the altered equation
is non-zero.

with information on how the points relate to each other. This we may use to calculate the approximation £
by Taylor’s theorem, or we may even use the differential equation for this purpose. We must however restrict
ourselves to the form of equation (11) for &.

For very general problems it may not be easy find a good estimate Z, but for the purpose of formulating
a general procedure, assume we have managed to do this, and that we have a subroutine G to return the
coefficients and indices for equation (11). We are now able to formulate a strongly implicit procedure for a
general matrix.

ALGORITHM 2 Generalised Strongly Implicit Procedure — GSIP(p, &, G)

Define u;; = a;; and for all non-zero elements a;; set lev(i, j) = 0.
Fori=2,...,Ndo
Foreach k=1,...,i—1and if u;x #0do
For each j=k,...,n and if ux; #0 do
' Compute lev(%, j) by formula (3).
If lev(4, j) > p Call G to find equation (11).
Else is this an ordinary ‘Gaussian elimjnation step.
Update equations (15) and (16).
End For )
End For
Solve equations (15) and (16) and update row i of L and U.
End For

With an appropriate choice of G on the five-point stencil, for p = 0 and p = 1, this algorithm produces
the same preconditioning matrix M = LU as SIP and modified strongly implicit procedure (MSI) [10]
respectively. Further, with o = 0 it gives the same result as ILU(p).

The difficulties discussed for ILU(p) is also present for GSIP(p, «, G), since the lack of diagonal dominance
still may give large elements in S. Moreover, the lack of diagonal dominance is often particularly pronounced
for convection dominated flows where Taylor expansions may be poor.

As p increases the factors obtained by GSIP(p, &, G) and ILU(p) will approach each other. The cost of
calculating the factors is larger for GSIP(p, o, G) than for ILU(p), and we might expect any superiority of
GSIP to appear for low or moderate p.

Cancellation expressions for the five-point stencil. For a scheme based on the five-point stencil
on a rectangular domain, the nodes to cancel will be positioned as depicted in figure 2. If we apply a first
order Taylor expansion at node %, and estimate the differentials with forward differences, we end up with the
following expressions for the cancellation (11),

Tipm-(4p) = —(@+1zi+(p+1)zim1+Titm (17a)
Tiemi(dp) = —(Ptzi+(p+1)zip1+2iom (17b)
ziop = (l—p)zitpzicy, p22 (17c)
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Figure 3: Run time in CPU-seconds for the Poisson equation in example 1, plotted as a function of the
cancellation parameter «. Fill-in levels used was; o: p=0,4: p=1, x: p=2, and x: p= 3.

Table 1: Run time in CPU-seconds for the Poisson equation in example 1. Optimal p values are marked
with an asterisk.

N=1521 | N =3481 N = 6241 N = 9801 N = 19321
p\a| O 1 0 1 0 1 0 1 0 1
0 |11 60 |345 204 |887 491 |171.8 728 | 4647 1843
1 85 53*|284 158 |689 335 |133.2 60.3 |3882 1457
2 | 76° 58 |24.9* 149* [ 57.9* 32.2* | 117.5° 56.9° | 323.7* 120.2*
3 | 84 68 |2.1 184 [59.0 37.8 |139.1 640 |289.0 144.9
4
5
d

9.9 89 1295 234 |62.7 458 |1132 77.3 |2885 178.1
11.8 11.1 |32.6 283 |70.8 56,5 |121.0 951 | 2944 2064

N denotes number of unknowns in the equations.

ZTigp = (l—-p)zi+pziys, p>2 (17d)

These expressions coincide with those used in SIP and MSI for p = 0 and p = 1 respectively. The Taylor-
expansions (17) are valid for a rectangular grid. For classical SIP, the resulting factorisation (8) is however
used with success on more general grids. We may however expect the convergence to deteriorate as the
deviation from rectangularity gets large. A further weakness of (17) is that the approximation may be
expected to be accurate for smooth solutions z only.

3 Numerical experiments

Three Krylov-subspace methods with right preconditioning was tested, GMRES(m) [9], CGS [13], and
BiCGSTAB [15]. Of these, BICGSTAB was the most effective in most runs, and the results presented
here are calculated with BICGSTAB. BiCGSTAB is known to have problems with matrices derived from
convection dominated flow problems. It was therefore slightly modified, as suggested by Sleijpen and Van
der Vorst [11].

The algorithms were implemented in Fortran 90, and the programs compiled and run on a DEC-station
RS5000/250 with the NAGWare f90 compiler Version 2.0a(264). For all runs, the iteration was stopped
when the residual of the unpreconditioned system was less that 10~°, or the number of iterations exceeded
1000.
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Figure 4: Run time in CPU-seconds for the convectlon-dlﬂ'usmn equat;on in example 2, plotted as a function
of the cancellation’ parameter o The™ top {wo boxes are for a mAtrix with 780 rows, and. the Bottom two
boxes for a matnx of 19900.rows. Ifno va.lue is plotted for, an. a, the 1tera.t10n for this, value either stagnated,
or converged very slowly F;ll—m levels used was, o:p= 0 +: p =1, X: p 2 * p=3.

Example 1. This test case was proposed by Axelsonl and Polman [1]. The Poisson equation

3u
'a?' ayz f( )y)

is solved on the domain (z,y) € [0,1] x [0,1], and the function f is selected for the solution to become
u(z,y) = €Y (1 — z) z (1— y) y. Timings for this case are presented in table 1 and figure 3.
Example 2. This test case was suggested by Smith and Hutton [12] as a benchmark problem for
numerical methods on convection-diffusion problems. The equation
W00 L (2, 2
Oz 0y ~ Pe \ 0z ' 0y?
is solved on the domain (z,y) € [~1,1] x [0,1]. The velocities are givén as u = 2y(1—2?) and v =
2z (1 — y?). That is, the boundary condition at the inlet (—1 < z < 0,y = 0) is convected 180° to the outlet
0<z<1l,y=0).

At the inlet a Dirichlets boundary condition is defined by § = 1 + tanh[10 (2z + 1)]. This is profile is
horizontal near z = —1 and z = 0, and with a steep gradient placed at z = 0.5. At the outlet, the the von
Neumann condition df/dy = 0 is used. On the remaining boundaries 4 is set to 1 — tanh 10.

For high Pe, convection is the dommatmg force, and the inlet profile should be nearly unchanged (but
mirrored about origo) at the outlet. " For low Pe the profile is smeared out by diffusion. Timings for this case
are presented in table 2 and figure 4.




Table 2: Run time in CPU-seconds for the convection-diffusion equation in example 2. Optimal o for each
case is listed in parenthesis. Optimal p values are marked with an asterisk.

N =780 N=1770 N =9730 N =19900
Pe |p|la=0 opt. a=0 opt. a a=0 opt. a=0 opt. o
0 2.7  21(0.4) 7.8 5.6 (0.7) | 124.0 62.5(0.9) |422.1 176.1(0.9)
1 1.8* 1.6 (0.4) 5.5 4.2 (0.6)* | 748 44.3(0.9) |237.3 126.0(0.9)
0ol 2] 20 18(03) | 53 46(05) | 660" 440(08)* | 197.3* 1148 (08)"
3| 26 25(04) | 73 67(0.4) | 680 521(0.7) |1885 120.7(0.7)
4 34 34(0.1) 9.7 9.1 (0.2) 81.0 64.9(0.6) 199.4  155.3 (0.7)
5 48 4.7(0.2) 11.8 11.7 (0.2) 93.9 80.6 (0.5) | 218.5 181.5(0.6)
0 76 7.3(0.1) 19.3 14.8 (0.3) 91.8 70.0(0.2) | 205.8 169.3 (0.3)
1 5.5 5.5 (0.0) 10.7* 10.7 (0.0)* | 48.4* 44.5(0.1)* | 102.7*  90.9 (0.4)*
1000 2 5.2* 52(0.0)* | 12.6 12.6 (0.0) 56.4 56.4(0.0) |119.8 118.9(0.1)
3 59 5.9(0.0) 12.6  12.6 (0.0) 58.8 56.5(0.3) | 1184 103.1(0.4)
4 5.9 5.9 (0.0) 13.8 13.8 (0.0) 72.7 72.7(0.0) |150.2 149.6 (0.1)
5 74 7.4(0.0) 16.7  16.7 (0.0) 874 82.2(0.3) |175.9 165.5(0.4)

N denotes number of unknowns in the equations.

4 Discussion

In the calculations with the poisson equation, @ = 1 gave optimal run times for nearly all test runs (all
exceptions are seen in left hand figure 3). For the convection-diffusion equation the situation is more
complicated. In this case values of o near 1 always give very poor convergence. Poor convergence with
« near 1 is also reported by others [6, 10, 14].

The convergence difficulties are particularly pronounced for the strong convection case (Pe = 1000). For
the small matrices, and hence coarse grids, @ = 0 is the only sensible choice. Both the discretisation on a
finer grid (larger matrix) and the lowering of the Peclet number Pe, make the matrix approach the Poisson
equation matrix, and we see that the convergence bettered for GSIP in both cases (figure 4). For fine grid
solutions and weak convection (Pe = 100) considerable gain in run time was achieved, however, optimal « is
not easy to predict.

The three time consuming parts of the calculations, are the construction of the factors L and U, the
forward and backward substitution, and the matrix—vector multiplication. The factorisation is performed
only once, but each iteration of BICGSTAB perform two calls to the substitution routine, and two calls to
the multiplication routine.

The cost of factorisation and substitution increases with p, but the cost of multiplication stays the same.
Even though, in all cases observed, an increase in p will reduce the number of iterations, the total run time
may increase. An optimal fill-in level p is where the increased cost of preconditioning balances the reduced
number of iterations.

Optimal p values for the weak convection equation and the Poisson equation follow the same pattern for
matrices of comparable size. The strong convection case, however, behave differently. On large matrices,
odd p seem to perform better than even p. E.g., for the largest matrix, @ = 0.1 and a = 0.4 alternate on
being optimal for even and odd p > 0 respectively. This made p = 1 24% faster than p = 2. For the smaller
matrices without this alternation, the difference between p = 1 and p = 2 was never this large.

To sum up the results, typically optimal parameters p and «, are 2 and 1.0 for the Poisson equation,
2 and 0.4-0.9 for the weak convection equation, and 1 and 0.0-0.4 for the strong convection equation. In
a similar study, Joly and Eymard [4] found p = 2 to be optimal, using ILU(p) to precondition GMRES in
reservoir simulations.

It remains to study other possible cancellation expressions, effects of more general grids, and effects of
matrix ordering. Further testing on other commonly used discretisation than the central differences is also




needed. However, even though the ILU(p) (a = 0) factorisation are more robust in terms of an all-round
preconditioner, considerable speedup has been demonstrated with GSIP (o > 0) on well behaved problems.
This make GSIP an interesting alternative for preconditioning.
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Abstract

This workshop will discuss plans for coordinating and developing sets of test matrices for the
comparison and testing of sparse linear algebra software. We will talk of plans for the next release
(Release 2) of the Harwell-Boeing Collection and recent work on improving the accessibility of this
Collection and others through the World Wide Web. There will only be three talks of about 15 to
20 minutes followed by a discussion from the floor.

Speakers

e Tain Duff, Rutherford Appleton Laboratory
Release II Plans for the Harwell-Boeing Collection

We discuss the design and scope of Release 2 of the Harwell-Boeing Collection. In particular, we
describe how we have extended the format to include more information on matrices and on systems
being solved. These include starting guesses, exact solutions, eigenvalues and vectors, singular values
and vectors, permutations and geometric data. We also discuss some of the data that will be added to
the collection at this release and describe our proposed strategy for matrix generation subprograms.

¢ Roldan Pozo, NIST, Washington DC
The Matriz Market: a visual web database for numerical matriz data

The Matrix Market is introduced as a resource providing access to a repository of matrix test data for
use in comparative studies of algorithms. The Matrix Market includes a variety of tools for browsing
through the collection or for searching for matrices with special properties. Each matrix (and matrix
set) has its own “home page” which details the matrix properties, provides a visualization of matrix
structure, and permits downloading of the matrix in a choice of text file formats. Currently, some
300 matrices (including the entire Harwell-Boeing Sparse Matrix Collection, Release I), are available
through the Matrix Market, and contributions to the database are being sought.

e Roldan Pozo, NIST, Washington DC
The Mairiz Market evolves: current directions

As the Matrix Market moves beyond its prototype stage, we are examining several issues regarding its
development: How can we facilitate/automate community contributions to the database? How can we
structure the database to include matrix generator software in addition to actual matrix data? Should
we provide a storage format conversion utility (perhaps using Java applets)? Can we reasonably
provide more detailed information about each matrix, and if so, what information would be valuable
to users? We seek feedback from participants on how the Matrix Market should evolve.
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FOSLS
(First-Order Systems Least Squares)
An Overview

Thomas A. Manteuffel

Program in Applied Mathematics
University of Colorado at Boulder
tmanteuf@boulder.colorado.edu
http://amath-www.colorado.edu/appm/faculty /tmanteuf

Abstract

The process of modeling a physical system involves creating a mathematical model,
forming a discrete approximation, and solving the resulting linear or nonlinear sys-
tem. The mathematical model may take many forms. The particular form chosen may
greatly influence the ease and accuracy with which it may be discretized as well as
the properties of the resulting linear or nonlinear system. If a model is chosen incor-
rectly it may yield linear systems with undesirable properties such as nonsymmetry
or indefiniteness. On the other hand, if the model is designed with the discretization
process and numerical solution in mind, it may be possible to avoid these undesirable
properties.

This talk will discuss a methodology for solving systems of partial differential equa-
tions. The methodology involves expanding the original system as a system of first-
order equations by introducing new variables, adding extra constraints, and construct-
ing a least-squares functional. If it can be shown that the least-squares functional is
V-elliptic in a convenient norm, then Lax-Milgram theory guarantees that the mini-
mization problem associated with the functional has a unique solution. In other words,
the minimization problem is well posed in the V-norm.

In this context, discrete approximations to the minimum of the functional can be
easily addressed through restricting the minimization to a finite element space in V.
Cea’s Lemma and interpolation theory now yield discretization error estimates.

Any basis for the finite element space leads to a symmetric positive definite linear
system for the solution of the discrete minimization problem. If the basis has local
support, then the condition of the system will be O(h~2) because the functional involves
only first-order differential operators. Moreover, if the functional can be shown to be
V-elliptic in an H! product norm, then optimal multigrid performance is guaranteed.

This methodology has been applied to a variety of applications including advection-
diffusion equations, transport of neutral particles, Helmholtz equations, Stokes and
Navier-Stokes equations and linear elasticity. This talk will attempt to describe the
basic methodology and results specific to some of the applications listed above.




FIRST-ORDER SYSTEM LEAST SQUARES FOR THE PURE
TRACTION PROBLEM IN PLANAR LINEAR ELASTICITY

Z. CAI, T. MANTEUFFEL, S. MCCORMICK, AND S. PARTER

Abstract. This talk will develop two first-order system least squares (FOSLS) approaches for the
solution of the pure traction problem in planar linear elasticity. Both are {wo-stage algorithms that
first solve for the gradients of displacement, then for the displacement itself. One approach, which
uses L? norms to define the FOSLS functional, is shown under certain H? regularity assumptions to
admit optimal H!-like performance for standard finite element discretization and standard multigrid
solution methods that is uniform in the Poisson ratio for all variables. The second approach, which
is based on H™~! norms, is shown under general assumptions to admit optimal uniform performance
for displacement flux in an L? norm and for displacement in an H?! norm. These methods do not
degrade as other methods generally do when the material properties approach the incompressible
limit.




Iterative Least-Squares Solvers for the Navier-Stokes equations.

P. Bochev

Department of Mathematics
University of Texas at Arlington
Box 19408, Arlington, TX 76019-0408
e-mail: bochev@utamat.uta.edu

1 Introduction

In the recent years finite element methods of least-squares type have attracted considerable atten-
tion from both mathematicians and engineers. This interest has been motivated, to a large extent,
by several valuable analytic and computational properties of least-squares variational principles.
In particular, finite element methods based on such principles circumvent Ladyzhenskaya-Babuska-
Brezzi condition; see, e.g., [6], and lead to symmetric and positive definite algebraic systems. Thus,
it is not surprising that numerical solution of fluid flow problems has been among the most promis-
ing and successful applications of least-squares methods; see, e.g., [1]-[4], and [8]-[10]. In this
context least-squares methods offer significant theoretical and practical advantages in the algorith-
mic design, which makes resulting methods suitable, among other things, for large-scale numerical
simulations; see, e.g., [8].

Least-squares approach represents a general methodology that can result in a variety of algo-
rithms. To illustrate the main ingredients of this approach consider a boundary value problem of
the form

LU)=F inQ; R(U)=0 onT, (1)

where £ is linear, elliptic differential operator. An abstract least-squares principle for (1) is given
by
Seek U € Xy such that J(U) < J(V) for all V € X, (2)

where J is a quadratic functional of the form
1
1) = S0 ~ FI,, 3)
and X,, Y, are Hilbert spaces. Minimizers of J(U) are subject to the Euler-Lagrange equation
Seek U € X4 such that B(U,V) = F(V) for all V € X,, (4)

where B(U,V) = (LU, LV )y,, and F(V) = (F,LV)y,. A least-squares finite element method can
now be defined by choosing a discrete subspace X* of X4, and minimizing the functional (3) over
X", The corresponding discrete variational problem is given by

Seek U € XP such that B(U?, V*) = F(V) for all V* € X, (5)

It is not difficult to see that (5) is an algebraic problem with symmetric and positive definite matrix.
If, in addition, one can show an a priori estimate of the form

1£U1y, 2 ClIUIx, (6)




it follows that the bilinear form B(,-) is coercive on X, X X,, and by virtue of the inclusion
Xk ¢ X, it is also coercive on Xk x Xk, As a result, existence and uniqueness of minimizers of
both (4) and (5) follows by Lax-Milgramm lemma, and optimal error estimates can be established
in a completely standard manner. Unfortunately, this straightforward approach does not always
result in methods which are both optimal and easy to implement. It is now well-understood that
the form of the operator £, and the choice of the spaces X, and Y, are critical for the success
of the least-squares methods. For example, if £ is second (or higher) order elliptic operator, the
method formally retains the theoretical virtues of the least-squares principles such as symmetry and
positive definiteness of the discrete problems. However, the need to discretize a second (or higher)
order differential operator prevents one from the use of standard C® finite element spaces in the
method, and effectively renders the method impractical. A substantial progress in overcoming
these difficulties has been achieved by transforming higher order elliptic problems to equivalent
first-order systems. Thus, our discussion will focus on methods based on the first-order velocity
flux-velocity-pressure form of the Navier-Stokes equations; see, e.g., [5], and [4].

2 First-order Navier-Stokes equations

Let Q denote a bounded domain in R*, n = 2,3, with Lipschitz continuous boundary I'. The
dimensionless equations governing the steady incompressible flow of a viscous fluid may be written
in the form

~vAut+u-Vu+Vp = fin@Q (M
Viu = 0inQ (8)
where u, p and f denote velocity, pressure and given body force, respectively, and v is the inverse

of the Reynolds number Re. To transform equations (7)-(8) into an equivalent first order form we
introduce the velocity fluz tensor

U= vu' H (9)
as a new dependent variable; see [5]. Then we consider the following system:
(VU +Ulu+Vp = f inQ (10)
Viu = 0 inQ (11)
U-Vu = 0 in® (12)
V() = 0 inQ (13)
VxU = 0 inQ (14)
nXxU = 0 onl (15)

Note that (13)-(14) and the boundary condition (15) are satisfied by virtue of definition (9).

3 Least-squares method

We consider minimization of the quadratic functional

1
IUup) = |- (VU +(Uh) + Vo~ 13
+ IVl + 1T - Vil + [V (DB + IV x TR (16)




over the space
X = {(U,u,p) € HH(Q)™ x H{(Q)" x E(@)NL}(®)|u=0,nxU=0 onT}.  (17)

Corresponding variational problem (Euler-Lagrange equation) is then given by

Find (U, u,p) € X such that

B((U,u,p),(V,v,p)) =
(VD + @)+ T~ £, ~(TW) + 5 (U + V') +Vg) +
v v 0
(Vtu, vtv)o + (V(tr0), V(i V), +

(U-Vu', ¥ - V) +(Vx U,V xV);=0 (18)

for all (V,v,q) € X.

To discretize (18) we consider the following finite element space
Xy, = {(Ut,u*,p") € S,'fz X Sp X S’hﬂLg(Q)luh =0,nxU"=0 onT,}

where, for a given triangulation 7, of the domain 2, S5 denotes the space of biquadratic finite
element functions

Sn={u" € C%Q) | vMo € @x(T), T e T}

It is well-known, that the space Sy has the following property [7]: for v € H3(Q) there exists an
element u* € §} such that
lv — u*||, < CR3" ||ufls, = 0,1

Thus, according to the error estimates established in [4] we expect that for all sufficiently smooth
solutions of the Navier-Stokes equations

1T~ T*lx + lu = wfls + [lp = 2"l < CH? (I1UJs + [[ulls + [lplls) - (19)

4 Implementation
Let us formally write the nonlinear variational problem (18) as
F(Re,U)=U+T- -G(Re,U)=0,

where U = (U, u,p), T denotes a least-squares solution operator for the Stokes problem in velocity
flux-velocity-pressure form, and G((Re,U) denotes the nonlinear terms in (18); see [4]. Then, the
discrete least-squares problem can be stated as

Fh(Re, UM = U" + T" . G(Re,U") = 0, (20)

where T" denotes a finite element approximation of T. Equation (20) is a nonlinear system of
algebraic equations which must be solved in an iterative manner. For this purpose here we consider
combined Newton-continuation method. The need to incorporate continuation in the method stems




from the following observations. Linearization of (20) at a given point U k yields a linear algebraic
system of the form

(I+T". DyG(Re, UM)) - AU = —(U* + T* - G(Re, U™))

for the Newton increment AU"*. The matrix (I + T" - DyG(Re,U")) in the above system is
the Hessian matrix for the least-squares functional (16), and therefore, in a neighborhood of a
minimizer it is necessarily symmetric and positive definite. Thus, the system for Newton’s increment
can be solved using Conjugate Gradients method without assembly of the discretization matrix.
Howeyer, it is known tlha,t\ as the Reynolds number increases the size of the attraction ball for
Newton’s method decreases; see, e.g., [7]. As a result, for an arbitrary initial guess U* the matrix
(I+T"-DyG(Re, U")) may fail to be positive definite, or the Newton’s method may fail to converge.
In order to guarantee that the initial approximation U” is in the attraction ball we consider the
following algorithm. .

Let Reps denote a target value of the Reynolds number, and let Reg denote a starting value,
such that Newton’s method will converge if initial approximation is taken to be a least-squares
solution of the velocity flux-velocity-pressure Stokes problem. For example, we can take Reg = 1.
Thus, we sef

Uty =T,

Then, a sequence of Newton iterates U};‘,m_l, for the current value of the Reynolds number Re,,—1
is generated by solving recursively the linear system

(I+T" DyG(Rem-1,Uf 1m-1)) - AUfm—1 = ~(Ufanor + T - G(Bem1, Uy m-1)) -

After the approximate solution UI’%,m—.-l for Rem-1 is computed, an initial approximation U&m for
the next value Re,, of the Reynolds number can be obtained either by choosing Ué‘,m = UI}%,m;-l
(continuation along the constant), or by solving the system

DuF(Uf 1 Rem—1) - (U — Uyme1) = —(Bem — Rem—1)DReF(Uft m1; Rem-1);

(continuation along the tangent). This algorithm can be implemented in self-correcting manner, by
noting that if U&ni is not in the attraction ball, then either the conjugate gradient method, or the
Newton iteration will not converge. As a result, the above algorithm for the approximate numerical
solution of the incompressible Navier-Stokes equations will encounter only symmetric and positive
definite algebraic systems in the solution process.

5 Numerical examples

In this section we report computational experiments with the least-squares method. Our main goal
is to investigate the validity of error estimates (19). Although analysis of [4] does not include error
estimates in the norm of L2, below we have also included the computed L? rates. In addition, we
compare our results with computations performed using a least-squares method based on velocity-
vorticity-pressure form of the Navier-Stokes equations; see [1], [3], and [8]-[9]. We consider two
examples of artificial planar flows in the unit square, that is we start with known velocity and
pressure fields and then compute the data by evaluating equations (10)-(14) at the exact solution.




Our examples are as follows:

Example 1. u = exp(z)cos(y)+ sin(y)
u; = —exp(z)sin(y) + (1 - z?)
p = sin(y)cos(z)+ zy® — 1/6 — sin(1)(1 — cos(1))
Example 2. w3 = exp(ry)(z cos(rz) — sin(rz)/7) /2
u; = exp(my)zsin(rz)/2
p = exp(ry)z cos(rz)

Convergence rates for the velocity flux least-squares method, and Examples 1-2 are summarized
in Tables 1-2, respectively. Convergence rates for a method based on first-order velocity-vorticity-
pressure Navier-Stokes equations, and Example 2, are summarized in Table 3. We note that
convergence rates in Tables 1-2 are in very good agreement with the optimal theoretical rates in
(19). We also note that computed L? rates for both examples are optimal. Furthermore, we see
that the rates for velocity-vorticity-pressure least-squares method appear to be suboptimal. This
observation is in agreement with the theoretical results of [2], which indicate that for this first-order
form an optimal least-squares method requires the use of weights in the functional.

Finally, on Figure 1 we compare number of iterations of diagonally preconditioned conjugate
gradient method for Examples 1 and 2. Using this data we can estimate approximately condition
numbers O(h™*) of the linearized problems according to the formula o ~ 2log (;n"l((%) /log (i) ,
where m(%), m(j) denote number of iterations for grid sizes ¢ and 7, respectively. In particular, we
have found that for Examples 1 and 2 conditioning is O(h=23%), and O(h~238), respectively.

Table 1. Convergence rates for Example 1 - velocity fluz-velocity-pressure least-squares method

Error L? | H!
Variable | Computed | Optimal || Computed | Optimal
u 3.00 3.00 1.99 2.00
U 3.10 3.00 2.01 2.00
P 3.51 3.00 2.25 2.00

Table 2. Convergence rates for Example 2 - velocity fluz-velocity-pressure least-squares method

Error || L? | H? f
Variable || Computed | Optimal | Computed | Optimal
u 3.05 3.00 1.99 2.00
U 3.10 3.00 2.02 2.00
P 3.50 3.00 2.25 2.00

Table 3. Convergence rates for Example 2 - velocity-vorticity-pressure least-squares method

| Error | L? H!
Variable || Computed | Optimal || Computed | Optimal
u 2.81 3.00 2.07 2.00
w 2.42 3.00 1.75 2.00
P 2.30 3.00 1.75 2.00
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Figure 1: Average number of conJugate gradients 1terat10ns per Newton step for Example 1 (solid
line) vs. Exa.mple 2 (dashed line)
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LEAST-SQUARES FINITE ELEMENT DISCRETIZATIONS OF
NEUTRON TRANSPORT EQUATIONS IN 3 DIMENSIONS*

THOMAS A. MANTEUFFEL{, KLAUS J. RESSEL} AND GERHARD STARKES$§

Abstract. The least-squares finite element framework to the neutron transport equation intro-
duced in [2] is based on the minimization of a least-squares functional applied to the properly scaled
neutron transport equation. Here we report on some practical aspects of this approach for neutron
transport calculations in three space dimensions. The systems of partial differential equations result-
ing from a P; and P, approximation of the angular dependence are derived. In the diffusive limit,
the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the
set of moments of order 1. One of the key features of the least-squares approach is that it produces
a posteriori error bounds. We report on the numerical results obtained for the minimum of the
least-squares functional augmented by an additional boundary term using trilinear finite elements
on a uniform tesselation into cubes.

1. Introduction. We study least-squares finite element approximations of neu-
tron transport equations in three dimensions. This approach was introduced and stud-
ied analytically in [2]. The least-squares finite element approach constitutes a general
framework for constructing discretizations of transport problems that are accurate
in diffusive regimes. This approach is based on a least-squares variational principle
in combination with a scaling transformation. An important practical feature of the
least-squares framework is that it automatically provides a posteriori bounds on the
discretization error.

For simplicity, we consider the single group, steady state, isotropic form of the
neutron transport equation given by

(1) Q -V +opp — o, Py g for (x,Q2) e R x $2,
P = gforx€dR withn-2<0,

where o is the total cross section, o, is the scattering cross section and ¥(x, ) is
the angular flux to be determined for all points x € R C R? and all possible travel
directions € on the unit sphere S2.

’

PO = [ 92 do.

For simplicity, we will assume vacuum boundary conditions g = 0. The angular
dependence in the above equation is approximated by spherical harmonics up to order
N, so-called Py discretization. The boundary conditions will be imposed by adding a
boundary functional. The Py approximation to the neutron transport equation leads
to a system of partial differential equations with special structure. The numerical
results reported in this paper were obtained with the conjugate gradient method
using only diagonal preconditioning. The design of an efficient multilevel approach
for these special systems will be reported elsewhere.

* This work was sponsored by the National Science Foundation under grant number DMS-8704169
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The purpose of this paper is to present the practical aspects: of the least-squares
finite element approach. The next section presents the basic aspects of the least-
squares strategy. In Section 3, we discuss the use of the minimum of the least-squares
functional as am appropriate error measure. Finally, in Section 4, some numerical
results are presented.

2. The Least-Sqiiares Finite Element Approach. It is convenient to de-
rive the least-squares approach for (1) from the standard Py approximation in the
following way. Define the inner product

(b, x) = /R /S 9 Mx(x, Q) ddx

and: the associated nornt ||-||. If we represent angular dependence of ¥(x, £2) in terms
of a series in spherical harmonics, the so-called. Py discretization, we obtain & system
of partial differential equations coupling certain moments. A Galerkin approximation
by spherical harmonics of order 1 using -

@) P(x, Q) = Fo,0(x) + B1,0E)YR) + &1 1 (X)VHR) + 81,1 (X) Y7 H(RQ)

gives

1 8y+iby  O1—ils T
1‘7 ‘:9 7% - j@ ve || ®oo 0,0
7303 ot 0 0 P10 | _| @0
. :—Jl—gﬁz 0 ot 0 D11 | 0,1
Ql"‘T?z 0 0 ot @1, Q1,1

(We normalize the sphetical harmonics as in [1, Appendix A].) In order to avoid
complex arithmetic, it is convenient to rewrite this system in terms of odd and even
spherical harmonics

- 1 . ~_ ) -
B0 =), Bt = 0+ 1)
which implies
. 1 5 g
@11 = —\7_5(‘§1,—1 +®11), Q1,1 = —ﬁ(q’l,l - 81,-1)
leading to
‘ 1 1 1
ltfa 70 70 702 ®o,0 90,0
) 750 o 0 0 D10 | _ | @0
%81 0 oy 0 1. Gi,1
20 0 0 ot D11 a1

Note that eliminating the moments of order 1 from (3) leads to the neutron diffusion
equation

1

1 1
- 2, 92, 82 _ 1 - .
(4) 30704 (07 + 03 +035)P0,0 + 20,0 o qo,0 + — (@0 + @11 + G1,-1)

for ®,0. In the diffusive limit, i.e., for oz = 1,0, = €0, 90,0 = O(€), 1,m = O(g?), an

asymptotic expansion shows that ¥(x, Q) = $¢0(x) + O(€), where & satisfies (4)
2




with boundary conditions ®¢ = 0 on R (cf. [3]). It is important that the discrete
solutions of the neutron transport equations also tend to an approximation of the
neutron diffusion equation in the diffusive limit.

For the derivation of the least-squares approach, let us truncate the expansion
of 9 after spherical harmonics of order 1 and test (1) against all spherical harmonics
(of arbitrary degree). The basic recurrence relations for the spherical harmonics and
their orthogonality imply

@, V™) =0for 1 >3 (and —I1<m<1I).

It is therefore sufficient to test against spherical harmonics of degree 2. As above, we
use a basis of odd and even spherical harmonics,

. im—l —m & m m
},lm-_— \/5(1,1 _I/Im)1y; ='\7§'(Ylm+y2 )’m=1)°“:m
and end up with
- 1 1 -
UaI 333 %31 7-582 . a -
L8y o d 0 0 0.0
? Q1,0
7—31 O'tI 0 i
43 i) q1,1
75'32 0 0 O'tI 0,0 61 -1
0 8 -k -k, || 20 ;
VIS Tyttt TVET? &, 92,0
0 %31 —5'33 0 él ! L ~‘]2,1
0 2 0 —=03 - 32,1
0 0 Lo, Lo J2.2
VBt . B Go.—2
0 0 —-Lal ’ 1 O - T
5 7 792
Appropriate scaling of this system gives
¥ 1 1 1 1 1 1
I V30a 83 \/_&=¢ V3oa al ﬁ V3oa 62 -\/T_t ~
L_0;-L I 0 0 70,0
30a © V0Ot d1,0
Lo L 0 I 0 =
30a 1 Vot & 1
L_5,-L- 0 0 I Po,0 P
37a 0 ver 2 gL __1_ 51 15,1 1,0 Ll
5o 3 Ve 271150, 1Yo  ~ Vise, 2o &1 22,0
0 VeV Ve O e 1 ) 1 & ’—1 Lo
O P AP O [
0 s GO Um Go 2
0 0 -1 5 L 1 2_1_ e
L Voo o VBe: “Ver |
with
— -
[ oo ] ‘/qu’o
@110 —\/13({1,0
&0 \/—%%10 ?1’1 f ~q o
a ? 1 i) q1,-1 \/o-—,‘h,—l
10 [_| Ve 10 - | Al
b = 13 ) 42,0 = Vo 12,0
bl yae, bl g1 =d2,1
@y, L3 6 o %
’ \/0'_¢ ’ Q;;—Zl \/G?qfi_l
’ N Q2,2
| 32,—2 | ‘1/‘—’1
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If we denote this system by £;® = q, then the resulting least-squares system is
L1L;® = L}q. Note that the approach outlined above is equivalent to minimizing

IS~2%(§2 - Vo + 013 — 55 P — )2

‘among all 9 of the form (2) and setting ¥ = §~1/24), where S = 64, P + 0:(I — P) (cf.
[2]). In the constant coefficient case, for the nodes in the interior of the domain, the
operator £3£; has the following form

I— 2 0 0 0
0 I-&—(+0)05 —n030, — 710,03 ~10302 — 70203
0 —7)31(93 —70381 I-— rﬁ“z —(n+9)% “773132 — 71020 ’
0 —176263 - ﬁaaaz ) —776261 - ﬁalaz I= (17 + 7])32
where
1 2 . 1
" 30,0: 1507’ 1= 502

and A = 87+ 03 +03. Note that g = 0(1) and 9 = O(e?) in the diffusive limit leading
to the system

roo0aoaf A 0 0 0
®) 01 go} 1 0 & 88 8
0 0 I 0| 3040:]| 0 06163 02 0,0,
000 0 8:0; 80, 3

Similarly, using a truncated expansion up to spherical harmonics of order 2 leads
to a system with the operator

[ : 0 0 0 0 0 i
’ : 2 1 1
V150, 03 %?al V50 Oa 10 10
~ Vs 0 75508 0 v Iy Y
' s i "0 15 5 i g
L 08 0 Ve Ve AR
1 B
0 I 0 0 0
0 0 I 0 0
4 0 0 0 I 0
£y = 0 0 0 0 I
3 V3 V3
o N O N,
Vise. O gy 0s 40 ~ i 02 Vs, 6,
70 0 N, X O — 755, 02
e IEa Ta H
_\/'76: 1 \/’70‘9 2 3
3
0 0 0 —\)1_4%382 —‘/3\76;61
R 0 0 0 ~ Vido, 0 ma,a ]

The operator associated with a P, least-squares discretization can be obtained for-
mally as £3L,. .
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An inherent problem of any Py approach to the neutron transport equation is the
handling of the boundary conditions in (1). To satisfy the vacuum boundary condi-
tions exactly by the finite element spaces for the moments would imply homogeneous
Dirichlet boundary conditions for all the moments on the entire boundary. Clearly,
this is not physically meaningful, in general.

One way to treat the boundary conditions is by introducing an additional least-
squares functional leading to the problem of minimizing

(6) G(¥;9) = ISR - Ve + otp — 0, P — g) |2

+2 / / I - Qe (x, 2))2d s .
R J {©2€52:n.2<0}

3. A Posteriori Error Measure. One of the key features of the least-squares
approach is that it automatically provides a bound on the discretization error in
the course of approximately minimizing the functional. This feature depends on the
ellipticity of the associated bilinear form with respect to a certain norm which we
derive in the sequel.

For any fixed © € S2, the divergence theorem gives

(@ Ve, B2y = (V - (), ¥ p20ry = — (- Vab, ) p2cry + fa -yt ds
and therefore
. - . 2 .
28 - Vap) /8 i /S (n- Q) dQds

For the functional in (6), this implies

G q) = |IS72Q - V(" — ) + S (" — )|12

+2 / / |n - Q" — 1)2dQds
R J{QeS2:n-Q<0}

> 720 V@t — )| + SV — )| + /8 . [5 - QI — ) dds .

This means that G(¥*; q), where 9" is any finite element approximation, serves as an
upper bound for the error measured in the norm given by

1/2
] = (”3—1/29 vl + 15+ [ [ g dnds) .
OR JS

4. Computational Experiments. We solve the neutron transport problem (1)
on R = (0,1)® with an isotropic source function g(x) which is trilinear on a tesselation
into squares of side length 0.25 such that ¢ is one at (%,%,1) and zero at the other
nodes. Tables 1 and 2 show the relative error, measured in terms of the least-squares
functional (6), with o, = ¢ and oy = 1/e for € = 0.1 and 0.01, respectively. In

brackets, we have listed the number of conjugate gradient iterations using diagonal
5




TABLE 1
Minimum values and iteration counts for the least-squares functzonal e=0.1

h 1/4 /8 1716
P, 149-10-' (15) 5.63-10°2 (23) 2.32-102 (37)
P, 1.45-1071(19) 5.11-1072 (25) 1.76-10~2 (40)

TABLE 2
Minimum values and iteration counts for the least-sqiares functional: € = 0.01
3 1/4 1/8 1716

P, 1.16-10°! (25) 4.23-10-2 (48) 1.40-10~2 (57)
P, 1.16-1071(36) 4.23-10~2(52) 1.39-10~2 (59)

scaling fequired to reduce the initial res1dua1 associated with the discrete system by
a factor of 10~3.

Obviously, the number of conjugate gradient iterations grows quite dramatically
for decreasing h and is also dependent oh o¢. The use of a standard multigrid approach
to this system does not give convergence rates independent of & for large o; due to the
special structure of (5). The design of an efficient multigrid approach is in progress.

Figure 1 shows cross-sections at 23 = 0.5 of the morhents @zm obtained with the
least-squares approach using a P, approximation in angle and trilinear finite elements
onal7byl17 by 17 mesh. The moments which are not shown, namely, @10, @2 1 @2 -1,
vahish for z3 = 0.5.
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A Portable Implementation of ARPACK
for Distributed Memory Parallel
Architectures

K. J. Maschhoff and D. C. Sorensen
Mazrch 12, 1996

Abstract

ARPACK is a package of Fortran 77 subroutines which implement
the Implicitly Restarted Arnoldi Method used for solving large sparse
eigenvalue problems. A parallel implementation of ARPACK is pre-
sented which is portable across a wide range of distributed memory
platforms and requires minimal changes to the serial code. The com-
munication layers used for message passing are the Basic Linear Alge-
bra Communication Subprograms (BLACS) developed for the ScaLA-
PACK project and Message Passing Interface(MPI).

1 Introduction

One objective for the development and maintenance of a parallel version of
the ARPACK [3] package was to construct a parallelization strategy whose
implementation required as few changes as possible to the current serial ver-
sion. The basis for this requirement was not only to maintain a level of
numerical and algorithmic consistency between the parallel and serial imple-
mentations, but also to investigate the possibility of maintaining the parallel
and serial libraries as a single entity.

On many shared memory MIMD architectures, a level of parallelization
can be accomplished via compiler options alone without requiring any mod-
ifications to the source code. This is rather ideal for the software developer.




For example, on the SGI Power Challenge architecture the MIPSpro F77
compiler uses a POWER FORTRAN Accelerator (PFA) preprocessor to au-
tomatically uncover the parallelism in the source code. PFA is an optimizing
Fortran preprocessor that discovers parallehsm in Fortran code and converts
those programs to parallel code. A brief discussion of implementation details
for ARPACK usmg pfa preprocessing may be found: in. [6]. The effectiveness
of this preprocessing step is still dependent on how suitable the source code
is for parallelization. Since most of the Vector and matrix operations for
ARPACK are accomphshed via BLAS and LAPACK routines, access to effi-
cient parallel vers1ons of these hbra.rles alone will provide a reasonable level
of para.llehzainon

Unfortuna.tely, for distributed memory architectures the software devel-
oper is required to, do. more Work For dlstnbuted memory 1mplementat10ns,
message passing between processes must be explicitly addressed within the
source code and numencal computatlons must take into account the distri-
bution of data. In addition, for the parallel code to be portable, the com-
munication interface used; for message passing must: be supported on a wide
range of parallel machines and pla.tforms The Basic Linear Algebra Commu-
nication Subprogra,ms (BLACS) [7] developed for the ScaLAPACK project
prov1de a na.tural level of message. passing for linear algebra computations
and were found. to be very suitable for the commumcatlon requirements of
Parallel ARPACK (PARPACK). We have found BLACS to be easy to use
and its simplification of message passing to be convenient.

A Message Passing Interface (MPI) [9] implementation of PARPACK
is also available. Although an alpha release for MPI-BLACS is currently
available, we have experienced some difficulty in portability for non MPICH
[10] implementations and decided to provide an alternative implementation to

accommodate vendor supplied MPI implementations until portability issues
with MPI-BLACS have been resolved.

2 Parallel ARPACK

The parallelization paradigm found to be most effective for ARPACK on
distributed memory machines was to provide the user with a Single Program
Multiple Data (SPMD) template. The reverse communication interface is
one of the most important aspects in the design of ARPACK and this feature
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lends itself to a simplified SPMD parallelization strategy. This approach was
used for previous implementations of ARPACK [2] and is simple for the the
user to implement. The reverse communication interface feature of ARPACK
allows the PARPACK codes to be parallelized internally without imposing a
fixed parallel decomposition on the matrix or the user supplied matrix-vector
product. Memory and communication management for the matrix-vector
product can be optimized independent of PARPACK. This feature enables
the use of various matrix storage formats as well as calculation of the matrix
elements on the fly.

The calling sequence to ARPACK remains unchanged except for the ad-
dition of the BLACS context (or MPI communicator ). Inclusion of the
context (or communicator) is necessary for global communication as well as
managing I/0. The addition of the context is new to this implementation
and reflects the improvements and standardizations being made in message
passing [9, 7].

2.1 Data Distribution of the Arnoldi Factorization

The numerically stable generation of the Arnoldi factorization
AV, = ViHi + frei

where

A, n X n matrix

Hy, k X k - projection matrix { Upper Hessenberg )
Vi, n X k matrix, k < n - Set of Arnoldi vectors
fr, residual vector, Vi =0, length n

coupled with an implicit restarting mechanism [1] is the basis of the ARPACK
codes. The simple parallelization scheme used for PARPACK is as follows.

e H; replicated on every processor
e V} is distributed across a 1-D processor grid. (Blocked by rows)

¢ fi and workspace distributed accordingly




The SPMD code looks essentially like the serial code except that the local
block of the set of Arnoldi vectors, Vo, is passed in place of V, and ny,., the
dimension of the local block, is passed instead of n.

With this approach there are only two communication points within the
construction of the Arnoldi factorization inside PARPACK: computation of
the 2-norm of the distributed vector fi and the orthogonalization of f to Vi
using Classical Gram Schmidt with DGKS correction [5]. Additional com-
munication will typically occur in the user supplied matrix-vector product
operation as well. Ideally, this product will only require nearest neighbor
communication among the processes. Typically the blocking of V is com-
mensurate with the parallel decomposition of the matrix A. The user is free,
however, to select an appropriate blocking of V such that an optimal bal-
ance between the parallel performance of PARPACK and the user supplied
matrix-vector product is achieved. .

An additional concern which must be addressed if this simple paralleliza-
tion strategy is to be effective is scalability. Because Hy is replicated on ev-
ery processor, operations on H due to the implicit restart mechanism within
ARPACK are also replicated. This redyndant work may present a “serial
bottleneck” and could possibly prevent sca,la.blhty if k grows with n as the
problem size increases. The potential for such a bottleneck will hopefully be
diminished when lockmg of converged vectors, as presented in [4], is imple-
mented in the ARPACK codes. Locking , which is equivalent to deflation for
the QR algorithm, is used to decouple converged Ritz values and associated
vectors from the active part of the factorization. It is anticipated that lock-
ing may be used to keep the active portion of Hj small as well as to aid the
convergence of eigenvalues with multiplicity greater than one. This feature
is planned for the next release of ARPACK.

Another strategy which was tested was to use Parallel BLAS (PBLAS)
[8] software developed for the ScaLAPACK project to achieve parallelization.
The function of the PBLAS is to simplify the parallelization of serial codes
implemented on top of the BLAS. The ARPACK package is very well suited
for testing this method of parallelization since most of the vector and matrix
operations are accomplished via BLAS and LAPACK routines.

Unfortunately this approach required additional parameters to be added
to the calling sequence (the distributed matrix descriptors) as well as redefin-
ing the workspace data structure. Although there is no significant degrada-
tion in performance, the additional code modifications, along with the data
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decomposition requirements, make this approach less favorable. As our par-
allelization is only across a one dimensional grid, the functionality provided
by the PBLAS was more sophisticated than we required. The current im-
plementation of the PBLAS (ScaLAPACK version 1.1) assumes the matrix
operands to be distributed in a block-cyclic decomposition scheme.

2.2 Parallel Performance

To illustrate the potential scalability of Parallel ARPACK on distributed
memory architectures some example problems have been run on the Maui
HPCC SP2. The results shown in Table 1 attempt to illustrate the potential
internal performance of the of the PARPACK routines independent of the
users implementation of the matrix vector product.

In order to isolate the performance of the ARPACK routines from the
performance of the user’s matrix-vector product and also to eliminate the ef-
fects of a changing problem characteristic as the problem size increases, a test
was comprised of replicating the same matrix repeatedly to obtain a block
diagonal matrix. This completely contrived situation allows the workload to
increase linearly with the number of processors. Since each diagonal block
of the matrix is identical, the algorithm should behave as if nproc identical
problems are being solved simultaneously (provided an appropriate starting
vector is used). For this example we use a starting vector of all “1’s”. The
only obstacles which prevent ideal speedup are the communication costs in-
volved in the global operations and the “serial bottleneck” associated with
the replicated operations on the projected matrix H. If neither of these were
present then one would expect the execution time to remain constant as the
problem size and the number of processors increase.

The matrix used for testing is a diagonal matrix of dimension 100,000
with uniform random elements between 0 and 1 with four of the diagonal
elements separated from the rest of the spectrum by adding an additional
1.01 to these elements. The problem size is then increased linearly with the
number of processors by adjoining an additional diagonal block for each ad-
ditional processor. For these timings we used the non-symmetric PARPACK
code pdnaupd with the following parameter selections: mode is set to 1,
number of Ritz values requested is 4, portion of the spectrum is “LM”, and
the maximum number of columns of V is 20.




Number of Nodes Problem Size =~ Total Time (s) Efficiency

1 100,000 * 1 40.53

4 100,000 * 4 40.97 0.98
8 100,000 * 8 42.48 0.95
12 100,000 * 12 42.53 0.95
16 100,000 * 16 42.13 0.96
32 100,000 * 32 46.59 0.87
64 100,000 * 64 54.47 0.74
128 100,000 * 128 57.69 0.70

Table 1: Internal Scalability of Parallel ARPACK

3 Summary

We have presented a parallel implementation of the ARPACK library which
is portablé across a wide range of distributed memory platforms. The porta-
bility of PARPACK is achieve by utilization of the BLACS. We have found
BLACS to be easy to use and have beén quite satisfied with how little effort
it takes to port PARPACK to a wide variety of parallel platforms. So far
we have tested PARPACK on a SGI Power Challenge cluster using PVM-
BLACS, on a CRAY T3D using Cray’s implementation of the BLACS, on an
IBM SP2 using MPL-BLACS, and on a network of Sun stations using PVM-
BLACS. The MPI version of PARPACK has been tested on these platforms

as well.
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ITERATION SCHEMES FOR PARALLELIZING
MODELS OF SUPERCONDUCTIVITY*

PauL A. GRAYT

Abstract. The time dependent Lawrence-Doniach model, valid for high fields and high values of the Ginzburg-
Landau parameter, is often used for studying vortex dynamics in layered high-T,; superconductors. When solving these
equations numerically, the added degrees of complexity due to the coupling and nonlinearity of the model often warrant
the use of high-performance computers for their solution. However, the interdependence between the layers can be
manipulated so as to allow parallelization of the computations at an individual layer level. The reduced parallel tasks
may then be solved independently using a heterogeneous cluster of networked workstations connected together with
Parallel Virtual Machine (PVM) software. Here, this parallelization of the model is discussed and several computational
implementations of varying degrees of parallelism are presented. Computational results are also given which contrast
properties of convergence speed, stability, and consistency of these implementations. Included in these results are models
involving the motion of vortices due to an applied current and pinning effects due to various material properties.

Key words. superconductivity, Lawrence Doniach model, layered superconductors, parallel computing,
parallel virtual machine

AMS subject classifications. 65N30,65Y05,65C20,35165,81Q05,81-08

1. Introduction. One of the features of high-T, superconductors is their layered structure consisting
alternating layers of superconducting and non- (or weakly) superconducting materials. In planes parallel
to the layers, the material is isotropic. However, there is a strong anisotropy present when one compares
material properties parallel and perpendicular to the layers. One may consult [10] for a survey providing a
lucid discussion of layered superconductors.

One of the models for layered superconductors is the Lawrence-Doniach model introduced in [12]; see
also [2] and [11]. When the coherence length &, in the direction perpendicular to the superconducting layer
is of the order of the layer spacing, then it is necessary to account, in some way, for the discrete nature of
the layered structure. In this model, the material is treated as a stack of superconducting planes separated
by a vacuum or insulating material, and the coupling between the superconducting planes is similar to that
which occurs in a Josephson junction. Again, one may consult [10] and the references cited therein for a
complete discussion of these models and the physical circumstances necessary for their validity.

The relation between the Lawrence-Doniach (LD) model and the anisotropic Ginzburg-Landau model
has been explored in [3]. Discretization of the steady state LD model using a gauge invariant difference
approximation has been studied previously in [8], its parallel implementation on the 512 node Intel Touchtone
Delta computer has won the Gordon Bell prize in computer science. Qur interest lies in the study of the
vortex motion and pinning mechanisms exhibited by the various variants of the LD models. These phenomena
cannot be dealt with using the steady state model.

The difficulties involved in solving the Lawrence-Doniach model, numerically or otherwise, include the
nonlinearity of the equations in addition to the coupling of the variables between the layers. In this paper,
various methods for overcoming these difficulties are addressed. In order to simplify the equations themselves,
the LD model is examined in the setting where the superconducting material possesses a high Ginzburg-
Landau coefficient, x, which is the radio of the in-plane penetration depth, A, and the parallel coherence
length &. These terms yield a measure of distances over which the order parameter and magnetic field may
undergo appreciable change (£ gives a measure of the change allowed of the order parameter perpendicular
to the layers; £ measures change allowed within the layer). This setting is significant inasmuch as materials
made today which maintain their superconducting properties at high temperatures exhibit a large value of .
Additional discussions on simplifications in the high-« regime may be found in [4]. With the simplifications
brought about by the high-« setting, simplifications of the numerical implementation are sought. Specifically,
simplifications are sought which address the complexity introduced by the coupling of the variables between
the layers. This interdependence of the variables between layers may be solved for iteratively. The results of

* Supported in part by NSF grant MS-9500718
t Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027.




2 Paur A. GrRAY

this paper show that with a judiciously chosen iterative scheme, the coupling of the variables between the
layers may be broken which allows for a straight-forward parallelization of the solution.

The remaining portion of the paper is outlined as follows: In §2, notational conventions are given which
will be used in subsequent sections. Also given in §2 are the time dependent Lawrence-Doniach equations and
their simplifications which are valid for the high-x, high-field setting. In §3, the details of the discretization
of the equations are discussed. §4 presents the algorithms posed to decouple and parallelize the model.
Numerical comparisons of the methods given in §4 and a discussion of the physical description of the model
being solved are given in §5. In §6, concluding remarks are given along with a discussion on the Parallel
Virtual Machine software which makes it possible to connect a cluster of workstations together as a single
parallel machine. '

2. The time dependent Lawrence—Doniach equations. To describe the Lawrence—Doniach model,
the layers are assumed to be perpendicular to the z-axis. D will correspond to a layered material sample
such that D = Q x [0, 5], where Q C R? is a planar domain and S is the z-thickness of the material sample.
There are N + 1 superconducting planes, each having projection £ on the (z,y)-plane, and each separated
from its neighbors by a distance s; thus, Ns = S. The boundary of  will be denoted by I'. The region
exterior to D will be denoted by De, i.e., D = R3/D. The interface between D and De will be denoted by
oD.

Throughout, three-vectors will be denoted by (%) and two-vectors by bold face notation. Thus, A A,
and A denote a scalar, a two-vector, and a three-vector, respectively. There will be occasions where it is
convenient to partition a three-vector A into the form

i=(2)

so that here A, denotes the. third component of A. The same notational convention will be used for differential
operators, for example, grad = (grad, 5%—). .

The LD model uses three primary variables: the order parameter ¢ = ¥(z,y, z), whose magnitude is
related to the density of superconducting carriers; the magnetic vector potential A= f-f(:c, 1,2)=(AA; s
and ® = &(z,y,2) be the electric potential. We let A, be the component of A in z direction, Ap =
An(z,y) = A(z,y,ns), n = 0,1,...,N, is the restriction of A to the n-th superconducting plane and
similarly &, = ®,(z,y) = ®(z,y,ns) and ¥n = ¥n (z,y) = ¥(z,y,ns). The same notation applies to the
auxiliary variables that are defined by ' L. . :

curl A® =H

and - =
—~okV®* =curl H .

After proper nodimensionalization, the time dependent Lawrence-Doniach equations are given by

D i@+ B = Yo+ ol + (LErad + An+ AT Yo

2.1) 4 p[ 26 — Bt exp(—i85H) = Ynos exp(i63-1)] = 0
inQand forn=0,1,...,N,

where

(n+1)s

(2.2) ¢2+1=n/ A, +A%dz forn=0,...,N—1,
ns !

and the terms in the bracket describe the Josephson coupling. The characterization of ¥_1,¥N41, 9% and

¢%+1 depend on the boundary conditions imposed and/or on the periodicity assumptions of the model. In
addition, .

z

(2.3) a(%‘?— + £KV®) + curlcurl 4 = ( ]J ) in R3,
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where ¢ is a material constant representing a driving force. Further, the components of the current are given
by

N .
(2.4) i= sZ (ﬁ(wngrad Yn* — Yngrad ¢n) — |9, [2(An + Aﬁ)) d(z—ns) in R3 ,

n=0

b = i3 [ P8 W1 — B exD(~i8 1 ]

(2.5)
inQx[ns,(n+1)s],n=0,...,N—1,

and

(2.6) jo=0 inD,=R3/D .

One also obtains the boundary conditions

(2.7) ('—Z-grad'l,bn +AR¥s) -n=0 onTandforn=0,1,...,N,

(2.8) [Ax7] =0 and [curld x 7] =0 on the boundary 8D of Q x [0, 5],
and '

(2.9) curl A 50 as %] = oo.

In the high-«, high field setting, the applied field is assumed to be of the form H = kHy and A’g is
chosen to be a magnetic potential such that curl x A% = H,. Then, it can be shown that there exists a
solution 9,, n =0,1,.,., N, and A of the Lawrence-Doniach equations satisfying

A=n(ffo+0(n-2)) and Yo =voa+0 (k2 ,n=0,1,...,N,

where 1g,, n=0,1,..., N, satisfies

8 , ;
1’;:“ + zégnd’ﬂn - 1/’07; + I'Q[)Onlz'ﬁb()n + (zgrad + Agn)2¢0n

+ p[2¢on = Yo(n+1) exp(—idg ) — Yom—1) eXp(i¢3(n_1))] =0
in Qand forn=0,1,...,N,

where
(n+1)s
3,',*'1=/ Ag,dz forn=0,...,N—1,
ns
and
(igrad Yon + Af,%on) -n=0 onT and forn=0,1,...,N.

3. The discretization scheme. The numerical scheme is intended to model long-term behavior of a
system. For this reason, the implicit Euler scheme is used for the discretization in time to maintain stability.
Letting §5, denote the backward difference operator, the discretization in time of the leading order equations
leads to the following equation:

JZt ("nbOn) + 7:@8""/)071 - "/)On + I¢0n|2¢0n + (igrad + Agn)z'wOn
(3.1) + P[2¢0n — Po(n41) exp(—iggt) ~ Yo(n—-1) eXP(i¢3(n_1))] =0
in Qand forn=0,1,...,N.
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Furthermore, the spatial discretization is done by Galerkin finite element methods, namely, we take the
weak form of the equation (3.1) and use finite element spaces as the test and trial spaces. Let Sh be a finite
element subspace corresponding to a mesh, with mesh parameter h. Let {¢h,n=-1,...,N +1} be the
finite element solution in S*. Then, we have

55, (8, 0%) + (198,9%, %) + (—h + [PhI?0h,o*) + ((igrad + Ag,)*5,0")
(3:2) 4 ([208 = Wy oxB(=i88 1) = Wy X0 (i850))] ") =0
’ Y v*eS*andforn=0,1,...,N

with appropriate conditions on 1,[){’_1 and ¥% 1
(3.2) may be rewritten as: ‘

L (08, 0%) + (108,98, 0%) + (2o~ 1+ [$E A, o) + ((fgrad + A,)?95,0")

Lt
. n . 1
(3:3) —p (@’)E‘,.ﬂ) exp(=ig51 "), *)=p (¥ exp (i1 o) = =z Wnaa ")
v o oh GS’:‘- and forn=0,1,...,N

where ¢,’;’0, 4 is the solution at the previous time step. In this form, the above nonlinear system of equations
is easily cast into matrix terms as ’

M(Bn)];)ﬂ + Cn:Eﬂ-};l '*,' C;—an,—l, = En forn = 0’ l’ ey N’

where the vector Py, represents the n-th layer unknowns, M(Py). and, G, represent the coefficient matrices,
C% is the adjoint matrix of Cy,, and Fp is associated with the computations involving the previous time
step. Denoting My, = M(P»), one can gIONP all, of these variables together to form. the system:

My Co
€ Mo G

(3.4) iB;E

Ch-2 Mn-1 Cn-y
Cy-1 Mw

4. Parallelization of the computational solution. The algorithms for parallelization presented
here focus on decoupling the dependence of 1,/)2’ on, ¢£‘n +1) (from the layer above). and 'qb?n_l) (from the layer
beneath). Methods for decoupling ¥}, from 'gbé'n +1y and gbi‘n_l) focus on modification of the bracketed portion
of equation (3.2) and thus, the corresponding off-diagonal blocks in (3.4).

There are a number of ways to solve system (3.3) or (3.4). The focus of this paper is the iterative
solution of ¥, or equivalently, the iterative solution of the vector P in (3.4). Taking a six-layer model as
an example, the physical interpretation of iterative schemes which may be used to solve the above system is
generalized in Figure 1. The mathematical interpretation of the schemes represented in Figure 1 is given in
the subsequent section.

4.1. The sequential update model. This model sequentially updates a single layer at one time.
Referring to equation (3.3), #,7 will be used to denote the j-th iterative solution of ¥,,. In the sequential
model presented below, . is computed using the updated value of the layer beneath it, 1,!)03(,‘__1), and the

previous value of the variables in the layer above it, ¢0(f;_11). Initialization of the method is satisfied by
solving the expression: '

53¢ (o) + 1281300} — ot + [4boil*Yoi
+ (igrad + Ag;)*do1 + P[‘Po{ — P02 exp(——iqSo%)] =0 Q.

This yields ¥,k (¢), which is then available for the computation of Pos- Note that computation of Yos
will require information from the third layer. Since the third layer has yet to be updated, 13 is used for the
update of 3. In general, the method reverts solving the equation;
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— Layer computing update “Transfer of updated information

— Layeridle @ e > Transfer of static information
. e
——
Sequential Update Model

I =
I

—— e — =
Concurrent Update Model
FIGURE 1. A pictorial description of iterative schemes used to solve the system (3.3), or equivalently, (3.4).

A (Vo) +1@8uvod — o + o o + (igrad + Ag,) %,
+ 0 (200 — Yoy exP(=idE") — dod_yy ep(~idGr)] =0

Since each layer must wait until the layer beneath it has completed its update, this model is best suited
for a single-processor setting. Note that initialization using the lowest layer is somewhat arbitrary. The
method is easily generalized to an arbitrary layer’s initialization and a more general sequence of subsequent
layer updates. For example, the pictorial representation of the sequential method in Figure 1 shows a
top-layer-down update approach.

In matrix terms, this algorithm is similar to the block Gauss-Seidel iteration for the equation (3.4):

Mg 0. 0 Gy
C; M{ o0 0 C
(4.1) 0o . e P'=F+ oo Pi-t,
Ch_, My_, 0 0 Cn-1
0 Cy-1 My 0

4.2. The Red-Black model. This model alternative computes updates to every other layer. The
model presented below can be loosely described as a computing of the j-th iteration of the red layers (the
odd layers, for example) with information from the (j—1)-th iteration of the black (even) layers. Next, the
Jj-th update of the black layers are updated using the updated j-th iteration values of the red layers. The
method is given as follows:

Ot (%ﬁi ) + i‘I’gn"/)Onj - %nj + |¢0nj |2¢oﬁi + (igrad + Agn)z%nj

+ P[2¢0nj = oty exP(—id5a") — ol eXP(—i¢3(n_1))] =0 inQ if n red

Ot ('pofj ) + i@gn¢Or{ - %nj + |90 |2’¢’0nj + (igrad + Agn)z%ﬁi

+ p[2¢0,{ — boan) XP(=i85F") — ol exp(—-iqﬁg(n_l))] =0 inQ if n black.
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In this model, only the black layers must wait for updated information from the red layers. Further, the
red-layer and black-layer updates, respectively, may be computed independently. This makes the alternating
update model well suited for the setting where the material being modeling is characterized by an even
number of layers and there is one processor available per two layers of the material. Each processor would
be assigned computation of a red layer’s update and the subsequent computation of a black layer’s update.

Again, in matrix terms, this translates to the two-stage linear system:

My 0 /Co
(4.2.a) 0 Mf; . red = Fred T C; C4 black’
M 0 C:
0 M, O ; C; Cs ;
(4.2.) 0 M - Phiack = Fblack + C; Cs Preq -

4.3. Concurrent update model. In this model, the j-th update of each layer is computed using the
(j—1)-th value of its neighboring layers. The computational algorithm is as follows:

530 (o) + 5980 — bod + Wod bod + (imrad + AS) ol
+p [2%,{ - 1!!0(1.;;1;) exp(—igi ") — %({:-11) exp ('_iég(n—l))] =0 inQ

Since each. layer’s update depends only upon the previous updates of its neighboring layers, each layer
update may be computed indepepdently. This makes the simultaneous model best suited to the setting
where there is one processor available per layer of the model.

In matrix terms, this method is similar to a block Gauss-Jacobi approach to solving (3.4).

. 0 GCo
M c: 0 C
M ° '
(4.3) ! Pi=F+| pi-1,
. ’.. '.. C _
M.;V-l-l * ON !
N-1

5. Numerical comparisons. In this section, numerical results are given for four implementations of
the algorithms given in §4, namely

i. Non-parallelized sequential model. (NPSM) This method will serve as the baseline in the compar-
isons. Basically, this implementation is what one would possibly revert to in the absence of means
for parallel computations. The NPSM is intended to run on a single processor.

ii. Parallelized sequential model. (PSM) In order to determine the overhead of the parallelized imple-
mentations, the sequential model is parallelized in the crudest of fashions, parallelizing only the
initialization routines. The PSM is able to run in a minimal setting of a single processor but may
be run on any number of processors. In the fullest setting of the PSM, there is one processor for
each layer in the model. In such a setting, where there are K layers in the simulation, the nature
of the sequential algorithm would dictate that K—1 of the processors would be idle, waiting for the
update information from the layer beneath.

iii. Red-Black model. (RBM) The implementation of the red-black algorithm requires a minimum of
(K—1)/2+1 (as an integer) processors for the simulation of a K-layer material, where each processor
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would be designated the task of calculating a “red” layer update and a subsequent “black” layer
update. E.g., the ideal implementation would require a minimum of 2 processors for the simulation
of a 4-layer model and 3 processors for the simulation of a 5-layer model. The maximal or full
implementation would again be the setting where there is one processor for each layer of the model.
In such an implementation, the red-designated processors would be idle while the black-designated
processors were calculating updates and vice versa.

iv. Concurrent model. (CM) The full parallelization of the Lawrence-Doniach model requires a proces-
sor for each layer of the model. Each processor simultaneously computes the update of its respective
layer.

5.1. The physical model of the simulation. The computational results given below were derived
from the simulation of a material consisting of six layers. The superconducting layers are square, measuring
25¢)| x 25¢)|, the spacing between the layers is taken to be & (i-e. s =¢)), and the initial state of the system
is taken to be the steady state corresponding to the external applied field

(5.1.1) Heyt = (0.07,0.07,0.125) .

The sample is then subjected to a variable field which induces a current across the sample:

(5.1.2) Hyar = (0.07,0.07,0.125 — 0.2 ("’ _ll/ 2) )&,
where [ is the length of the sample.

5.2. Computational results. The numerical solution of the respective algorithms is computed by a
finite element implementation using biquadratic basis functions over rectangular elements. The nonlinearity
is solved using Newton’s method. This computational implementation used was modeled after the code used
in [6,7]. Each layer was decomposed into a 21x21 rectangular grid and the computations were carried out
on a cluster of six PVM-connected DEC Alpha workstations.

The tables below yield some indication of the speed of the respective algorithms. The data in Table 1-
Table 3 below was obtained by letting the computer models run over a fixed block of time in order to
examine how “far” each algorithm was able to go. The first row of each table shows the number of time
steps completed by the algorithm within the fixed block of time. The second entry in each table shows the
total number of layer iterations required of the algorithm within the same block of time. The last entry in
each table shows the percentage of time steps that the parallelized algorithm was able to calculate compared
to the nonparallelized sequential method.

In short, one sees that the parallelized sequential model (PSM) performs just slightly better that the
nonparallelized (NPSM) implementation. This is perhaps due to the fact that the initializations of the PSM
are performed in parallel. These tasks include initialization of the order parameter, the generation of the
vector magnetic potential, and the characterization of the geometry. Otherwise, the methods are identical.
This does, however, show that the overhead introduced by the parallelization is somewhat insignificant in
light of the small gains enjoyed by parallelizing the initialization routines.

Note also that the Red-Black method (RBM) was able to realize more than a three-fold gain over the
sequential method(s); this, contrary to what one might initially expect. On the other hand, the concurrent
method (CM) showed a more moderate gain of slightly over four-fold.

Parallelization aside, the above data also gives an indication of the computational efficiency of the
respective algorithms. Examination of the number of layer iterations computed for each method shows that
the number of layer iterations required per time step varies for each algorithm and for each fixed time step.
In short, by looking at the number of layer iterations required for each time step, one sees that the CM
generally required more layer iterations to reach tolerance at a given time step whereas the RBM generally
required the least. This yields a partial explanation of the remarks made above in that the RBM was able to
achieve a more than three-fold gain due to an increase in the algorithm’s efficiency. (Another contributing
factor was that Newton’s method required slightly fewer iterations on average in the Red-Black scheme.) A
comparison of the required number of layer iterations for convergence is given in Table 4. Table 4 shows the
number of layer iterations required to meet tolerance per time step as a function of the step size taken in
time for each of the respective algorithms. In other words, Table 4 shows the number of iterations required
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dt=0.2 NPSM PSM RBM CM

# Time Steps 26 26 75 107

# Layer Iterations 156 157 451 964
% Performance Baseline 100% 288% 412%

TABLE 1. Benchmarks obtained for a fived time step of dt=0.2.

_d=0.1  NPSM | PsM | RBM CcM

# Time Steps 36 36 113 148
# Layer Iferations 181 184 569 1039
% Performance Baseline 100% 314% 411%

TABLE 2. Benchmarks obtained for a fived time step of dt=0.1.

di=0.025 NPSM PSM | RBM | CM

4 Titne Steps 54 55 168 263
# Layet Iterations 216 220 504 1052
% Performance | Baseline | 102% | 311%_ | 487%

TABLE 3. Benchmarks obtained for a fized time step of dt= 0.025.

to reach convergence in equations (4.1), (4.2.a) — (4.2.) and (4.3), respectively, based on the value of 2% in
(3.3). Note that thé two'sequential méthods; the NPSM aiid PSM, yield equivalent solutions, therefore they
need not be considered indepeiitently. Fiom. the table, one sees that the RBM required the least number
of layer iterations to converge to thie spécified folérance while the CM required the most layer iterations to
converge.

dt 002 | 005 [01 |02 | 03|04 |05 |07

Sequential 4 4 5 6 | 7 |85 | 10} 12

Red-Black 3 4 5 |6 |6 |8 |9 12

Concurrent 4 5 7 9 10 14 16 21
‘TABLE 4

A comparison of the number of iterations required to meet iolerance based on step size in time.

5.4. Physical comparisons and results. A succinct indication of how the results of the respective
methods compare with each other is seen in the energy of the respective systems. Figure 2 below shows the
energies associated with the computational solutions of the extreme cases: the simultaneous algorithm and
the concurrent algorithm. The close resemblance indicates that the two algorithms are indeed consistent in
their calculation of the solution of the model.

Turning attention to the the physical interpretation of the energy plot itself, the reason for the variations
in the energy is best explained by examining the physical dynamics of the system. Initially, the system is
at the steady-state associated with a fixed external field strength given by (5.1.1), which corresponds to
the setting where there are eight vortex “tubes” initially present in the sample. Given in the first row
of Figure 3 are contour plots representing this initial state of the six-layer material. At the center of the
circular contours is the core of the vortex, where the field is able to penetrate the sample. The material
is then subjected to a variable field as given by (5.1.2), which induces current across the material. As a
result, the vortices are carried across the material. The subsequent contour plots of Figure 3 show the state
of the system at the time indicated above each row, as the current moves the vortices across the material.
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Energy for the Sequential Model Energy for the Concurrent Model
~1300 -1300 ol °
-1320 -1320
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FIGURE 2. FEnergy vs. time for the Sequential and Concurrent schemes. The close resemblance substantiates the
solutions of the two algorithms yield consistent information.

Initial State of the System, t = 0
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State at t = 60 (Concurrent)
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State at t = 80 (Concurrent)
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® ® e @ ® @® ® ® @ ® ® ®
® @ ® e || ® o D e e |P ® o | ® @
State at t = 200 (Concurrent)
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FIGURE 3 Contour Plots of the magnitude of the order parameter at indicated times as computed by the concurrent
model. With the application of current, the vortices move (to the right} across the sample. The vortices drop off the right
edge and make room for the generation of vortices on the opposite edge. In each row, the left-most contour plot represents
the bottom layer of the material; the right-most plot represents the top layer.

Eventually, vortices exit the one end of the sample (the right end) while more vortices are generated on the
other side. This loss and gain of vortices corresponds to the variations in the energy seen in Figure 2. To
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State at t = 200 (Sequential)

s © €4l e @ Y o © || ® © ® © o @
® ® ® © ® © e © @ @ ® ®
© 9 | 2 @ | ®® {| © & ® e ® e

FIGURE 4 The corresponding state of the system as computed bg) the seqﬁential aigarithm. Compare with the final row
of FIGURE 3 above.

further demonstrate the compatibility of the Tespective solutions, Figure 4 shows the same physical state of
the system as computed by the sequential method at t = 200. Note the similarity of the contour plots of
Figure 4 with the corresponding plots of Figure 3. ;

6. Remarks on the Parallel Virtual Machine (PVM) software and conclusion. In general
terms, PVM software is a meditim for distributed computations. Distributed computing is described as the
process of connecting together,  set of networked computers for the purpose of collectively solving a single
problem. PVM software provides the qohiiﬁﬁhic’a.tion link befween the set of computers. Thus, the collection
of computers may be viewed as a single large virtual parallel computer, hence its fame.

The PVM software 1\ihs ot a wide variety of platforts — including serial, parallel and vector computers.
Moreover, PVM is able to coniiect these varying platforms, together into one heterogeneous virtual machine.
For a general introduction, iistallation guide, instractions Yor obtaining the software or sample programs, see
[1,9]. Our configuration consisted of six DEC Alpha workstations and 4 SPARC Multiprocessor connected
together via a fiber optic network.

In conclusion, the parallel implementation of the finite element Lawrence-Doniach code using PVM has
proved to be a powerful tool for the st’ugly ‘of the validity and 1imiﬁé.tio,n$ of the Lawrence-Doniach models for
layered superconductors. We are gurret{i;ly conducting numerical simulations of various phenomen? involving
the vortex motion and vortex pininitig [5]. Further developinént in the convergence theory of the algorithms
presented in this papet will als6 be §§;§i&'i‘e‘d there, Which may help us to ifprove the performance of the
code by employing proper ‘i)feéénditioneré and lifie4tization schemes. Tt is hoped that useful tools will be
developed not only for the use of Dhysicists and material scientists interested in studying superconducting
phenomena but also for those involved in the désign of superconducting devices.

Acknowledgment. The author would like to extend thanks to Prof. Qiang Du for his generous support
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SCALABLE IMPLICIT METHODS FOR REACTION-DIFFUSION EQUATIONS
IN TWO AND THREE SPACE DIMENSIONS

SILVIA V. VERONESE*AND HANS G. OTHMER. f

Abstract. This paper describes the implementation of a solver for systems of semi-linear
parabolic partial differential equations in two and three space dimensions. ‘The solver is based on
a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses
a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies
for the linearized equations are used to reduce the stride and improve the overall effectiveness of
the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion
problems in computational biology and medicine in which the desired solution is a traveling wave
that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy
of the method are given here; the theoretical analysis will be presented in [7].

1. Introduction. A large class of models in computational biology and medicine gives rise to
systems of non-linear parabolic partial differential equations which may be coupled with ordinary
differential equations. Let © be a bounded domain in R, m = 2,3, with outward normal n and
boundary T, and let u(x,t) = (u1(x,t),- - -,us(x,%)) be the s-component state vector, which is the
solution of

% = V-DVu+ f(u) for x in
u; = hi(x) forxinIy;,i=1,---,s
(1) 6u,- .
B = k;i(x) forxinTe;,2=1,---,5
u(x,0) = wup(x) for x in Q.

Here I'i; UTy; =T for each ¢ = 1,---,s. When different components satisfy different types of
boundary conditions we have what are called mixed boundary conditions [4]. The reaction term f
is a specified nonlinear function of u, and D = diag(dy,) for p,q = (1,1),---(s,m) is a diagonal
diffusion tensor whose first s diagonal components are the diffusion coefficients in the z direction,
etc. This allows for the incorporation of anisotropic diffusion, but for simplicity in this paper we
only consider diffusion coefficients that are constant in a given direction; the general case will be
treated elsewhere. One or more of the diffusion coefficients may vanish identically, in which case
the boundary conditions are modified appropriately.

Systems like (1) are often used to model nonlinear wave propagation in excitable media [9]. For
example, the Hodgkin-Huxley system, which consists of a single parabolic equation and a system
of four ordinary differential equations, models the propagation of a depolarization wave (a nerve
impulse) along a nerve axon. Waves of permanent form exist for one-dimensional propagation, but
not in two or three space dimensions. Extensive computations in two and three space dimensions
have been done on systems of this type, but heretofore large-scale computations have employed
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explicit time-stepping algorithms. However, it has been shown that explicit methods may require
time steps that are several orders of magnitude smaller than those which produce comparable
accuracy in an implicit scheme [5], and that explicit methods may produce spurious solutions in
excitable systems [6]. '

In the problems of interest here there may be moving interface regions in which spatial variation
of the solution is rapid (compared to the size of the domain). In general the position of the moving
interface is not known a-priori and is difficult to track, especially when there are several fronts or
rotating structures like spirals and rotors in the domain. In our numerical experiments, we found
that spatial adaptivity is mainly useful in simple cases where the moving interface is localized to
a small portion of the domain. In presence of multiple waves, the computational effort involved in
tracking the fronts and regenerating the spatial grid is considerable.

In the following section we present ADI schemes for two and three dimensional problems. In
section 3, we present a summary of the test results obtained with sample problems. Section 4
addresses the parallel implementation of the method.

2. An Outline of the Numerical Methods.

2.1. Two space dimensions. In two space dimensions the following split-step method pro-
vides a second order scheme for a suitable choice of the weights of the nonlinearity. We assume
that the domain is rectangular and rescaled to the unit square. We also assume that s = 1, since
this simplifies the notation and the extension to systems is straightforward.

—h—L = S S+ af () + A )
(2) n+1 * '
Yig —U; _ Dig s Dacy onya +1
e = —-Oqujj + 5 0y +yf(uf) +0f (ugg )

Here hy is the time step, h; and hy, are the space steps, u; = u(thg, jhy, nhy), dzufy = (ufy, 25
U1/ ,j) /hs (and similarly for ,u;), o, B, yand § € R, Dy and D, are the diffusion coefficients in
the z and y directions, respectively. u* is an intermediate solution of (2), that may not necessarily
satisfy (1).

It is known that in the homogeneous case (f(u) = 0) the overall truncation error for (2) is
O(h} + maz(hZ, h2)). In the non-homogeneous case we can combine the equations in (2) to obtain

un+1 n

ht— Y= D1 82u* + %512,@” + U™ + af (W) + BF (u*) + 7f(u“) + 0f (u™ 1)

(3)
In order to simplify the notation, here and hereafter we drop the indices that denote the grid point.
By expanding around u?j'H/ 2, one can show that (2) gives a scheme that is second-order both in
time and space. The analysis shows that there are several choices of o, B, and +, § that lead to a
second-order scheme, one of whichis f=vy=0and a =0 = % In this case the first equation of
(2) becomes linear and can therefore be solved very efficiently, and the second equation contains
only one non-linear function evaluation. This is advantageous in many applications in which the
evaluation of f(u) is expensive, as for instance, when it involves numerous exponentials.




2.2. Three space dimensions. Unfortunately the straightforward extension of the two-
dimensional scheme to three space dimensions is not stable when ht/mam{hg,hz} is sufficiently
large. In three dimensions we introduce the following scheme:

ut —u” Dy s n 2, n 2, n n *
e = Tdm(u +u") + Dadyu™ + D3bu™ + af (u™) + Bf (u*)
**% __ M D .D
(4) “_hti = fﬁﬁ(u* +u") + 205w + ) + DadZu” +yf(u) + 6 £ (u*)
n+l _ ,n D .D .D
T = PO )+ RO +un) + 20 ) + () +af ).

It can be shown that for « = f =+ =6 = 0 and ( = 5 = 1/2 the combined equations are a
perturbation of the three-dimensional Crank-Nicholson method and therefore second-order correct
both in time and space. The analytical properties of the method are discussed in detail in [7].

3. Computational Results. In this section we present some numerical results for problems
that demonstrate the performance of the method both for linear and nonlinear systems.

Problem 3.1 This example uses a scalar parabolic equation with anisotropic diffusion on the
unit cube 2. In order to demonstrate the convergence properties of the three dimensional scheme
we first solve the following linear problem

(5) u(x,t) = V-DVu(x,t)+ f(x,8) on Qx{t>0}

where f(u(x,t)) = u(x,t)(—A + 4.27%), D is a diagonal tensor with (d11,dz1,da;) = (1.0,1.4,1.8)
and A = 1. Initial and homogeneous Newman boundary conditions were chosen so that the exact
solution is

(6) u(x,t) = e Ncos(nz)cos(my)cos(mz)
Thus the solution converges to zero exponentially at a rate Ak, i.e.,
(7 u(X,t + he) Ju(x, t) = e

The problem was solved for different values of the time step h; ranging from 0.16 to 0.005, and
space step h = hy = hy = h, from 0.04 to 0.01. Table 1 reports the behavior of the errors and
residual computed at a fixed time according to the following definitions. Let u be the exact solution
and v’ the approximate solution, then we define the absolute maximum error = ||u — u'||oo and the
I relative error = ||u — «/[]2/]|u||2-

The results of Table 1 confirm that the scheme is second order correct both in time and space.
After an initial decrease, the global residual of (5) settles to approximately 10~7 as the time and
space steps are refined. This is also reflected in the values of the maximum absolute error and
relative error. This indicates that the choice of time and space steps is crucial in order to obtain
maximum performance. We conclude from these results that time and space steps of approximately
the same magnitude are the optimal choice for this second order scheme. Indeed as the time step is
decreased, for a fixed space step, the errors and residual do not decrease accordingly, and in some
cases even increase. We attribute this to accumulation of roundoff errors. As a further test the
approximate value of A was derived from the decay ratio (7), obtained with the computed solution,
and found to agree up to the 8th decimal digit with the exact value.
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TABLE 1
The mazimum absolute error, relative error and residual for a 3D non-homogeneous linear parabolic problern with
anisotropic diffusion coefficients.

( | absolute maximum error | I, relative error | residual ]
[ he/h | 40602 | 2.00.02 | 102 | 40602 | 2.0e.02 | 1.0e2 | 40602 | 20602 | 1.0e2_||
1.6e-1 || 2.71e-01 | 2.71e-01 | 2:71e-01 || 9.95¢-01 | 9.95¢-01 | 9.95e-01 | 1.68e-01 | 1.60e-01 | 1.55e-01
8.0e-2 || 9.66e-03 | 9.67e-03 | 9.68¢-03 || 8.80e-01 | 8.80e-01 | 8.80e-01 | 8.76e-05 | 8.30e-05 | 8.06e-05
4.0e-2 || 2.80e-04 | 2.69¢-04 | 2.68e-04 || 1.75e-01 | 1.70e-01 | 1.69e-01 | 1.07e-06 | 9.98e-07 | 9.66e-07
2.0e-2 || 2.65e-05 | 1.70e-05 | 1.47¢-05 || 1.98e-02 | 1.27e-02 | 1.10e-02 | 4.91e-07 | 4.57e-07 | 4.42e-07
1.0e-2 || 1.21e-05 | 2.59e-06 | 3,26e-07 || 9.11e-03 | 1.96e-03 | 2.47¢-04 | 3.57e-07 | 3.32e-07 | 3.22e-07
5.0e-3 || 1.20e-05 | 2.49¢-06 | 2.33¢-07 || 9.04¢-03 | 1.89e-03 | 1.77e-04 | 2.94e-07 | 2.80e-07 | 2.71e-07

Problem 3.2 To test the effects of the non-linear weights we solved problem (5) using the
reaction term

(8) flu(x,t)) = —(e_’\tcos('irzz:)cos(1rz)cos(7rz)\)3 + u(x, t)® + u(x, t) (—1 + 4.272)

In this case the non-linear weights were chosen to bé ¢« = v =1.0,6=6 =0.0,{ =5 = 0.5
This choice generates a second order scheme in which the nonlmeanty is solved implicitly only
in the third equation of (4). The non—hnea.r systems of equations were solyed both by using a
direct Newton’s method as well as usmg the nksol [3] package. The probleni implemented with
nksol was solved by Newton s method as th,e basic nionlinear iteration, where the Newton equations

“““ Krylov iteration. As the Kryldv iteration téchiique we
chose the generalized minimum reSIdual method (GMRES) With the linesearch strategy without
preconditioning. In both cases the tolera,nce for the residual was set to 1077,

In Table 2 we show the maxiiniim absolute efrof and the relative error of the solution obtained
with the Newton’s method. As in the previous example, the order of the scheme is maintained.
However for large time steps both solvers fail to converge within the limit of 200 non-linear itera-
tions. That there is an optimal relationship between temporal and spatial step sizes is even more
apparent in this problem. Indeed, in the numerical experiments we found that h; = h/2 is optimal.
Comparing the performance of the two non-linear solvers we found no relevant differences in the
accuracy of the solution. However the CPU time spent to solve the problem in serial mode with
Newton’s method was approximately half the time required for the solution with nksol.

TABLE 2
The mazimum absolute error and relative error for a 3D non-linear parabolic problem with anisotropic coefficients.

{ | absolute maximum error | I, relative error
[ Fe/h || 40602 | 20002 | L0e2 | 40602 | 2.0002 | L0e2 |
8002 || - - - 5 n »
4.0e-2 || 2.35e-02 | 3.17e-02 | 3.36e-02 || 2.81e-02 | 3.83e-02 | 4.07e-02
2.0e-2 || 2.51e-03 | 4.56e-03 | 6.23e-03 || 2.91e-03 | 5.32e-03 | 7.29e-03
1.0e-2 || 7.42e-03 | 5.74e-04 | 6.23e-03 || 8.55e-03 | 6.67e-04 | 7.29¢-03
5.0e-3 || 8.55e-03 | 1.75¢-03 | 1.05e-03 || 9.84e-03 | 2.03e-03 | 1.22e-03

Problem 3.3 This example shows that the scheme can be used effectively to compute traveling
waves. We extend Fisher’s equation, which describes the nonlinear evolution of a population in a

4




one-dimensional habitat, to three space dimensions. The equation is given by
(9) ug =V -DVu+u(l—u)

where D is a tensor of diffusion coefficients. In this test we consider three particular choices of D,
namely D = (dy1,dz,ds1) = (1,0,0),(0,1,0) or (0,0,1). The initial data is chosen to satisfy

(10) 0<u<l

The general problem, of which (9) is a particular case, has been analyzed theoretically by several
authors [1], in studies which show the existence of a minimum wave speed. In [2] the authors have
found that an exact traveling solution for (9) is given by

(11) u(k-x—St) = (1+ e(k-x—St)\/(_i)))—Z

where k is the direction of propagation determined by D and § is the wave speed. This speed
corresponds to a class of stable minimal wave speed solutions, with exponential decay for k - x = oo.
For D chosen as indicated above, it can be shown [2] that the wave speed is S = 5/1/(6). In our
numerical experiments we set the domain to —10 < z,y,z < 40 to avoid boundary effects that
would interfere and modify the profile and speed of the wave. The initial and Neumann boundary
condition were given by the exact solution (11). This generates a planar wave that propagates
throughout the domain (Fig.1a) in the direction k parallel to the Cartesian planes. The one-
dimensional profile shown in Fig.1a was extracted from the solution at various time steps up to
time ¢ = 20. The profile was taken in the mid plane parallel to the z = 0 plane for a wave
propagating in the z direction (X-wave). Fig.la indicates that the wave propagates from the left
to the right of the domain with its structure preserved. Both non-linear solvers were tested and
found to perform with comparable accuracy. However due to large memory requirements we were
unable to run the problem with nksol for grids larger that (150,150,150) points on a DEC Alpha
2100 with 2 Gbytes of memory. In order to test the effects of the nonlinear weights we computed
the wave speed from the solution. Fig.1b shows the computed wave speed versus time for the three
simulations where the wave was propagating respectively in the z,y and z directions. The weights
of the non-linearities were the same as in problem 3.2. The simulations of waves propagating in
direction with explicit non-linearity, = and y, showed a minimal increase in the speed of propagation.
However after an initial stage the speed was found to converge to a constant value.
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Fig. 1 (a) A one-dimensional profile extracted from the numerical solution of (9). (b) The initial variation
of speed for the three wave propagation simulations.




4. Discussion on parallel implementation. The ADI method consists of solving alterna-
tively in the z,y and z direction at each time step. The particular discretization approach adopted
in the code and the ADI implementation permit to point to independent tasks even in the sequential
code.

At the most elementary level ADI scheme performs a line by line sweep in all the directions on the
entire domain. .

In two dimensions the domain sweep is performed by two do-loops (X-sweep and Y-sweep) as the
following : :

'

do I=1,ny do J=1,nx
solve for row solve for col
enddo enddo

In three dimensions the sweep is performed by three nested do-loops as:

do J=1,nz do J=1,nz do J=1,ny
do I=1,ny do I=1,ny do I=1,nx
solve for row solve for col i solve for ver
enddo enddo enddo
enddo enddo enddo

where ’row,col,ver’ should be interpreted as one-dimensional problems in the z, ¥ and z direction.

If the storage of the mesh points is done by lines in the z direction then the solution of the X-
sweep is equivalent to solving N, in two dimensions (and Ny * N, in three dimensions) independent
systems. It must be noticed that because of the splitting of the ADI, adjacent ’rows’ only require
updated values from points laying along the same direction. '

On a parallel computer with n processors, the load can then be equidistributed among all the pro-
cessors since there are no dependencies. Running preliminary tests in a shared memory environment
we were able to obtain speed-ups close to peak performance. In a distributed memory environment
the amount of communication involved in passing data among different sweeps of the ADI pro-
cedure has greatly penalized the performances, even when the load was perfectly balanced. This
factor is often cited as the main drawback of ADI in regards to its implementation on distributed
memory machines [8].

The Y- and Z- sweeps constitute a system whose stride is greater than nz. However, if we
reorder the grid points by lines in the y ( and z) direction, we can treat the system in a similar
way as before and expect to obtain the maximum speed up.

The code has been implemented on a 12 processor Silicon Graphics Power Challenge and a
3 processor DEC 2100 Alpha. Preliminary results for the parallel implementation of the three-
dimensional ADI have shown that, by proper reordering of the unknowns and by applying the
coarse grain parallelization described above, we can obtain satisfactory global speedup for several
wave propagation problems. Further studies in this direction will be devoted to improve storage
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requirement and spatial splitting techniques for large realistic reaction-diffusion models.

5. Conclusions . We have presented a two and three dimensional implementation of a fully-
implicit Alternating Direction Implicit method for nonlinear parabolic systems of partial differential
equations. In the two dimensional case of dimension nz+ny, the solution is reduced to the solution of
nz*ny one-dimensional problems. In the three-dimensional case, a problem of dimension nz*ny*nz
is solved by nz % ny + nz * nz + nz * ny one-dimensional problems. Results from the examples
demonstrate the performance of the method. The first example was used to compare various
spatial and time steps, confirming that for the correct choices of the weights of the non-linearities,
the scheme is second order accurate both in space and time. The third example indicates that
our scheme can be used to solve realistic problems of reaction-diffusion type. The results show
the effects of unidirectional propagation in excitable media. In our implementation, the auxiliary
storage in the Newton-Krylov iteration accounted for almost half of the total size of the problems.
This limitation indicates that Newton-Krylov methods may not be suitable for three-dimensional
large problems where resources are limited. Finally our tests show that for wave propagation
problems the performance of the Newton method is on the average two to two and a half times
faster in solving problems with the same tolerance.

6. Acknowledgements. This work was supported in part by NIH Grant # GM29123. We
thank the Utah Supercomputing Institute for the use of the Silicon Graphics Power Challenge.
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This talk will focus on practical experiences with iterative linear solver algorithms used in
conjunction with Amoco Production Company's Falcon oil reservoir simulation code. The
goal of this study is to determine the best linear solver algorithms for these types of
problems. The results of numerical experiments will be presented.
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ABSTRACT: A NECESSARY AND SUFFICIENT SYMBOLIC CONDITION
FOR THE EXISTENCE OF INCOMPLETE CHOLESKY FACTORIZATION*
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Incomplete Cholesky factorization (IC) is a widely known and effective method of accel-
erating the convergence of conjugate gradient (CG) iterative methods for solving symmetric
positive definite (SPD) linear systems. A major weakness of IC is that it may break down
due to nonpositive pivots. Methods of overcoming this problem can be divided into two
classes: numerical and structural strategies. A numerical strategy uses numerical values
generated during the factorization process to modify the factorization, as in the work by
[Jennings and Malik, 1977, Manteuffel, 1979, Munksgaard, 1980, Wittum and Liebau, 1989].
A structural strategy, as in the work by [Coleman, 1988], selects the sparsity pattern to insure
the completion of the IC process. Structural strategies are important for applications where a
sequence of linear systems must be solved, each coefficient matrix with the same non-zero pat-
tern. This occurs when solving linear programming problems using interior point methods, or
when solving discretized nonlinear partial differential equations with a fixed mesh. Although
the values can change from one step to another, the sparsity pattern is fixed.

This talk does not give any specific algorithm for modifying the sparsity pattern to assure
the existence of IC. Instead, we present a sufficient and necessary condition on the sparsity
pattern of the incomplete Cholesky factor for the existence of IC, for SPD matrices with
a given sparsity pattern. This condition, called property Cy, is more general than that in
[Coleman, 1988], and includes Coleman’s sparsity pattern condition as a special case. The
necessity condition says that for a given sparsity pattern Q for a SPD matrix, if the target
sparsity pattern P of the incomplete Cholesky factor does not satisfy property C,., then there
is some SPD matrix B with sparsity pattern Q, for which incomplete Cholesky factorization
will break down.
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Advanced Incomplete Factorization Algorithms JSor Stiltijes Matrices

V.P.Il'n
Computing Center, Siberian Division RAS, Novosibirsk, Russia

The modern numerical methods for solving the linear algebraic systems Au = f with high
order sparse matrices A, which arise in grid approximations of multidimensional boundary
value problems, are based mainly on accelerated iterative processes with easily invertible
preconditioning matrices presented in the form of approximate (incomplete) factorization
of the original matrix A, see [1], [2] for example. We consider some recent algorithmic
approaches, theoretical foundations, experimental data and open questions for incomplete
factorization of Stiltijes matrices which are "the best" ones in the sense that they have the
most advanced results. Special attention is given to solving the elliptic differential
equations with strongly variable coefficients, singular perturbated diffusion-convection and
parabolic equations.

In general, the block tridiagonal Stiltijes matrix A=D-L-U with block diagonal or diagonal
matrix D, low- and upper-triangular matrices L, U = L' can be approximated by the
factorized matrix B=(G - L)G'(G - U), where G is block-diagonal matrix defined by some
approximations of Shur complement matrices of A and G is inverse of G. We describe
two sets of explicit and implicit methods with closure in the sense that in limit B is the
exact factorization of A.

There are presented several modifications of the algorithms with various iterative
parameters which provide the generalization of wellknown methods and application of
extended row sum criteria

Byk=Ayk, k=1,2,.,
the symmetrized alternating direction methods with nonsymmetric preconditioners,
adapted "flow-directed" algorithms, some versions of algebraic domain decomposition and
hierarhical multigrid approaches. Both theoretical estimates and computational results are
included.
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Convergence Acceleration for Time-independent First-order PDE
using Optimal PNB-approximations
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January, 1996
Abstract

We consider solving time-independent (steady-state) flow problems in 2D or 3D gov-
erned by hyperbolic or “almost hyperbolic” systems of partial differential equations (PDE).
Examples of such PDE are the Euler and the Navier-Stokes equations. The PDE is dis-
cretized using a finite difference or finite volume scheme with arbitrary order of accuracy. If
the matrix B describes the discretized differential operator and u denotes the approximate
solution, the discrete problem is given by a large system of equations

Bu=g. (1)

In many cases, the system is non-linear, and B = B(u). A standard solution procedure,
often used in application codes, is defined by solving the time-dependent problem corre-
sponding to (1):
du . B 5
S =r@=g-Bu. @)
The problem (2) is solved using an explicit stationary iterative method in time, e.g., a
three- or five-stage Runge-Kutta iteration. The iteration is pursued until steady-state is

réached, i.e., until r(u) ~ 0.

Normally, some form of convergence acceleration is applied to attain an acceptable
rate of convergence. This implies that instead of (2), the following problem is solved

d :

d—z =M"'r(u) = M~ (g — Bu). (3)
Here, the matrix M corresponds to a preconditioner. Standard convergence acceleration
procedures are, e.g., local time-marching (M is diagonal) and implicit residual smoothing

* This work was supported by the Swedish National Board for Industrial and Technical
Development (NUTEK)




(M ia a Kronecker product of tridiagonal matrices, one for each dimension in space). A
common property for these methods is that the maximal step k in pseudo-time is deter-
mined by a CFL-criterion of the type k = O(hmin), Where hmin is the minimal space-step.

We describe a new convergence acceleration technique, where M is chosen as a PNB-
approzimation [2] [3] of B, or possibly a matrix closely related to B. The matrix M
corresponds to a separable PDE-problem, where the discretization in one space direction
is constructed so that the corresponding matrix is diagonalized by a unitary transforma-
tion. If this transformation is computable using a fast O(nlog, n) algorithm, the resulting
convergence acceleration step is of the same complexity. Also, since the solves are based
on a dimensional splitting, the intrinsic parallelism is good. '

Different choices of the unitary transformation are considered, e.g., the discrete Fourier
transform, sine transform, and modified sine transform. The preconditioners fully exploit
the structure of the original problem, and in earlier work [2] it is shown how to compute
the parameters describing them subject to different optimality constraints.

Numerical experiments for model problems in 2D are presented, where the PNB con-
vergence acceleration procedure is compared to other techniques. The results are very
encouraging. When the PNB approximations are utilized, the step k in pseudo-time is not
limited by a CFL-criterion of the type described above, and &k = O(1) may be used for all
sizes of the spatial grid. In fact, the number of iterations required for convergence actually
decreases slightly as the number of gridpoints in space increases. Also, the results show
that, when exploiting the PNB approximations, the three- or five-stage Runge-Kutta iter-
ation may be exchanged by the one-stage Euler forward iteration without any decrease in
convergence rate. Comparing the arithmetic work required for convergence, the conclusion
is that for large problems the solution is computed more than 20 times faster than if the
standard implicit residual smoothing procedure is used. -

The numerical results are related to theoretical results obtained for related problems
in earlier work [1], and finally the implementation of the PNB convergence acceleration
procedure in existing codes for non-linear application problems is discussed.
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Abstract. We consider ill-conditioned symmetric positive definite Toeplitz systems T,z =
b. If we want to solve such a system iteratively with the conjugate gradient method, we
can use band-Toeplitz-preconditioners or Sine-Transform-peconditioners M = SpASy, Sn
the Sine-Transform-matrix and A a diagonal matrix.

A Toeplitz matrix Ty, = (#;-)?;—; is often related to an underlying function f defined
by the coefficients ¢;, j = —o0,..,—1,,0,1,..,00. There are four cases, for which we want
to determine a preconditioner M:

- T, is related to an underlying function which is given explicitly;

- T is related to an underlying function that is given by its Fourier coefficients;

- T, is related to an underlying function that is unknown;

- T, is not related to an underlying function.
Especially for the first three cases we show how positive definite and effective precondi-
tioners based on the Sine-Transform can be defined for general nonnegative underlying
function f. To define M, we evaluate or estimate the values of f at certain positions, and
build a Sine-transform matrix with these values as eigenvalues. Then, the spectrum of the
preconditioned system is bounded from above and away from zero.

Key Words. Toeplitz matrix, preconditioning, Sine transform.

AMS(MOS) Subject Classifications. 65F10,65F35
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First-Order System Least-Squares for Second-Order Elliptic
Problems with Discontinuous Coefficients: Further Results
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Abstract

Many physical phenomena are modeled as scalar second-order elliptic boundary value prob-
lems with discontinuous coefficients. The first-order system least-squares (FOSLS) methodology
is an alternative to standard mixed finite element methods for such problems. The occurrence of
singularities at interface corners and cross-points requires that care be taken when implementing
the least-squares finite element method in the FOSLS context. We introduce two methods of
handling the challenges resulting from singularities. The first method is based on a weighted
least-squares functional and results in non-conforming finite elements. The second method is
based on the use of singular basis functions and results in conforming finite elements. We also
share numerical results comparing the two approaches.




. "Least-squares methods involving the HA{-1} inner product."
author:
Joe Pasciak

Abstract:

Least-squares methods are being shown to be an effective technique
for the solution of elliptic boundary value problems. However, the
methods differ depending on the norms in which they are formulated.
For certain problems, it is much more natural to consider
least-~squares functionals involving the $HA{-1}$ norm. Such norms
give rise to improved convergence estimates and better
approximation to problems with 1low regularity solutions. In
addition, fewer new variables need to be added and less stringent
boundary conditions need to be imposed. In this talk, I will
describe some recent developments involving least-squares methods
utilizing the $HA{-1}$ inner product.
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AZTEC: A parallel iterative package for the solving linear systems

Scott A. Hutchinson, John N. Shadid, Ray S. Tuminaro
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Albuquerque, NM 87185

We describe a parallel linear system package, AZTEC. The package incorporates a
number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and
preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or
ILU within subdomains). Additionally, AZTEC allows for the reuse of previous
preconditioning factorizations within Newton schemes for nonlinear methods. Currently,
a number of different users are using this package to solve a variety of PDE applications.

In this talk we emphasize the parallel programming ease and the overall efficiency of
AZTEC. Ease-of-use is attained using the notion of a global distributed matrix. The global
distributed matrix allows a user to specify pieces (different rows for different processors)
of an application matrix exactly as in the serial setting. Efficiency is achieved by using a
transformation function which rewrites the user supplied matrix into one more convenient
for efficient distributed memory computing (locally numbered entries, ghost variables,
grouped messages). Additional performance is attained using efficient dense matrix
algorithms for block sparse matrices.

AZTEC can be used on the Intel Paragon, nCUBE 2, IBM SP2, individual workstations
(e.g. SUN and SGI) and uses the MPI message passing system.




On the Implementation of Parallel Implicit USSOR Methods for Solving Discrete
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In this paper, we consider certain iterative methods for solving discrete periodic problems
based on the standard 5-point finite difference representation of the Poisson equation

in two dimensions. For a given positive integer m, our procedure involves the
implementation of m**2 single iterations of the implicit USSOR (unsymmetric SOR)
method based on the use of m**2 pairs of relaxation factors, followed by the construction
of a linear combination of the results of those iterations. It has previously been shown by
the authors that the result obtained by this process is the same as one would obtain by
using m iterations of the SSOR methods with varying relaxation factor in sequence. (Thus,
there is a potential saving in the wall-clock time of a factor of m.) To carry out the
implicit USSOR method, we consider various procedures including the (non-implicit)
SOR method. The choice of the optimum relaxation factor for the SOR method and

the estimation of the corresponding convergence properties is greatly simplified since a
related matrix is p-cyclic.
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A new Arnoldi approach for polynomial
eigenproblems

Femke A. Raeven

Abstract

In this paper we introduce a new generalisation of the method of
Arnoldi for matrix polynomials. The new approach is compared with the
approach of rewriting the polynomial problem into a linear eigenproblem
and applying the standard method of Arnoldi to the linearised problem.
The algorithm that can be applied directly to the polynomial eigenprob-
lem turns out to be more efficient, both in storage and in computation.

1 Introduction

Large polynomial eigenproblems are usually rewritten into a larger linear eigen-
problem in actual computations. The linear problem can be solved with, e.g.
the method of Arnoldi [1] or Lanczos [4]. For quadratic problems the Lanczos
method is studied in [5]. A disadvantage of these approaches is that the lin-
earised problem is of larger size and the basis vectors of the subspaces involved
in these subspace methods are large as well. We will see that the method of
Arnoldi can be generalised, such that the basis vectors have the same length as
the dimension of the matrices in the matrix polynomial.

In Section 2 we discuss how polynomial problems can be rewritten into linear
eigenproblems and how Arnoldi’s method is applied to these problems. The
generalisation of the Arnoldi method is presented in Section 3. It also becomes
clear why less storage is required for this new approach. In Section 4 we explain
that it is also more efficient in computation. We illustrate these observations in
Section 5 with an experiment.

2 The method of Arnoldi on the linearised form

Suppose we want to solve a polynomial eigenproblem:

P\)u = i MAu=0. (1)

i=0

In this equation the A; represent n X n matrices. A solution of this problem is a
pair (A, u) of a scalar eigenvalue A and an eigenvector u, for which (1) holds. For




simplicity, we assume the polynomial P()) to be monic: Ay = I. Every non-
monic problem with non-singular Ay, can be transformed into a mathematically
equivalent monic one by a multiplication with 47}

In computations, the usual approach is to rewrite (1) as a linear eigenproblem
Au = du. If A, = I, then (1) is equivalent to

—Amp_1 e e —-A; =4 am—1y A1y
I A2y AM—2y
=) : . ©
I U U

For this linear problem, we can use the niethod of Arnoldi.
The method of Arnoldi for general linear eigenproblems Au = Au constructs
the Krylov subspace ;

-Kk(AiyO) = span{yo, Avo, A%y, ..., A* 0}

The basis vectors y; = Afyq are orthonormalised and collected as the columns
of a projection matrix V3, which projects a vector in C™ onto the Krylov sub-
space. After a number of iteration steps, approximations for the eigenvalues
and eigenvectors are calculated as the solutions of the projected problem

Vi AVyz = 0z.

The scalars 6 are called the Ritz values; the vectors z are called the Ritz yectors.
As the Krylov subspace expands, the exterior Ritz values converge to the
exterior eigenvalues. More details about the method of Arnoldi can be found in

[1] and [7].

3 Using the information more efficiently

A disadvantage of the linearisation approach in Section 2 is that the dimension
of the linear eigenproblem is m times as large as the dimension of the original
problem, where m is the degree of the matrix polynomial. The amount of
memory required to store the projection matrix Vi isn-m-k. If n is large, then
this amount may be huge. We will see that much of the information in V; is
stored double.

Suppose we start the method of Arnoldi on (2) with the starting vector

Zo
Yo = . )
Lem+l /

where g, ..., _m41 are vectors of length n. Then, the Krylov subspace Ki(C'; vo)
with C the matrix from (2) is -

K5(C; %) = span{yo, Cyo, Cyo, C3¥o, .-, C*"1yo} =




= span{ ) , ] , ) ey ] }
Lem+1 Tomi2 Tem43 Temik
where
m-—1
Tipr = —Am-1%i — Ap_2Zi1 — ... — AoZpmyrpi = — Z AjT_mirtivi, (3)
j=0
for all 7 > 0.

Instead of storing y;, it also suffices to store z;. We propose the following
approach for matrix polynomials:

Generalised Arnoldi for matrix polynomials
o Choose orthonormal starting vectors zq,..., Toml-
o Put W = [z, ..., 2_pmyi].
o iterate:

— Compute z;4; with the recursion in (3).

— Orthonormalise z;41 against previous iterates and add this vector to
w.

e Solve the projected system W*P(§)Wz = 0.

Because the z;’s are of the same dimension as the original problem, and
because they are approximations for eigenvectors of the original problem, they
can be used to project the polynomial. This method will be referred to as the
generalised Arnoldi method for matrix polynomials.

We compare the storage requirements for both approaches. The linearisation
of a non-monic polynomial problem into a linear problem Au = ABu is of
dimension m - n. In the Arnoldi method we need to store Vi, A - Vi, and
B - V. The total amount of storage is therefor 3 - k - n - m. For the generalised
Arnoldi method on the same matrix polynomial, we need Wy, and A4; - W;, for
all 0 < 7 < m. The number of starting vectors is m, so for k — 1 iterations W is
a n X (k +m — 1) matrix. The total amount of storage is (m + 2)(k +m — 1)n,
which is, for polynomial problems, smaller than 3knm if & > m.

4 Comparing subspaces
We have seen that the storage requirements can be reduced by the generalised

Arnoldi method. We also want to investigate how the approximations com-
pare with the approximations of the standard Arnoldi method on the linearised




eigenproblem. In other words, we want to compare the solutions of

W*P(0,)Wz, =0, L@
with the solutions of
Ay e e —Ay —Ao
I
v* . Vzs = 0sz,. (5)
I

Since the dimensions of the two problems are not equal, they are not comparable.
Equation (4) can be rewritten into the equivalent formulation

/’\m——ly Am—ly
)\m—2y )‘m—zy
Q : =A ° ) (6)
Y Yy
with
“W*Ap W oo oo “WHAIW —-W*AW
I
Q=
I

In the matrix @, the projections can be taken out to obtain:
w * w
' cy ) (7
w ). w

O
i

where C is the matrix in (5).

We conclude that problem (4) can be viewed as a pro_]ected linear problem
with a special projection matrix.

Comparing the two solution methods comes down to a comparison of span{V'}
with m times the direct sum of span{W}, @ yspan{W}. The number of
columns of the projection matrix in (7) is m times as large as the number of
columns in V. Thus, ®2yspan{W} is much larger than span{V}. In fact
span{V} C &% 1.<>‘pan{W}, because each basis vector (i, Ti=1, .., Tiem+1)’ €
span{V'} is contalned in @ﬁospan{W} since each z; € span{W}

This observation shows, that in each iteration step the subspace of the gen-
eralised Arnoldi method contains an approximation for the eigenvectors, that
is at least as good, but probably better than the approximation by standard
Arnoldi method for linearised problem.
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Figure 1: Arnoldi versus Generalised Arnoldi

5 An experiment

We have tested the generalised Arnoldi method on a quadratic problem from
mechanics of the form

MMu+Au+(M+c-Fu=0.

In this problem M is a diagonal matrix with diagonal elements M; = i/n. The
matrix F is a tridiagonal matrix with 2 on its main diagonal and -1 on the
co-diagonals.

We solve the equivalent monic problem

NIu+ AMud(I+c- M~ F)u=0.

The dimension of the matrices was taken as 5,000. If the scalar c is large, then
the exterior eigenvalues are clustered. We have chosen ¢ = 10, 000.

Figure 1 shows the norm of the scaled residual for both methods. The con-
vergence behaviour of the standard Arnoldi method is rather wild. From Table 1
we see why. Table 1 shows the Ritz value with the largest absolute value in each
step. This is expected to be the best approximation for the dominant eigenvalue
The generalised Arnoldi method selects a good approximation for the largest




standard generalised

1| —1.089-102 — 9.0965 - 10%¢ | —1.4821 - 10° +4.4523 - 10°¢
2 9.9754 - 103 —2.2499 - 10° + 8.6237 - 103
3 —1.5796 - 10* —2.9954 -10% — 1.0335 - 10%
4 2.4515 - 10* ~2.2623 - 10% — 1.0463 - 10%
5 —1.1796 - 10% —2.1858 - 103 — 1.0608 - 10%
6 4.4340 - 10% —2.1754-10% — 1.0614 - 10%
7 —1.4771 - 10* —2.1753 - 103 + 1.0614 - 10%
8 4.4691 - 10* —2.1753 - 10% 4+ 1.0614 - 10%
9 —1.2729 - 104 —2.1753 - 10% 4 1.0614 - 10%
10 3.9214 - 10* —2.1753 - 103 4 1.0614 - 10%
11 —1.1769 - 10* —2.1753 - 10% — 1.0614 - 10%
12 3.4910 - 10¢ —2.1753-10% — 1.0614 - 10%
13 —1.1236 - 10* —2.1753 - 103 — 1.0614 - 10%
14 2.9369 - 104 —2.1753 - 10% 4 1.0614 - 10%
15 —1.1238 - 104 —~2.1753-10% — 1.0614 - 10%
16 2.4815 - 10* —2.1753 - 103 — 1.0614 - 1044
17 | —2.1753 - 108 — 1.0614 - 10% | —2.1753 - 10% 4 1.0614 - 10%;
18 2.3576 - 10* —2.1753 - 103 — 1.0614 - 10%
19 | —2.1753 - 10 — 1.0614 - 10% | —2.1753 - 10% — 1.0614 - 10

Tablé 1: Selected Ritz values

eigenvalue from the second iteration. The method of Arnoldi on the linearised
form computes Ritz values that are bad approximations for eigenvalues up to
iteration 17. The number of iterations to find an approximation for which the
norm of the residual is smaller than 10~2, is about the same: 16 versus 19, but
the convergence of the generalised Arnoldi method is monotone. This property
can be of crucial importance if restarting is used. If we restart after 10 iterations
with the best Ritz vector so far as a starting vector, then the standard Arnoldi
method needs 61 iterations. The generalised Arnoldi method maintains largely
its convergence behaviour after restarting, and needs only 28 iterations.

6 Concluding remarks

We have proposed a generalisation of the method of Arnoldi for polynomial
algorithms. We have shown that our approach saves memory and also leads to
approximations that are at least as good as for the standard Arnoldi method
for the linearised form of the polynomial problem.

Many details about the method still have to be examined. The method,
as presented here, computes only exterior eigenvalues for monic problems. A
non-monic implementation is required, since most problems are non-monic. We
also have to develop a shift-and-invert approach for matrix polynomials for the




computation of interior eigenvalues. On restarting more research has to be done
as well.

We have seen that the rather wild convergence behaviour of the Arnoldi
method on the linearised form may be smoothened by the generalised Arnoldi
method. Probably, this is caused by the fact that the subspace for the gener-
alised Arnoldi method projects the original problem, while the standard Arnoldi
method projects the linearised problem, which may be very ill-conditioned. To
understand these results in detail, more research is needed.
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Abstract

The Arnoldi iteration is an efficient procedure for approximating a sub-
set of the eigensystem of a large sparse n X n matrix A. The iteration
produces a partial orthogonal reduction of A into an upper Hessenberg
matrix H,, of order m. The eigenvalues of this small matrix H,, are used
to approximate a subset of the eigenvalues of the large matrix A. The
eigenvalues of H,, improve as estimates to those of A as m increases. Un-
fortunately, so does the cost and storage of the reduction. The idea of
re-starting the Arnoldi iteration is motivated by the prohibitive cost asso-
ciated with building a large factorization.

This talk considers the various approaches used to re-start the iteration.

In exact arithmetic, all schemes should generate almost the same or-
thogonal and upper Hessenberg matrices. However, numerical examples
are presented that serve to illustrate how the variants may drastically dif-
fer in practice. Analysis is presented that explains the generally superior
properties of the Sorensen’s implicitly re-started Arnoldi iteration, IRA,
over all the others. However, Sorensen’s approach, as originally proposed,
also suffers some numerical difficulties.

Recent work explains these difficulties. The analysis exploits the fact
that the IRA iteration is mathematically equivalent to a truncated QR
iteration. Thus, general purpose software may be constructed for the nu-
merical solution of the large scale eigenvalue problem.
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Abstract

Model order reduction based on Krylov subspace iterative methods has recently
emerged as a major tool for compressing the number of states in linear models used
for simulating very large physical systems (VLSI circuits, electromagnetic interac-
tions). There are currently two main methods for accomplishing such a compression:
one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numer-
ically stable procedure for finding Padé approximations, while the other is based on
a less well characterized Arnoldi algorithm. In this paper, we show that for certain
classes of generalized state-space systems, the reduced-order models produced by a
coordinate-transformed Arnoldi algorithm inherit the stability of the original system.
Complete Proofs of our results will be given in the final paper.

1 Introduction
Consider the generalized state space system described by

Lt = —Rx+bu )
y = c'z
where ,b,C € R*,y,2 € R, L,R € R***, and R is assumed invertable. This is a single-
input/single-output system whose transfer function is given by

G(s) = (I — sA) b, @

where the n x n matrix A = —R™IL, and the vector b,, = R™!b € R". If the complex
eigenvalues of A have strictly negative real parts, then the system (1) and the transfer
function (2) are said to be stable. Stable systems such as (1) arise in a variety of engineering
contexts, particularly circuit analysis and simulation [1, 2, 3, 4, 5, 6].

*This work was supported by ARPA under contracts DABT63-94-C-0053 and N00174-93-C-0035, NSF
under contract 9117724-MIP, and the Semiconductor Research Corporation under contract SJ-558.
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In a wide variety of applications, the dimension of the model given by (1) or (2) can be
tens of thousands, and is part of a large nonlinear dynamical simulation. Thus, the nonlinear
simulation can be made much more efficient if a reduced-order model is used in place of (1).
The most common and simplest way to compute a reduced-order model for G(s) is to use a
Padé approximation. Expanding (2) into a McLaurin series we get

G(s) =c" (I — sA) by =Y myst. (3)
=0
where

g = T A¥D,, | @

is known as the k** moment of the transfer functlon A Padé approximation of ¢** order is
then defined as the rational function

bg—187"1 4+ b5+ bo
agST+ Gg_18T 1 - Fars+1

GI(s) = )
whose coefficients are selected to match the first 2¢ — 1 moments of the transfer function.

Padé approximates can be computed using direct evaluation of the moments, followed
by a moment-matching procedure [1]. Unfortunately this approach is known to be ill-
conditioned as obtaining the moments involves the computation of the quantities AFb,,,
which corresponds to vector iterations with the matrix A. Instead, nonsymmetric Lanczos-
style algorithms can be used [7, 5]. Such algorithms avoid the power iterations by recovering
information about more than one eigenvalue of the matrix, thus allowing higher-order ap-
proximations to be obtained and higher accuracy to be achieved. They generate a sequence
of bi-orthogonal vectors thereby reducing the matrix A to a sequence of tridiagonal matrices
which are successively better approximations to the original system. It can be shown that
these are in fact exactly the Padé approximations and that the pole-residue representation
of the ¢** order Padé approximant, (5), can be obtained by running g iterations of the non-
symmetric Lanczos algorithm and by computing an eigendecomposition of the tridiagonal
matrix produced.

An alternative approach to using the nonsymmetric Lanczos algorithm, Whlch robustly
generates an approximation somewhat different from Padé’s, can be derived using an Arnoldi
process [8, 2]. Herein, the idea is to select an orthonormal basis for the Krylov sub-
space Ki(A,by) = span{by, Aby,, A%b,,,---, A¥'b,}. Similar to the Lanczos process,
the Arnoldi algorithm is a better conditioned process than direct evaluation of the moments
because it generates an orthogonal set of vectors which span Arb,, k=0,...,2¢—1.

After g steps, the Arnoldi algorithm returns a set of g orthonormal vectors, as the columns
of the matrix V; € R™*¢, and a g x ¢ upper Hessenberg matrix H,. These two matrices
satisfy the following relationship

AVy =V H,+ hq+1,q”q+le§ (6)

where e, is the g™ unit vector in R™*™ and v,4; € R" is a vector of unit norm orthogonal
to the ¢ columns of V.
From (6), it can easily be seen that after g steps of an Arnoldi process, for k < g,

A*by = b2 A*Vier = [bmlloVeHker. | (7)
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With this relation, the moments (4) can be related to H, by

me = ¢ Aty = BTV, HE e ®)
C, Ak b.

for k < g. So, by analogy with (4), the ¢** order Arnoldi-based approximation to G(s) can
be written as
G(3) = [Ibmlla€" Vo (I — sH ) ey (9)

where GA () matches roughly half the number of moments of the ¢** order Padé approxima-
tion, GP (). As we will show in the subsequent sections, there is a reward for this factor of

two loss in efficiency, G’A(s) inherits certain stability properties of A, where as GP (s) does
not. This is a direct result of a corollary derived from (6), that

VZ'AVq = H,, ‘ (10)

which means that the matrices A and H, are related by a congruence transform [6].

2 Main Results

As observed in [6], an important consequence of (10) is that if the matrix A is negative
definite then so is the matrix H,. In general, negative definiteness implies stability, but
for normal matrices the properties are equivalent. This implies that if A is either negative
definite, or normal and stable, then H, is stable regardless of the model order. However,
although the matrices £ and R are frequently symmetric and pesitive definite, the matrix
system A = —R~!L is not necessarily normal or negative definite. Since matrix stability is
a property of the spectrum, it is basis independent, but negative definiteness and normality
depend on the basis chosen for the state space R*. A natural question then is whether there
is a change of coordinates in the state space such that the resulting system matrix is negative
definite. If £ and R are symmetric and positive definite, the answer is indeed affirmative
as can be seen from the change of variable z = R2z where R is the unique symmetric,
positive, definite square root of the symmetric, positive, definite matrix R. From this it
follows that (1) can be written as

(RTILR %)z = —z + R Zbu, (11)

and that the output equation becomes y = TR~%z. The modified system matrices are now
given by
A=_RiLR™Z, b=R"3b, & =R, (12)

As it can be easily verified, moments are invariant under a change of coordinates in the
state space. Therefore, a reduced order model that matches the moments of (12) will also
match the moments of the original system.

Note that in the modified model, the matrix A has the interesting properties of being both
symmetrlc and negative definite. Applying the Arnoldi algorithm to the Krylov subsapce

Kq(A, B) will result in matrices V, and H , such that

V,AV, =1, (13)
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where now the matrix H ¢ Shares with A the properties of symmetry and negative defi-
niteness. Moreover, H is tridiagonal because it is upper Hessenberg and symmetric. We
assemble these results in the following

Theorem 2.1 Under the assumption that the state space model is given by (1) where both £
and R are symmetric postive definite, and for any integer g > 1, there exists a stable reduced-
order model of order q with a tridiagonal, symmetric, negative definite, system matriz H
The transfer function of the reduced model is given by

i 1 . = \~1
Gy (s) = |R72b||;c"R™2V, (I — sH,) ey, (14)

where R? is the unique symmelric, positive definite, square root of the matriz R.

In summary, model-order reduction for these systems using the Arnoldi algonf;hm is guar-
anteed stable at any order. The form of the above transfer function might lead to the belief
that the computation of the matrix 'Rz potentially a costly operation, is needed. But just
as in efficient preconditioned ConJugate-Gradlent algorithms [9], the explicit computation
of the matrix square-root can be hidden in the algorithm’s inner products. In the next
paragraph, we describe this technique.

Square-root-free Arnoldi iteration In order to obtain the stable transfer function (14),

the Arnoldi algorithm was applied to the Krylov subspace qu(—-R_%L’R,’%,"R'%b). In

fact, the stable transfer function can be obtained without the explicit computation of RE.

More precisely, we can show that the Arnoldi iteration on K (= 'R,‘%LZ'R,“l ;b) is related

through an invertible linear transformation to an Arnoldi iteration on the Krylov subspace
K(—LR™Lb). ,

In addition to being “square-root-free”, an interesting feature of the Arnoldi process on
the latter Krylov subspace is that it uses as a dot product the one induced by the matrix
P = R7! rather than the canonical dot product of R*. The basis constructed by the
Arnoldi iteration will be orthonormal with respect to the matrix P. Finally, we will show

that the stable transfer function (14) can be entirely determined using the Arnoldi iteration
in Kj(—LR™L,b).

Correspondence: We now give explicitly the correspondence between the Arnoldi itera-
tion for the Krylov subspace ICq(—’R‘% R™I, R b) and the P-orthogonal Arnoldi iteration
for the Krylov subspace K,(—LR™,b). Let ¢ be an integer < n. For 1 < k < g, denote by
Vi and H the output matrices of the Arnoldi algorithm and by U and K the output
matrices of the P-orthogonal Arnoldi algonthm at the k-th iteration. Recall that these
matrices satisfy the equalities

—RTILRTIV = ViH, + hiys sOrsrel VIVi=1I, (15)
—-/:R,_IU]C =UiK; + kk+1,kuk+1ef . UZ‘PU/: =1I; (16)

Proposition 2.2 The two Arnoldi iterations on the Krylov subspaces qu(—R"liﬁ’R,"’%, 'R,"%b)
and Ko(—LR ™, b), respectively, are related by the equations Vi = R™3U; and Hy = K.

_—_— e -,




Transfer Function: We would like now to show that the state-space representation and
the transfer function of the reduced-order model could be entirely determined from the
outputs of the P-orthogonal Arnoldi process on the Krylov subspace ICq(—ER_l, b).

After g steps, the P-orthogonal Arnoldi algorithm applied to the Krylov subspace
Kq(—LR™, b) returns a set of ¢ P-orthonormal vectors, as the columns of the matrix U, €
R™*9, and a gxq tridiagonal matrix H,. These two matrices satisfy the following relationship

- ER_IU;I = U('].El’q + 7Lq+1,quq+1eg' (17)

where e, is the ¢** unit vector in R™*™,

From (17) and the fact that Ugze; = b/||b|lp (||||p is the norm induced by the matrix
P), it can be easily seen that

—LR7b = [Bllp(~LR™)Tyer = [Bll,T; H e,

Multiplying through by R, we get A (’R,_lb) = ||b||p’R_1U{]flqel. Note that the vector
- R™!b corresponds to the input vector of a transfer function associated with the state-space
representation (1). Therefore, the first moment m; is given by

my = cTAR™b = ||b]|pc"RIU,H se;.

Since H ¢ i1s an upper Hessenber matrix, e:";fI:el =0, 1 < k < g. Therefore, the power
iterates of A and H are related by

A*R7b = ||b]l,RU,HL ey, 0<Ek<g.

In other words, if we choose the triplet (fI o €1, ”b”zUZ"R,‘lc) for the reduced-order model,
we could match ¢ moments of the original model.
With this choice of the reduced state-space representation, the reduced transfer function
an be written as 4 -
G, (s) = [bllo"R™Y, (I, — sH,) " e (18)

The transfer functions (9) and (18) differ in that the upper Hessenberg matrix in (18) is
now guaranteed symmetric, therefore tridiagonal, and stable. The presence of the matrix
R~} (= P) can be construed a result of endowing the state space R* with the P-induced dot
product. Note also that the U, matrix is P-orthonormal rather than orthonormal like the
V4 matrix. We finally state the following result about the nature of the coefficients of the
tridiagonal matrix H,.

Corollary 2.3 The output matriz H, of the P-orthogonal Arnoldi algorithm applied to
the Krylov subspace Ko(—LR™,b) has negative coefficients on the diagonal and positive
coefficients on the subdiagonals.

This corollary could for instance be used to check up the correctness of the algorithm imple-
mentation.




3 Conclusions and Acknowledgments

In this paper, we demonstrated that for certain types of generalized state-space systems,
the Arnoldi-based model-order reduction algorithms have the numerically and physically
important feature of generating reduced order models that inherit the stability properties of
the original system at any order. This result was obtained via a coordinate transformation
in the state space of the original system and the application of the Arnoldi algorithm to
the transformed Krylov subspaces. It is worth noting that our stability result holds when
block versions of the Arnoldi algorithm are used. This is typically the case when the original
system is multi-input/multi-output. )

The authors wish to acknowledge the very helpful discussions with Dr. Peter Feldmann
and Dr. Roland Freund of the A.T. & T research center.
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Abstract. We apply the FOSLS methodology to the exterior Helmholtz
equation Ap + k%p = 0. Several least-squares functionals, some of which in-
clude both H~1(Q) and L%(f) terms, are examined. We show that in a spe-
cial subspace of [H(div;Q) N H(curl; )] x H(Q), each of these functionals
are equivalent independent of k to a scaled H'(2) norm of p and u = Vp.
This special subspace does not include the oscillatory near-nullspace compo-
nents ce**(e=+8¥) where ¢ is a complex vector and where a? + 32 = 1. These
components are eliminated by applying a non-standard coarsening scheme. We
achieve this scheme by intreducing “ray” basis functions which depend on the
parameter pair (¢, 8), and which approximate cet*(@z+8Y) well on the coarser
levels where bilinears cannot. We use several pairs of these parameters on each
of these coarser levels so that several coarse grid problems are spun off from the
finer levels.

Some extensions of this theory to the transverse electric wave solution for
Maxwell’s equations will also be presented.
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Recently, The use of first-order system least squares principle for the approx-
imate solution of Stokes problems has been extensively studied by Cai, Manteuf-
fel, and McCormick [1], [2]. In this paper, we study multilevel solvers of first-
order system least-squares method for the generalized Stokes equations based on
the velocity-vorticity-pressure formulation in three dimensions. The least-squares
functionals is defined to be the sum of the L?-norms of the residuals, which is
weighted appropriately by the Reynolds number. We develop convergence anal-
ysis for additive and multiplicative multilevel methods applied to the resulting
discrete equations.
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A Numerical Method for Solving Singular De’s

William Ted Mahaver

A numerical method is developed for solving singular differential equations using steepest
descent based on weighted Sobolev gradients. The method is demonstrated on a variety
of first and second order problems, including linear constrained, unconstrained,

and partially constrained first order problems, a nonlinear first order problem with
irregular singularity, and two second order variational problems.

The method is an extension of steepest descent in Sobolev spaces which is a variation of
descent based on the Euclidean gradient. The differential equation is cast as a least-
squares problem yielding a functional representing the equation. A weighted Sobolev
space for the problem is chosen where the weights are based on the functional. The
gradients associated with the functional take into account both the weights and the
boundary conditions for the given equation.

Results are presented which demonstrate the improvements obtained by computing based
on weighted Sobolev gradients rather than computing based on either unweighted Sobolev
gradients or on the Euclidean gradient.
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Abstract. In this paper, we establish the equivalence between the generalized quasi vari-
ational inequalities and the generalized implicit Wiener-Hopf equations using essentially the
projection technique. This equivalence is used to suggest and analyze a number of new iterative
algorithms for solving generalized quasi variational inequalities and the related complementarity
problems. The convergence criteria is also considered. The results proved in this paper represent
a significant improvement and refinement of the previously known results.

1. Introduction

Variational inequality theory has emerged as a novel and powerful technique for study-
ing a wide class of unrelated linear and nonlinear problems arising in various fields of pure
and applied sciences in a unified framework. This theory enables us to develop highly
efficient and powerful new numerical methods to solve, for example, free and moving
boundary value problems and the general equilibrium problems. It has been show that
the variational inequality theory provides the most natural, direct, simple and efficient
framework for a unified treatment of all the equilibrium type problems. For recent state
of the art in this field, see Harker and Pang [6] and Noor-Noor and Rassias [12,13]. In
recent years, various extensions and generalizations of variational inequalities have been
considered and studied. A useful and important generalization is known as the quasi
variational inequality originally considered and studied by Bensoussan and Lions [2] in
impulse control. Fang and Peterson [4] introduced another useful generalization known
as generalized variational inequality. Chan and Pang [3] considered the generalized quasi
variational inequality problem, which unifies these both concepts, see [1-17] and the ref-
erences therein.

One of the most interesting and difficult problems in the variational inequality theory
is the development of an efficient iterative algorithm. There is a substantial number of
algorithms for finding the numerical solution of variational inequalities. Among the most
effective numerical algorithms are projection methods and its variant forms. On the other
hand, there is no such method for solving generalized quasi variational inequalities except
those of Chan and Pang [3] and Noor [9]. In this paper, we establish the equivalence
between generalized quasi variational inequalities and generalized implicit Wiener-Hopf




equations by using the projection technique. This equivalence plays an important and
significant part in suggesting a number of new iterative algorithms for solving numerically
generalized quasi variational inequalities and related quasi complementarity problems.

2. Formulation and Basic Results

Let H be a real Hilbert space whose inher product and norm are denoted by <..>
and ||.|| respectively. Let K be a closed convex set in H. Let T : H — C(H) be a multi-
valued nonlinear operator, where C(H) is the family of all nonempty compact subsets of
H. Given a point-te-set mapping K : v — K(u), which associates a closed convex set

K(u) with any element u of H, we consider a problem of finding v € K(u) such that
w € T'(u) and

<w,v—u>>0 forallve K(u). ' (2.1)

The problem (2.1) is known as the generalized quasi variational inequality problem, which
was introduced by Chan and Pang [3]. For recent applications and existence results, see
[1,6,8,10,12,13]. For a suitable choice of the operator T' and convex set K, one can obtain
a large number of variational inequality and complementarity problems as special case of
the problems (2.1) and (2.2). This shows that the problems (2.1) is more general and
unifying ones and has many significant and important applications in regional, physical,
mathematical and engineering science.

Lemma 2.1 [1]. Let K be a closed convex set in H. Then, for a given z € H, u € K
satisfies the inequality ‘ .

<'u——z,v—u>20 forallv € K, |
if and only if u = Pxz, where Pk is the projection of H into the convex set K.
Definition 2.1. For all uy,us € H, the operator T : H — C(H) is said to be
(i) strongly monotone if there exists a constant & > 0 such that |

< wy —wa,uy — U > allug = ugl|?, for wy € T(ur),wa € T'(uz).

(ii) M-Lipschitz continuous if there exists a constant § > 0 such that
M(T (1), T (us)) < Bllur = uall;

where M(-,-) is Hausdozff metric on C(H).




3. Main Results

In this section, we first prove that the generalized quasi variational inequality (2.1)
is equivalent to the fixed point problem and to the generalized implicit Wiener-Hopf
equations. For this purpose, we need the following result, which can be proved by invoking
Lemma 2.1.

Lemma 3.1. Let K(u) be a closed convex-valued set in H. Then (u,w) is a solution of
(2.1) if and only if (u,w) satisfies the relation

U= PK(u)[u - Pw],

where p > 0 is a constant and Pr(y) is the projection of H onto the convex valued set
K(u).

From Lemma 3.1, it follows that the generalized quasi variational inequality (2.1) is
equivalent to the fixed point problem

u = F(u) = Pgylu — pw].
This alternate fixed point formulation is very important from the numerical and ap-

proximation point of views. This formulations enables us to suggest and analyze the
following general and unified iterative algorithm.

Algorithm 3.1. For a given up € K(ug) such that wy € T'(uo), compute {u,} and {w,}
by the iterative schemes

wn € T(un) : [lwn — wniall < M(T (un), T (tns1))-
Unt+1 = PK(un)[un - Pwn]a n=0,1,2,---
If K(u) = K, then Algorithm 3.1 reduces to:

Algorithm 3.2. For a given uo € K such that wy € T'(uo), compute the sequences {u,}
and {w,}

n € T(un) : o — wnsal] € M(T(un)), T(tnsa).

Uns1 = Prlun — pwn], n=0,1,2,---.

Let Pk(s) be the projection of I onto the convex valued set K (u) and Qg = I —
Pk (u), where I is the identity operator. For a given multivalued operator T': H — C(H),
find z € H, u € K(u) such that w € T'(u) and

w -+ p_lQK(u)z =0, (31)




where p > 0 is a constant. The equations (3.1) are called the generalized implicit Wiener-
Hopf equations. If T : H — H is a single-valued operator, then problem (3.1) is equivalent
to finding z € H such that

TPr(uz + p Qrwz =0,
which are known as the implicit Wiener-Hopf equations, see Noor [10] For the general
treatment, applications and formulations, see [12,13,15,16].

We can establish the equivalence between generalized quasi variational inequality (2.1)
and generalized implicit Wiener-Hopf equations (3.1) using Lemma 2.1 and techniques of
Shi [15] and Noor [10,11].

Theorem 3.1. The function v € K(u) such that w € T'(u) is a solution of generalized
quasi variational inequality (2.1) if and only if z € H, u € K(u) such that w € T(u)
satisfies the generalized implicit Wiener-Hopf equation (3.1), where

U= PK(u)z ‘ 5 (32)
z=1u— pw. (3.3)

Theorem 3.1 establishes the equivalence between the problems (2.1) and (3.1). This
equivalence enables us to suggest a number of new iterative algorithms. for solving gen-
eralized quasi variational inequalities and related quasi complementarity problems. To
convey an idea, we discuss only the following cases.

I. The generalized implicit Wiener-Hopf equation (3.1) can be written as

QK(u)Z = —pw,
from which it follows that

z = Pgyz — pw =u — pw, using (3.2). , (3.4)
This fixed point formulation enables us to suggest the following:

Algorithm 3.3. For given 2y € H, up € K(uo),wo € T'(uo), compute {z,}, {u.} and
{wn} by the iterative schemes.

Un = PK(un)zn) ' . (3‘5)
wn € T(un):|lwn — woia]| < M(T (un), T (tin+1)) (3.6)

Zpgl = Up — pwp, n=0,1,2--- (3.7)

II. The generalized Wiener-Hopf equation (3.1) may be written as

Qrwz=—w+ I — p™)Qrw?2,




which implies that

z = PK(U)Z —wF (I - p_l)QK(u)z
= u~w+ (I —p)Qk(wz, using (3.2).

Using this fixed point formulation, we can suggest the following:

Algorithm 3.4. For given 'z() € H, uo € K(uo), wo € T(uo), compute {z,},{u,} and
{w,} by the iterative schemes

Up = PK(un)zn
wn € T'(un) ¢ [lwn — watalf < M(T(un), T(ttn41))
Zpp1 = Up — Wy + (I - P_I)QK(un)zna n= 07 1721 s

We now study the convergence criteria of Algorithms 3.1-3.4. For this we need the
following hypothesis, which plays a significant part in the convergence analysis of the
Algorithms

Assumption 8.1. For all u,v,z € H, and a constant 5 > 0,
1Pr w2 — Prwyzll < llu— ofl.

Theorem 3.2. Let the multivalued operator T : H — C(H) be strongly monotone,
with constant & > 0 and M-Lipschitz continuous with constant 8 > 0. If Assumption 3.1
holds and

)p_ « Ve - gz@ 1) 5)

a > By/n(2-mn), (3.9)

then there exist z € H, u € K(u), w € T(u) satisfying the Wiener- Hopf equation (3.1)
and the sequences {2,}, {u.} and {w,} generated by Algorithm 3.3 converge to z,u and
w strongly in H respectively.

Proof: From Algorithm 3.3, we have

lons = 2l = i — s — p(en — e
lltn — tn-1]? = 2p < wn — w1, U — Upy >
+p*[lwn — wnes [|?
= ||tn — Una]|> — 20 < Wp — Wa1, Un — Ung >
+0* {M(T (tn), T(tn-1))}?
(1 = 200+ 7%) i ~ v (3.10)

IA




From. (3:5) and Assumption 3.1, we have

”un - un—l”2 = ”PK(un)Zn - PK(un)zn—llI + PK(un)zn—l - PK(u,,_l)zn—lll
< lzn = zacall + 7llun — vaeall,

from which it follows that
1

Uy~ Un—1|| < Zn — Zn—1ll. 3.11
o = sl < T = 6.1)
Combining (3.10) and (3.11), we obtain
1 —2pa + p?p°
lonss =l < {22 E OB oy = O s, (212)

1—-2patp232
where § — Y1=2ets?f?

1-7

From (3.8) and (3.9), we see that § < 1, and consequently from (3.12), it follows that
the sequence {z,|| is a Cauchy sequence in H, that is, z,4+1 — 2z € H or n — co. From

(3.6), we have
[l — wna]l < M(T(un), T(un-1)) < Bllten — tnsl,

from which it follows that the sequence {w,} is also a Cauchy sequence in H, that is, there
exists € H such that w, — w as n — oco. Now by using the continuity of the operators,
Py and Theorem 3.1, we have

z=u— pw = Pgyz — pw € H.
Now we shall show that w € T'(u). In fact,
dw,T(v)) < |lw—wnl+M(wn,T(u)) < |lw— wnl| + M(T(un), T(u))
< |lwr —wall +7llun —ujf = 0 asn — oo,

. where d(w,T(u)) = inf{|lw — v|| : v € T(v)}. Consequently we have d(w, T'(v)) = 0, from
which it follows that w € T(u), since T'(v) € C(H). By invoking Theorem 3.1, it follows .
that z € H, u € K(u), w € T'(u) are solutions of (3.1) and consequently z, — 2, u, — u
and w, — w strongly in H.
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Preconditioning First and Second Kind Integral
Formulations of the Capacitance Problem *

Johannes Tausch and Jacob White
January 15, 1996

1 Introduction

Engineering programs which compute electrostatic capacitances for complicated
arrangements of conductors commonly set up the electrostatic potential u as a
superposition of surface carges o

u(z) = /S G(z,v)o(y) dS(y) -

where G(z,y) = 1/4x|z — y| is the Green’s function for the Laplacian in the
three-space. For a specified potential on the conductor surface(s) S, this ap-
proach leads to an integral equation of the first kind on S for the charge density
o. The capacitance is the net-charge on the conductors and is given by the
surface integral of o.

It is standard to discretize this integral equation with a collocation scheme.
The resulting linear system is dense and can be large for complex geometries of
S. In the recent past, there has been a major progress to sparsify this system
with the fast multipole method. As a result the matrix vector product can be
carried out in O(N) operations and thus the solution of the linear system with
an iterative scheme like GMRES is feasible [1, 3].

However, discretizations of the first kind integral formultation lead to matri-
ces with condition numbers which increase as the mesh is refined. This behavior
makes the iterative solution of the linear system more expensive and sometimes
impossible without a good preconditioner. Furthermore, the numerical analysis
of the discretization error as well as the design of adaptive mesh refinement
stragies are more difficult for first kind formulations. Some of these issues are
still unresolved for collocation schemes.

For smooth surfaces, the difficulties associated with the first kind formulation
can be entirely avoided using a second kind integral formulations for the capac-
itance problem, and we investigate two different types. Typically, the arising

*This work was supported by ARPA under contracts DABT63-94-C-0053 and J-FBI-92-
196, and the Semiconductor Research Corporation under contract SJ-558.




operators are compact on smooth surfaces and thus the Riesz-Fredholm theory
provides a framework for analyzing the second kind formulation. Of particular
importance is the result that the condition number of a discretized second-kind
formulation is bounded independent of discretization mesh, and so requires no
preconditioning.

The issues are quite different when the surfaces contain edges and corners,
as is quite common in engineering problems. The integral operators in the
second kind formulations are no longer compact, and the discretizations generate
somewhat more ill-conditioned matrices. In addition, for problems with corners,
empirical evidence suggests that first kind formulations produce significantly
more accurate results for a given discretization. Since the corners introduce
localized nonsmoothness, we investigate local inversion preconditioners for first
and second kind formulations for the nonsmooth case.

2 Second Kind Formulations

The first formulation we consider was suggested by Mikhlin [2] and is based on
writing the electrostatic potential as a superposition of a surface dipole potential
and the potential due to one point charge in each conductor

u(@) = Kp+ Y 4G, 23) = /S ﬁ—yG(z, () dS@) + 3 4Gz, 35).
i J

The point charges in this approach are necessary to ensure that the potential
decays like 1/r. It turns out that the scalars g; are the desired capacitances,
if the net-dipole density for each conductor vanishes. Taking into account the
jump relations of the dipole operator, we obtain the integral equation

(1/2+K+P)u+2q5G(z,zj) = f(z), z€S
> ,

K.
. S5
The operator P is defined by

Pu@) =Y [ ndSxi(e),

(l
o
.
Il
&=
S

where x; denotes the characteristic function of conductor j.
Once the dipole density p has been determined, the charge denstity o can
be calculated by an application of the hypersingular integral operator

o) = [ g Gl ) 45) ~ ZjJngg:G(z, ).

We also investigate an alternative approach which allows the direct calcula-
tion of the charge density without resorting to the dipole density. To obtain this




formulation we remark that in the capacitance problem the potential assumes
‘a constant value p; within each conductor. Thus the normal derivative of the
potential on the conductor surfaces when approached from the inside vanishes.
Taking into account the jump relation of the adjoint operator, we obtain

(1/2+ K*)o(z) = 1/20(z) +/s 53—:G(a:, YV)o(y)dS(y) =0, z€8S.

The integral equation above is singular. This is because the orthogonal com-
plement of the range of the operator (1/2+ K*) consists of the functions which
are constant on each conductor surface. Thus the equation

(1/2+K*+P)a—}:q,-x,-'=o
i

has a unique solution for any choice of the scalars ¢;- We can choose these
scalars so that the potential of o satisfies the given conductor potentials. This
leads to the integral equation

(/2+K*+P)o+Y gix; = 0, z€8$
J

1

Dj, j=1)'~',ns

[ 6@.vetasw)

Note that this integral equation is adjoint to Mikhlin’s formulation.

3 Preconditoning

Since the eigenvalues of a compact operator can only accumulate in the origin,
discretizations of second kind integral equations will require only a relatively
small number of iterations to converge. This situation changes when corners
and edges are present. In this case the operators are no longer compact and the
iteration may be accelerated with a preconditioner.

The fast multipole algorithm decomposes the problem domain into a hierar-
chy of cubes, this decomposition can also be used to construct preconditioners
[4, 3].

Denoting the intersection of the surface S with cube 3 by S;, the part of the
operator K from S; to S; is given by

Kijo;(z) := /s a—in(z, Y)o(y)dS(y) ze€S;.

The idea of the (nonoverlapping) local inversion preconditioner is to solve the
integral equation for each surface S; neglecting the interaction of the other
pieces. Thus the preconditioner factors the second kind integral equation (1/2+
K)o = f in the form

Fi+ Y (1/2+ Ki) ' Kij5; = f;
i#j




where
=12+ K)o .

This approach is conceivable for isolated corners like the tip of a cone, because
in this case the operators Kj; are compact for ¢ # j. Moreover, if the integral
operator is weakly singular in the corner, then the size of the cubes can be made
small enough such that the norm of the operators K;; is less than 1/2 and thus
the operator 1/2+ K;; has a continuous inverse. Hence the transformed system
is of second kind with a compact operator.

In the case of edges, the operator K;; is not compact if the cubes and j are
adjacent and intersect the same edge. Still, the integral equation can be trans-
formed into the form “identity plus compact” by an overlapping preconditioner.
Denoting all neighbors of cube i by N(i) and the operator on the cube 7 and its
neighbors by Ky(;) we can factor the integral equation in the form

o; + Z (1/2+ En)) 'K = fi -
JENG)

4 Preliminary Numerical Results

Numerical experiments were carried out for two different domains, namely the
unit sphere and an L-shaped domain. . The sphere gives rise to compact integral
operators, whereas the L-block has corner and edge singularities. For the sphere
the discretization is almost uniform, wereas the mesh of the L-block was refined
towards the edges.

All equations were discretized with piecewise constant collocation, the aris-
ing linear systems were solved with multipole accelerated GMRES, where the
expansion order in all experiments was set to three. Increasing this value did
not result in significant changes. /

The discretization errors of the capacitance and the numbers of iterations for
the sphere are dispayed in Table 4. The results there suggest that the discretiza-
tion errors for all three integral formulations decay like O(h?). The number of
GMRES iterations varies between the formulations, they remain constant for
both second kind formulations, but grow for the first kind formulation without
preconditioner as the mesh is refined. The increase can be avoided by precon-
ditioning, but only if the same cube hierarchy is used for all mesh refinements.
If the cubesize is reduced to avoid expensive preconditioners, then the number
iterations grows as well. ’

Table 2 displays the iteration results for the L-block. The capacitances
suggest that the first kind formulation converges faster to the true value than
the second kind formulations. As expected, the number of iterations for the
first kind formulation increases when refining the mesh and the increase can
be slowed down by the use of the overlapping preconditioner. The second kind
formulations require a comparatively small number of iterations to converge,
even for small panel sizes. Preconditioners can further accelerate the iteration.




number Panels 192 768 3072
First Kind no PC 0.321 (4) 0.085 (9) 0.022 (11)
OL1 (6) (6) (6)
OL 2 (5) (7) 9
Dipole no PC  0.286 (5) 0.074 (6) 0.019 (6)
Adjoint no PC 0.382 (5) 0.100 (4) 0.025 (5)

Table 1: Comparison of the discretization errors and iterations obtained for the
sphere. The number of iterations required to reduce the residual to 10~5 are
shown in brackets. OL 1 refers to the overlapping preconditioner with constant
cube size, OL 2 refers to the overlapping preconditioner with decreasing cube
size. '

number Panels 350 1400 5600

First Kind no PC 12.626 (17) 12.658 (27) 12.663 (40)
OL1 (12) ) (8)

OL 2 (12) (18) (24)

Dipole no PC 12467 (13) 12.602 (14) 12.648 (15)
OL1 ) 9 (10)

OL 2 ) (8) (10)

Adjoint no PC 12310 (10) 12.485 (12) 12.582 (14)
OL1 (M (8) )]

OL 2 (8) (9) (11)

Table 2: Comparison of the calculated capacitances and iterations obtained for
the L-shaped domain. The number of iterations required to reduce the residual
to 10~ are shown in brackets.

5 Conclusion

For problems with smooth surfaces discretizations of the second kind formula-
tions result in better conditioned linear systems than the first kind formulation
by maintaining the accuracy of the approximation. In addition, the adjoint for-
mulation directly produces surface densities which are more useful in subsequent
application than the dipole layer.

The conditioning of all formulations worsens in the case of non-smooth do-
mains, although the ill-conditioning appears to be milder for the second kind
formulations. Local inversion preconditioners are effective at removing this ill-
conditioning, though the spatial extent required for the preconditioner is still
under investigation. Finally, the convergence of discretization error is slower
for the second kind formulation, and this may be an artifact of the piecewise
constant collocation used for the experiments. We will investigate higher order
approximation schemes in our future research.
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SUMMARY

Energy conservation law imposes constraints on the norm and direction of the
Hilbert space vector representing a solution of Maxwell’s equations. In this
paper, we derive these constrains and discuss the corresponding implications for
the Green’s function of Maxwell’s equations in a dissipative medium.

It is shown that Maxzwell’s equatlons can be reduced to an integral equatlon with
a contracting kernel. The equation can be solved using simple iterations.
Software based on this algorithm have successfully been applied to a wide range
of problems dealing with high contrast models.

The matrix corresponding to the integral equatlon has a well defined spectrum.
The equation can be symmetrlzed and solved using different approaches, for
instance one of the conjugate gradient methods.

1. ENERGY INEQUALITIES

The model under consideration consists of a conductor occupying
some volume v, and an isolator surrounding the volume. The
resistivity distribution inside ‘the volume is specified by a
restricted function py(x) (0<pm<p°(r)<p‘,) In this  section we
neglect the displacement currents. The correspondlng generalization
is straightforward and will be discussed in section 4. We assume
also that the magnetic permeability coincides with that of a
vacuum, and that the time factor is - exp(-iot).

Maxwell’s equations for the electric field E -and magnetic field

H generated by an external current J° flowing inside volume v
can be written in the form

VxH =7, Vx(pod) = w@pH + Vx(pJ°) , (1)

where the current density is given by the -equation
J=pdE + j°. ' (2)

Using standard manipulations one can easily derive the equation
expressing the energy conservation law, that is

fpo{ljF - jje}dv = uop.olelde . . (3)
v RJ




It is convenient to consider current distributions as vectors of a
Hilbert space defining the scalar product as

(7, v) = [p,gvav, : (4)

Using this definition, eq.(3) is reduced to

Re(d,3°) =1JR, (5)

where |[.] stands for the Hilbert space norm. Application of
Cauchy’s inequality to eq.(5) immediately results in the condition

il <Igel . ‘ (6)

Thus, the total current flowing in the conductor is smaller in the
L,-norm than the external current generating the field. Another
condition that also follows from eq.(5) is

- Lqgep - Loqe : .
ij -é-jl zij‘!.“ | (7)

Geometrically, this condition means that the end of the vector g
lies in the Hilbert space on the sphere having 3Jj* as a diameter
(Fig.l). : ' :

2. GREEN’S FUNCTION

Recalling that solution to. Maxwell’s equations can be exbfessed‘
via convolution . , '

J=6, 7 - N Lo o | (8)

of the Green’s function €, with the distribution of the external
current, one can immediately conclude that convolution with the
Green’s function does not increase the norm of a current
distribution U, i.e.

16, + Ul < iU . (9)

Defining also a modified (or renormalized) Green’s function as
3, =2-€¢, -531, 4 (10)

where I is a unit tensor and & is the Dirac’s d—-function, we
obtain from eq.(8) a more restrictive (unitary) condition

13, = ol = 1ol . : (11)

In particular, this condition means that eigenvalues of convolution
with the Green’s function B, lie on a unit circle |¢l=1 in the
complex ¢-plane. )




3. INTEGRAL EQUATION

Up to this point, we did not impose any restrictions on the
function po(r). From now on we will imply that it belongs to a
class of distributions allowing for an efficient analytical or
numerical solution of Maxwell’s equations. For instance, it is
relatively easy to solve Maxwell’s equations in a 1-D spherical. or
Plane earth model. Suppose, now we have to find a solution for the
model with the resistivity distribution inside volume v given by
p(r). Then Maxwell’s equations can be reduced to

VH = J, Vx(pyd) = woug+ Vx(p,d) , 7= -,%Je - —";—"ﬂj . (12)
4] 4]

Using the Green’s function of eq. (1), we wiil find that eq. (12) is
equivalent to the integral equation

4 =3,-6, * (";"H) , Jo = 6, + (-’%je) . " (13)

o

From section 2, eq.(13) has a contractive kernel provided
max|p/pe-1|<1. It is always possible to find the (reference)
distribution p,(z) satisfying this condition. Having found such
distribution and calculated the Green’s function ¢,, one can solve
-eq.(13) using simple iterations. The convergence can be optimized
by the choice of the reference: resistivity model. The corresponding
algorithm was proposed by the authors in (Fainberg & Singer, 1980).
It was later named as Iterative Dissipative Method or IDM and used
‘for modeling of electromagnetic fields in high contrast media.

The convergence of the method can be greatly improved.(singer,1995)

after substitution of eq. (10) in eq.(13). The integral equation is
then transformed into

£=zo-30*(""’°e) , g= PPy

+
P+Pg Po (14)

=__&8 *—&e,
= £+ 3, (po’)

The last equation has a contractive kernel for an arbitrary
reference distribution Po(x) . The fastest convergence of
iterations is achieved if the reference distribution is chosen so
that at each depth =z

p3(2) = min,p(z,,2) - max,p(z,, z) , (15)

where min,{p(r,,z)} and max,{p(r,,z)} are minimum and maximum
resistivity values at the same depth level. With this choice of .
the reference resistivity model, the number of operations necessary
to achieve the given accuracy e, is controlled by the factor




VyK°N,N2-1og N, logeg* (16)

where N, is the number of nodes in the surface numerical grid, N,
is the number of nodes covering the inhomogeneity in the vertical
direction, and K is the maximum contrast of- the resistivity
variations in the lateral direction. A similar expression is
applicable to eq.(13) but with factor VK being replaced by K.

4. GENERALIZATIONS

The discussed approach does not impose any restrictions on the
frequency of field variations or distributions of resistivity and
external sources; it can used in the frequency or time domain. The
approach can be generalized to include displacement currents,
frequency dependence of the resistivity or dielectric permittivity
distributions, and their anisotropy. Avoiding further discussions
in this direction, we will notice only that for a model with the
electrical resistivity and dielectric permittivity distributions
p(xr) and €(r), respectively, the basic equations (4)-(11) and the
integral equation stay unchanged (Singer & Fainberg, 1995). The
only difference is that p in this equation should be replaced with
the function

X =pt - wo(e-g) ‘ (17)

where €,(r) is the dielectric permittivity of the reference model.
Of course, the Green’s function §, should be calculated for the
‘reference model with the resistivity and permittivity distributions
. given by the functions p,(z) and €,(r), respectively.

S. EXAMPLE

As an example, we have calculated electromagnetic field induced in
a model spanning the western coast of the Northern America and the
adjacent part of the Pacific Ocean by a six hour variation of the
uniform magnetic field. The model consists of an inhomogeneous
subsurface layer and a 1-D underlying structure. The subsurface
layer simulates the ocean and the continental sedimentary cover.
-Its conductance and conductivity of the underlying formation are
shown in Fig. 2. Plots of the in-phase and out—-of-phase components
of .the normalized vertical magnetic fields are shown in Fig.3 and
Fig.4. The computation were carried out on a 128%*128 surface grid
using a 486/33MHz PC.
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Iterative Solution of High Order Compact Systems

W.F. Spotz and G. F. Carey
Computational Fluid Dynamics Laboratory
The University of Texas at Austin

We have recently developed a class of finite difference methods which provide higher
accuracy and greater stability than standard central or upwind difference methods, but still
reside on a compact patch of grid cells. In the present study we investigate the
performance of several gradient-type iterative methods for solving the associated sparse
systems. Both serial and parallel performance studies have been made. Representative
examples are taken from elliptic PDE's for diffusion, convection-diffusion, and viscous
flow applications.
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Library Designs for Generic C++
Sparse Matrix Computations of Iterative Methods

Roldan Pozo )
National Institute of Standards and Technology

A new library design is presented for generic sparse matrix

C++ objects for use in iterative algorithms and preconditioners.
This design extends previous work on C++ numerical libraries
(SparseLib++[3], IML++[4], Lapack++[5]) by providing a framework

in which efficient algorithms can be written *independent* of the
matrix layout or format. That is, rather than supporting different
codes for each (element type) / (matrix format) combination,

only one version of the algorithm need be maintained. This not only
reduces the effort for library developers, but also simplifies the
calling interface seen by library users. Furthermore, the underlying
matrix library can be naturally extended to support user-defined
objects, such as hierarchical block-structured matrices, or
application-specific preconditioners. Utilizing optimized
kernels[1,7] whenever possible, the resulting performance of

such framework can be shown to be competitive with optimized Fortran
programs.

1] S. Carney, M. A. Heroux, G. Li, K. Wu, "A Revised Proposal for a Sparse
LAS Toolkit', Army High Performance Computing Research Center Technical
sport 94-034, June 1994.

2] Barrett, et. al, "Templates for the Solution of Linear Systems: Building
locks for Iterative Methods," SIAM Press, 1994.

3] J. Dongarra, A. Lumsdaine, R. Pozo, K. Remington, "A Sparse
atrix Library in C++ for High Performance Linear Algebra," Proceedings
E the Object Oriented Numerics Conference, 1994, pp. 214-218.
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E Object-Oriented Extensions for High Performance Linear Algebra",
roceedings of Supercomputing ’93.

5] R. Pozo, K. Remington, "C Sparse BLAS", source code available from
tp://math.nist.gov/pozo/sparse_blas/sparse_blas.html
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MGLab3D: An interactive environment for iterative solvers
for elliptic PDEs in two and three dimensions

James Bordner and Faisal Saied
Department of Computer Science
University of Illinois at Urbana-Champaign

GLab3D is an enhancement of an interactive environment (MGLab) for
xperimenting with iterative solvers and multigrid algorithms.
t is implemented in MATLAB.

he new version has built-in 3D elliptic pde’s and several iterative
ethods and preconditioners that were not available in the original
ersion. A sparse direct solver option has also been included. The
ultigrid solvers have also been extended to 3D.

he discretization and pde domains are restricted to standard finite
ifferences on the unit square/cube. The power of this software

ies in the fact that no programming is needed to solve, for example, the
onvection-diffusion equation in 3D with TFQMR and a customized V-cycle
reconditioner, for a variety of problem sizes and mesh Reynolds’ numbers.

n addition to the graphical user interface, some sample drivers are
ncluded to show how experiments can be composed using the underlying
uite of problems and solvers.




New Iterative Solvers for the NAG Libraries

Stefano Salvini and Gareth Shaw

The Numerical Algorithms Group Lid,
Wilkinson House, Jordan Hill Road, Ozford OX2 8DR, United Kingdom

E-mail: stef@nag.co.uk, gareths@nag.co.uk

1 Introduction

The purpose of this paper is to introduce the work which has been carried out at NAG Ltd
to update the iterative solvers for sparse systems of linear equations, both symmetric and
unsymmetric, in the NAG Fortran 77 Library [7]. Our current plans to extend this work and
include it in our other numerical libraries (Fortran 90 [8], C [9], Numerical PVM [10]) in our
range are also briefly mentioned.

We have added to the Library the new Chapter F11, entirely dedicated to sparse linear
algebra. At Mark 17 (released in early 1996), the F11 Chapter includes sparse iterative
solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-
definite and indefinite) linear systems [13]. Mark 18 (due for realease in early 1997) will add
solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems [14]: the
development of these has already been completed.

The new routines aim to address the needs of more advanced users as well as of ‘general’
users: for the former, ‘basic’ solver routines are provided which make no assumptions on
either the sparsity pattern of the coefficient matrix, or on the storage format employed;
for the latter we provide black-box routines for particular storage formats which offer less
flexibility but are easier to use. Currently, black-boxes are only provided for the Coordinate
Storage (CS) format, in which a real array holds the non-zero matrix elements, while two
integer arrays store the corresponding row and column indices. For specific, high-performance
applications, our new library software probably cannot compete with bespoke, application-
specific algorithms, but it does provide the tools for quick and efficient prototyping, hence
allowing the more rapid development of a package.

Other important points, for both symmetric and unsymmetric systems are:

o reverse communication is used for the basic solvers: the Library routine returns re-
peatedly to the calling program requesting some computation to be carried out. This
allows maximum flexibility in the representation and storage of sparse matrices: all
matrix operations, including the application of preconditioners, are performed outside
the solver routine. Also, the user can interact effectively with the solution process: the
progress of the solution can be closely monitored and tidy or immediate terminations
can be requested. This is useful, for example, when alternative termination criteria are
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to be -employed or in case of failure of the external routines used to perform matrix
operations.

e for both symmetric and unsymmetric systems, the suite of basic routines consists of:

— an injtialization routine, where the user specifies the method of solution to be
employed, termination criterion, tolerances, etc.;

— the iterative solver, which uses reverse communication;

— .a monitoring routine which can be used to return the latest available information
about the convergence of the solution during or after the computation.

This allows users to employ different algorithms without modifying their programs, and
allows us to make more methods available in future with minimum impact on existing
Library and software;

¢ all solvers will automatically restart the solution process, if this is of benefit to conver-
gence, trivially so for RGMRES; '

¢ 3 termination criterion based on the backward error for the original, unpreconditioned,
system is available for all solvers: ||r|| < ef(n)(||All[|z|| + [|5]|), where r = b — Az is the
residual, € is the machine accuracy, f(n) is a slowly varying function of the matrix size
n, typically f(n) ~ 4/n. Other termination criteria are also available.

if [JA]] is not known, the solvers can provide an estimate of its value using Higham’s
method;

for matrices stored in CS format, we provide a full range of black-box routines, precon-
ditioners (Incomplete Cholesky and LU, SSOR, Jacobi) and utilities (solution of the
preconditioning equations when incomplete factorizations are used, matrix-vector and
matrix transpose-vector multiplication).

Much of the new software for iterative solvers has already been included in our Numeri-
cal PVM Library [10], a parallel library for distributed memory machines. However, neither
preconditioners nor utility routines are provided there yet: we felt that the requirements
of distributed memory parallelism implied that storage schemes were strongly problem-
dependent and no particular one was likely to satisfy the majority of users.

The CPU times listed in the tables in the following sections were obtained on an Indigo SGI
workstation.

2 TIterative Solvers for Sparse Symmetric Linear Systems

The software introduced at Mark 17 [13] includes new versions of iterative algorithms already
available, though in a less flexible form, in earlier Marks of the NAG Library:

o preconditioned Conjugate Gradient method [5], for positive-definite systems;

e a Lanczos method, based on the algorithm SYMMLQ [11], for indefinite systems.




Both algorithms are provided in a suite of basic routines and in black-box routines. In the
latter case, the matrix must be stored in CS format.

A new incomplete Cholesky preconditioner is available for matrices in CS storage. The
amount of fill-in occurring in the factorization can vary from zero to complete fill and can
be controlled either by specifying the maximum level of fill allowed or by a drop tolerance.
Optionally, the factorization can be modified in order to preserve row-sums, and diagonal
pivoting can be employed, either with a user-specified ordering or using the Markowitz strat-
egy [4] which aims to minimize fill in. The diagonal elements may require perturbation to
avoid the breakdown of the factorization.

The utilities provided are applicable only to matrices in CS storage and include routines to
compute matrix-vector products, to solve the preconditioning equations, SSOR and Jacobi
preconditioners.

We have carried out a range of numerical experiments to assess the performance and robust-
ness of the new routines. These are fully reported in [13]; here we just give two examples.
Below, we have included the results from the new routines using the Conjugate Gradient
method without and with preconditioning (incomplete Cholesky factorization with zero level
of fill), from the the preconditioned Conjugate Gradient method previously available in the
Library (FOLMAF/F04MAF, based on Harwell Library routine MA31 [6]) and the timings
obtained using the new incomplete Cholesky preconditioner as a direct solver (i.e. with
complete fill).

The first test problem is a discontinuous diffusion equation due to Stone [17].

V- (DV(z,9)) = f(z,y), (z,y) € Q=]0,32]

where
D, O
p=(% )
and
100 (z,y) € [5,12) % [5,12] 100 (z,y) € [14,32] x [0,16]
Dyp = 0 (z,9) €[12,19] x [21, 28] Dy, = 0 (z,y)€[12,19] x [21,28] .
1 elsewhere 1 elsewhere

Sources of strength 1.0, 0.5 and 0.6 are placed at (3,3), (3,27) and (23,4) respectively.
Sinks of strength —1.83 and —0.27 are placed at (14,15) and (27, 27) respectively. Zero flux
boundary conditions are implemented on the boundary of Q.

Rt 8 16 32 64 128
n 64 256 1024 4096 16384
non-zeros 162 694 2894 11738 47270
CG 93 (0.12) | 338 (1.58) | 967 (19.98) | 2246 (221.31) | 4638 (2406.50)
PCG 18 (0.05) | 28 (0.29) 41 (1.72) 63 (11.62) 96 (81.30)
FOIMAF/FO4MAF | 18 (0.04) | 40 (0.25) | 40 (1.53) [2] | 26 (7.59) [3] | 27 (46.24) [4]
Direct Method (0.03) (0.17) (1.73) (17.23) (235.24)

Table 1: Results for Stone’s test problem: Number of iterations (CPU time) [number of
restarts).




Table 1 gives the number of iterations and the CPU times required by each method. The
numbers in square brackets show the number of unsuccesful runs with FOLMAF/F04MAF
before an adequate drop tolerance could be found: their CPU time is not included in the
table. The two ICCG methods, i.e. the new PCG routines and the older FOIMAF/F04MAF, -
are clearly the best for this test problem, although the direct method competes very well on
the coarser meshes. Note that the numbers of iterations required by the new PCG routine
suggest that the condition number has been reduced to O(h~!). For this problem CG without
preconditioning is very inefficient. FOIMAF/F04MAF proved more efficient than the new
PCG routines, but we should comment that a number of unsuccesful runs were carried out
before a successful drop tolerance parameter could be defined: the new PCG routines appear
more robust than FOLMAF /F04MAF.

n 100 200 400 800 1600 3200

NON-~ZEeros 554 1110 2239 4403 8806 17610
CG 1070 (2.51) | 2225 (10.97) | 3833 (39.37) | 5053 (107.32) | 5806 (255.54) | 6283 (583.39)
PCG 17 (0.11) 26 (0.34) - 38 (0.91) 17 (1.10) 27 (3.16) 43 (9.55)
FOIMAF/ '

FO4MAF | 64 (0.24) | 55 (0.49) [2] | 45 (1.08) [3] | 100 (5.38) [4] | 67 (7.80) [4] | 60 (32.11) [6]
Direct . ,
Method (0.09) (0.36) (1.95) ©(10.79) (61.75) (520.59)

Table 2: Results for random matrices with v = 10: Number of iterations (CPU time) [number
of restarts).

Table 2 reports the results for random matrices with average v = 10 non-zero elements per
row. Random test matrices were generated from tridiagonal matrices of known spectrum by
performing a sequence of random elementary plane rotations, in CS format, until the average
number of non-zeros per row exceeded the specified value v. All random matrices were
chosen to have condition number x2(4) = 10%. The unmodified zero-fill incomplete Cholesky
preconditioner was used for the new routines. The new PCG routine is the most efficient,
although for small values of n there is little difference between the ICCG methods and the
direct method. Preconditioning significantly improves the efficiency of the unpreconditioned
CG algorithm which suffers from the lack of clustering in the spectrum. Once again, the CPU
time required by experimentation with different values of the drop tolerance was omitted from
the results for FOLMAF /F04MAF.

3 Iterative Solvers for Sparse Unsymmetric Linear Systems

We will introduce at Mark 18 new software [14], already completed, which includes the
following solvers:

e the restarted generalized minimum residual (RGMRES) method [12];

o the conjugate-gradient squared (CGS) method [16];

e the (polynomial) bi-conjugate gradient stabilized (£) (Bi-CGSTAB (£)) method [15].
This was extensively modified to increase its robustness: in particular, an order less
than the specified value of £ may be used or the computation automatically restarted




when stability considerations require it. When £ = 1, the method is identical to
Van der Vorst’s Bi-CGSTAB method [18].

A routine for incomplete LU factorization, black-boxes for ILU, SSOR and Jacobi precondi-
tioned methods, and utility routines are provided for matrices in CS format.

As for the incomplete Cholesky factorization, the new incomplete LU factorization allows
arbitrary levels of fill. The strategy used carries out pivoting by rows for sparsity and by
columns for stability. The factorization may optionally be modified to preserve the row-sum
of the original matrix. A local restart scheme is employed for the cases when the incomplete
factorization breaks down.

A range of numerical experiments were carried out [14]. Here, we report only the results for
random matrices and for some matrices from the Harwell-Boeing collection [2]. In the results
below, we have included the direct solvers FO1LBRF /F04AXF, based on the Harwell Library
package MA28 [1] and currently available in the NAG Library, the new Harwell direct solver
MA48 [3] and the timings obtained using the new ILU preconditioner as a direct solver (i.e.
allowing complete fill).

n 200 400 800 1600
NNZ 2000 4028 8009 16000
PRGMRES 20 (1.14) [2] | 10 (2-72) [2] | 20 (2.71) [1] | 20 (5.78) [1]
PCGS 9(1.08) [2] | 5(2.70) [2] | 8 (2.42) [1] | 7 (4.98) [1]
PBICGSTAB 8 (1.13)[2] | 4(2.66) [2] | 8(259)[1] | 8 (5.22) [1]
FOIBRE/FOZAXF (0.70) (2.03) (38.06) (272.16)
Direct Method (1.62) (9.64) (77.63) (551.06)
MA48 (0.43) (2.09) (14.86) (115.47)

Table 3: Results for random matrices with v = 10: Number of iterations (CPU time) [level
of fill).

Random test matrices were generated by performing randomly indexed plane rotations on
a lower bidiagonal matrix of given singular values, in CS format, until the average number
of non-zeros per row exceeded the specified value v. The condition number of the matrix
has been arbitrarily chosen to be 10%. Table 3 shows the results obtained for random test
matrices with » = 10. The unpreconditioned iterative methods all failed to converge within
the limit of 1000 iterations. For small values of n the direct methods and the preconditioned
iterative methods require similar CPU times, but the direct methods are to be preferred since
they require no experimentation with algorithmic control parameters. For larger values of
the preconditioned iterative methods begin to show their advantage; for n = 1600 the best
iterative method is more than 23 times faster than the best direct method. The preconditioner
used as a direct method is considerably slower than the other direct methods shown.

The SHERMAN matrices in the Harwell-Boeing collection are a set of 5 oil reservoir sim-
ulation challenge matrices. For these matrices, ILU without pivoting was found to provide
the best preconditioning. Table 4 shows that the preconditioned iterative methods compete
with the direct methods for the small cases (SHERMAN1 and SHERMAN4), and are clearly
superior for larger values of n. The new ILU preconditioner used as a direct method was
less efficient than either FO1BRF/F04AXF or MA48 for SHERMAN1 and SHERMAN4, but
almost matched MA48 for SHERMAN2 AND SHERMANS5. For SHERMANS it was at least
comparable to FOIBRF/F04AXF.




SHERMAN1 | SHERMAN2 | SHERMAN3 | SHERMAN4 | SHERMANS
n 1000 1080 5005 1104 3312
no. NON-Zeros 3750 23094 20033 3786 20793
PRGMRES 70 (2.30) 20 (3.72) 130 (21.49) 50 (1.69) 50 (7.66)
PCGS 32 (1.75) 7 (3.03) 75 (19.98) 25 (1.42) 25 (6.61) -
PBICGSTAB 32 (1.91) 8 (3.30) 48 (14.36) 24 (1.49) 20 (5.98)
RGMRES * * * 760 (11.89) *
CGS 274 (7.17) * * 94 (2.48) * |
BICGSTAB 312 (8.46) * * 92 (2.62) *
F01BRF/F04AXF (4.55) (287.99) (730.52) (4.32) (162.48)
Direct MEthod (11.21) (157.30) (583.28) (32.20) (102.56)
MA48 (1.79) (129.99) (74.86) {1.56) (102.99)

Table 4: Results for the SHERMAN matrices from the Harwell-Boeing collectlon Number
of iterations (CPU time)

4 Future Developments

The software has been designed so that it can easily be extended in future Marks of the
Library in various ways:

o more iterative solvers: QMR, for both symmetric and unsymmetric systems, and TFQMR,
for unsymmetric systems, are prime candidates;
¢ more preconditioners;

e more storage formats.

We also plan to make these iterative solvers available in our C and Fortran 90 Libraries.

References

[1] 1.S. Duff (1977), MA28 — a set of Fortran subroutines for sparse unsymmetric linear
equations. A.E.R.E. Report R.8730., HMSO, London.

[2] LS. Duff, R.G. Grimes, and J.G. Lewis (1992), Users’ guide for the Harwell-Boeing
sparse matriz collection (Release 1), Technical Report RAL-92-086, Rutherford Appleton
Laboratory, Chilton, England.

[3] 1.S. Duff and J.K. Reid (1995), The design of MA48, a code for the direct solution
of sparse unsymmetric linear systems of equations. Technical Report RAL-TR-95-039,
Rutherford Appleton Laboratory, Chilton, England.

[4] H.M. Markowitz (1957), The elimination form of the inverse and its application to linear
programming, Management Sci. 3 255-269.

[5] J. Meijerink and H. Van der Vorst (1977), An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 148-162.

[6] Munksgaard N (1980) Solving sparse symmetric sets of linear equations by precondi-
tioned conjugate gradients ACM TOMS 6 (2) 206-219.




7

[7] NAG (1995) NAG Fortran Library Manual, Mark 17, The Numerical Algorithms Group
Ltd, Oxford, UK.

(8] NAG (1995) NAG Fortran 90 Library Manual, Release 2, The Numerical Algorithms
Group Ltd, Oxford, UK.

[9] NAG (1994) NAG C Library Manual, Mark 3, The Numerical Algorithms Group Ltd,
Oxford, UK.

[10] NAG (1995) NAG Numerical PVM Library Manual, Release 1, The Numerical Algo-
rithms Group Ltd, Oxford, UK.

[11] C.C. Paige and M.A. Saunders (1975), Solution of Sparse Indefinite Systems of Linear
Equations, SIAM J. Numer. Anal. 12 617-629.

[12] Y. Saad and M. Schultz (1986), GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 856-869.

[13] S.Salvini and G.J.Shaw (1995) An Evaluation of New NAG Library Solvers for Large
Sparse Symmetric Linear Systems, NAG Technical Report TR1/95, The Numerical Al-
gorithms Group Ltd, Oxford, UK.

[14] S.Salvini and G.J.Shaw (1996) An Evaluation of New NAG Library Solvers for Large
Sparse Unsymmeitric Linear Systems, NAG Technical Report (in preparation), The Nu-
merical Algorithms Group Ltd, Oxford, UK.

[15] G.L.G. Sleijpen and D.R. Fokkema (1993), BiCGSTAB(Y) for linear equations involving
matrices with complex spectrum, ETNA 1 11-32.

[16] P. Sonneveld (1989), CGS, a fast Lanczos-type solver for nonsymmetric linear systems,
SIAM J. Sci. Statist. Comput. 10 36-52.

[17] Stone H L (1968) Iterative solution of implicit approximation of multidimensional partial
differential equations SIAM J. Numer. Anal. 5 (3) 530-558.

[18] H. Van der Vorst (1989), Bi-CGSTAB, A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13
631-644.




Room TRA Workshop Chair
7:30 p.m. P. Forsyth Navier-Stokes & Euler Equations -




Wednesday Evening’s Workshop
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Abstract

This workshop will focus on methods for solution of compressible Navier-Stokes and Euler
equations. In particular, attention will be focused on the interaction between the methods used
to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the
resulting large sparse systems. Various types of block and incomplete LU factorization will be
discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will
be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to
industrial CFD problems will also be presented. Experience with the use of C++ for solution of
large scale problems will also be discussed. The format for this workshop will be four fifteen minute
talks, followed by a roundtable discussion.

Speakers

T. Barth, NASA; T. Chan, UCLA; W.P. Tang, University of Waterloo
Implicit Parallel Preconditioning Techniques for Computational Fluid Dynamics

E. Chow and Y. Saad, University of Minnesota
Block Preconditioning for the Compressible Flow Calculations

D. P. Young, Boeing
Newton Krylov Methods in Nonlinear Aerodynamics

P. Forsyth, University of Waterloo; H. Jiang, Lucent Technologies
Iterative Methods for Full Newton Jacobians for Compressible Navier Stokes Egquations
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An Efficient Iterative Method for the Generalized Stokes
Problem*

Ahmed Sameh! and Vivek Sarint

Abstract

This paper presents an efficient iterative scheme for the generalized Stokes problem,
which arises frequently in the simulation of time-dependent Navier-Stokes equations for in-
compressible fluid flow. The general form of the linear system is

(#3)(3)-(7) @

where A = aM +vT is an n x n symmetric positive definite matrix, in which M is the mass
matrix, T is the discrete Laplace operator, & and v are positive constants proportional to the
inverses of the time-step A¢ and the Reynolds number Re respectively, and B is the discrete
gradient operator of size n Xk (k < n). Even though the matrix A is symmetric and positive
definite, the system is indefinite due to the incompressibility constraint (BTu = 0). This
causes difficulties both for iterative methods and commonly used preconditioners. Moreover,
depending on the ratio o;/v, A behaves like the mass matrix M at one extreme and the
Laplace operator T' at the other, thus complicating the issue of preconditioning.

The generalized Stokes problem is one of the most time-consuming steps in the large
scale simulation of incompressible fluid flows. Iterative methods, which are indispensable
for solving this problem in realistic situations, rely heavily on effective preconditioners that
can be efficiently implemented on multiprocessors. Therefore, the issues of efficient iterative
algorithms and robust, effective and parallelizable preconditioners for the generalized Stokes
problem must be resolved satisfactorily.

Previous efforts to solve the linear system in Eq. 1 can be broadly classified as follows:

1. Uzawa-type methods. These methods solve the linear system:
BTA7'Bp=BTA™'f (2)

*This research has been supported in part by the NSF under the grant NSF/CDA 9396332-001.
tDept. of Computer Science, Univ. of Minnesota, Twin Cities
Dept. of Computer Science, Univ. of Illinois, Urbana-Champaign
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Each iteration requires the solution of the linear system Az = b. If an iterative method
is used to solve Az = b, we obtain a two-level solver with inner and outer iterations. The
inner system may be solved in many ways including multigrid, spectral methods and
preconditioned CG algorithm. Convergence may be considerably improved by replacing
A with A, = A+ %BBT or by accelerating the linear system by the CG method.
Single-level methods which approximate the generalized Stokes problem by a nearly
incompressible problem have also been developed. However, effective preconditioners
for this approach often rely on expensive linear system solves using an inner iterative
method. The reader is referred to [4, 1, 3, 7, 10, 9] for a variety of Uzawa-type methods.

2. Projection methods. Projection methods (see [8, 2]) require the solution of the
linear system:

PAPy=Pf (3)

where P is the orthogonal projection onto the null space of BT. In each iteration,
one computes the action of the projector P = I — B(BTB)™'BT on a vector u, which
requires solving the system BY Bz = b, where BT B is analogous to a Laplace operator
on the domain. For a large three dimensional problem, computing the projection of u
onto Null(BT) is almost as difficult as solving the system Au = b, and may require
the use of an inner iterative method. '

3. Augmentation methods. Augmentation methods proposed in [5, 6] reformulate the
system by augmenting the matrix B with a suitable matrix F, and use the CG method
to solve the resulting symmetric and positive definite system. Here, one needs to solve
systems of the type (B, F)z = b and (B, F)Tz = b. At present however, the choice of
F for which (B, F) is easy to invert and the system matrix is well-conditioned, has not
yet been determined.

Both Uzawa-type and projection methods are expensive two-level nested iterative meth-
ods with rapid convergence assured only for certain extreme values of a/v. Further, these
schemes suffer from the lack of good preconditioners, which have been elusive due to the
complicated coefficient matrices arising in these methods.

In this paper, we propose a multilevel scheme for the solution of elliptic problems that
has the desirable properties of effective. preconditioning and efficient implementation on
multiprocessors. We also extend this multilevel scheme to the generalized Stokes problem
and present numerical experiments for the solution of the driven cavity problem.

Multilevel Scheme for the Generalized Stokes Problem

A multilevel approach is used to compute a basis for Null(BT); where B is the discrete
gradient operator. This null-space-basis, P is expressed as the product of a sequence of




sparse matrices, s.t. it requires only O(n) operations to perform a matrix-vector product
with Pp. In fact, we determine matrices P, D and Z such that ‘
PTBZ = ( D )
0
where P is a nonsingular » x n matrix, D is a k x k diagonal matrix and Z is a k x k

orthogonal matrix. Further, P = [P,, P,] where P, comprises of the last n— k columns of P.
Eq. 1 may be rewritten as

PTAP, PTAP, D\ [ i PTf
PTAP, PTAR, 0 || @ | = | PI¥ @)
D 0 0 Z%p 0

where u = Pi. The algorithm for computing the solution of the generalized Stokes problem
is as follows:

Algorithm Multilevel Generalized_Stokes
1. Set ’&1 = 0.
2. Solve using the CG method

PT APyity = P{ f (5)

3. Compute p = D7IPF(f — APsip).
4. Set u= Pi and p = Zp.

To solve the generalized Stokes problem efficiently, it is imperative that the matrix
PTAP,, in which A = oM + vT, is well-conditioned for a wide range of the parameters
a and v. When o/v is large, A may be approximated by aM, and when a/v is small, A
approaches the Laplace operator »T'. It can be shown that for large values of /v, stan-
dard preprocessing techniques like diagonal scaling of the matrix A yields a well-conditioned
system. In cases where a/v is small, we expect PL AP, to be well-conditioned due to the
“inverse” nature of the matrices A and P P,.

Numerical Experiments
Numerical experiments for the solution of the generalized Stokes problem for a lid-driven
cavity problem were performed on an IBM RS6000 with 66.5 MHz clock and 256 MB memory.
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We consider a two-dimensional unit square domain with u = (0, 0)% on the boundary except
the top edge where u = (1,0)¥, and p = 0 at the bottom-left corner. The domain is
uniformly discretized with the Marker-and-Cell (MAC) scheme. Fig. 1 presents the number
of iterations required to solve the linear system in Eq. 5. These results indicate that in the
worst case, the condition number of the system matrix Py AP, is O(y/n), which indicates
effective preconditioning of the system matrix.

45 L) L} L} 1 T )
np=16383, nu=32512

np=1023, nu=1984

Iterations

20k np=255, nu=480

eerecesnnnrnnanone [} o & o a.

0
-inf -4 -2 4 6 8

0 2
log10(alpha/nu)

Figure 1: Multilevel scheme for the MAC scheme on a uniform square mesh. np= pressure
unknowns, nu= velocity unknowns.

These results clearly indicate that the multilevel scheme is a robust and effective precon-
ditioning strategy for the solution of the linear system of the generalized Stokes problem for
a wide choice of o/v. This makes the multilevel scheme an attractive approach especially
since convergence is relatively independent of @ = 1/At, and therefore doesn’t constrain
the choice of the time-step At. Furthermore, it is a single-level scheme with O(n) compu-
tation per iteration, unlike the two-level Uzawa-type and projection methods which require
expensive linear system solves in each iteration. The matrix-vector product with the system
matrix Pf AP, can be efficiently parallelized for multiprocessor implementations. It must
also be pointed out that the effort required in generating the basis P, can be amortized over
a number of system solves since B is invariant over numerous time steps for the nonlinear
Navier-Stokes equations. Current work includes numerical experiments with systems ob-




tained using the finite elements method on unstructured grids for two and three-dimensional
domains. We expect to present comparative results of numerical experiments for some of
these problems.
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A. Deflation based Parallel Algorithm for Spectral Element
Solution of the Incompressible Navier-Stokes Equations

Paul F. Fischer
Division of Applied Mathematics
Brown University
Providence, RI 02912

Abstract

Efficient solution of the Navier-Stokes equations in complex domains is dependent
upon the availability of fast solvers for sparse linear systems. For unsteady incompressible
flows, the pressure operator is the leading contributor to stiffness, as the characteristic
propagation speed is infinite. In the context of operator splitting formulations, it is the
pressure solve which is the most computationally challenging, despite its elliptic origins. We
seek to improve existing spectral element iterative methods for the pressure solve in order
to overcome the slow convergence frequently observed in the presence of highly refined grids
or high-aspect ratio elements.

Our present algorithm, developed by Rgnquist [1], uses a two-level iteration scheme
in which the coarse-grid modes are projected out of the governing system via deflation [2].
The coarse-grid system is generated via application of a piecewise constant prolongation
operator, which is admissible due to the £2 approximation space used for the pressure. In
one-dimension, this approach leads to unit condition number when block-Jacobi precon-
ditioning is applied to the deflated operator [1]. However, in more complex domains, the
conditioning deteriorates when the grid is highly refined, and numerical evidence suggests
that this is due to lack of inter-element (subdomain) coupling in the block-Jacobi precondi-
tioner. Unfortunately, the £? pressure approximation space based upon the (interior) Gauss
quadrature points does not readily lend itself to incorporation of subdomain operators with
overlap. However, inter-element coupling can be increased by enriching the coarse-grid
space, albeit with increased cost in the coarse-grid solve.

We explore the potential of using an enriched coarse-grid operator (based upon piece-
wise polynomial approximation) to reduce the condition number of the governing pressure
system. The success of the method is largely dependent upon the availability of an efficient
direct solver for the coarse-grid system, a problem which is widely recognized as a source
of difficulty on distributed memory parallel computers. We present a new parallel algo-
rithm for the repeated coarse-grid solves which is more efficient than standard approaches.
Its use offsets the additional overhead incurred by the enlarged coarse-grid system, and
the combination leads to a faster solution algorithm. Parallel results for several two- and
three-dimensional Navier-Stokes calculations are presented.

[1] E.M. Rgnquist, A Domain Decomposition Method for Elliptic Boundary Value Prob-
lems: Application to Unsteady Incompressible Fluid Flow, in Fifth Conference on Domain
Decomposition Methods for Partial Differential Equations T.F. Chan, D.E. Keyes, G.A.
Meurant, J.S. Scroggs, and R.G. Voigt, eds., SIAM, Philadelphia, PA, 1992.

[2] R.A. Nicolaides, Deflation of conjugate gradients with applications to boundary value
problems SIAM J. Numer. Anal., 24(2), (1987) pp. 355-65.




An iteration for Indefinite and Non-symmetric systems
and its application to the Navier-Stokes equations

Andy Wathen, Oxford University, UK
Gene Golub, Stanford University, USA

A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen
problem which after appropriate discretisation yields large sparse linear systems with
coefficient matrices of the form

A BT
(5 %)

Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric
and positive semi-definite. Such systems arise in other situations.

In this talk we will describe and present some analysis for an iteration based on an
indefinite and symmetric preconditioner of the form

D BT
B -C)°
In the case of the Oseen problem, this covers the case of preconditioning by the solution
of a Stokes system - in recent years several optimal iterative solvers for the Stokes
systems have been proposed (see [1]) and can be employed here.
We will present some convergence analysis for a simple iteration based on this pre-

conditioner and for GMRES acceleration of this underlying process. Numerical results
for both these situations as well as QMR acceleration will be presented.

[1] Elman, H.C., 1995, ‘Multigrid and Krylov subspace methods for the discrete
Stokes equations’, preprint (University of Maryland, Dept of Computer Science)




Perturbation of Eigenvalues of Preconditioned Navier-Stokes Operators

Howard C. Elman
Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742
e-mail: elman@cs.umd.edu

Abstract. We study the sensitivity of algebraic eigenvalue problems associated with
matrices arising from linearization and discretization of the steady-state Navier-Stokes
equations. In particular, for several choices of preconditioners applied to the system of
discrete equations, we derive upper bounds on perturbations of eigenvalues as functions
of the viscosity and discretization mesh size. The bounds suggest that the sensitivity
of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the
inverse of the mesh size, and that scaling can be used to decrease the sensitivity in
some cases. Experimental results supplement these results and confirm the relatively
mild dependence on viscosity. They also indicate a dependence on the mesh size of
magnitude smaller than the analysis suggests.
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Numerical Conformal Mapping Methods for Exterior and Doubly Connected
Regions

Thomas K. DeLilloj

Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260-
0033, email: delillo@twsuvm.uc.twsu.edu

John A. Pfaltzgraff
Department of Mathematics, The University of North Carolina at Chapel Hill, CB 3250,
Phillips Hall, Chapel Hill, NC 27599-3250, email: jap@math.unc.edu

Abstract. Methods are presented and analyzed for approximating the conformal map from
the exterior of the disk to the exterior a smooth, simple closed curve and from an annulus
to a bounded, doubly connected region with smooth boundaries. The methods are Newton-
like methods for computing the boundary correspondences and conformal moduli similar
to Fornberg’s method for the interior of the disk. We show that the linear systems are
discretizations of the identity plus a compact operator and, hence, that the conjugate
gradient method converges superlinearly.

1. Introduction. Several methods for numerical conformal mapping are presented in the
texts [Ga] and [He]. For simply connected regions with smooth boundaries several methods
which map from the unit disk to the region and employ the fast Fourier transform (FFT)
are available [De], [DE1], [Fol], [Wegl], [Weg2], [Weg4]. For doubly connected regions
with smooth boundaries, methods which use the annulus as a computational domain and
employ FFTs are available [Fo2], [LM], [Weg3]. Several of these methods are Newton-like
methods for computing the boundary correspondence. It can be shown for the interior disk
case [Fol], [Weg4] that the matrices for the inner systems are discretizations of the iden-
tity plus a compact operator and that the conjugate gradient method therefore converges
superlinearly [Weg2], [Wid). In this paper we extend this analysis to Fornberg’s method
for the exterior of the disk and the annulus where a Newton-like version of [Fo2] is given.

Currently the most robust and stable methods are based on solving Riemann-Hilbert
problems for the Newton updates. In [Weg4], a discrete interpolation problem is solved
and in [Weg5] (which can be specialized to the disk) damping of higher order Fourier
coefficients is used to avoid the instabilities in [Wegl]; see e.g. [De], [DE1]. In both cases
convergence of the numerical method is proved. It is not known to us whether these
methods generalize to the doubly connected cases or whether [LM] or [Weg3] suffer from
instabilities like [Wegl].

The Fornberg-like methods below generalize to a variety of computational domains,
such as ellipses [DE2], [Weg5] and cross shaped regions [DEP], and apparently to multiply
connected circle domains. These methods are based on finding analyticity conditions for
the computational domains and provide, we believe, an interesting class of problems for
conjugate gradient-like methods. In section 2 of this paper, we define certain useful linear

 This author’s research was partially supported by U. S. Department of Energy grant
DE-FG02-92ER25124 and by National Science Foundation EPSCoR grant OSR-9255223
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operators. In section 3, we state the analyticity conditions for the exterior disk and annulus.
In sections 4 and 5, we discuss the exterior disk and annulus maps, respectively,

2. Linear operators. We have need of several operators occuring in Fourier analysis;
see e.g. [Weg2). We take the domain of these operators to be the set of 2m-periodic

functions A in L2. Let -
h(@)= > are™.

=—00

Then the conjugation operator, K, is given by

_ 1 | 2 0"‘45 ’ _ — . iko — . k0
Kh(9) = o —P.V. /0 cot(——)h(¢)dg = > iage —kzﬂzake :

k=—c0

2T
Th(6) = % [ 1oy = ao

P.h= %(I +iK — k= age™®
) k=1

0
1. . ;
Ph=s(I—iK+Dh= 3 ape™

k=—c0

We will also make use of the discretizations of the operators above using N-point
trigonometric interpolation. If

b= (hoy.ey hn—1)T, hi = h(6:), Ok = 27k/N, k=0,..,N —1,

and
N-1

. 1 » .
= 77 Z hiw™I%, w = 2™/,
§=0

then with n = N/2 the trigonometric polynomial interpolating h is given by -

n—1

Tnh(0) = Z aret®® + a, cos(nb),
k=—n+1

and the discrete operators corresponding to those introduced above are

-1 n—1
Knh(@)= > iaxe™® =) iape™,
k=1

k=—n+1

Inh(0) = g — G cos(nb),
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and )
1 — ,
Py nh=3(Ty +iKy — In)h = > ape™ + a, cosnf
k=1
0

1 ) . 3
P_’N= §(TN—ZKN+JN) = Z are k6
k=—n+1

If the N X N matrix F := (w™*),k,v,=0,..., N — 1, then

1 -~ A~ ~ ~ ~ -~
Fh= a= (a‘O) ey aN—l)T = (a0, eesy Oy G 1y oeey a'—l)T

since G = dr_n. Note

tpap_ L

H - _ oy
N NFF = Iy (H = Hermitian transpose)

In matrix form 1

N

where I_ y = diag(1,0,---,0,1,---,1) and I, y = diag(0,1,---,1,0,---,0) are N x N
diagonal matrices of rank n.

P n= %FH I_NF Pyn=—=F8I nF

3. Analyticity conditions. We will use the following conditions:

Theorem. A function f € Lip(C) on the boundary of the unit disk C extends to an
analytic function on the exterior of C with h(co) finite if and only if

P, f(e®) =0.

Theorem. Let E be the annulus p < |z| < 1 with boundaries C = C; — C, where
Cy:€?,Cy: pe®,0 < p < 1. Then f € Lip(C) extends analytically to E if and only
if
f(2)2Fdz = / f(2)2%dz, k=0,%1,42,...

C2

C1
Then for -
f(eie) — Z akeike,
k=—c0
f(peie) — Z bkeike,
k=—c0
we have

plar =bg, k=0,%+1,+2,....
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4. Fornberg-like method for simply connected regions exterior to a Jordan
curve. Here we extend the method [Fol] for the interior of the disk to the exterior case.
We show that the analysis for the interior case [Weg2], [Wid] carries over to the exterior
case.

We wish to find the conformal map f from the exterior of the unit disk to the exterior of
a smooth Jordan curve I' : 7(S) parametrized by, for instance, arclength S with f(co) = co
and f'(co0) > 0 or f(1) fixed. In this case, f extends smoothly to the boundary and f(e¥) =
v(S(8)). The numerical problem is to approximate the boundary correspondence S(0). This
will yield an approximation to the Laurent series f(2) = a1z+a0+ Y pey -2~ *. Newton-
like methods can be used for determining S(0). At the kth Newton step a correction U®)(8)
real to S*)(0) is computed from the condition that the linearization

h(e?) = £(6) + EPOOTB (0) » f(e7)e™,

where £(0) = v(S®)(6))e* and B(6) = argy'(S*)(6)), extends analytically to the exterior
of the unit disk with h analytic at co. From the analyticity conditions in section 3, we
have

2P h=(I+iK — J)h=0.

This implies (with U = U(*)) that
(I+iK — J)elPO-9y(9) = —2P,£(6).

Using U real gives
(I+R*YU =r

where Rt = Re(e~*B=0) (K — J)eiF=9) and r = —Re(e P~ (I + iK — J)¢). For v
sufficiently smooth R®*t is a compact operator on L?; see [Weg2, section 4] where Re®t =
—Ry = Re(V(K — J)V),V = =0, With E = diag;(e!%%)),j = 0,1,---,N -1
discretization with N—point trigonometric interpolation gives

(In+ Rf\?t)UN =TN

The matrix 9 o
Ay =Iy+ RS = —]—V—EH FEI, NFE

is thus symmetric with eigenvalues well-grouped around 1 and the conjugate gradient
method converges superlinearly. The FFT is used to perform the matrix-vector multipli-
cations in O(NN log N). The Newton update is given by Sk+l = 5k L Uk and we set Up =0
to fix a boundary point as in [Fol].

5. Fornberg-like method for the bounded, doubly connected regions. In
this section, we generalize [Fol] to doubly connected regions. Fornberg himself extended
his method to the doubly connected case [Fo2]. He solves a system of equations [Fo2, eq.
(6)], which are essentially our analyticity conditions, using a linearly convergent method
of successive approximation. Here we show how to linearize these equations to get a
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quadratically convergent, Newton-like method. We derive a symmetric linear system which
is a discretization of the identity plus a compact operator, and so the conjugate gradient
method converges superlinearly with O(NV log N) matrix-vector multiplications using the
FFT. Our linearization is that used by Luchini and Manzo [LM], however, they solve
Riemann-Hilbert problems for the Newton updates. Wegmann [Weg3] also solves Riemann-
Hilbert problems, but uses a slightly different and more expensive linearization. We do
not know if these latter methods suffer from any instability, as in the simply connected
case.

If the target region Q is bounded by two smooth Jordan curves I'y : 1(S;) and T's :
7(S2), we want to find the boundary correspondences S1(#) and S5(6) and the conformal
modulus p such that f(z) is analytic in the annulus p < |2| < 1 and f(e®) = v,(51(8))
and f(pe*) = v5(S2()). We have programmed a Newton-like method to do this. At each
Newton step we want to compute corrections U3 (), Us(6), and 8p to S1(6), S2(6), and
p- With 5; arclength, B8;(S5;(0)) := arg~;(5;(6)), &;(8) = ;(S;(8)), § = 1,2, ¢(6) :=
f'(pe®)e® = —ieP2(52(9))dS,(0)/df/ p, as in [LM] we linearize about Sy, S as follows:

f(ew) = £(0) + etP1(51 (9))U1(9)
F(pe®®) = £(6) + 252Ny, (6) — ¢(6)6p.

For the annulus, it is easier to begin with the discrete equations. We discretize the
analyticity conditions for the annulus, sec. 3, and the linearizations above with N—point
trigonometric interpolation to get a discrete approximation to the U;’s at the Fourier
points, 6, = 27xk/N,k = 0,1,...,N — 1. Letting a; and by now denote the N discrete
Fourier coefficients and using the N—periodicity axsn = ax, we have with N = 2n

T _ T
a= (G'Oaa'l,'"’anaa’n-i-l""’a'N—l) = (a07a'1a°",an,a—n-i-la'-'aa—l) .

b is defined similarly. Next define the N X N matrices P; = diag(1, p,...,0p" %, 1,...,1)
and P =-diag(1,...,1,1,p""1,...,p). If we set a, = b, as in [Fo2, eq. 6], we write the
discrete form of our analyticity conditions as

Pia+ Pb = 0.
With B; := diag;, . y_1(¢?Pi(5i®) j = 1,2, our discrete linearizations become
Na= F¢, + FEU,
Nb= FE, + FEU, — F(6p.

Substituting these linearizations into the discrete analyticity conditions gives our linear
system for U;, U,, and 6p,

Py FE U, + PaFEUy + PoF(6p = —PF§ — P FE, =:g.
This system can be written in the form
DU=g¢g
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where-D is. the-product of block matrices,

FE; 0 O
D=(P1 P2 ’_l_U__) 0 FE2 0. .
0 0 1
and
U,
U= Qz
bp

with w = P2F§ . This is a system of N complex equations in 2N + 1 real unknowns, U. To
satisfy the normalization f(1) = 71(0), we set Up = 0. Then the equation count is correct.
We solve the “normal” equations

AU = %Re(DH 9)

by the conjugate gradient method (CGNR) using FFTs, where

9 Ay A wy
A= NRe(DHD)LJ_ = | AT, As = w,

wi  wi wlw

and 5
Aij = NRe(E,-H FEPp,P;FE;)

2 ..
wi = WRG(Pzw.), ,] = 1,2
Now it is easy to see that Aj; is a (low rank perturbation of) the discretization of
9Re(e#(P_ +1x)eP) = I + R + Cr

with N—point trigonometric interpolation where R; = Re(e™%(J — iK)ef?* is compact,
% is convolution, 1(§) = p2ei /(1 — p2e?) = -2 p?*e™*® and C; = Re(e™"1l x (ef1)) is
the product of bounded operators and convolution and is, hence, compact. Asgs is also the
discretization of an operator I + Ry + Co of similar form and A, is the discretization of
an operator of the the form C3 + Cy involving products with convolutions. ‘Therefore A is
a symmetric (low rank perturbation of) the discretization of the identity plus a compact
operator, the eigenvalues cluster around 1, and so the conjugate gradient method converges
rapidly. The Newton update at the kth Newton step is

k k k
s =5 +u3”

S _ o) u®




The Newton iterations converge quadratically. The method is sensitive to the initial guess
like Fornberg’s method for the disk.
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A NEW ADAPTIVE GMRES ALGORITHM FOR

ACHIEVING HIGH ACCURACY
MARIA SOSONKINAT, LAYNE T. WA’I‘SONT, HOMER F. WALKERI,

AND RAKESH K. KAPANIAS

Abstract. GMRES(k) is widely used for solving nonsymmetric linear systems.
However, it is inadequate either when it converges only for k close to the problem size
or when numerical error in the modified Gram-Schmidt process used in the GMRES
orthogonalization phase dramatically affects the algorithm performance. An adaptive
version of GMRES(k) which tunes the restart value k based on criteria estimating the
GMRES convergence rate for the given problem is proposed here.

The essence of the adaptive GMRES strategy is to adapt the parameter k& to
the problem, similar in spirit to how a variable order ODE algorithm tunes the order
k. With FORTRAN 90, which provides pointers and dynamic memory management,
dealing with the variable storage requirements implied by varying & is not too difficult.
The parameter k can be both increased and decreased—an increase-only strategy is
described next followed by pseudocode.

If k¥ in GMRES() is not sufficiently large, GMRES(k) can stagnate. A test of
stagnation developed in [19] detects an insufficient residual norm reduction in the
restart number k of steps by estimating the GMRES behavior on a particular lin-
ear system. Preciselyy, GMRES(k) is declared to have stagnated and the iteration
is aborted if at the rate of progress over the last restart cycle of steps, the residual
norm tolerance cannot be met in some large multiple (bgv) of the remaining number
of steps allowed (itmaz is a bound on the number of steps permitted). Slow progress
of GMRES(k) which indicates that an increase in the restart value k¥ may be beneficial
[18] can be detected with a similar test. The near-stagnation test uses a different,
smaller multiple (smv) of the remaining allowed number of steps. If near-stagnation
occurs, the restart value £ is incremented by some value m and the same restart cycle
continues. Restarting would mean repeating the nonproductive iterations that previ-
ously resulted in stagnation, at least in the case of complete stagnation (no residual
reduction at all). Such incrementing is used whenever needed if the restart value &
is less than some maximum value kmaz. When the maximum value for k is reached,
adaptive GMRES(k) proceeds as GMRES (kmaz).

Frequently, a modified version of the Gram-Schmidt process is used in the con-
struction of an orthonormal basis for the Krylov subspace. However, convergence of
GMRES may be seriously affected by roundoff error, which is especially noticeable
when a high accuracy solution is required. The orthogonalization phase of GMRES
is suspectable to numerical instability. Thus, a more robust orthogonalization with
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Householder reflections is implemented as in [20]. In theory, the implementation of
GMRES using Householder reflections is about twice as expensive as when modified
Gram-Schmidt is used [21]. However, the Householder reflection method produces a
more accurate orthogonalization of the Krylov subspace basis when the basis vectors
are nearly linearly dependent and the modified Gram-Schmidt method fails to orthog-
onalize the basis vectors; this can result in fewer GMRES iterations compensating for
the higher cost per iteration using Householder reflections. Let e; be the jth standard
basis vector, avnz be the average number of nonzeros per row, and all norms the
2-norm. Pseudocode for an adaptive version of GMRES(k) with orthogonalization via
Householder reflections implemented as in [20] and [21] follows. Call this algorithm
AGMRES(%). )

choose z,itmaz, kmaz, m;
r:=b— Az; itno:=0; = cnmaz:=1/(50u);
ztol : = max{100.0, 1.01lavnz}y; tol : = max{||r(], ||8]| }ztol;
while ||r|| > tol do :
begin
pold ; — .
determine Pyr = %||r||es
where the Householder transformation matrix P is defined in [8];
for j:=1 step 1 until £ do
begin
L1: itno : = itno+ 1;
v:i=F;---PAP; --- Pjej;
determine Pj4; such that P;;1v has zero components
after the (5 + 1)st;
update ||r|| as described in [16};
compute incremental condition number JCN as in [1];
if ICN > cnmaz then abort;
if [|r]] £ tol then goto L2
end
test : = b x logfsol/|Ir{] / log [IIl/ ((1.0-+ 10w) [r*4])]
if & £ kmaz — m and test 2 smv X (itmaz — itno) then

k:=k+m;
goto L1
end if

L2: er :=(1,0,---,0)T;
solve min || ||r|lex — Hjy|| for y; where Hj is described in [16];
]
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- (2)

z:=z+ P - Pg; r:=b— Az;
if ||r|| < tol then exit;
if || < ||7]] then
if ||r|| < tol?/® then
exit
else
abort
end if
end if

test : = k x log[tol/||r(]] / log [l|7]l/ ((1.0 + 10u) " )] 5
if test 2 bgv x (itmaz — itno) then
abort
end if

end

High accuracy computation is known to be especially important for some circuit
design and simulation problems, which involve nonsymmetric unstructured matrices
[14]. These problems have proven to be very difficult for any iterative method, and
presently, only specially tailored direct methods are used to solve them in a produc-
tion environment. The impact of numerical error is shown here to be significant in the
postbuckling stability analysis of structures which exhibit snap-back and snap-through
phenomena. A postbuckling analysis amounts to tracking what is called an equilibrium
curve, involving the solution of linear systems with (tangent stiffness) matrices that
vary along the equilibrium curve. Mathematically, the snap-back and snap-through
behavior of structures corresponds to symmetric, structured, and strongly indefinite
tangent stiffness matrices, which can be difficult for Krylov subspace iterative methods.
Along some portions of the curve the tangent stiffness matrices may be well condi-
tioned and positive definite—easy for iterative methods. This wide variation in linear
system difficulty clearly suggests an adaptive strategy. With good preconditioning,
the details of an iterative solver become less important, and for many real problems
good preconditioning strategies (e.g., multigrid) are available. For some classes of
problems, like analog DC circuit design and structural postbuckling stability analysis,
good preconditioning strategies are not known, and subtle implementation details of
iterative algorithms become paramount.

Tables 1-6 show the iteration counts and timing results for adaptive GMRES (%)
with modified Gram-Schmidt and Householder reflection orthogonalization proce-
dures (AGS, AGH respectively) and different subspace increment values m, standard
GMRES(k) (GS), flexible GMRES(%) (FGS), and QMR (Q). The notation AGH:2, for
example, means AGH with m = 2. Each of the iterative methods was applied .to all of
the test problems. An iterative solver is deemed to have converged when the relative
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residual’ norm: reduction is less than max{100, avnz}u. The limit on the number of
iterations is 30n. All reported CPU times are for 64-bit IEEE arithmetic on a DEC
Alpha 3000/600 workstation. The average, maximum, and minimum number of iter-
ations per linear system solution along the homotopy zero curve are shown in Tables
1-3. Note that in the FGS column the numbers for the = outer iterations of flexible
GMRES(k) are given. Tables 5, 6 report the total CPU time in seconds required for
an iterative method to obtain all the linear system solutions needed for HOMPACK
[24] to track a homotopy zero curve for a certain arc length specified for each problem.
For the circuit problems (Table 4), the reported CPU time is the time necessary to
solve a certain number of linear systems arising along a portion of the homotopy zero
curve.

TABLE 1
Average, mazimum, and minimum number of iterative solver iterations per linear
system along homotopy zero curve for circuit design problems (ILU preconditioner).

n AGH:2 AGH:4 AGH:6 AGS:2 AGS:4 AGS:6
31 23,112,1 19,108,1 19,108,1 27,1,192 26,165,1 26,165,1
(2 — 6) (2 = 6) (2—6) (2 = 6) (2 = 6) (2 = 6)
59 50,231,14 46,231,14 46,231,14 53,231,14 53,231,14 *
(4 = 6) (4 =+ 8) (4 — 10) {4 — 6) (4 =+ 8)
67| 601,1225,322] 622,1650,333| 506,948,285| 553,1117,315| 493,892,299| 530,1057,340
(5 —+ 15) (5 = 15) (5 = 15) (5 — 15) (5 = 15) (5 =+ 15)
125 143,194,84 121,168,84 103,131,82 136,221,66 135,202,66 134,192,66
(4 — 6) (4 — 8) (4 = 10)|" (4 = 6) (4 — 10) (4 =+ 12)
468| 585,1650,252 | 585,1650,252| 585,1650,252| 603,1740,252 603,1740,252] 603,1740,252
(15 — 15) (15 =+ 15)] (15 = 15) (15 — 15) (15 = 15) (15 —+ 15)
1854 | 2576,3739,1177 | 2591,3955,956 | 2660,3815,873 | 2710,4165,1347 [ 2725,3990,1096 | 2523,3947,1060
(35 —48)| (35 =+ 47)| ° (35 — 47) (35 — 47) (35 — 47) (35 = 47)
n GS FGS|Q
(6)12,48.1| (3)8,196,1
59 (4) * *| *
(10)9,10,7
67 (8) * (3 ** ' .
(15)288,359,217 | (8)20,107,9 :
125 (* (4) *| *| . :
(12)68,90,36 | (6)62,142,9
468 | (15)603,1740,252 *) ¥
1854 (35) *| - *]*
(47)611,838,539

An asterisk denotes convergence failure, meaning any of the following occurred:
(1) desired error tolerance not met after 30 iterations, (2) dangerous near singularity
detected for the GMRES least squares problem, (3) residual norm increased between
restart cycles and was not small, (4) stagnation occurred for GMRES-like methods.
In Tables 1-3, the numbers in parentheses (k) show the restart values k whenever
applicable. For AGS and AGH, the notation (¢ — b) shows the initial restart value
a and the maximum restart value b reached by the adaptive strategy anywhere along
the homotopy zero curve. '




TABLE 2
Average, mazimum, and minimum number of iterative solver iterations per linear
system along homotopy curve for thin shell problem (Gill-Murray preconditioner).

nl AGH:2| AGH:4| AGH:6| AGS:2| AGS:4| AGS:6 GS|FGS
55| 80,1239,1| 57,888,1| 44,748,1 * * * [
(8 = 20)| (8 = 20)| (B8 — 24)
119| 6,134,1] 6,134,1] 6,134,1 | 6,140,1] 6,140,1[ 6,140,16,140,1| *|*
(5=5)] (5=5)}) (5=5|[6=5|5—=5)]|(56-=5) (5)
1239 3,14,1 3,14,1 3,14,1 * * * EE
(12 = 20)| (12 — 20)|(12 — 20)

*|O

Table 3
Average, mazimum, and minimum number of iterative solver iterations per linear
system along homotopy zero curve for lamella dome problem (Gill-Murray preconditioner).

n| AGH:2| AGH:4 AGH:6 AGS:2 AGS:4|AGS:6|GS FGS|Q
21| 22,452,1 19,536,1| 16,528,1| 23,508,1| 18,387,1 ¥ % *| *
(4—=10)|](4=+12){ (4= 10)[{4—=10) | (4 = 12)
69(38,1374,1(34,1347,1|35,1576,1 | 40,1331,1]| 39,1442,1 *| % (4) *| *
(8 = 18)[ (8 — 18)| (8 = 18)| (8 — 18)](8 — 18) (9)3,75,1
TABLE 4

Tterative solver ezecution time in seconds for circuit problems (ILU preconditioner).

n|AGH:2{AGH:4|AGH:6 | AGS:2 | AGS:4|AGS:6| GS| FGS
31 0.67 0.55 0.56f 0.43| 0.41] 0.41] 0.18| 1.53
59 0.56 0.52 0.51] 0.31| 0.30 *1 0.08 *
67| 4.58 4.84 3.87{ 1.94| 1.76] 1.76] 0.53|11.04
125 1.83 1.70 1.53] 0.96] 0.86] 0.73] 0.71]|14.56
468 15.03] 15.04{ 15.05] 5.33] 5.32] 5.33| 5.32 *
1854 514.62| 515.12| 530.69 | 135.37| 136.25 | 125.99|32.98 *

TABLE 5
Iterative solver ezecution time in seconds for thin shell problem (Gill-Murray pre-
conditioner).
n|AGH:2|AGH:4| AGH:6{ AGS:2| AGS:4| AGS:6| GS
55| 25.82| 19.68| 14.53 * * ¥ *
119 2.70 2.71 2.69 2.43| 2.42| 2.41]2.44
1239| 111.40| 107.12| 100.90 * * * *
TABLE 6
Iterative solver ezecution time in seconds for lamella dome problem (Gill-Murray
preconditioner).

n|AGH:2|AGH:4| AGH:6|AGS:2 | AGS:4]AGS:6 | FGS
21 2.24 1.89 1.66] 1.74] 1.39 * *
691 29.45| 25.93| 27.27| 24.26] 23.64 *|38.86

For applications requiring high accuracy linear system solutions, the adaptive
GMRES (k) algorithm proposed here, which is based on Householder transformations
and monitoring the GMRES convergence rate, outperforms several standard GMRES
variants and QMR. The superiority is not in CPU time or memory requirements, but
in robustness as a linear system solution “server” for a much larger nonlinear analysis
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“client” computation. The extra cost of Householder transformations is well justified
by the improved reliability, and the adaptive strategy is well suited to-the need to solve
a sequence of linear systems of widely varying difficulty. In the context of large scale,
multidisciplinary, nonlinear analysis it is hard to imagine not- wanting the various
components to be adaptive. ‘ : C '

The high accuracy requirement causes types of failures in GMRES not usually seen
in moderate accuracy uses of GMRES, and monitoring condition number estimates
and the onset of stagnation within GMRES becomes crucial. Furthermore, “sanity”
checks (e.g., residual norm should be nonincreasing) within a GMRES algorithm must
be modified for high accuracy. For instance, the limit on the number of iterations
must be increased, and depending on other factors, an increasing residual norm may
or may not dictate an abort (such details are in the pseudocode above). Finally, the
three test problems are rather different, so the details of AGMRES(k) have not been
tuned to one particular class of problems.

Future work should investigate a strategy for both increasing and decreasihg the
Krylov subspace dimension depending on measures of progress. Ideally the accuracy
requested of the linear solver should match the accuracy actually required by the
calling nonlinear analysis program, although in large scale computation it may be
extremely difficult to estimate this minimum required accuracy.
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optimal methods based on the Arnoldi iteration, if a large number
iterations is necessary, the storage requirements become excessive

. the iterations too expensive. Therefore, in practice one restarts

er a given number of iterations, m, (like GMRES(m)), or one truncates
set of Arnoldi vectors, typically by keeping only the last m vectors

ke GCR(m)) .

ever, this often leads to a loss of superlinear convergence or
n to stagnation of the convergence. Nested iterative methods
and/or more general truncation schemes offer the possibility of
r optimal convergence with reasonable memory requirements and low
ration cost, if the right vectors to keep for orthogonalization in
ure iterations can be selected.
ently proposed strategies seem to focus on removing certain parts of the
ctrum. However, these strategies generally assume that the spectrum is in
positive real half plane, and are therefore not generally applicable.
eover, recent papers by Z. Strakos and A. Greembaum show that even
a favourable spectrum the convergence of full GMRES (which is optimal) can
11 be arbitrarily bad (stagnating) depending on the eigenvectors of the
rix; i.e. the non-normality plays a large role as well.

refore, we propose a different strategy.

compute the singular value decomposition of a small matrix (2)
structed from the iteration parameters, that is, £rom the

senberg matrix in GMRES(m) or from the product of the matrices

t describe the projections in the nested method. This singular

ue decomposition reveals exactly what role the orthogonalization on

h arbitrary subspace of the space spanned by the Arnoldi vectors has
ved in the convergence so far. Where we use the term Arnoldi vectors
indicate both the search vectors generated by GMRES or GCR and the
rch vectors in the outer iteration if we use a nested method.

be more precise, if we consider one or more vectors defined as the
ducts of the matrix with the Arnoldi vectors as its columns and the

t singular vectors of Z, then a function of the corresponding singular
ves determines how much worse the convergence would have been had this




vector or the space spanned by these vectors not been projected out in
the previous iterations. This can be generalized to arbitrary subspaces.
So this function of the singular values defines the deterioration from the
optimal convergence. This information can be used to select the dimension
and the basis of the space to be projected out (orthogonalized upon) in
future iterations.

Preliminary numerical tests indicate that this approach leads to a very effect
truncation strategy.

v
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HYBRID LANCZOS-TYPE PRODUCT METHODS
KLAUS J. RESSEL*

Abstract. A general framework is proposed to construct hybrid iterative methods for the
solution of large nonsymmetric systems of linear equations. This framework is based on Lanczos-
type product methods, whose iteration polynomial consists of the Lanczos polynomial multiplied
by some other arbitrary “shadow” polynomial. By using for the shadow polynomial Chebyshev
{(more general Faber) polynomials or L2-optimal polynomials, hybrid (Chebyshev-like)-methods are
incorporated into Lanczos-type product methods. In addition, to acquire spectral information on the
system matrix, which is required for such a choice of shadow polynomials, the Lanczos-process can
be employed either directly or in an QMR-like approach. The QMR like approach allows the cheap
computation of the roots of the B-orthogonal polynomials and the residual polynomials associated
with the QMR iteration. These roots can be used as a good approximation for the spectrum of the
system matrix. Different choices for the shadow polynomials and their construction are analyzed. The
resulting hybrid methods are compared with standard Lanczos-type product methods, like BiOStab,
BiOStab(£) and BiOS.

Key words. iterative methods, Lanczos method, product methods, hybrid, sparse linear systems

AMS subject classifications. 65F15, 65F10

1. Introduction. Polynomial iterative methods for the solution of large systems
of linear equations Az = b with nonsymmetric sparse system matrix A € CVX¥ can be
divided into two classes. Hybrid (Chebyshev-like) methods acquire in a first phase some
spectral information of the system matrix on which then the iteration polynomial is
constructed. In a second phase the coefficients of the constructed iteration polynomial
are used in a Chebyshev or Richardson iteration. In practice, after performing some
iteration steps in the second phase, hybrid methods adaptively loop back to the first
phase to update the spectral information and to ensure an adequate convergence
rate. Hybrid methods do not require the computation of inner products, which is
an advantage for an implementation on vector or parallel computers. Moreover, they
are constructed in order to converge independently of the initial guess and the initial
residual, so that the spectral information of a first run can be reused in problems with
multiple right hand sides of for the solution of successive problems, where the system
matrix differs only slightly, as in the solution of nonlinear systems or time-dependent
physical models.

On the other hand, CG-like methods construct the iteration polynomial during
the iteration process based on some orthogonality relations. They do not require a
priori information about the system matrix, but they involve the computation of inner
products and are susceptible to breakdowns or stagnation.

In the following work we combine these two classes of polynomial iterative meth-
ods and analyze how large the synergetic effect is. This combination can also be
simply viewed as a polynomial preconditioning of a CG-like method.

To motivate this approach, we list now briefly the milestones in the history of
polynomial iterative methods that are of relevance here. The history of hybrid iter-
ative methods goes back at least to the adaptive Chebyshev algorithm of Manteuffel
[13], [14], which is based on a modified power iteration in the first phase, followed by
a Chebyshev iteration with respect to an ellipse enclosing the approximation of the
spectrum. The use of scaled and shifted Chebyshev polynomials, however, restricts

* Swiss Center for Scientific Computing (SCSC), ETH Ziirich, ETH-Zentrum, CH-8092 Ziirich,
Switzerland (kjr@scsc.ethz.ch).




this approach to problems, where the eigenvalues are located in an ellipse niot con-
taining the origin. Elman, Saad and Saylor [4] replaced the modified power iteration
By an Arnoldi process in phase one. Later, Saylor and Smolarski {20], proposed a hy-
brid method which also works in situations, where the eigenvalues cannot be enclosed
by an ellipse. They construct an L?-optimal polynomial on a polygon representing
the boundary of a region containing the approximation of the spectrum. Moreover,
they use in phase one an Arnoldi method and construct already in Phase one an ap-
proximate solution with GMRES. In phase two a Richardson iteration is applied. To
avoid problems of numerical instability, a variant of this algorithm, based on modi-
fied moments, was suggested by Saad [18]. The hybrid GMRES method proposed by
Nachtigal, Reichel and Trefethen [17] does not rely on eigenvalue estimates, since the
iteration polynomial is implicitly constructed in phase one by the GMRES algorithm.
Finally, the hybrid Arnoldi-Faber methods of Starke and Varga [23] and of Manteuffel
and Starke [16] use a Richardson iteration in phase two based on Faber polynomials
constructed with respect to a polygonal domain in phase one.

The origin of CG-like methods goes back to the conjugate gradient method (CG)
due to Hestenes and Stiefel [11] for Hermitian positive definite problems. A straight-
forward extension to non-Hermitian problems is to apply CG to the normal equations.
However, this means also squaring the condition number of the problem. Therefore,
a considerable part of research has been devoted to generalizations of CG to non-
Hermitian problems. For an excellent overview and a classification we refer the reader
to {1]. The most widely used methods of these types is the generalized minimum resid-
ual method (GMRES) of Saad and Schultz [19]. In general, these generalizations of
CG cannot be based on a short-term recurrence (for necessary and sufficient con-
ditions see [5]), so that their work and storage requirements grow linearly with the
iteration number. On the contrary, methods based on the nonsymmetric Lanczos
biorthogonalization process [12] can be implemented with low and roughly constant
work and storage requirements per iteration. However, these methods lack a min-
imization property over the generated Krylov space and typically have therefore, a
rather irregular convergence behavior with wild oscillations in the residual norm. The
QMR method, development by Freund and Nachtigal [7], is based on the Lanczos
process and overcomes partly these problems by computing the iterates via a quasi-
minimal residual property. Later, Barth and Manteuffel [2], [3] showed that QMR is
actually minimizing the residual with respect to a norm which depends on the initial
residual. Furthermore, they generalize the approach in [15] to obtain the roots of the
B-orthogonal and the residual polynomials by the QMR method. These roots can
then be used as a good approximation of the spectrum of the system matrix. An im-
provement of the Lanczos process in another direction is the development of Lanczos-
type product methods (LTPMs), like CGS [22], BiCGStab [25], BiCGStab2 [9], and
BiCGStab(£) [21]. These methods either square the Lanczos process or combine it
with a local minimization of the residual. They have the advantage of converging
roughly twice as fast as the plain Lanczos method and further they do not require a
routine for applying the adjoint system matrix A¥ to a vector.

In the following work we combine many of these ideas by incorporating hybrid
methods into LTPMs.

2. Lanczos-type Product Methods (LTPMs).
2.1. The Lanczos Biorthogonalization (BiO) process. We recall that the
BiO algorithm generates a pair of finite sequences, {Fn}o—gs {Un }reo» OF left and right
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Lanczos vectors, such that

Yn € Kny1 = span {yo, Ayo,.--, A0},
@.1)

Un € Lny1 = span {ﬂO’AH:UO’ cee (AH)n@'O} ’
and
(2'2) Un L Kn, ynlLn.

This sequence of pairs of Lanczos vectors can be constructed by the following three-
term recursion

Ynt1 = (Ayn — YnQn — Yn—1Bn) [1n
(2.3) _
gn+1 = (AH:Un - gnan - 'yvn—lﬂn) / Tns
with coefficients o, and §,, that are determined from the orthogonality condition (2.2)

and freely choosable nonvanishing scale factors «,. The Lanczos vectors can then be
written in the form

(24) Yn = pn(A)y01 ?711 = -p—n(AH)yOa

where p,, denotes the n-th Lanczos polynomial. Since we aim here at LTPMs, we
consider for the Krylov spaces £,, more general basis vectors of the form

(2.5) Zn = Tn(A®)Z,

with arbitrarily chosen polynomials 7, of exact degree n and Z := 7. In general,
Zn 1 K, will no longer hold, but y, L £, can be still obtained by choosing the
coefficients a;, and B, in (2.3) in the following way:

B = (211.—1, A?ln) - (zm A-yn) - (Em yn—l) Bn )
" (En—-ls yn—l) ’ " (511,, yn)

Clearly, the recursive process terminates with 3, = 0 or Z,, = 0, or it breaks down
with 67 := (Z,,4») = 0 and y, # 0, Z, # 0. The look-ahead Lanczos process [6]
overcomes a breakdown if curable. To simplify our presentation, we assume in the
following that breakdown appears in the underlying Lanczos process. For a description
of look-ahead procedures for Lanczos-type product methods we refer the reader to [10].

(2.6)

2.2. Standard Lanczos-type product methods. By introducing the product
vectors

(2.7) wh, == 1 (A)n = 11(A)pn(A)yo
and by rewriting the inner products in (2.6) in terms of product vectors, i.e.,
(2 8) — (EO’Awg_]-) — (zo’Awg) - (EO)w;"Ll—l) ﬂﬂ-

' " Gty " (Fo, w3) ’

LTPMs are derived. Different choices of the polynomials 7,,(¢) lead to different
LTPMs. In BiOStab, the three-term version of Van der Vorst’s BiCGStab [25], the
polynomials 1,,({) are chosen as a product of polynomials of degree 1:

(2'9) 70 (C) =1, Tn+l (() = (1 - XnC)Tn(o forn >0,
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where X», is defined by minimizing the norm of wl{} = w?,, — XnAwy ;. The choice

o) = 1,
(2.10) . 7'?1+1 @ = (Q1=x0) () ' if n is even,
T+1(0) = (o +) () + (1= &) mm-1(¢) ifnisodd,

where xn is defined as above whereas {, and 7, are obtained by minimizing the norm
of wiyl + (wiy,; — )én + Aw?, 7, leads to BiOStab2, the three-term version
of Gutknecht’s BiCGStab2 [9]. Generating the polynomials 7,,(¢) also for n even by
the three-term recurrence

(2.11) Tnt1(€) = (€n + 10C) T (€) + (1 — &a) Ta-1(0),

with the above definition of &, and 7,, results in BiOxMR2, where the Lanczos process
is combined with a local two dimensional minimization in every step. In BiOS, the
three-term version of Sonneveld’s (B1)CGS the Lanczos polynomial is squared by the

choice 74(¢) = pn(()-

BiOStab BiOStab2 _ BiOxMR2
0123 4 I 012 3 4 I 012 3 4 I
ofo] 2 ofo] 2 of o] 2
11][3] 5 1[1][3] 6 11]f3] 6
2| [4](6] & 2[4 [5][7] 9 2[4 [5][7] w0
3 [7][9] u 3 [8][10] 13 3| 8 [9]f11] 14
4 [10][12]14 4 11 [12][14]17 4 12[13][15] 18
n et n e e n

F1G. 2.1. Movement of BiOStab, BiOStab2 and BiOzMR2 in the w-table. The numbers illus-
trate in which sequence the eniries are computed. A framed entry indicates that the corresponding
entry as well as its product with the system matriz A is computed.

The aim of all introduced algorithms in every iteration step is to obtain an im-
proved new approximation xﬁii by computing a new product vector w;l‘ﬂ from pre-
viously computed product vectors in a stable way. To visualize the different strategies
used by the algorithms, we arrange the product vectors w!, in a w-table, where the
n-axis of the table points downwards and the l-axis to the right. We describe then
how every algorithm moves in this table from the upper left corner downwards right.
By multiplying the three-term recursion (2.3) for the right Lanczos vectors yn41 with

71(A) we obtain for the product vectors the recursion
(2.12) w), = (Awfl —whoy — 'wfl_l,Bn) /s

which can be applied to move forward in vertical direction in the w-table. To obtain
a recursion formula for moving forward in horizontal direction, the recursion formula
for the chosen polynomials 7, (¢) is capitalized upon. For example, by multiplying y,
with 741 (A) and applying then (2.11) leads to the recurrence

(2.13) witl = Al + gk + (1 — &)wi L.

Figure 2.1 illustrates the movement of different LTPMs in the w-table.
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2.3. Hybrid Lanczos-type product methods. In the standard LTPMs a
problem arises, if |xn| and [n,| respectively, is small, since we do not advance then in
the Krylov space. For this reason BiCGStab({) was proposed [21], where the power
basis is used to extend the Krylov space for £ > 2 steps and then to solve an £
dimensional minimization problem for the residual. Of course, for large £ the use of
the power basis is not very stable and in addition the solution of the ¢ dimensional
minimization problem becomes expensive. This leads to the idea, first indicated in [9],
to use as polynomial 7;, an iteration polynomial computed in phase one of an hybrid
method. Recall that the Richardson iteration z,41 = 5 + Xn’rn results in the two-
term recurrence 7,41 = rp — XnAr, for the residual, so that the iteration polynomial
can be generated by the recurrence (2.9), whereas the iteration polynomial for the
Chebyshev iteration [13] is given by a recurrence (2.11). Therefore, we can incorporate
phase two of an hybrid method directly into an LTPM.

3. Obtaining the solution of Ax = b. So far we have only introduced different
algorithms to construct a sequence of product vectors w!,, which can be used to form
a basis for K. However, the overall goal is to solve the linear system Az = b and we
have not yet described how to obtain such a solution. The following section is devoted
to this issue. We first describe a direct approach and discuss later how a solution can
also be constructed in a quasi-minimal residual (QMR) like way.

3.1. Direct Approach. The following direct approach is based on a generaliza-
tion of Gutknecht’s unnormalized BiORes algorithm in [8]. Let the doubly indexed
sequence of scalars g, be given by

(3.1) P = 11(0)pn (0)-

Then we define a doubly indexed sequence of product iterates =, in the following way.
Starting with an arbitrary initial product iterate 3 € CV, we assume that the initial
product vector is chosen so that

(3.2) wy = bpY — Az = b — Ax).

Here we used that g3 = 1, since 70(¢) = po(¢) = 1. For I,n > 0 we define the product
iterates by

Th _ Wh

(3.3) bph, ~ Azl :=wl, = b— A=
pﬂ pn

It follows that %;l is an approximation for the solution of Az = b and that the

' .
corresponding residual is given by %,‘l. It remains to derive recursions for the scalars
n

pL and the product iterates z,, which can be easily done by using relation (3.3) and

the recurrences for the product vectors wl,.

3.2. QMR Like Approach. The computed product vectors w!, can also be
used to form a basis of the Krylov space K,,. Since in any LTPM the product vectors
located on the diagonal staircase of the w-table are always computed (see Figure 2.1),
it is obvious to use these vectors to form a basis. Thus, if we let

Won = [§uful - wp]
(3.4)
Wangr = [wwdw} - - wi™t w}
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it follows that W, is a basis for X,,.
From the Lanczos recurrence (2.12) and the recursion (2.13) for the product
vectors we obtain immediately that

A ('wg - ﬂnnn—lw::% )V= 'Yn'wz.|.1 + anwﬁ + ﬁnfn—lw::i + ,Bn(]- - En—1)w21f

(1'_ fn) 1 ) '1 1 gn an(l — fn) — ,Bn(]- €n) —
Alw?, ., — w? — n+ w, . + w® 1 n_l
.5 " e T LT g T T Tatn L

Writing (3.5) in compact form becomes
(36) AW,.Gp = Wm+1ﬁm=1,m <= AW, = Wm+1Hm+1’m,

with an upper tridiagonal matrix G,,, and with Hessenberg matrices ﬁm+1,m and
Hpt1,m = ~m+1,mG,;1. By means of (3.6) we can construct QMR iterates in the
following way: Starting with w3 := b— Az for an arbitrary initial guess zo, we define
Ty 1= To + W Sm where s, € C™ is the solution of

(37)  min e — Hngimsl,

with e; := [1,0,...,0]%,,,. Note that the iterates z,, can be computed by a short-
term recurrence without the necessity of storing all old product vectors in W, since
the Hessenberg matrix Hy,1,m is not full.

4. Acquiring Spectral Information. Although the left and the right Lanczos
vectors Z, and y, are not explicitly computed in an LTPM, we can still use the
Lanczos coefficients oy, Bn, and v, to form the tridiagonal Hessenberg matrix Th, p, :=
tridiag(y, o, Br) for which

(4'1) AY, = YnTn,n + Tn¥nt+1

holds. The eigenvalues of T}, », can then be used as an approximation for the spectrum
of the system matrix.,

Another, more advanced way is to use, as proposed in [2], the QMR approach
also to compute the roots of the B-orthogonal and the residual polynomials. They
can then be employed to obtain an approximation of the spectrum that is a subset of
Fe(A) N Fg (A1), where Fp(4) denotes the B-filed of values of A [15].

A further possibility is the idea in [16], where it is exploited that Fg(A) and
Fg5'(A™Y) are subsets of the intersection of strips in the complex plane.

5. Obtaining the Optimal Iteration Polynomial. To obtain the optimal
iteration polynomlal we consider the methods proposed in [13], [20], [23], [16] and
[24]. ‘

6. Numerical Examples and Conclusions. In many numerical examples we
compare different hybrid LTPMs with standard LTPMs. Hybrid LTPMs that are
based on the coupled two-term recurrence version of the Lanczos process, which is
more stable, are considered in a forthcoming paper.

7. Acknowledgments. The author would like to thank Teri Barth, Thomas A.
Manteuffel, and Gerhard Starke for illuminating discussions.
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1 Introduction

Lanczos algorithm is a commonly used method for finding a few extreme eigenvalues of symmetric matrices
{7, 17]. It is effective if the wanted eigenvalues have large relative separations. If separations are small,
several alternatives are often used, including the shift-invert Lanczos method [11], the preconditioned Lanczos
method [14}, and Davidson method [6, 8, 9, 13]. The shift-invert Lanczos method requires direct factorization
of the matrix, which is often impractical if the matrix is large. In these cases preconditioned schemes are
preferred.

Many applications require solution of hundreds or thousands of eigenvalues of large sparse matrices, which
pose serious challenges for both iterative eigenvalue solver and preconditioner [2, 3, 4, 5]. In this paper we
will explore several preconditioned eigenvalue solvers and identify the ones suited for finding large number of
eigenvalues. Methods discussed in this paper make up the core of a preconditioned eigenvalue toolkit under
construction.

2 Preconditioned Algorithms

2.1 Generating the basis vectors

Conceptually, we separate an eigenvalue solver into two parts; one constructs an orthonormal basis set, the
other uses the basis set in a Rayleigh-Ritz procedure to find approximate eigen-pairs. For symmetric matrices
the Rayleigh-Ritz procedure is optimal in many aspects [15] and it is easy to use. There are numerous ways
of building orthonormal bases, including Davidson method and Arnoldi method. Many of them can be
formulated as one algorithm with different preconditioning strategies.

ALGORITHM Generating an orthonormal basis V,, = [v1,v2,...,Um]

1, Start. Choose a vector v1. Let z = v;.
2, Iterate. For j=1,2,...,m do:

(2) 2=z~ V;1VE 2, v; = 2/||2,
(b) wj = Av;,

(C) hi,j—l = ('u,-,'wj) fori= 1, ces ,j,
(d) If j < m, generate next z.

We explore four schemes of generating new z.
1. Preconditioned Arnoldi. z = M w;.
2. Modified Arnoldi. Let hj = [hj, ..., hys]T, 2 = M; ' (wj — V x hy).
3. Davidson.

(a) Compute smallest eigen-pair (), y) of H; = VT AV;,




(b) U =5,
(c) » =W,y — Au, where W; = [wy,...,w;],
@ z= Mj"'lr.
4. Harmonic Davidson. Let H; = VI AV;, G; = WiW;,
(a) Solve the generalized eigenvalue problem H;Y = AG;Y,
(b) A =minl_, yTH;y;. Assume \ =y Hjy,.

(c) v="V;u,
(d) r = W;y, — Au, where W = [wy,...,w;],
(e z= Mj‘lr.

Among these four schemes, the preconditioned Arnoldi scheme is the most straightforward one. In the
unpreconditioned case, i.e., M = I, we simply have z = w;. The second scheme is a modification of the
Arnoldi scheme. The input to the preconditioner is the last column of AV; — V;H;, which could be viewed
as the “residual of the basis”, and it is orthogonal to the current basis V;. This scheme can be viewed as an
Arnoldi scheme where an extra orthogonalization is applied before preconditioning.

The Davidson’s scheme applies the preconditioner on the residual of the current approximate solution.
Let n denote the matrix size. At the jth Davidson step, computing one residual vector requires about 2jn
floating-point multiplications, 257 additions, and the solution of a j X j eigenvalue problem. This preparation
for preconditioning is about twice as expensive as scheme 2. '

The Harmonic Ritz value scheme is adopted from [12]. Two alternative ways of computing the Harmonic
Ritz values require either V; and W; to be bi-orthogonal, or V; to be A2-orthonormal, and do not fit into
the above framework.

2.2 Some characteristics of the implementations

In practice, the above algorithm is almost always restarted. Usually more than one eigenvalue is wanted,
another level of loop is placed outside of the restarting loop. This yields two nested loops outside the above
algorithm.

In our implementation of the eigenvalue solvers, we always work on a small number of eigenvalues at
a time. This make it possible to keep the maximum basis size independent of the number of eigenvalues
desired. Therefore, the workspace does not have to increase as the number of eigenvalues increases.

At-restarting, we save Ritz vectors as the initial guesses for the next basis set. The number of vectors
saved is independent of the number of eigenvalues wanted. This technique has been shown to enhance the
performance of the eigenvalue solver in many cases [18]. When more than one starting vector is given to
the Arnoldi process, we build a Krylov subspace from the first vector, v;. The rest of the initial guesses are
used to deflate the Krylov subspace generated. The theoretical aspects of this technique are studied in [16],
and some experiences from using it on linear system solvers are reported in [1]. For our experiments here,
we always keep the workspace to be about 50n, i.e., the maximum basis size is 25. When restart, we always
save 12 vectors.

Preconditioning is a crucial feature of the programs. In linear system solvers, either M approximates A,
or M~ approximates A~1. In the eigenvalue case, if (), z) is the current approximation to eigen-pair (A\*,
x*), the preconditioner is often taken to be

M= (A=XI) =~ (A— ).

A commonly used preconditioner is M = diag(A) — AI. Usually it is helpful to use a biased estimate of A* as
the shift in the preconditioner [19]. For example, if the smallest eigenvalue is sought, we under-estimate it as
A* = X — |||, where r is the residual vector of the current approximation. Among the four preconditioning
strategies we have mentioned, the last two compute residual vectors. In these two cases, we also compute
the residual norms and provide updated shift for the preconditioner at every step.




Arnoldi Modified Davidson Harmonic
matvec time | matvec time | matvec time | matvec time
662BUS 3410 66.8 5000 67.4 4969 136.1 4267 160.0
685BUS 1629 33.5 3814  54.0 1771 48.6 3747 1453
BCSSTKO01 236 0.9 954 6.7 1095 10.2 369 49
BCSSTKO02 126 0.7 374 2.8 198 2.3 172 2.8
BCSSTKo04 3550 19.3 5000 30.4 5005 56.5 3928 65.5
BCSSTKO05 563 3.4 1274 115 757 9.6 665 119
BCSSTKO09 745 25.3 1084  30.6 927 433 861 55.2
BCSSTK16 964 257.6 952 282.7 718 257.3
BCSSTK?22 2118 11.1 1903 12.6 3175 36.7 3266 57.5
BCSSTM10 5006 174.5 444 13.6 263 12.3 4033 276.1
BCSSTM27 4032 190.6 5000 2444 3331  207.3 5005 409.4
GR3030 199 4.8 323 8.5 147 5.8 628 34.7
LUNDA 1012 5.9 3774 25.6 1485 174 1316 22.5
LUNDB 2301 13.1 5000 50.5 3136 37.2 2967 52.0
NOS3 537 15.8 994 24.6 484  20.0 640 35.7
NOS4 3074 15.7 344 3.0 198 2.4 1732 29.6
NOS5 5005 70.8 2453  46.5 1381 30.6 1797  53.1
ZENIOS 5006 604.0 144 13.7 120 15.1 262 46.4
Table 1: Results of unpreconditioned case.
Arnoldi Modified Davidson Harmonic
matvec time | matvec time | matvec time | matvec time
662BUS 5005 93.7 5000 99.3 991 29.8 5003 185.8
685BUS 5005 101.4 5000 103.0 1004 30.8 5004 194.2
BCSSTKO1 1781 6.4 1024 5.0 133 14 2694 38.7
BCSSTKO02 2194 10.0 5000 27.7 211 2.5 2577 41.6
BCSSTKO03 5009 24.2 5000 25.2 2031 23.7 5004 82.1
BCSSTK04 5012 28.7 4003 23.3 198 2.5 5004 86.9
BCSSTKO05 5012 31.0 5000 32.1 445 6.2 5003 90.4
BCSSTKO0S8 5005 174.1 5000 181.6 900 44.8 5004 323.2
BCSSTKO09 4671 170.5 5000 184.9 900 45.9 4552 305.1
BCSSTK16 5003 1393.9 887 2844 5005 19714
BCSSTK21 5002 820.3 5000 866.1 2227 422.6 5004 1177.2
BCSSTK22 5012 274 5000 317 1680 21.5 5004 87.7
BCSSTMO07 5005 72.3 5000 54.3 367 8.0 5003 145.9
BCSSTM10 5005 1794 3103 102.4 276 14.2 5004  338.6
BCSSTM13 5003 379.6 303 31.8 5004 588.7
BCSSTM27 5004 246.2 5000 254.0 3045 206.8 5004  428.5
GR3030 159 4.2 323 7.9 159 6.7 680 39.0
LUNDA 5013 32.0 4993 329 237 3.2 5005 89.4
LUNDB 5012 29.7 5000 32.0 367 4.7 5004 91.6
NOS3 2370 73.7 5000 130.0 666 29.9 2863 171.2
NOS4 3074 14.7 2144 8.4 237 2.9 3565 61.8
NOS5 4788 71.4 5000 77.0 861 20.3 4318 136.5
NOS6 5005 99.5 5000 106.5 4605 143.8 5004 189.6
NOS7 5005 105.0 5000 113.8 211 7.3 5004 195.5
ZENIOS 172 20.5 134 13.3 120 16.0 250 46.1

Table 2: Results of diagonal preconditioned case.




3 Experimental Comparisons

Our numerical experiments are conducted on a set of symmetric matrices from the Harwell-Boeing sparse
matrix collection [10]. We used all the matrices of RSA type. In the following tables, we have dropped the
results of diagonal matrices and those which can not be solved by any of the methods tested. The eigenvalues
are considered converged if the residual norm of the approximation is less than 10~12||A||r, where [[A||r is
the Frobenius norm of the matrix. ‘

3.1 Without preconditioning

The first experiment is performed without any preconditioning (see table 1). The table shows the number of
matrix-vector multiplications (matvec) and the CPU time used to compute 5 smallest eigenvalues. The unit
of time is second. The limit on the number of matrix-vector multiplications is 5000. Entries in the table
showing 5000 or more matrix-vector multiplications indicate that the eigenvalue solver did not compute all
five wanted eigenvalues. The results from Arnoldi method, Modified Arnoldi method, Davidson method and
Harmonic Davidson method are shown.

There are 50 test matrices. Without preconditioning, we solved 18 of them by one of the four eigenvalue
solvers. Comparing the columns shown in table 1, we notice that Arnoldi method and Davidson method
generally use less matrix-vector multiplications and less time than the other two. When solving the same
eigenvalue problem, Arnoldi method often takes less time than Davidson method on the matrices tested.

3.2 Simple preconditioning

This experiment is performed with diagonal preconditioning, see table 2. Here again we look for 5 smallest
eigenvalues. With diagonal preconditioning, we are able to solve half of the problem set. Our experiment
indicates that Davidson method can take advantage the diagonal preconditioner better than others.

3.3 Finding more eigenvalues

Table 3 demonstrates the behavior of Davidson eigenvalue solver when more eigenvalues are wanted. The
number of matrix-vector multiplications allowed is 20,000 for finding 20 eigenvalues, 40, 000 for finding 40
eigenvalues. For all 25 matrices where Davidson method was successful in finding 5 eigenvalues, it is also able
to find 20 eigenvalues with more matrix-vector multiplications. There are 3 case where Davidson method
failed to find 40 eigenvalues. For matrix 685BUS, we are able to find 39. In the other two cases, less than
30 eigenvalues have converged.

The average ratio of the time spent on finding 20 eigenvalues versus time spent on ﬁndmg 5 eigenvalues is

about 3.8 (table 3). For the 23 cases where 40 eigenvalues are found by Davidson method, the average ratio
time spent on finding 40 eigenvalues versus time spent on finding 5 eigenvalues is about 9.5. This indicates
that if Davidson method do find the desired number of eigenvectors, it is fairly efficient in finding them.
However Davidson method could fail to find more eigenvalues as in the case of 685BUS, BCSSTM27 and
NOS6.
Acknowledgment. This research was supported by Natlonal Science Foundation Grant DMR, 95-25885
and NSF/ASC 95-04038. The authors would also like to acknowledge the support of the Minnesota Super-
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A NUMERICAL METHOD FOR EIGENVALUE PROBLEMS
IN MODELING LIQUID CRYSTALS *

J. BAGLAMA 1, D. CALVETTI ¢, P. A. FARRELL!, L. REICHEL!, AND A. RUTTAN!

Abstract. Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic
free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the
liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the
null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that
is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to
determine the desired null space. Our implicitly restarted Lanczos method determines adaptively a polynomial filter by
using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and
this makes it attractive to use for the present application.

1. Introduction. Equilibrium configurations of liquid crystals in finite containments are minimizers
of the thermodynamic free energy of the system. It is important to be able to track the equilibrium
configurations as the temperature of the liquid crystals decreases. Standard methods for tracking these
equilibrium configurations involve using Newton’s to solve the associated stationary equations. At folds
or bifurcation points the Jacobian, A, of the stationary equations is singular, and then the null space
of A can be used to determine appropriate continuation vectors. In liquid crystal problems A is a large
sparse matrix, resulting from a discretization on a 2 or 3 dimensional domain, so, in particular, direct
methods for determining the null space of A are impractical, and iterative methods must be used.

We take a general approach to this problem: we consider methods for determining a few extreme
eigenvalues and associated eigenvectors of a large sparse symmetric matrix A € R®*" as this is an
important computational problem that arises in many applications in addition to liquid crystal problems.
A large number of algorithms for the solution of this problem are based on the Lanczos process. However,
when applying the basic Lanczos method, one may encounter the following difficulties: large storage
requirement for the Krylov subspace basis generated, and low accuracy of the computed approximate
eigenvalues and eigenvectors due to loss of orthogonality of the computed Krylov subspace basis.

The difficulties associated with the basic Lanczos method have spurred considerable research aimed
at improving the method or at developing alternative methods. Recently, Sorensen [?] proposed the
Implicitly Restarted Lanczos (IRL) method for the computation of a few eigenvalues of a large sparse
symmetric matrix, and the closely related Implicitly Restarted Arnoldi (IRA) method for the computation
of a few eigenvalues of a large sparse nonsymmetric matrix. These methods can be regarded as curtailed
QR algorithms for the symmetric and nonsymmetric eigenvalue problems, respectively. Similarly as in the
QR algorithms, the choice of shifts is crucial for the performance of the IRL and IRA methods. However,
the Rayleigh or Wilkinson shifts, popular choices of shifts for the QR algorithm, cannot be applied in
the IRL and IRA methods, because the data required to compute these shifts is not available. Therefore
other shift selection strategies have been studied by Calvetti et al. [?], Lehoucq [?] and Sorensen [?].

It is the purpose of the present paper to describe a new way to use the recursion formulas of the IRA
method, and to apply the scheme obtained to the computation of a few of the smallest eigenvalues of a
large sparse symmetric matrix that arises in the modeling of liquid crystals. The storage requirement of
our scheme is smaller than for previously described algorithms based on the IRL recursions.

2. The implicitly restarted Lanczos method. The Lanczos process is a computational method
for reducing an n X n symmetric matrix A to tridiagonal form, given an initial basis vector v;, which we
may assume to be of unit length. If we truncate the Lanczos process after m < n steps, then we obtain
the truncated reduction of A to tridiagonal form

(2.1) AV = Vi Ton + frnm,

where V,, € R™*™, Vipe; = v1, Vi Vi = I, Tjp € R™*™ is a symmetric tridiagonal matrix, and fm € R®
satisfies V;T f;, = 0. Throughout this paper e; denotes the jth axis vector of appropriate dimension, and

* Research supported in part by NSF grants F377 DMR-8920147 ALCOM, DMS-9409422 and DMS-9404706.
t Department of Mathematics and Computer Science, Kent State University, Kent, OH 44242.
} Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030.
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I denotes an identity matrix of suitable order. For future reference, we define

(2.2) P = || fmll,

where [| - || denotes the Euclidean norm.
We describe the recursion formulas of the IRL method due to Sorensen [?]. Throughout this paper,
k denotes the number of desired extreme eigenvalues. We assume that k is fixed and small. The number
of steps of the Lanczos process taken between restarts is denoted by m, where we assume that m > k.
After m steps of the Lanczos process with initial vector v1, we have determined the quantities in formula
(??). We now apply the following updating formulas, which are analogous to the explicitly shifted QR
algorithm.
Let z be a chosen shift and determine the QR factorization T}, — zI = QR, where @, R € R™*™,
QTQ = I and R is upper triangular. We put V = V,,, and T' = T},, and obtain
(A=z2D)V = V(T — 2zI) = fmeL,
(A—zD)V = VQR = fmeZ,,
(A= 2I)(VQ) - (VQ)(EQ) = fmen,Q,
A(VQ) — (VQ)(RQ +2I) = fmel Q.
After applying the m — 1 shifts 21, 22, ..., Zm—1, We have
(2-3) AVE = VIETE 4 fmel QT

where V;F = (vi,vf,...,0}) = ViQF, TF = (QY)TTQ* and QF = Q1Q2 - -Qm—1. Here @; denotes
the orthogonal matrix associated with the shift z;. Introduce the partitioning

+  gFT
™= % Bi ei ) ,
" ( fea Ty,
and equate the first column on the right-hand side and left-hand side of (??). We then obtain

[

Avf =vfof + ffeT,

where fi = vf Bt + fmeL Q% ey. It follows from (v7 )T fi =0 and fi € spa.n{v1 ,Av]} that fif can be.
determined by the Lanczos process applied to the matrix A with initial vector v1 The mth shift z,, is
applied according to

oft = fF 4+ (af — zm ).
+

By construction, v ¥ = ¥ (A)vi, where ¥y, is a polynomial of degree m with zeros 21,22, ..., 2m.
We refer to ¥, as an accelerating polynomial. Note that vJ* has been computed from v, W1thout
evaluation of matrix-vector products with the matrix A, except for the products required to determine
the decomposition (??). Having computed v+ in the manner indicated, our scheme sets

(2.4) v =of /o]

and restarts the Lanczos process with the vector (??) as initial vector. Our scheme proceeds in this
manner to alternatively apply m steps of the Lanczos process and m shifts until an initial vector »; has
been determined that lies in the invariant subspace associated with the & desired eigenvalues. Since we
only keep at most m+1 orthogonal basis vectors of a Krylov subspace in memory during the computations,
we can afford to secure their orthogonality by reorthogonalization whenever necessary.

As soon as an eigenvector has converged, it is stored, and subsequently generated Krylov subspace
bases are orthogonalized against it. Assume that we have determined j < k eigenvectors. Then the
Lanczos process-is only applied m—j steps at a time, in order not to increase the memory requirement of
the scheme. The orthogonalization of Krylov subspaces against converged eigenvectors makes it possible
to determine multiple eigenvalues.

Our scheme differs from previous applications of the recursions of the IRL method in that we apply
as many shifts as possible, i.e., until only the vector vi*"*’ remains. This makes deflation of converged
eigenpairs trivial, and reduces the requirement of computer storage.
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3. The iterative method. The rate of convergence of our iterative method is determined by the
accelerating polynomial. We determine this polynomial by prescribing its zeros. Sometimes we refer to
the zeros as shifts, because as shown in Section 2, they are shifts applied by a curtailed QR algorithm.

Let K be a compact interval on the real axis, and let w(z) be a nonnegative continuous function on
K. We refer to w(z) as a weight function. Define a sequence {;}%2, of points in K as follows. Let z; be
a point such that

(3.1) w(z1)|z1] = ﬁrg(xw(z)lzl, z €K,

and let z; satisfy

i= j-1
(3.2) w(zj)H [2j — 1] = max w(z)H |z =z, z €K, i=23,....
1=1 1=1

We call any points {2;}32; that satisfy (?7)-(??) Leja points or Leja shifts for K. When w(z) = 1, the
Leja points agree with the “classical” Leja points studied by Leja [?].

The sets K used in our scheme are chosen so that they contain none of the desired k extreme
eigenvalues and all or most of the n — k undesired ones. The motivation for choosing the shifts to be
Leja points for such sets is that we want to dampen eigenvector components associated with undesired
eigenvalues in the initial Lanczos vectors v, determined by (??). We now describe how the eigenvalues
of the tridiagonal matrices T}, generated by the scheme help us determine such sets K.

Assume that we want to compute the & smallest of the eigenvalues A3 < Ap < ... < A < Apq1 <
...< An of A, and let

(3.3) b1 <b2<...<0 <Opp1<...<0p.

be eigenvalues of the matrix T;, defined by (??). We may assume that the subdiagonal elements of T,
are non-vanishing, because otherwise we have found an invariant subspace. By the Cauchy interlacing
theorem Ay < 6; and 6, < A, and therefore none of the k smallest eigenvalues of A lies in the interval
[6k41,0m]. This suggests the following choice of the set K. The first time we determine a tridiagonal
matrix T7, by the Lanczos process, we compute its spectrum (??) and define the endpoints of the interval

K= [a:d] by
a =041, d=0.

We let the m shifts {;}72; be Leja points for K, i.e., we define the shifts by (??)-(??). Application
of the shifts as described in Section 2 yields a new vector v; defined by (??). We now apply m steps
of the Lanczos process to the matrix 4 with this vector v, as initial vector. This gives rise to a new
tridiagonal matrix Ty, defined by (??). The eigenvalues (??) of this tridiagonal matrix are computed
and the endpoints of K = [a, d] are updated according to

¢ =041, d = max{d, 0,,}.

We then select m shifts zy,41, 2m42,. .., 22m as Leja points for this new set K = [a,d] in the presence of
the points z1, 23, ..., 2m. The weight function is chosen to be w(z) = |z — Og4a]-

Let {0;,;}7%1 denote eigenvalue-eigenvector pairs of the symmetric tridiagonal matrix T3, €
defined by (‘?'7), and let the eigenvalues be ordered according to (77

The vector z; = Vjy; is an approximate eigenvector of the matrix A associated with the approximate
eigenvalue 6;, and ’

Rmxm

T
lAz; — 2;6;(| = |1Bmemy; s
where f, is defined by (?7). In our scheme the computations are terminated as soon as

(3.4 Jpax, |Bmemys] < €,

where ¢ is a given positive constant. A formal algorithm based on the description in this and the previous
sections can be found in [?]. There also modifications that allow the computation of k¥ non-extreme
eigenvalues are presented.
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4. Liquid.crystal modeling. We wish to determine the minimum energy equilibrium configuration
of liquid: crystals in a slab

(4.1) Q={(z,9,2):0<2<¢a,0<y<bh0<2<¢}

with surface 9. Using the Landau-de Gennes formulation, the free energy can be expressed in terms of
a tensor order parameter field @; see Gartland [?] and Priestly et al. [?]. The free energy is given by

(4.2) F(Q) = Fvol(Q) + Fsurf(Q) = ‘/nfvol(Q).dV + Ln fsurf(Q)dS’

where @ = Q(p), p € , is a 3 x 3 symmetric traceless tensor, which is represented as a linear combination
of 5 basis traceless 3 x 3 matrices @Q;,

5
Q) = 6i(0)Q;-

=1

The g; are real valued functions on © and are to be determined so that the free energy (?7) is minimal.
The representation

Fool(@) = 3L1QeprQapy + §L2Qap,sQavy + 5L3Qap1Qarp
+1A trace(Q?) — 3B trace(Q?) + 1C trace(@?)? «
+1D trace(Q?)trace(Q®) + LM trace(Q?)% + 1M’ trace(Q@?)?

uses the conventions that summation over repeated indices is implied and indices separated by commas
represent partial derivatives. Here L1, Ly and L3 are elastic constants; A, B, C, D, M and M are bulk
constants. Moreover,

fsurf(Q) = Wtrace((Q - Qo)z),

where W is a constant and the tensor Q) is determined by the boundary conditions for the functions g¢;.
We impose the boundary condition

43) Fouet(Q) = /a (@S =0,

which implies that the values of the g; are prescribed on dQ. This boundary condition models strong
anchoring of the liquid crystals on the surface Q. Details can be found in {?, 7, 7].

The minimum energy equilibrium configuration of the liquid crystals is determined by solving the
Euler-Lagrange equations associated with (??) and (??). These equations yield a boundary value problem
for a system of nonlinear partial differential equations for the g;. Discretization by finite differences gives
rise to a system of nonlinear equations of finite, but large, order. At nonsingular points, we solve this
system by Newton’s method. Each iteration of Newton’s method requires the solution of a linear system of
equations, the matrix of which is the Jacobian obtain from the discretized Euler-Lagrange equations. The
purpose of the computations is to track the minimal energy equilibrium configuration as the temperature
of the liquid crystals is varied. In order to recognize singular points and to determine continuation vectors
at such points, it is essential to determine a few of the eigenvalues of the Jacobian closest to the origin.
In order to reduce the storage space required, we do not store all the nonzero entries of the Jacobian
matrix simultaneously, but rather we compute them as required. This approach is motivated by the fact
that the order of the Jacobian matrices of interest is very large; see Example 2 of the next section.

5. Computed examples. This section describes some computed examples which illustrate the
behavior of the scheme outlined in Sections 2-3. The computations were carried out on an HP 9000/770
computer using double precision arithmetic, i.e., with approximately 15 significant digits.
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Our first example compares our scheme with the subroutine DNLASO of the FORTRAN package
LASO2 by Scott [?] and with a subroutine in ARPACK by Lehoucq, Sorensen and Vu [?]. The subroutine
DNLASO implements the Lanczos process with selective orthogonalization, see [?], and allows the user
to specify the maximal amount of computer storage available for the code to use. Typically, the more
storage available, the fewer restarts necessary and the faster convergence to the desired eigenvalues and
eigenvectors. The subroutine allows the user to select block-size for the Lanczos process; if the block-size,
denoted by NBLOCK, is larger than one, then DNLASO implements a block Lanczos algorithm. The
parameter MAXJ of DNLASO specifies the order of the largest symmetric block-tridiagonal Lanczos
matrix generated by the algorithm before restart. The largest order of this matrix is MAXJ*NBLOCK.
The storage requirement for the (block) Lanczos vectors generated by DNLASO is n+MAXJ+NBLOCK
storage locations. The columns labeled “# Lanczos vectors” in the tables display MAXJ«NBLOCK. The
total storage requirement for DNLASO is larger than nx(MAXJ+2)*NBLOCK in addition to the storage
needed to represent the matrix A.

The subroutine DNLASO is more advanced than the experimental code for our scheme and has
multiple stopping criteria. The iterations may terminate before desired accuracy is achieved and this
makes a comparison between the subroutine DNLASO and our scheme difficult. The performance of
DNLASO is therefore displayed in tables for different choices of the maximal number of Lanczos vectors.
The subroutine DNLASO allows the specification of a parameter NFIG, the number of desired correct
decimal digits in the computed eigenvalue approximations. We show the performance of the DNLASO for
NFIG=10. The columns “# of matrix-vector products” displays the number of matrix-vector products
with the matrix A. The number of matrix-vector products shown in the tables is for vectors consisting
of one column only, also when the block-size is larger than 1. The tables also display the magnitude of
the errors in the computed eigenvalues. The stopping criterion is seen to be more reliable for block-size
3 than for block-size 1.

The iterations with the code for our scheme were terminated when condition (??) was satisfied. This
stopping criterion gave in general at least —2log; y(€) correct decimal digits in the computed approximate
eigenvalues. In all computed examples, the entries of the initial Lanczos vector v; were uniformly dis-
tributed random numbers in an interval (0, p], where p > 0 is chosen so that [|v;1]| = 1. The initial vector
is the same for all runs with all codes in each example, but it may differ between different examples.
In experiments with DNLASO with block-size larger than 1, the first vector in the initial block is the
initial vector used in experiments with block-size 1. The other vectors in the initial block have randomly
generated uniformly distributed entries. The column “# Lanczos vectors” shows the parameter m; our
scheme require storage of m + 1 vectors of length n.

From ARPACK we use a subroutine that implements the IRL method with “exact shifts” as described
by Sorensen (?] and Calvetti et al. [?] and Lehoucq [?]. We refer to this method as ARPACK. Thus,
when interested in computing the k smallest eigenvalues of A, we use the m — k largest eigenvalues of
the matrices T, generated as shifts z;. The application of exact shifts often requires m to be chosen
substantially larger than k. This phenomenon is discussed in Example 1 as well as in [?]. More computed
examples can be found in [?]. .

Example 1. We wish to compute the three smallest eigenvalues of the matrix

(6.1) A = diag(1,2,3,...,n).

Tables 5.1-5.4 compare our scheme with DNLASO and ARPACK when the matrices (??) are of order
n = 2500. Table 5.1 shows the performance of our scheme. Figure 5.1 displays the number of matrix-
vector products required by our scheme for increasing values of m, and illustrates that the convergence of
our scheme is fairly insensitive to the choice of m. The figure also displays the number of matrix-vector
products required by ARPACK for different choices of m. We can see that ARPACK requires a larger
value of m, i.e., storage of more n-vectors, in order to perform well. Analogous numerical experiments
with ARPACK are reported in [?].

Table 5.2 shows the number of matrix-vector products required by ARPACK. The stopping criterion
implemented in ARPACK is designed to terminate the computations when |A. — A.] < €])A.|, where
Ae and A, denotes an exact eigenvalue and a computed approximation, respectively. With the choice
¢=1.10"% ARPACK gives an approximation of the smallest eigenvalue ); of about the same accuracy
as our scheme. However, the computed approximations of A, and A3 obtained by ARPACK were not as
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TABLE 5.1

# Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products AL Az Az
5. 525 6.4-10"11 | 1.6.10°1° 3.8-10"19
10 583 3.2-1071° | 9.4.10~1¢ 2.5-10"11
15 497 2.8-10-1 | 1.2.1071 9.5.10"11

accurate as those determined by our scheme. ARPACK required the evaluation of more matrix-vector
products than our scheme. Decreasing ¢, in order to obtain more accurate approximations of A2 and Az,
increases the number of matrix-vector products required by ARPACK.

Table 5.3 displays the number of matrix-vector products required by the subroutine DNLASO when
storage is limited to 10, 20 and 30 Lanczos vectors and NFIG=10. The block-size is 1. The accuracy
is seen to increase with the storage size for the Krylov subspace basis. The storage requirement as well
as the number of matrix-vector products are much larger than for our scheme. The accuracy achieved
in the computed approximations of A; and A, when the iterations were terminated is lower than for our
scheme.

The performance of the block Lanczos algorithm is illustrated by Table 5.4. The accuracy achieved
is higher than in Table 5.3, but so is the number of matrix-vector products required. O

Example 2. Discretize 2 defined by (??) by a 40 x 40 x 40 grid. This yields a Jacobian matrix of
order 296, 595. The smallest eigenvalues of this matrix are, roughly, A; = —1.2-1072, A, = 2.2-10~1 and
A3 = 2.3-10~1. We used our scheme withe=1- 10~5 and m = 5 to compute accurate approximations of
these eigenvalues. This required the evaluation of 649 matrix-vector products with the Jacobian matrix.
For comparison, we note that 664 matrix-vector products are required when m = 10. Thus, increasing the
value of m does not decrease the computational work required. Due to the large size of the matrix, only
a basis of a Krylov subspace of small dimension can be stored in fast computer memory. In particular,
inverse iteration is infeasible. This examples illustrates that our scheme can determine eigenvalues of a
very large matrix by using a sequence of Krylov subspaces of low dimension only. O
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Eigenvalue problems and liquid crystals

Ezample 1. ARPACK: k=3,e=1-10"%

TABLE 5.2

# Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products AL Ao A3
5 3724 6.4-10710 [ 1.9.10% 5.8-10—°
10 904 5.5-10710 [ 1.1.10"¢ 2.4-10°°
15 614 5.7-107%° | 7.8-107° 1.1-107*
TABLE 5.3
Ezample 1. DNLASO: NFIG=10, block-size = 1
# Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A1 A2 A3z
10 1691 5.7-107 | 5.6-10~7 1.7-1071
20 1922 1.6-1078 | 1.5.10-8 2.6-10"11
30 1721 1.3-107°% | 1.2.10°° 6.1-10~1¢
TABLE 5.4
Ezample 1. DNLASO: NFIG=10, block-size = 3
# Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A1 Ao A3
18 3813 1.3-10°11183.10-12 4.7-1074
30 2952 5.6-1071 [ 1.2.10712 2.4.10711
39 2274 9.3-10"12 | 5.9.10-12 1.3.10~1
Number of computed eigenvalues k=3
4000
3500,
3000,
a
é’m ........
£
gzooa
S0

g

a

Fi1a. 5.1. Number of matriz-vector products required by our scheme (—) and ARPACK (- -) for computing the 3
smallest eigenvalues for the matriz of Example I with n = 2500 as the dimension of the Krylov subspace is increesed.




A Subspace Preconditioning Algorithm for Eigenvector/Eigenvalue
Computation

James H. Bramble,
Andrew V. Knyazev
Joseph E. Pasciak

We consider the problem of computing a modest number of the smallest eigenvalues along
with orthogonal bases for the corresponding eigen-spaces of a symmetric positive definite
matrix. In our applications, the dimension of a matrix is large and the cost of its

inverting is prohibitive. In this paper, we shall develop an effective

parallelizable technique for computing these eigenvalues and eigenvectors utilizing
subspace iteration and preconditioning. Estimates will be provided which show that the
preconditioned method converges linearly and uniformly in the matrix dimension when
used with a uniform preconditioner under the assumption that the approximating subspace
is close enough to the span of desired eigenvectors.




Stable Computation of Generalized Singular Values
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We study floating-point computation of the generalized singular value decomposition (GSVD)
[8], [11] of a general matrix pair (A, B), where A and B are real matrices with the same
numbers of columns. The GSVD is a powerful analytical and computational tool. For_in-
stance, the GSVD is an implicit way to solve the generalized symmetric eigenvalue problem
Kz = AMz, where K = A"A and M = B"B. Qur goal is to develop stable numerical
algorithms for the GSVD that are capable of computing the singular value approximations
with the high relative accuracy that the perturbation theory says is possible [4], [6]. We
assume that the singular values are well-determined by the data, i.e., that small relative
perturbations 6A and 6B (pointwise rounding errors, for example) cause in each singular
value o of (A, B) only a small relative perturbation |§o|/c.

The first numerically attractive algorithms for the GSVD computation are based on re-
duction to a special case of the GSVD, namely the cosine-sine decomposition (CSD) [12].
These algorithms, devised by Stewart [12] and Van Loan [9], start with the QR factoriza-
tion § = [A* B*|* = QR and proceed with the CSD of the matrix Q. Another approach
begins by applying Bai’s and Zha's reduction algorithm [3] to extract a regular pair ((A, B)
with A and B upper triangular and B nonsingular) from a general matrix pair. It then
applies a Kogbetliantz-like algorithm [2], [10]. This latter combination is implemented as
the LAPACK procedure SGGSVD() for GSVD computation [1] :

All of the algorithms mentioned above are designed to use solely elementary orthogonal
transformations. However, none of those algorithms is capable of computing the generalized
singular values of (A,B) (eigenvalues of K — AM) with high relative accuracy, even in
cases where the singular values are well-determined by A and B. We discuss improvements
to the LAPACK GSVD algorithm that guarantee high relative accuracy in the computed
generalized singular values.

In future work, we intend to apply the developed technique to the product SVD (the SVD
of C = ABT). Since floating-point computation of the product AB” can cause a loss of
information in the singular values of C, a commonly used approach is to transform both A
and B by a Jacobi (or Kogbetliantz) rotation scheme, see [7]. However, there is no theory that
proves the relative accuracy properties of the algorithm [7]. Furthermore, the convergence of
such a method may be slow, and the whole process is computationally expensive. We show




how to preprocess A and B to get an equivalent pair (A’, B') for which the Jacobi SVD
computation using the explicitly computed matrix C' = A'(B')” approximates the singular
values with high relative accuracy, whenever possible. (Cf. [5].) Our algorithm has nice
applications to the eigenvalue problem KMz = Az and to computation of system balancing
transformations.
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FAST MULTIGRID SOLUTION OF THE ADVECTION PROBLEM
WITH CLOSED CHARACTERISTICS

Irad Yavneh, Technion---Israel Institute of Technology, Haifa, Israel.

Joint work with:
Comelis H. Venner, University of Twente, Enschede, The Netherlands.
Achi Brandt, The Weizmann Institute of Science, Rehovot, Israel.

The numerical solution of the advection-diffusion problem in the inviscid limit with closed
characteristics is studied as a prelude to an efficient high Reynolds-number flow solver.

It is demonstrated by a heuristic analysis and numerical calculations that using upstream
discretization with downstream relaxation-ordering and appropriate residual weighting in a
simple multigrid V cycle produces an efficient solution process. We also derive upstream
finite-difference approximations to the advection operator, whose truncation terms
approximate "physical" (Laplacian) viscosity, thus avoiding spurious solutions to the
homogeneous problem when the artificial diffusivity dominates the physical viscosity.




Accelerated Solution of Non-Linear Flow Problems using
Chebyshev Iteration Polynomial Based RK Recursions

A. A. Lorber, G. F. Carey, S. W. Bova, C. H. Harlé

Computational Fluid Dynamics Laboratory
The University of Texas at Austin

1 Introduction

The connection between the solution of linear systems of equations by iterative methods and
explicit time stepping techniques is used to accelerate to steady state the solution of ODE

. systems arising from discretized PDEs which may involve either physical or artificial transient
terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended
stability domains has been used to develop recursion formulas which lead to accelerated
iterative performance. The coefficients for the RK schemes are chosen based on the theory
of Chebyshev iteration polynomials in conjunction with a local linear stability analysis.

We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods.
CPRK methods of one to four stages are derived as functions of the parameters which
describe an ellipse £ which the stability domain of the methods is known to contain [5]. Of
particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is
found that the former method can be identified with any two-stage RK method through the
correct choice of parameters. The latter method is found to have a wide range of stability
domains, with a maximum extension of 32 along the real axis. Recursion performance results
are presented below for a model linear convection-diffusion problem as well as non-linear fluid
flow problems discretized by both finite-difference and finite-element methods.

The model problem is presented to demonstrate a novel “local” method that has been
developed for applying the CPRK recursions. In the usual non-local or “global” method,
the CPRK method chosen is the same for each point in the solution domain. For the local
method, the CPRK recursion used at each point is allowed to vary, and is determined from a
local von Neumann linear stability analysis applied to each point in the domain. This local
method is conceptually similar to local point-relaxation techniques used for the iterative
solution of stationary problems and local time-stepping techniques used in the integration
of time-dependent PDEs.

2 CPRK Recursions

Here, Runge-Kutta recursions are used to solve to a steady-state the ODE system

av

7 = FO - (AQ(V®) = R(, V), 1)

where V is the solution vector containing the discrete solution values and the matrix A and
vector f result from the discretization of a governing PDE. We use the following “reduced




storage” form of the general explicit RK algorithm for the integration of (1) from time level
n to n+ 1, with V(¢() = VARE '

Vo = v o
Vi = Vot enAi®R (1 + g1 A, Vi) form=1tos
V(n+1) — Vs, ) (2)

where At = t@+1) _ ¢(?) and s is the number of stages in the RK scheme [4].

The “classical” values of &, that give high orders of time accuracy are given by em =
1/(s — m 4 1). For steady-state solution, the choice of order of the integration method is
not as significant as the maximum allowable value of At to maintain stability. Therefore,
we choose the €,, based on the equivalence between RK ODE recursions and Chebyshev
polynomials applied to the iterative solution of linear systems. This increases the size of the
associated stability domain at the expense of reduced time accuracy. Below, the notation
RK(s)-p is used to refer to a s-stage RK scheme which, for (1) with for ‘A and f constant,
is of order accuracy p. For convenience, the values of &m used in the solutions below are

presented in terms of values of 1,2 =1,2,...,s, where ‘
Em = Jo—mi1 (3)
’Ys—m

and 7o = 1. The values +; are the coefficients of the stability polynomial gs(z) = (1 —nz +
oz?—-++ + 4,2°) where, for stability |g;(Atd;)] <1 V A; € o(A). For a RK(s)-p method,
7 =1/(1),7=1,2,...,p<s.

3 Results

Linear Convection Diffusion

To illustrate the approach for a case with known analytic steady state solution, and test the
local parameter solution, we first solve a model, 2D, linear convection diffusion equation of

the form : ' :
0% 0% 02\ 0@  &°¢ . 4
—5{‘1‘&(37,?!) (%-F'@)—W-I—a—y;%-g(x,y) (4)
where ® = ®(¢,z,y),t > 0. ‘

In the discretization of (4), standard second-order central differencing is used for the
spatial terms. The domain is discretized over the domain Q =[0,1] x [0,1] using a uniform
51x51 grid. We consider the steady-state solution of a modification of the model problem {6}
given by .
a=—16Re(z— 22’ (y—y*) (1 —2y), 0<z,y<1, t20

$(0,2,9) =1, \ 0<z,y<l (5)
(t,2,0) = ¢ (¢, 2,1) = 16(z — 2?)°, 0<z<1, >0
$(8,0,9) = ¢(t,1,9) =0, ‘ 0<y<1, t=20

where

er Qea: 2@&’8 82@81:
980 | 0 )_(a N ) ©

9(z,y) =« ( 52ty 5 T o




and the exact solution ®., is

By = —8 [4(1 —2z) (o —2?) (1 - 29) (y —¥*) - 2(z - 2%)” (1 -6y + 6y2)] (D

which is shown in Figure 1. The problem is of particular interest here because the convection

Exact Soln
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Figure 1: Surface and contour plots of the exact solution to the model problem.

coefficient « varies over the domain, producing a good test case for the local CPRK method
discussed above. Convergence histories for the solution of the model problem using RK(4)-4,
global CPRK(4)-1 and local CPRK(4)-1 recursions are shown in Figure 2. For the global
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Figure 2: Convergence histories for Re = 1200+/3 model problem using RK(4)-4 and both
global and local CPRK(4)-1.

CPRK(4)-1 scheme, the number of iterations needed to reach a residual level of 10~13 was
reduced by a factor of 1.40 over RK(4)-4. For local CPRK(4)-1, the reduction is 8.29 over
RK(4)-4. For the global CPRK(4)-1 method the values of v; used were 1, = 1, 7, = 0.46125,
73 = 1.0606e-2 and 4 = 1.3461e-2.

Incompressible Viscous Flow in a Curved Channel

The second problem considered is Re = 250 incompressible viscous flow through a curved
channel, for which the solution is shown in Figure 3. The flow is from left to right, with




(] 2

Figure 3: Stream function contours for curved-channel domain at Re = 250 over 512x64
grid.

uniform flow at the inlet. The flow is modeled using a non-linear, stream function vorticity
formulation of the laminar, 2D, incompressible Navier-Stokes equations as described in [4].
The equations are discretized using standard second-order central differencing over a clus-
tered 512 x 64 grid. An artificial transient formulation of the stream function Poisson and
vorticity transport equations is used to allow solution via time integration. Convergence his-
tories obtained using RK(4)-4 and CPRK(4)-1 recursions are shown in Figure 4. Separate
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Figure 4: Convergence histories for 512x64 grid, Re = 250 computations using CPRK(4)-1
and RK(4)-4 recursions. In CPRK(4)-1 calculation, switch is made to RK(4)-1 at n = 5500.

convergence histories are shown for the decoupled stream function and vorticity equations.
The use of the CPRK(4)-1 recursion reduces the number of iterations needed to reach a
residual level of 10”7 by a factor of 8.83 over RK(4)-4. For the stream function equation,
the values of ; used were 71 = 1, 12 = 0.18080, 3 = 1.0707e-3 and 4 = 1.9972¢-4. For the
vorticity equation, the values were 73 = 1, 7 = 0.80158, «3 = 0.19815 and 74 = 6.428%-2.

Supercritical Flume Flow

Next, we consider a streamline-upwind Petrov-Galerkin (SUPG) finite-element discretization
of the depth-integrated, 2D, shallow water equations [2, 1]. The flow problem solved is
supercritical flow through a rectangular flume which transitions from a width of two feet to
one foot. The length of the flume is 63.3 ft. The flume is smooth so that Manning’s friction
factor is 0.005, with a constant bed slope of 0.0125. The Froude number is 4.0, based on




the incoming depth of 0.1 ft. The mesh used has 4,585 nodes and 8,628 linear triangles.
Computed depth contours are shown in Figure 5(a). The contour increment is 0.01868 ft.
Figure 5(b) presents the depth along the centerline of the flume computed using RK(5)-5 and
CPRK(5)-1 schemes. The two solutions are identical to the accuracy of the plot. Figure 6
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Figure 5: (a) Detail of depth contours for curved wall transition problem. (b) Depth profile
along center of flume.
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Pigure 6: Convergence histories for flume solution.

contains the convergence histories for the problem using RK(5)-5 and CPRK(5)-1 recursions.
For the CPRK(5)-1 scheme, the computation costs are reduced by a factor of approximately 8
over RK(5)-5. The values of v; used were y; = 1, 7, = 0.2262, 43 = 1.9121e-2, ~1 = 6.7534e-4
and 5 = 8.4418e-6.




Non-equilibrium Viscous Reacting Gas Flow

Finally, the CPRK(4)-1 scheme is tested in the computation of viscous reacting gas flow over
a hemispherical blunt body [3]. The flow is modeled using a 2D, mixed finite-element /finite-
volume discretizaton of the Navier-Stokes equations which are augmented to include chemical
reactions. The incoming flow characteristics are: M = 12.7, p = 1.6x107 kg/m® and
T = 196 K. The wall is non-catalytic, and the wall temperature is constant at T, = 300 K.
The mesh is structured with (60x60) nodes. Flow isotherms are shown in Figure 7, where
the maximum temperature behind the shock reaches 7000 K. In Figure 8 the convergence
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Figure 7: Translational temperature isolines for M = 12.7 blunt body solution.

1

histories are shown for solutions using CPRK(4)-1 and RK(4)-4 schemes. The mesh for this
calculation is coarse and, in order to maintain convergence, solution averaging was done every
10 iterations, which induces oscillations in the residual. The number of iterations required
to reach a residual level of 10~* was reduced by approximately a factor of 2 through the use
of the CPRK(4)-1 scheme. The values of «; used were y1 =1, 72 = 0.19738, v3 = 1.2976e-2
and 4 = 2.7033e-4.
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Figure 8: Residual history for blunt body solution.




4 Conclusions

Convergence results were presented for a model problem and three classes of flow problems
representing a broad range of CFD applications: incompressible viscous flow, supercritical
shallow water flow, and reacting hypersonic flow. In all cases the use of CPRK methods
was seen to result in accelerated steady-state convergence. Finally, we note that in all the
CFD applications, the programs were originally written to use standard RK integration
schemes. Implementing the CPRK schemes simply involves changing the coefficients used
in the integration algorithm. Hence, the new scheme can be easily retrofitted to existing
software to yield dramatic improvements.
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Towards an ideal preconditioner for linearized
Navier-Stokes problems
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Abstract

Discretizing certain linearizations of the steady-state Navier-Stokes
equations gives rise to nonsymmetric linear systems with indefinite
symmetric part. We show that for such systems there exists a block di-
agonal preconditioner which gives convergence in three GMRES steps, -
independent of the mesh size and viscosity parameter (Reynolds num-
ber). While this “ideal” preconditioner is too expensive to be used in
practice, it provides a useful insight into the problem. We then con-
sider various approximations to the ideal preconditioner, and describe
the eigenvalues of the preconditioned systems. Finally, we compare
these preconditioners numerically, and present our conclusions.

1 Introduction

One way of linearizing the steady state Navier-Stokes equations

— T2
vV +u.Vu+ Vp ¥ in some domain (1)
Vu = 0

(together with suitable boundary conditions) is to replace the convective
term «.Vu with an advective term w.Vwu, where the applied field w is
known. This gives rise to the Oseen equations

)

—wWeu+wVu+Vp = f | .
Va =0 [ 0
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These equations also arise naturally when applying a fixed-point iteration to
the Navier-Stokes equations (1), in which case we have further information
about wj; it will satisfy the boundary conditions and the weak form of the
zero divergence condition. However, we do not require that w has these
properties in this paper.

Mixed finite element methods for solving (2) seek an approximate solu-
tion (u”,p"), from some finite dimensional space V% Q", to a weak formu-
lation of (2). If {v;}HY, and {g:}}, are bases for V* and Q" respectively,
then we can write ' ’

N M
ut =3 ww;, Pt =) pi
i=1 i=1

so that the finite element approximation reduces to a system of algebraic

equations:
vA+C BT
e wBl-le) e

where A € RN*¥N represents diffusion (—V?), and is therefore a symmetric
and positive definite matrix; B € RMXN ig 3 discrete representation of the
divergence operator —V.; and C € RM*Y represents the advection term—
by judiciously selecting the weak formulation of (2) [4, §4.1] we can ensure
that C is skew-symmetric, then 2z Cz is strictly imaginary for all z e C.
Typically, the boundary conditions will only specify values for the ve-
locity u: in these cases both equations (1) and and (2) only determine the
pressure up to a constant, which means that B will have rank M — 1. To
ensure that B is full rank, an extra condition is required, such as prescribing
the value of p at some point in the domain, or requiring that the mean of the
pressure over {2 be zero. We also have the following spectral information:

° h2 ~ Amin(A), Amaz(A) ~ 1, [7, p-637],
o h ~ Omin(B), Omaz(B) ~ 1, [7, equations (1.9) and (1.10)],
e For a div-stable element [4, p.12], there exist -y, I such that

2 . PL(BABT)p
- pTQp
ie. the matrix BA~1BT is spectrally equivalent to the pressure mass

matrix Q, whose eigenvalues are known to be O(h?) for a 2-dimensional
problem.

< vpeRM\0} (@




e The eigenvalues of A~'C are bounded in modulus by a constant ¢
independent of the mesh parameter & [1], i.e.

p(A710) < § (5)

For convenience, we write

F BT
A-—[B 0 J, F=vA+C.

2 Krylov subspace methods and preconditioning

Krylov subspace methods are attractive candidates for soving these linear
systems, especially when M and N are large. Typically, a preconditioner is
required to transform the original system into one for which the convergence
of the method is faster. The convergence of Krylov subspace methods is gov-
erned by the eigenvalues and eigenvectors of the (preconditioned) system—
one convergence estimate for GMRES applied to a matrix G = VAV 1 is
given [5] by ol
Tn .

ol = «(V),. ep D oy T2 I (V)] (6)
where 7, is the nth residual, P, is the set of polynomials of degree n, and
(V) is the condition number of the eigenvector matrix V.

Unfortunately, estimates such as (6) are rarely descriptive in practice,
making it difficult to identify exactly what one is trying to achieve when
preconditioning nonsymmetric systems.

In this paper, we consider a particular class of preconditioners for the
matrix A, namely block diagonal preconditioners of the form
F 0 }

M=[0 M

We make this choice as it follows naturally from earlier work on Stokes
equations [6, 7], which can be thought of as a special case of equations (2)
with w = 0 and v = 1. However, we note that it may not be a trivial
matter to invert F; in the case of the Stokes equations the matrix F reduces
to a discrete Laplacian, for which there are various “fast” solution techniques
available, but for the Oseen equations the matrix F represents an advection-
diffusion operator, which is more difficult to deal with. We recognize that
this is an issue, but we assume here that it is possible to form the action of
F~1, via some sort of advection-diffusion solver.




Having decided to use F as the upper block of the preconditioner, we
are concerned with what to use for the lower block, i.e. what is a “good”
choice for My?

2.1 The “ideal” block diagonal preconditioner
Choosing Mz, = BF~BT yields the following preconditioner:

: F 0
Ms = [ 0 BF—lBT']

Suppose that X is an eigenvalue of MEIA, with corresponding eigenvector
[«T,pT]T. Then

[wriims | [5] 5]
(BF-1BT)"'B 0 p| “ip

v+ F'BTp = Ju ™)
(BF-1BT)"'Bu = Mp
We can eliminate « from these equations, to obtain
(3 -A-1)BFBTp=0 ©(8)

so that either X2 —A—1=0or BF*lBTp = 0. In the former case, we have
that A = %(1 + v/5), and the corrensponding eigenvectors must satisfy

BF'BTp=(\-1)Bu (9)

which has M independent solutions for each value of ). In the latter case,
BF-1BTp = 0 implies that p = 0, then equations (7) imply that A =1 and
Bu = 0. This second equation has N — M independent solutions, so that we

have N — M eigenvectors of the form

1.

:‘; associated with the eigenvalue
Thus, we see that the preconditioned system MEI.A has three distinct

eigenvalues, and a complete set (N — M + M + M) of independent eigen-
vectors. We can construct the characteristic polynomial:

P(z) = (z —1)(z® —z —1)
and observe that P(0) = 1.




Recall that, when applying GMRES to a matrix G, the nth residual r,
satisfies

Tn = pn(G)'I‘o
where p, € Pp, pn(0) =1 and

lnll < lga(@)roll  Van € P, ¢(0) =1

By the Cayley-Hamilton theorem, we have that P(MglA4) = 0, implying
that GMRES applied to the matrix A with preconditioner Mg, terminates
after three steps. Of course, Mg is too expensive to be used in practice,
but it is “ideal” in the sense of minimizing the number of GMRES iterations
required.

Remark 1 We could also take My = 0BF-1BT, changing the values of
the eigenvalues in equation (9). This makes no difference, except in the case
6= —%, when the preconditioned system has a repeated eigenvalue A = -;-
In this case, the system has only two distinct eigenvalues, but does not have
a complete set of eigenvectors, so the Cayley-Hamilton theorem cannot be
applied as above, and we cannot conclude that GMRES would converge in
two iterations. In fact, three iterations are still required.

2.2 Lower blocks of the form BX~1BT

The Schur complement BF~1BT is too expensive to be used in practice,
even under the assumption that we have some method of solving systems
based on the advection-diffusion matrix F. However, since we know what
the best choice for My, would be, we can consider approximating it by some
(hopefully cheaper) alternative. In particular, we consider a lower block of
the form My, = BX~'BT, giving a preconditioner of the form
F 0
Mx = [ 0 BXx-1BT J

where the matrix X is to be determined. The idea is to choose X so that we
can either solve linear systems with coefficient matrix BX—1BT cheaply, or
construct a good approximation to BX ~1BT which we can solve cheaply.

Analysis similar to that of section 2.1 shows that if ) is an eigenvalue of
M3 A, then either A =1, or

:nH:z:

MrA-1) = cHX-1Fg

for some = € CV (10)
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Equivalently,

1 2 X 1Fz
T=3X0~=1)  «faz

for some = € CN

Now, we examine some particular choices for X
1. X = A. In this case

zHWwI+ A 10)x zH A" 1Cx
== ol ) =V,+ xHe (1)

The right hand side of (11) describes a line segment in the complex
plane, with real part v, and imaginary part bounded in modulus by a
mesh-independent constant, so the eigenvalues of the preconditioned
system are contained in a region that is independent of the mesh pa-
rameter h, but that does depend on v.

Here, we have a cheap and easily invertible approximation available,
since equation (4) tells us that the pressure mass matrix Q is spectrally
equivalent to BA™*BT.

2. X =vA. In this case

I+ 14710) _

1zHA-1Cx
7= 14+ -2 =2

cHy v zHg

(12)

Again, the right.hand side of (12) describes a line segment, in this
case with real part 1, and imaginary part proportioﬁa.l to v~1. This
estimate does not depend on h, but the v-dependence differs from
that in the case X = A. Here, %Q can be used as an approximation to
B(vA)~1BT. The use of this scaled mass matrix has been previously
discussed in [2], where mesh independent estimates for the eigenvalues
were also given. « .

3. X = C. In this case there is a complication: the matrix C will typically
be singular, since the boundary conditions for the original problem are
not appropriate for an advection problem. One way of avoiding this is
to apply a different set of boundary conditions to the advection matrix
C to ensure that O~ exists. Assuming that we can invert C, then we
have '

H -1 H~-1
_z"(I+vC A)m=1+ym CH Az (13)
z

- zHe
The right hand side of (13) again describes a line segment, this time
with real part 1, and imaginary part bounded (in modulus) below
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by v/4, and above by v/h. It is conceivable that we can construct
a matrix with a spectrum similar to that of BC~1BT, which will be
reasonably cheap to invert, although we have not done so here.

. X =71+ C. For this choice of X, we choose an equivalent (but more
convenient) expression for A(A — 1), viz.

Yy Ay
AA-1) = —yTTy
ryy +y7Cy
vyH Ay + yHCy
Without loss of generality, we assume that yHy = 1, and let i =
yHCy, o = y¥ Ay. Then

for some y € CV

arv+¢% | ((av—1)
v2a2 + 4'2 1/2C¥2 + C2
The question now is what to choose for 7. If we take 7 > p(C), eg.
by taking 7 = ||C||;, then we can write

@LHW4=%p>%G+%ﬁ—%ﬁ+%wz+”}

AA=1) = (14)

A partial sum of this series could then be used as an approximation to
(I + C)~. However, a more natural choice would seem to be 7 = v,
in which case, examining the right hand side of (14), we can see that

e The real part of A(X — 1) is bounded away from 0 by a constant
independent of h and v.

o The real part of A(A—1) is bounded above by a quantity propor-
tional to (v/h)2. '
e The imaginary part is proportional to v for small v.

Here, we don’t have a cheap approximation to B(rI+ C)~1BT, but we
note that its spectrum is contained in a line segment in the complex
plane. For such matrices, the solution of the the polynomial minimax
problem contained in the convergence estimate (6) is explicitly known
(3], and we can conclude that the work required in solving systems
with coefficient matrix B(7I+C)'BT grows linearly as 7 — 0. Thus,
taking 7 = [|C||; implies a constant (as v varies) amount of work to do
the preconditioning, but taking 7 = v implies that the work required
to precondition grows as v gets small. If, however, this leads to fewer
(hopefully constant) outer GMRES iterations, then this might be an
acceptable cost.




3. Numerical Experiments

We consider a lid driven cavity problem on a square domain €2 = [—1,1] %
[—1,1]. We use a regular grid of square Q2— Q1 (Taylor-Hood) elements [4,
p.34], and choose a hydrostatic pressure level by eliminating one of the pres-
sure variables from the system—effectively setting it to zero. The applied
field w is a unidirectional flow in the z-direction. While this choice for w
may not be consistent with the full Navier-Stokes equations, it is a valid
choice for the Oseen equations, and it makes it easier to specify boundary
conditions for the advection problem that guarantee that C is invertible—in
particular, we enforce Dirichlet conditions on the top boundary when we
wish to form C~1. All computations were performed using Matlab 4.2a on
a Silicon Graphics Indigo 2 workstation.

Although no results are presented here for Mg, we have observed nu-
merically that using this preconditioner, GMRES does indeed converge in
three iterations, and the norm of the residual is of the order of the unit
roundoff. ‘ :

Table 1 shows the performance of using Mx, for X = vA, X = C,
X =vI+C,and X = ||C||1] + C on an 8 x 8 grid of elements for various
values of the v, and Table 2 shows the same information for a 12 x 12 grid.
The number in the table is the number of orthogonal directions GMRES
computes before the norm of the residual was less than 10~7. In all cases,
the initial guess was the zero vector. Although no figures are given here,
choosing X = A was consistently worse than choosing X = vA. Table 3
compares, on a 16 x 16 grid, the effect of choosing different values for T.

We see that X = vA is a better choice than X = C when v is large, but
as v gets smaller, X = C is to be preferred. This is perhaps as-one might
expect, since F is dominated by vA when v is large, and by C when v is
small. We see that, for X = 7I + C, the choice T = v is to be preferred to
7 = ||C||1, in terms of the number of GMRES iterations required. Indeed,
the choice T = ||C||; gets progressively worse as both » and h get smaller,
whereas choosing 7 = v appears to give a mesh independent preconditioner.
Table 3 also suggests that the number of iterations required could possibly
be bounded independent of v, although further investigation is needed.

4 Conclusions

We have identified the block diagonal preconditioner, Mg, which gives the
best performance in terms of the number of GMRES iterations required.




v

yBAT'BT BC7'BT B(wI+C)"'BT B(|C|I+ C)~'BT

0.5 19 161 49 50
0.1 51 159 43 39
0.05 85 145 33 33
0.01 155 81 43 75
0.005 159 63 51 123
0.001 161 57 69 161

Table 1: 8 x 8 grid of Q3 — Q elements; 578+81=659 unknowns.

v

+BA'BT BC-BT B(wI+C)'BT B(|CII+ C)"1B

0.5 19 329 63 67
0.1 51 329 57 55
0.05 87 309 45 47
0.01 245 137 39 53
0.005 275 101 49 117
0.001 319 69 73 ‘ 295

Table 2: 12 x 12 grid of Q3 — Q; elements; 1250+169=1419 unknowns.

v_|BWI+C) BT B(ICII+C)1B
05 77 81
0.1 71 69
0.05 57 59
0.01 39 57
0.005 45 89
0.001 71 347
0.0005 91 455
0.0001 91 457

Table 3: 16 x 16 grid of Qs — Q; elements




Although too costly to use in practice, this preconditioner gives us a ref-
erence point from which to assess other, more practical, preconditioners,
and allows us to identify what features we want in a preconditioner for the
Oseen equations. We believe that identifying Mg is an important step in
understanding the problem of preconditioning these equations.
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LOOK-AHEAD PROCEDURES FOR LANCZOS-TYPE PRODUCT
METHODS BASED ON THREE-TERM RECURRENCES

MARTIN H. GUTKNECHT* AND KLAUS J. RESSEL!

Abstract. Lanczos-type product methods for the solution of large sparse non-Hermitian linear
systems either square the Lanczos process or combine it with a local minimization of the residual.
They inherit from the underlying Lanczos process the danger of breakdown. For various Lanczos-
type product methods that are based on the Lanczos three-term recurrence, look-ahead versions are
presented, which avoid such breakdowns or near breakdowns with a small computational overhead.
Different look-ahead strategies are discussed and their efficiency is demonstrated in several numerical
examples.

Key words. Lanczos-type product methods, look-ahead steps, iterative methods, non-Hermitian
matrices, sparse linear systems

AMS subject classifications. 65F15, 65F10

1. Introduction. Lanczos-type product methods (LTPMs) like (Bi)CGS [9],
BiCGStab [10], BiCGStab2 [5], and BiCGStab(£) [8] are among the most efficient
methods for solving large systems of equations Az = b with nonsymmetric sparse
system matrix A € CV*V. These methods either square the Lanczos process or com-
bine it with a minimization of the residual. Compared to the plain Lanczos process,
LTPMs have the advantage of converging roughly twice as fast and of not requiring
a routine for applying the adjoint system matrix.A# to a vector. Nonetheless, they
inherit from the underlying Lanczos process the danger of breakdown. Although exact
breakdowns are very rare in practice, it has been observed that near-breakdowns can
slow down or even prevent convergence [3]. Look-ahead techniques for the plain Lanc-
zos process [3], [4], [7] allow to avoid this problem with very small overhead. However,
the look-ahead procedures that have so far been proposed for CGS or other LTPMs
are either limited to exact breakdowns or are extremely complicated and have con-
siderable overhead [1], {2]. In the following work look-ahead procedures are derived
for a general class of LTPMs that make use of the Lanczos three-term recurrences
and the Lanczos biorthogonalization (BiO) algorithm. Different look-ahead criteria,
are discussed and a complete analysis of the computational overhead in terms of ma-
trix vector multiplications (MVs), and inner products (IPs) is presented. Various
numerical examples demonstrate that the proposed look-ahead procedures work very
well.

2. The Look-Ahead Lanczos Process. We recall that the BiO algorithm gen-
erates a pair of finite sequences, {¥n},._o, {¥n}ti—y, Of left and right Lanczos vectors,
such that

Yn € Kny1 = span {y,A0,..., Ay},
(2.1)

gn € £n+1 ‘= span {:’701 AH:’707 ceey (AH)ngO} ’
and
(2.2) Tn L Kn, ool Lo

* Speaker: Swiss Center for Scientific Computing (SCSC), ETH Ziirich, ETH-Zentrum, CH-8092
Ziirich, Switzerland (mhg@scsc.ethz.ch).

t Swiss Center for Scientific Computing (SCSC), ETH Ziirich, ETH-Zentrum, CH-8092 Ziirich,
Switzerland (kjr@scsc.ethz.ch).
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This sequence of pairs of Lanczos vectors can be constructed by the following three-
term recursion

Ynt1 = (Ayn — YnlOn — yn-lﬂn) /')’n
2.3) _
gn-i—l = (AHgn - gnan - gn—lﬂn) / Tns
with coefficients a,, and By, that are determined from the orthogonality condition: (2.2)

and freely choosable nonvanishing scale factors y,. The Lanczos vectors can then be
written in the form

(2'4) Yn = pl‘l—(A)y07 :ljn = pn(AH)gO,

where pp, denctes the n-th Lanczos polynomial. Since we aim here at LTPMs, we
consider for the Krylov spaces £, more general basis vectors of the form

(2.5) Zn = Tn(4%)Z0,

with arbitrarily chosen polynomiais T Of exact degree n and Zp := Jo. In general,
%, L K, will no longer hold, but y, L L, can be still obtained by choosing the
coefficients a;, and By, in (2.3) in the following way:

(2.6) ,Bn = (§n~1’Ayﬂ) , Qan = (En)Ayn): (Zn, yn—l) ﬂn .
(Zn—1,Yn—-1) (Zns Yn)

- Clearly, the recursive process terminates with g, = 0 or %, = 0, or it breaks down
with 67 := (Z,,¥») = 0 and y,, # 0, Z, # 0. The look-ahead Lanczos process [6, §9],
[3] overcomes a breakdown if curable, i.e., if for some &, (Zy, A¥y,) # 0, by enforcing
the orthogonality condition (2.2) only partially for a couple of steps. To be more
precise, in the look-ahead Lanczos process the the condition yn, .1 Ly, is replaced by

2.7 Yn L Ln;, ifn>n; (§=0,...,J),

where 0 = ng < n3 < --- < ny = v < N is the subsequence of indices of regular
Lanczos vectors ¥y, , while for the other indices the vectors are inner vectors. Thus, the
Gramian matrix D := ((Zm,yn)) becomes block-lower triangular instead of triangular.
Forming the blocks ’

(2'8) Y,:I = [ynj s Yn;+1s--+> Ynjq —1] ’ ' ZJ :# [En, ’ 2n,-+1a cees z11.‘-,'“1.1 --1] )
and denoting their length in the following by hj := nj41 —n;, we can express relation
(2.7) by ’ _

= D; ifl=3j

H~yr __ 3 2

(2.9) ZtY:—{o if 1< j.
In the look-ahead case the Lanczos vectors {y,} can be generated by the following
recursions [6, §9), [3]. If yn+1 is an inner vector we have
(2.10) Ynt1 = (Ayn - ?}-an - Y}'_]_,Bn) o™ (nj<n+l< nj+1),

where 17, = [ynj, . ,yn] denotes the not yet fully completed j-block. The coeffi-
cient vector on can be chosen arbitrarily, whereas for the coefficient vector Bn the
orthogonality condition (2.9) leads to

(2.11) Bn = Dj2, ZfL, Ayn.
. 2




On the other hand, if y,,+; is a regular vector, we have

(2.12) Yn1 = (Ayn — Yian — Yi—1Bn) [1n (n+1=mnj4),
where oy, is now also determined by the orthogonality condition (2.9), thus
(2.13) on = Dj* (ZH dyn - ZEY;-1n) -

3. Lanczos-Type Product Methods (LTPMs). By introducing the product
vectors w), and product iterates x},:

(31) w£1. = TI(A)yn = ”'l(A)Pn(A)yO, bpiz - Amfl = wfn

with gL, := 7;(0)pn(0), and by rewriting the inner products in (2.6) in terms of product
vectors, i.e.,

(%0, Awi~1) (70, Aw}) — (Zo, wh_y1) B
3.2 = A = = s
(32 b= n oy )

LTPMs are derived. Different choices of the polynomials 7,(¢) lead to different
LTPMs. In BiOStab, the three-term version of Van der Vorst’s BiCGStab [10], the
polynomials 7,,(¢) are chosen as a product of polynomials of degree 1:

(3.3) @) =1L ) =1-xa)m() forn20,

where X, is defined by minimizing the norm of w;‘_ﬁ = wpy; — XnAwy ;. The choice
7o (C) = 1,

(34) Tn41(Q) = (I —=xnl) ™m(() if n is even,
Tn+1 (C) = (€‘n. + ﬂnC) Tn(() + (1 - §n) Th—1 (C) ifnis Odd,

where ¥, is defined as above, whereas &, and 7,, are obtained by minimizing the norm
of wliel + (whyy — wiiy) én + Awl, 7, leads to BiOStab2, the three-term version
of Gutknecht’s BiCGStab2 [5]. Generating the polynomials 7,,(¢) also for n even by
the three-term recurrence

(3.5) Ta41(Q) = (§n + Q) () + (1 = £n) Ta-1(0),

with the above definition of &, and 7, results in BiOxMR2, where the Lanczos process
is combined with a local two dimensional minimization in every step. In BiOS, the
three-term version of Sonneveld’s (Bi)CGS, the Lanczos polynomial is squared by the

choice 7(¢) = pa(()-

The aim of all introduced algorithms in every iteration step is to obtain an im-
proved new approximation zﬁj‘_{ by computing a new product vector w,’,‘_‘{_‘{ from pre-
viously computed product vectors in a stable way. To visualize the different strategies
used by the algorithms, we arrange the product vectors w/, in a w-table, where the
n-axis of the table points downwards and the l-axis to the right. We describe then
how every algorithm moves in this table from the upper left corner downwards right.
By multiplying the three-term recursion (2.3) for the right Lanczos vectors 1 with

71(A) we obtain for the product vectors the recursion

(3.6) wfﬂ_l = (A’wf,, - ’wi,,an - wﬁ;_lﬂn) [¥n,
3




which can be applied to move forward in vertical direction in the w-table. To obtain
a recursion formula for moving forward in horizontal direction, the recursion formula
for the chosen polynomials 75, (¢) is capitalized upon. For example, by multiplying y,
with 7141 (4) and applying then (3.5) leads to the recurrence

(3.7) wht = mAut, + &, + (1 - &)wi .

Form the recurrence formulas for the product vectors w}, and from relation (3.1) easily .
recurrence formulas for the product iterates zl, and for g}, are obtained.

4. Look-Ahead Procedures for LTPMs. To derive a look-ahead version of
an LTPM, we need to express the recurrence formulas (2.10) and (2.12) for the inner

and regular Lanczos vectors in terms of the product vectors wh,.

LooP 4.1. (Look-Ahead for Three-Term Recurrence for hj_y > h;) Let v =
min {n — 1,n;}.

Regular Loop: (n+1 = nj41) Inner Loop: (nj41 <n+1 < njiz)
1. Use (4.1) to  compute 1. Use (4.5) to compute w41, ..+
Wigls -+ Wil Wiy
2. Compute Awsy;. 2. Compute Awyyg.
3. Use (4.6) to compute indirectly 3. Use (4.6) to compute indirectly
Awsy, ... Awlpl. Awiiy, .., Awlil.
4. Compute Awy ., and &n,7n. 4. Compute Awpyy, and &n,7n.
5. Use (4.6) -to compute 5. Use (4.6) to compute wj?, ...,
Wi, ... ulth wrtl,
6. Compute Awpi}?, ..., Awltl. 6. Compute  Awpi, -
Aw,’:;_*'_:l_l.
7. Use (4.5) to compute indirectly
Awptl, ..., Awltt,
8. Compute Awji].
Regular Loop Inner Loop .

nj n |nj4a n; ni41 n n+1
EANETEANETA RiaBETARETA]
v, . y.\v WA A
N5 [N it 1 45— [ [ 1
- okt . Sk
v..X v..Vv.\Vv
[ [ 1 1 1" I
Sifeohts Sk
v,y Vv
A IKR! LKL

bt piat i< P[P pie

B e PR
piet i<t [P PH] i i
SR PR
R e R
pi< i< [P [P] pi i

m ¥ ¥[E HERI 0

¥ ¥ |[2] ¥ ¥ X [ ]

o ¥ [XI[¥]|[¢] ¥ (¥ 3] (]
mt (2] & [&][E] e ] % [X[[E] x *
" X % ¥ |[FE[E ¢

net1 3]+ &] ¢ [2][5]

F1G. 4.1. Action of Loop 4.1 (Look-Ahead Three-Term Recurrence) in the w-table for hj—1

v
&




Loor 4.2. (Alternative Look-Ahead for Three-Term Recurrence for hj—1 < h;)

Regular Loop: (n+1=mnj1) Inner Loop: (nj41 <n+1 < njye)
0. Perform steps 1. up to 5. of the 0. Perform steps 1. up to 5. of the
regular Loop 4.1. inner Loop 4.1.
6. Use (4.6) to compute wj},, ..., 6. Use (4.6) to compute wi? , ...,
wn+1 n+41
et P wpiy.
7. Compute Awz},, ..., Awjit,. 7. Compute Awpl™,, ..., Awptl,.
8. Use (4.5) to compute mdlrectly 8. Use (4.5) to compute indirectly
Awpt, .., Awlt Awptt, ..., Aw 31“_2
9. Use _(;11 .1) to compute indirectly 9. Use (4 1) to compute indirectly
Awp™e, AwT
+1 n,+1—1
10. Compute Awjy;. 10. Use (4.5) to compute indirectly
Aw;‘;’:l, veuy Awpt?
11. Compute Aw} 1}
Regular Loop Inner Loop
nj—1 n;j n (M54 nj—1 nj nji+1 n n+1l
] v] v le ] V] Vv rV1 I‘V'l V v n
w(E] X ~E] ¥ IR ]
V] [V ivi vl e vvvv’v’vvsz
st stesli XXX ] (5]
MMMV v v Y] ¥I¥] v v v
(X (E[X] X %8 |0 X[E] X X[ ¥ ¥ ¢
V]| v V| Vv vl ¥y[VI[¥] ¥vlv ¥
(%] *[X[F] *|¢ X X[XIF] x| % ¥ ¢
v v [V][¥ V] vivi¥i¥l|ly v
» (¥ % | ¥ [¥I[¥) 8 E X ¥FF x ¥ 5
el B E[s] me) [EXEIE] X oS
vl v v|¥][¥
" X X %
w3 b3 [3[E]

F1c. 4.2. Action of Loop 4.2 (Alternative Look-Ahead for Three-Term Recurrence) in the w-
table for hj—1 < h;j.
By multiplying (2.12) by 7;(A4) we obtain:
(4.1) n+1 (Aw W}an - W;—lﬂn) [Tn (n+1=n;41),
where we use the notation
WJ’ = [wﬁtj,...,wfljﬂ_l] , W;_l = [wf,j_l,...,wf,j_l] .

The coefficient vectors o, in (2.13) and 3, in (2.11) are easily expressed in terms of
the product vectors w!, by rewriting all inner products in such a way that the part
71(A) of 7 on the left side is transfered to the right side of the inner product. For
the diagonal blocks D; of the Gramian this results in

A . aa\1k;
(42) Dj = [(Bngtis vt oo = [(Bor0li43)]




and (2.11).becomes

(E'o, Awﬁ’?‘ )
43) Bn = D :
Zo, A'wn" -1 >
Likewise, (2.13) changes to

<201 Ang )
Qp = Dj_l :

<Zo, Aw"’“ 1>

(o, wnj.) -+ <707w2;—1>
- : : .Bn

nj41—1 ~ g1l
Zo,wnlt) > <Zo,wn§i1 >

In the case where n + 1 is an inner index, we multiply (2.10) by 7:(4) to get

(4.4)

45)  wh, = (Aw; ~ Wian - W, ,Bn) [ (nj <n+1<mn),

n;?
coefficient vector o, can now be chosen arbitrarily, in particular, equal to the zero
vector, whereas the coefficient vector 3, is again given by (4.3). Combining now the
recurrence formulas (4.1) and (4.5) with those for the chosen polynomials 7, (¢) leads
to the look-ahead version of a LTPM. For example, let us consider here the case,
where the polynomials 7;({) are generated by a general three-term recurrence (3.5).
Then obtain the following recursion to move horizontally in the w-table:

where Wj = [w' e ,wﬁt] denotes the not yet fully completed block W}. The

(4.6) whtt = gul, + mAwk, + (1 - &)wh L.

We describe now how to use (4.1), (4.5), and (4.6) to compute a new regula.r or
inner product vector w;‘i} from previously computed vectors wk and Aw,c Let us
assume that we have a starting situation as shown in Figure 4.1. Here the symbol
*V’ indicates that the corresponding product vector is already known, whereas the
symbol ‘A’ indicates that the product of this entry with the system matrix A is known.
Surrounding an entry by a box is used to point out that a direct multiplication of this
entry with the system matrix A was carried out, otherwise this product was obtained
indirectly by applying a recurrence formula. Surrounding an entry by a dashed box
indicates that whether this multiplication was done directly or indirectly depends on
the way, the following block was computed. A number as entry elucidates in which
step of the loop this entry is calculated. To compute a new product vector witl
Loop 4.1 is performed.

If hj_3 < hj, so if the (j — 1)-block is smaller than the j-block, the following
modification, which is given by Loop 4.2 and is illustrated in Figure 4.2, can save
computational work in terms of MVs.

Because of the many additional vectors w!, and Aw,, involved in the recurrence

formulas (4.1) and (4.5) the look-ahead version of an LTPM needs more computational
6




work in terms of MVs and IPs. However, in practice the number of look-ahead steps
as well as the size of their blocks is small if a good look-ahead criterion is used, so
that the additional cost is rather moderate.

5. Numerical Example. In Figure 5.1 the convergence history of different look-
ahead versions of LTPMS is shown for a problem with a 4-cyclic system matrix of
order 400. Look-ahead is for this problem essential, since exact breakdowns appear
at least in steps 2 and 3.

IBiOStab ~ 1BiOStab2 -, IBIOXMR2.. 1Bi0S —

10 T T T T T T

F16. 5.1. The residual norm history (i.e. log(||lrs||) vs. iteration number n) for a linear system
with the 4-cyclic system matriz solved by different LTPMs with look-akead.
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Abstract

In this talk we discuss the iterative solution of large linear systems

of the form
(A+USVE)X = B,

where A is an n X n non-Hermitian matrix, USV¥ is a rank-r mod-
ification of A and B is of rank s with s,7 < n. We analyze several
approaches that exploit the structure of the coefficient matrix so as
to solve the systems more efficiently than if one were to apply a non-
hermitian solver to the original systems. In the development of proce-
dures, we take into account the presence of both the low-rank modi-
fication and the several right-hand sides. Interesting issues connected
to this problem originate from the quest for techniques that accelerate
the underlying iterative solvers: preconditioning (e.g. inner-outer it-
eration strategies), domain decomposition, and continuation methods.
Experiments are provided to analyze the behavior of the methods de-
pending on the structure of the rectangular matrices. Preconditioning
strategies are explored for an efficient implementation on the trans-
formed systems.
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1 Introduction

The solution of the large, sparse, eigenvalue problem Az = Az, for a few eigenpairs is central to many scientific
applications [15]. The Arnoldi method, and its equivalent in the symmetric case the Lanczos method, have
been the traditional approach to solving these problems. Preconditioning, through some shift-and-invert
technique [18], is frequently employed, because of the difficulty of these problems. A different approach is
followed by the Generalized Davidson (GD) method [6, 12, 4] which is a popular preconditioned variant of
the Lanczos iteration. Instead of using a three-term recurrence to build an orthonormal basis for the Krylov
subspace, the GD algorithm obtains the next basis vector by explicitly orthogonalizing the preconditioned
residual (M — AI)~'(A — M)z against the existing basis. A straightforward extension to the non-symmetric
case has also been studied in [17]. The GD method can be regarded as a way of improving convergence and
robustness at the expense of a more complicated step.

Often, a large number of steps is required for convergence, necessitating restarting GD every m iterations
(GD(m)). If the ! lowest eigenvalues are needed, the ! lowest Ritz values are computed at the end of the
myp, step, and their corresponding Ritz vectors are used as initial guesses for the restarted GD iteration.
Traditionally, the Lanczos and Arnoldi processes had been considered without restarting, but because of
orthogonality problems and spurious solutions many restarting variants are used in practice [5, 14, 20, 2.

Truncating the Krylov sequence is expected to impair the convergence rate of the method. There are
two main reasons: the new vectors entering the basis repeat some of the information that was discarded
when restarting, and the Rayleigh-Ritz procedure does not minimize over the whole Krylov subspace. There
has been much discussion about the problems caused by restarted methods for both linear systems and
eigenvalue problems (7, 16, 20]. Some methods tend to save additional information at each restarting [11, 3].
For the Davidson method, Murray et al. [13], and Van Lenthe et al. [23], have proposed restarting with two
vectors per required Ritz vector with some success. In an eﬂ'ort to minimize execution time, Crouzeix et al.
[4], have proposed a dynamically chosen size m.

Recently, ‘implicit restarting’ has gained popularity as a means of improving convergence of the Arnoldi
procedure {20]. By using p = m — k steps of the implicit QR algorithm on the Hessenberg matrix, the
basis is truncated down to k vectors. It turns out that the k new basis vectors can be considered to be the
Arnoldi vectors obtained from a polynomially transformed starting vector v' = w(A)v. This is the basis of
the popular ARPACK eigenvalue package [10]. Preconditioners for eigenvalue problems usually vary between
steps, in which case the Implicitly Restarted Arnoldi (IRA(k,m)) is not straightforward to apply. Further,
in case of the GD(m) where the residual is preconditioned, the Ritz vectors can not be described with a
polynomial of A. Clearly, a new restarting scheme is needed. )

In this paper, we propose an extension to the IRA(k,m) technique for the GD(m), called ‘thick restarting’
and noted GD(k,m), which depends on an integer parameter k. GD(k,m) restarts with k& Ritz vectors
instead of the ! wanted ones, where | < k < m. A similar idea is mentioned by Sleijpen et al. in [19].
After briefly presenting the Arnoldi, IRA(k,m) and GD(k,m) algorithms in section 2, in section 3 we prove
that in the absence of preconditioning, the IRA(k,m) using the Ritz-values as shifts, and GD(k,m) are




equivalent,.in the sense that their basis vectors span exactly the same space. In section 4 a theorem is
proved that relates the p steps of IRA(k,m), and thus GD(k,m), with an Arnoldi process applied on an
approximately deflated initial vector. This extends the ideas that appeared recently in [8]. Usually, the
benefits of IRA(k,m) are studied in relation to the polynomially transformed initial vector. The deflation
relation justifies the use of a thicker restarting. In section 5, a dynamic choice of k is derived for the
symmetric case, where the rate of convergence is described by well-known bounds. Although the above
results are proved for the non-preconditioned case, the idea of thick restarting is readily applicable to the
preconditioned GD(k,m) and similar behavior is expected. Compared with TRA(k,m), GD(k,m) can also
assume any number of initial guesses, and/or enhancements of the basis through arbitrary vectors, during the
procedure. In section 6, numerical experiments on the symmetnc matrices of the Harwell Boemg collection
demonstrate the effectiveness of GD(k,m).

The proofs for the theoretical results in this extended abstract can be found in the unabridged version
of this paper.

2 The restarted Arnoldi and Dav1dson methods

Throughout this paper we assume that the matrix A is dlagonahzable, of order N, with eigenpairs (A, i)
We look for [ eigenpairs and the Arnoldi and Davidson methods use a basis size of m > . The following
descriptions of the algorithms establish the notation, and do not reflect implementation details.

Restarted Arnoldi’s method in its simplest form can be expressed as follows:

ALGORITHM 2.1 Restarted Arnoldl‘

0. Start: Choose initial unit vector v(®
1. Fors=0,1,... Do
n = 1)(3)’ V(s) = {1)1}
Forj=1,...,m Do

hij = (Av;,v5), i=1,..., 4,

= A‘Uj - 2‘3=1 h,-,-vi

i1, = llwjll2, o hjs1,; = O stop.
Vi1 = Wi/ hjta,; -
Enddo P ’ '
Compute the wanted eigenpairs (u(s) vy of HY
and the Ritz vectors w( ) = V(s
10. ot =% c,:v(s) for some c;
11. Enddo

The algorithm builds a Hessenberg matrix, from which the approximate eigenpairs are extracted through the
Rayleigh-Ritz procedure. For the symmetric case, Hm) is a tridiagonal matrix, and a three-term recurrence
replaces the above orthogonalization step. A linear combination of the wanted Ritz vectors is used to restart
the algorithm. However, this discards a lot of information from the previous step and results in degradation
of the convergence rate.

Implicitly restarted Arnoldi (IRA), applies the implicit QR algorithm with the m—I unwanted eigenvalues
as shifts to the Hessenberg matrix, and uses the generated orthogonal transformations to truncate the basis
~ down to I vectors. These vectors can be considered to be the Arnoldi vectors of another Arnoldi process
which started with a polynomially transformed initial vector. Thus, IRA avoids the need to explicitly restart
the Arnoldi algorithm. The number of vectors in the new basis after restart, may also be larger than I, say
k. For the rest of the paper we assume that ] <k <m, and IRA(k m) denotes the associated method.

The Davidson method first appeared as a diagonally preconditioned version of the Lanczos method for
symmetric eigenproblems. Extensions, to both general preconditioners and to the non-symmetric case have
been given since. We describe the algorithm for the symmetric case. For the non symmetric, line 5 should

also include the computation of the last row of Dgs)
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ALGORITHM 2.2 Generalized Davidson

0. Choose initial unit vectors U,(O) = {u§°),'. . ,ul(o)}
1. Fors=0,1,... Do

2. w® =Au® i=1,...,1-1

3. Forj=1,...,m Do

4. 'w;-’) = Aug.s) .

5. dij = (w§”,u§”), i=1,...,4, the last column of D'®

6. Compute some wanted eigenpair, say (u1,2) of D§- ;

7. T = U}s) 21 and r = Az; — iz, the Ritz vector and its residual
8. Test ||r|| for convergence. If satisfied target a new vector.
9. t=Mg .

10. 5%, = MGS(U®, %)

11,  FEnddo

12.  Set U,E"H) = {z1,...,2}, k <m, and restart

13. Enddo

The Davidson algorithm has a more expensive step than the Lanczos and Arnoldi algorithms, to allow for
the benefits of preconditioning. In addition, the Davidson algorithm can start with any number of initial
vectors, and include in the basis any extra information that can be available during the execution. Finally,
it can restart with the approximate eigenvectors, so it does not share the problems of the original Restarted
Arnoldi. As in IRA(k,m), the Davidson method can also restart with more Ritz vectors than needed. This
version is called ’thick restarting’ and denoted GD(k,m) where [, %, and m are defined as in IRA(k,m). In
the following sections, we show that IRA(k,m) and GD(k,m) are equivalent in the non-preconditioned case,
but GD(k,m) offers all the aforementioned advantages and extensions. We also provide an explanation for
the improvements associated with GD(k,m) and give a choice for the parameter k.

3 Thick and implicit restarting

It is known that the Lanczos and the Davidson methods are equivalent when no preconditioning is used.
However, this has been pointed out only for the non-restarted case, where one eigenvalue is sought [12]. In
this section we prove that in the non-preconditioned case, IRA(k,m) is equivalent to GD(k,m), if GD(k,m)
starts with one initial vector. The proofs are omitted, and can be found in the full version of this paper.

The first Lemma is an extension of Lemma 3.10 in [20], and it is the basis for the equivalence proof. The
implicit QR algorithm is applied on any diagonalizable matrix H.

Lemma 3.1 Let A(H) = {A1,..., Ac}U{p1,...,1p} be a disjoint partition of the eigenvalue set of a diago-
nalizable matriz H. Let

H+ = QTHQ1
where Q = Q1Q2 -+ Qp, and Q; is the orthogonal matriz implicitly defined by the shift p; in the implicit QR
algorithm. Then, the first k columns of Q span the same space as the k eigenvectors y; of H associated with
the eigenvalues );.
An immediate consequence is the following:

Lemma 3.2 If at step s the basis vectors ,(,‘f) and V,,(:” of GD(k,m) and IRA(k,m) respectively, span the
same space, then, after restarting both methods,

spa.n(Vk(s'H)) = spa,n(U,gsH)).

Theorem 3.1 If GD(k,m) without preconditioning and IRA(k,m) are applied to the same initial vector v(®,
and at each restarting the p shifts used in IRA(k,m) are the Ritz values of the Ritz vectors discarded by
GD(k,m), then the basis vectors produced by the two methods span the same space, and thus the methods are
equivalent.




4 The deflation connection

Krylov methods for linear systems, such as conjugate gradient (CG) and frequently GMRES, demonstrate
a superlinear convergence at later iterations. One explanation for the phenomenon is the convergence of the
outer eigenpairs of the matrix, so that each method behaves as if deflation has occurred. The result is a better
condition number for CG, or a smaller ellipse containing the eigenvalues for GMRES. Such observations have
appeared as early as in [1], but actual quantification of the behavior appears in [16] and [7, §]. In the latter
papers, the optimality of the CG and GMRES polynomials is employed to relate each method after some
iterations with a similar process of the same method on a deflated residual.

Results similar to [8] can not be applied directly to the residual and eigenvalues in the non-symmetric
Arnoldi, since there is no optimality principle. In the following, we extend the results found in [8] to the
Arnoldi method, by considering the distance of some eigenvector from the Arnoldi Krylov subspace. Again
preconditioning is not considered since the space that it creates is not a Krylov subspace.

Assume A diagonalizable, X 1AX = A = diag();), of order N, and let v = X'y be the expansion of the
starting Arnoldi vector to the eigenvector basis. Define three numbers satisfying ! < k' < k, where k —1 is
the number of steps that an Arnoldi method takes starting from v. We can assume an eigenvalue ordering
so that the first [ ones are wanted, and the [ +1,..., %' eigenvalues are well approximated by the k — 1 steps
of Arnoldi. Let p; be the k Ritz values from this K (v) space. At this point we let the Arnoldi process take
p more steps and build the space Kr4p(v). Define D) a diagonal matrix with elements:

) 0 forj:l-l—l... k'
®_] >, e
P _{ Hf=t+1§§:—:';\1§, forj<lorj=k+1,...,N ~ W

The following theorem relates the distance of an eigenvector z; from the Krylov subspace Kg4p (v), to
the distance from the lower degree Krylov subspace K,(%;). #; is the corresponding Ritz vector from K (v),
whose components of zyy,...,%Tr have been extracted. Assuming these definitions and D) ag defined
in (1) we have:

Theorem 4.1 If the following Krylov subspaces can be built, then for any j = 1,...,1 it holds:
dist(z, Krsp(v)) < [1 = D+ IXDOX ) dist(z, K(E7)).

" Let Pr4p be the orthogonal projector onto Kp.4,(v), and Pp the orthogonal projector onto Kp(%;). We
define Agyp = PripAPrip, and Ap = PpAP,. A similar result holds for the residuals of the exact eigenpair
from the projected matrices.

Corollary 4.1 Let p = ||PrspAI — Prip)ll. Then, for the ezact eigenpair (Aj,z;) we have:
I(Aero = AiDasll < /32 + 22 (1L = DR |+ 1X DB X (45 — AsDas]) -
The term [ XD® X ~1|| is bounded by the following [8]:

kl

IXDO XM < ky(X)  max N=X VR,
FEFL LR /\_—,’ — Ui

i=l+1

where k2(X) = | X|||X || is the condition number of the eigenvectors. If k is large enough, then the

approximations p; converge to A; for ¢ = 1,...,k'. Thus, Fy, — 1, and 1 - Dg.?)l — 0. Even when these

are not accurately converged, provided that O(dist) < O(|1 — Dg?) ), the distance behaves similarly to the
distance from a deflated Krylov subspace.

In the case of the IRA(k,m) and GD(k,m) methods, the above results suggest there are advantages in
keeping more vectors at each restarting, i.e., a thicker restart. As previously, [ eigenpairs are needed, k
pairs are retained after each restart, and both methods build p = m — k additional vectors. We also assume
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that the retained eigenpairs converge. This has been proved for the symmetric case, and under certain
assumptions for the non-symmetric case [20]. It is known that at the s¢n, restarted step, the k retained
vectors can be considered the Arnoldi vectors of a process starting with a normalized initial vector (¥) =

T s (A = g™ D)ole=1)| where "™ are the dumped Ritz values before restarting. Thus, Theorem 4.1
applies with the same [, k,p and ¥’ = k. Moreover, the Krylov space Kr1p(v) is built implicitly by only
p steps, after retaining k vectors. Therefore, Theorem 4.1 relates the D steps of the deflated method, to
p, rather than k + p steps of the original method. Because of the assumption that the retained eigenpairs
converge, F;f“’) ~1land|1- DJ(-;?)I — 0 as s = 0o. Therefore, after several restarts, the IRA(k,m) method
builds a space close to the one built by an IRA(k,m) applied on a system deflated from the eigen-components
l+1,...,k. Because of Theorem 3.1, the GD(k,m) performs in a similar way.

If only the wanted eigenpairs (1,...,1) are retained at restart, the method does not demonstrate the
deflation behavior for any other eigenpairs. At every restarting the current approximations of eigenpairs
(I +1,...,k+ p) are annihilated, and thus they do not converge. Frequently, some eigenvalues close to the
wanted ones or close to the other end of the spectrum are relatively well approximated before restarting, and
if retained, they would have soon converged. Even more undesired is the fact that these approximations will
slowly reappear in the Krylov subspace, since their approximations are not accurate enough to completely
annihilate the corresponding eigenvectors. Therefore, thick restarting should almost always be beneficial.

5 Dynamic thick restarting in symmetric cases

In this section we restrict the discussion to the symmetric case where explicit bounds for convergence rates
are known. Two difficulties are associated with thick restarting: the choice of which eigenpairs to retain, and
how many of them. Sleijpen et al. in [19] argue that the restarted Arnoldi method repeats the information
close to the required eigenpairs, and they propose keeping I +1,.. .,k eigenvalues closest to the wanted ones.
A similar strategy is followed in the implicit restarting of the ARPACK code. We denote this special case
of GD(k,m) as TR(k), implying the basis size m.

The preceding discussion suggests that thick restarting should aim at improving the convergence of the
method through deflation. TR(k) attempts to increase the gap of the wanted eigenvalues from the rest of
spectrum by keeping close eigenpairs. However, convergence depends on the gap ratios of the eigenvalues
and therefore the other end of the spectrum is also of importance. A more general form of thick restarting
would be TR(L,R), where L lowest (leftmost) and R highest (rightmost) eigenvectors are kept. We need to
address the issue of choosing optimal restarting parameters. In ARPACK, k is chosen dynamically, starting
from a relatively small number and increasing it every time an eigenvalue converges. This is slightly different
from the strategy reported in [20], where values of k close to 7m/2 usually gave the best results.

Because of the deflation relation, the thicker the restarting, the larger the part of the spectrum that is
deflated. However, the basis size m is limited, and if too many vectors are retained when restarting, the
Lanczos process can not effectively build additional basis vectors. A dynamic choice of the parameters L and
R should be able to capture this trade-off. For the Lanczos procedure, convergence is governed by a term
involving a Chebyshev polynomial. If p Lanczos steps are taken, and the gap ratio of the s, eigenvalue,
9i = (M — Aiy1)/(Miy1 — M) is small, the corresponding eigenvalue error-is approximated by:

_1_ a2 2e—20VEi

Ter2g) 20 @
The L and R thick restarting parameters should maximize the deflated gap ratio g; = (Ai = A1)/ Nig1 —
An—g) and also maximize the number of new Lanczos steps p = m— L — R. The trade-off is captured
by minimizing the error approximation equation (2). Since the actual eigenvalues are not known, the m
approximate Ritz values (;) before restarting should give an estimate of the spectrum. Thus, assuming the
! lowest eigenpairs are sought, L and R are obtained dynamically by maximizing the following expression:

(m-L-R) Ait1 = Am-R’

max
L=l,...,m, R=0,....m—Il, L+R<m




Tt has.been observed that if some unwanted eigenvector has converged it is usually beneficial to include
it in restarting. We do not consider this option and let the dynamic choice of L and R take care of such
cases. For the non-symmetric GD(k,m) a similar expression may be maximized, but the choice is more
ad-hoc because of lack of general expressions for convergence rates. Finally, this dynamic strategy can be
used in case of preconditioning. Its effects are expected to be less pronounced, since the spectrum of the
varying operator is transformed by the preconditioners. Often, however, this transformation may not affect
the eigenvalue order significantly, and thick restarting should perform as well in this case.

6 Numerical experiments

In the first part of this section we give an artificial example that demonstrates the increasing effect of deflation
in thick restart TR(k). In the second part, we present results from a large number of tests on the symmetric
matrices of the Harwell-Boeing collection [9]. The GD(k,m) code is based on a program published in [21]
and the extensions proposed in [22]. It implements a block generalized Davidson method, using the reverse
communication protocol for matrix-vector multiplication and preconditioning operations.

6.1 Deflation works

The GD(k,m) is applied on an artificially generated diagonal matrix of order 100, and elements:

3/55, forj=1,...,8
Aj; =4 19/55+3/85, forj=9,...,16 . (3)
j—16, for j =17,...,100

The lowest eigenvalues of this matrix are grouped in two clusters of 8 equidistant eigenvalues each. The
separation between the two groups is equal to the separation of the second group from eigenvalue 17.
Figure 1 depicts the lowest part of this spectrum. We look for the lowest eigenvalue and allow for 20 basis
vectors in all versions of GD(k,m). The history of the logarithm of the eigenvalue error is plotted in Figure 2
for various restarting thicknesses of TR(k).

[ O N

Figure 1: The lowest 20 eigenvalues of the 100x100 matrix. The first two clusters contain 8 equidistant
eigenvalues each. The rest 80 eigenvalues are the integers from 5 up to 84.

As expected, the poor separation of the lowest eigenvalue results in a very slow original GD(20) (or
TR(1)) method. A very good approximation of the second eigenvalue is available quite early, and thus when
retained (TR(2)), the convergence rate improves by 30%. Similarly with TR(4) and TR(8). The superlinear
convergence is more evident in TR(8). In early iterations, higher eigenvalues are not well approximated and
TR(8) behaves similarly to TR(1) and TR(2). Later, as better approximations for eigenvalues 2-4 appear,
TR(8) is similar to TR(4), and as higher eigenvalues settle down, TR(8) exhibits a concave convergence
curve.
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Figure 2: Effects of thick restarting to the convergence of the Generalized Davidson. No preconditioning is
used, and the lowest eigenvalue is sought. TR(k) denotes GD(k,20).

Methods TR(k), with 8 < k < 16 are similar to TR(8) since there is no significant improvement to the
deflated gap ratio. In theory, TR(16) should be different, because of the large separation between eigenvalues
16 and 17. In practice, TR(16) does not perform significantly better than TR(8), because of the small size
of the Krylov subspace. The dynamic thick restarting, shown as Dyn in the figure, takes advantage of both
ends of the spectrum and performs better than TR(8) and close to TR(16), requiring no prior knowledge
about the spectrum.

6.2 Harwell-Boeing Tests

To confirm the theoretical benefits of thick and dynamic thick restaring, a wide variety of tests has been
performed on the symmetric matrices of the Harwell-Boeing collection. For almost all of these matrices, the
lowest end of spectrum is very poorly conditioned. The higher end of the spectrum usually consists of well
separated, very large eigenvalues providing a good test for easy or intermediate problems.

We compare three different versions of GD(k,m) and the ARPACK code for both the lower and the
higher part of the spectrum. Five eigenvalues are sought and the basis size m = 20 for all GD methods.
ARPACK is assigned a basis size of 25. For the highest eigenvalues only the non-preconditioned versions of
GD(k,m) are considered, while for the lowest ones, we also consider diagonal preconditioning. The GD (k,m)
methods stop when the norm of the residual is less than 10~22||A||r, where || A]|F is the Frobenious norm of
the matrix. The ARPACK tolerance is set to 1012,

In Table 6.2, the results from the lower part of the spectrum are reported, for all the matrices in which at
least one method has converged. A maximum number of 5000 matrix vector multiplications is allowed. The
table does not include any of the diagonal matrices. As it is easily seen, TR(11) outperforms the original
Davidson method (TR(5)). It is usually several times faster, and offers better robustness, converging for 6
additional matrices. Because no preconditioning is used, ARPACK behaves similarly. Further, dynamic thick
restarting, improves both the robustness, and the speed in almost all cases. With diagonal preconditioning
TR(11) still outperforms TR(5) in both convergence and robustness. Dynamic thick restarting improves
convergence further, although the improvements are not as significant as in the non-preconditioned case.

Similar behavior of the methods is shown in Table 6.2. Dynamic thick restarting improves on the
performance of TR(10) which in turn improves on the performance of TR(5). ARPACK performs between
the range of TR(10) and Dyn. However, the few steps required for the problems in this table do not yield




Table 1> Goémparison of thick (TR(11)) and dynamic thick restarting (Dyn) with original Davidson (TR(5))
and ARPACK on Harwell-Boeing matrices. The number of matrix vector multiplications is reported, with a
maximum of 5000. Five smallest eigenvalues are sought. The GD codes use basis size of 20, and ARPACK
uses basis size of 25.

No preconditioning -Diagonal preconditioning
Matrix. TR(5) TR(11) Arpack. Dyn | TR(5) TR(10) Dyn
BCSSTKO1 - 1675 2929 396 . 288 132 127
BCSSTKO02 - 209 233 205 - 194 191
NOS4 321 178: 233 174 405 261 241
BCSSTKO03 - - - - - 3697 1911
BCSSTKO04 - - - 1913 - 189 190
BCSSTK22 4054 - - 3299 - 931 710
LUND A - 2017 4285 888 858 271 261
LUND B - - - 1424 774 396 390
BCSSTKO5 1174 . 975 801 629 1322 465 442

¢ A BCSSTKO06 -~ - - -1 - - 2324
BCSSTKO07 - - - - - - 2324
BCSSTMO07 - - - 3323 1018 406 371
NOS5 - 2016 2789 960 2659 - 1401 = 969
662 BUS - - 3729 - 3220 1482 1286
NOS6 - - - - - - 1522
685 BUS - - 2327 1950 2473 987 807
NOS7 - - - - 200 216 191
GR 30 30 259 228 274 215 248 - 7 224 216
NOS3 2179 620 735 463 2096 878 727
BCSSTKO08 - - - - 1177 1012 1200
) _BCSSTK09 - 1206 1028 799 | 2283+ 1508 1136
‘ BCSSTK10 - - - - - - 4970
BCSSTM10 498 226 329 206 448 258 253
BCSSTK27 - - - .- - - 3334
s BCSSTM27 - 4455 3665 2529 - 4304 1771
BCSSTK14 - - - - - - 2438
BCSSTM13 - - - - 381 . 285 284
ZENIOS 87 88 82 87 88 89 90
BCSSTK21 - - - - - 25684+ 1349
BCSSTK16 - 3962 1333 1600 718 2410 905 842
BCSSTK18 - - - - - - 3686
BCSSTM25 - - - - - 62 64 56

4 denotes that one eigenpair has been skipped

the same impressive improvements as in Table 6.2. In fact; a few cases are noted to perform worse with
dynamic than with simple thick restarting.

We should point out that the above results compare the number of matrix vector multiplications of the
methods. This is an acceptable performance metric if the matrix-vector operation is expensive. Since on
average; thick restarting uses more vectors in the basis than the original Davidson, its Davidson step is also
more expensive. Although improvements like the onesin Table 6.2 justify any increase in the expense of the
Davidson step, for easier cases a less aggressive choice of restarting might be more effective.
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Abstract

In this article, an iterative algorithm is established that splits the evaluation
of determinant of an upper Hessenberg matrix into two independent parts so that
the evaluation can be done in parallel. This algorithm has application in parallel
non-symmetric eigenvalue problems.

1 Introduction

A matrix whose elements below the lower sub-diagonal are all zero is called an upper
Hessenberg matrix. Any non-symmetric matrix can be reduced to an upper Hessenberg
matrix using a series of orthogonal Householder transformation [2]. That is, any matrix
is similar to an upper Hessenberg matrix. So the eigenvalue problem of a general non-
symmetric matrix can be reduced to the eigenvalue problem of the corresponding upper
Hessenberg matrix. A Homotopy-Determinant algorithm, which is parallelable in nature,
has been proposed by Li and Zeng [1] for solving non-symmetric eigenvalue problem. The
algorithm heavily depends on the evaluation of the determinant of the upper Hessenberg
matrix using Hyman’s method. Here we introduce an algorithm to split the determinant
evaluation so that computation can be done in parallel. In this paper, we only report
the fundamental part: how to split the determinant. Application of this method to the
parallel non-symmetric eigenvalue problem will be reported in future paper.

Our method relies on the Hyman’s method [2]. The whole idea of the Hyman’s method
to evaluate the determinant of an upper Hessenberg matrix is to reduce, by row trans-
formation (or column transformation, resp.), the first row (or the last column, resp.) of




the upper Hessenberg matrix into a vector whose elements are all zero except the last
one (or the first one, resp.), then the determinant of this upper Hessenberg matrix equals
the product of this last (or first, resp.) element of the vector and the lower sub-diagonal
elements of the matrix, multiplied by —1 if the order of the matrix is odd.

2 The formula

Let A be an upper Hessenberg matrix of order k& + m, with the form

_[ A B
A - ( B2 A2 ) ) (1)
where ‘
/ ain @12 413 - < a1k \
by ax a4z - o A2k
0 b am - - : ask
A = . ) (2)
O bi—2 Q(k-1)(k-1) G(k—1)k
\ ' br—1 14973
( ‘11 G2 CG3 - : : Cim \
di co cCo3 - : : Com
0 dp c3 - - . C3m
A= el . ) (3)
O dm—2 Cm-1)(m—-1) C(m-1)m
\ m—1 Cmm
By = (bj)kxm, and
00 0 b
00 ---00 :
By = o . (4)
00 --00/_.,.

If one the lower sub-diagonal elements is zero, then the determinant splits naturally.
So we assume A is unreduced, that is, none of b; (for i = 1,---,k), b, and d; (for j =
1,-+-,m) is zero. ‘ '

First of all, we consider the case where A; is non-singular. We will remove this
requirement later. Applying the following row transformation to matrix A, we have

I 0\(4 B\ _[4A B | (5)
—BATY I )\ Bs Ay )\ 0 Ay—BAT'B

So we have the following lemma.
Lemma 2.1 If A; is nonsingular, then

det(A) = det(A1)det(A; — Bo AT By). (6)




Denote A7 by (a;)kxk- Then the following lemma is easy to verify due to the special
structure of B,.

Lemma 2.2
Qp1 Qg Gy
] I (7
0 0 --- 0

Since a}; = cof (a;x)/det(A;), where cof(a;r) stands for the cofactor of a; in matrix
A;, we have.

Lemma 2.3 If A, is non-singular and is of the following form

(00 o0 - . 0 ayp )
by az axm - - Q2(k-1) a2k
0 b asz - ’ a3(k-1) ask
O bk—2  @(r-1)(k-1) C(r—1)k
\ . b1 axk
then
biy bz --r bim
b cen
BA'B =2 |0 0 o 1. )
ar | - - - -
0 0 ---0

Proof. If A, is of the special form (8), then det(A;) = (—1)* ay [T521 bi, cof(aw) =

(—1)** T b and cof(aw) = 0. So afy = ((—1)¥** [TE! 5:) /(1) an TTESE b:) = 21,
and af; =0 for ¢ =2,--., k. Hence it follows from Lemma 2.2 that

10 ---0
pa= 000,
ax | - ¢ - .
0 0 - 0
and
biy b2 bim
BzAl_lB]_:i 0 0 N ]
ak -
0 0 0
]




bu bz b - - - bim )
di cp2 ca3 - : : Com
0 dy C3z - : : C3m ' o
A= R : : (10)
‘ O dm—-2‘ C(m-1)(m—1) C(m—-1)m
\ dm—l Cmm

That is, A} is Az with the first row of A2 replaced by the first row of B;. We prove the
following lemma ~

Lemma 2.4 If A; is non-singular and is of the special form (8), then

det(A2 — BzAl lBl) = det(Az) e idet(A ) (11)

Proof. If A, is of the special form (8), then Lemma 2.3 shows that the first row of
the matrix Ay — B2 AT B, is the component-wise difference of the first row of Az and the
first row of B; multiplied by -2 while all the other rows of Ay — B2 AT 1B, are the same
as A,. So the determinant sphts into two determinants as stated in the lemma. 0O

Now we handle the case where A; is not necessarily of the special form (8). We still
assume A; is nonsingular at this stage. Denote the rows of A; by oy, a2, -+, . Let e
be the unit vector of dimension k with the k** element being 1, all others being 0.

Lemma 2.5 There exist T1,Tg,: -, ZTp—1 Such that

o1 + 2109 + -0+ Tp10k = Ctek,s (12)
- where
o = ayg + Tiagk + Talzk + - + Tp-10kE- (13)
Proof. Let 1,2, -+, Zr—1 be the solution to the following equation system.
biz;+an =0
boxo + age1 + @12 =0
! .o (14)

bk—2$é;2 + o+ agk-2)T1 + aak—2) =0
b—1Zk-1 + Q(k-1)(k-1)Tk-2 + * - - + C2(k-1)T1 + Qi (k-1) = 0

Because we have assumed the matrix is unreduced, solution to the above equation system
exists and can be found by forward substitution.




Let Ty be the row transformation that multiplies the (i 4 1)* row of the unit matrix
Tixk by z; for each i = 1,2,--- ,k — 1, and add the result to the first row of Iyxx. Then
T; transforms matrix A; into the following form, where o is given by (13),

0o 0 ---0 «
by azp --- A2(k-1) G2k
TyA; =| 0 b2 -+ agp-1 ax |, (15)
0 0
0 0 - bp1  ag

0

Denote matrix (15) by Aj, i.e. T1A; = Aj. A} is in the special form (8). The
transformation T3 does not change the determinant of 4;. So the following lemma is
obvious.

Lemma 2.6 et
det(Ar) = (-1)**a T b, (16)

i=1

where o is given by formula (13). Furthermore, A; is singular if and only if o = 0.

Apply the same row transformation T} to By, and denote the new matrix by Bi, i.e.,
T1B, = By. Let the first row of matrix Bj be (b};,b},,--,b!,,). Then

k
bllz' = by; + Emj—lbjiy 7= 1,2,---,m. (17)
=2

In the following theorem, A; may be singular, that is, the theorem is true no matter
whether A, is singular or not.

Theorem 2.7 For an upper Hessenberg matriz A of the form (1),

det(A) = (—1)'°+1(kff b) (- det(As) — b- det(AY)), (18)

=1

where Ay is Ay with the first row replaced by the first row of B! (see (17)), and o is given
by (13).

Proof. First of all, we assume A; is nonsingular. Since the row transformation 73 does
not change the determinant of matrix A, we have

wn=aa((i7) (5 %))

_ Ay B;
—-det(B2 Az)'




Since A/ is of the special form (8), we apply the previous lemmas to obtain the following

:
det( 5 4 ) = det(A})det(Az — B, AT BY)

= (—1)k+1alﬁb,- (det(Az) — % det(A'Z')) -

E-1- )
= (=1)*(T] %) (o - det(Az) — b det(A43)) -
i=1

Now we prove the theorem for A; (or A}) singular. If A, is singular, then the above a2 =0
and we can not directly apply the previous lemmas which require A; to be nonsingular.
However, we can perturb matrix A; to make it nonsingular. Consider matrix Ase, which
is matrix A; with the element a;;(on the upper-right corner of A;) perturbed by & # 0.
That is

Ale = A1 + 6616}5, : (19)
Aj. is non-singular, and
o0 -0 Qe
by azx - Qgk-1) G2k
T1A1s = 0 b - azk-1) G2 |,
0 0
0 0 --- bga akk

where o, = a + &(= € actually, since a = 0 if A; is singular). Let A, be matrix A - with
A; replaced by A;.. Now we can apply the previous lemmas and methods to matrix A,
to obtain oy
det(Ac) = (—1)F T bi (e - det(Az) — b- det(A3)). (20)
=1
Let € — 0, we obtain (18) O
We proceed to evaluate det(Az) and det(A}) using the Hyman’s method as what we
did for det(A;) in Lemmas 2.5 and 2.6. However, column transformation is used this
time. Since A, and AY only differs by the first row, we can find a common column
transformation to reduce the elements of the last column of A; and Aj to zeros, except
the first element. Denote the columns of matrix Az by 1,82, - , Bm, and the columns of
matrix A,‘ZI by T1sV2y° "9 Ime

Lemma 2.8 There exist y1,Ys2,* ** ,Ym—1 Such that
,Bm + yl,Bl + R o ym—l.Bm—l = :361) ’ R (21)
Ym + Y171+ F Ym—1Tm-1 = Y€1, (22)

where e, is the unit vector of dimension m with the first element being 1, all other
elements being 0 and

B = cuys + craye + -+ + Cim—1)Ym-1 T Cim (23)
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v =buy + by + -+ bll(m—l)ym—l + b (24)

Proof. Let y1,42,"*+,Ym-1 be the solution to the following equation system.

diyr + caya + -+ - + Copm—1)Ym—1 + Com =0
diya + -+ + C3(m-1)Ym—1+ C3m =0
: (25)
dm-—lym-l +cemm =0
Since [T  d; # 0, there is a unique solution to the above system and the solution can
be found by backward substitution. O :
Let T3 be the column transformation that multiplies the :** column of the unit matrix

Lnym by yi, for each i =1,2,---,m — 1, and add the result to the last column of I,,xp,.
Then it follows from Lemma 2.8 that

/ Ci1 G2 Ci3 B \
di ¢ c 0
0 dg C33 . . 0
ToA; = S : : (26)
0 dn-2 Cm~1)m-1) 0
\ . dm—-l 0 /
and . )
( by b, bz - 7\
di ¢ cC3 - 0
0 dz C33 . . O
T2A,2l = .. : M (27)
O dm—2 C(m—-1)(m-1) 0
\ dm—l 0 /
So the following lemma is obvious.
Lemma 2.9 -
det(A;) = (=1)™*3 H d;, (28)
=1
m—1
det(43) = (~1y™y ] d; (29)
i=1

So Theorem 2.7 can be stated as follows

Theorem 2.10

det(4) = (-1 ([T b)(TT d)(ec-8-5-7), (30)

=1 j=1

where a, B and v are computed according to (13), (23) and (24) respectively.
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3 The algorithm

Let A be an upper Hessenberg matrix of form (1). We describe the algorithm for
computing the determinant of A in the following. o

1 Solve equation system (15) for (21,23, --,%k-1). and compute (b};,bls, " ;b1m)
according to (17).

2 Solve equation system (25) for (y1,¥2,", Ym—1)-
3 Compute o, § and 7 according to (13), (23) and (24) respectively.
4 Compute det(A) according to (30). | : o

Note that step 1 and step 2 are independent of each other, hence can be done in parallel.
The number of multiplications and additions in step 1 is 2(k — 1)(k — 2) + m(k — 1), the
number of divisions in step 1 is k — 2. The number of multiplications and additions in
step 2 is (m — 1)(m — 2), the number of divisions in step 2 is m — 2. The number of
multiplications and additions in step 3 is (k—1)+2(m—1) The number of multiplications
instep4disk+m+1.

4 Load Balance

If we want to compute the determinant of an upper Hessenberg matrix by the above
algorithm concurrently on two processors, we would like to split it in such a way that
the computation load is approximately the same for each processor. Assume the order
of the upper Hessenberg matrix A is n. We choose a sub-diagonal element a(x41)x 28
the anchoring element to split the determinant. Then step 1 of the algorithm involves
L(k—1)(k—2) + (n — k)(k—1) multiplications and additions, and k — 2 divisions. Step 2
of the algorithm, which is carried out at the same time as step 1 on a different processor,
involves L(n — k — 1)(n — k — 2) multiplications and additions, and n — k — 2 divisions.
We want to choose k such that

%(k—1)(k—2)+(n—k)(k—1)+k—2m%(n—k—l)(n—k—z)in—k—z.

Solve the above equation for approximate integer solution k. The solution tells us where
to split the determinant. '
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A COMBINED MODIFICATION OF NEWTON’S METHOD
FOR SYSTEMS OF NONLINEAR EQUATIONS

M.T. Monteiro and Edite M.G.P. Fernandes
Universidade do Minho, Braga, Portugal

Abstract: To improve the performance of Newton’s method for the solution of systems of
nonlinear equations a modification to the Newton iteration is implemented. The modified step
is taken as a linear combination of Newton step and steepest descent directions. In the paper we
describe how the coefficients of the combination can be generated to make effective use of the
two component steps. Numerical results that show the usefulness of the combined modification
are presented. |

1. Introduction

For relatively small problems Newton’s method seems to be a good choice for solving
systems of nonlinear equation,

F(z)=0 (1)
where z € R*, F : ' -+ R*, T' C R* and F;i = 1,...,n are nonlinear continuous
functions of z. Let ||.|| denote a norm on R".

If the functions F; are differentiable at z, we define the Jacobian matrix
VF(z):T — R™" by
0F(z)

6:1:,-

We shall always assume that the following two assumptions on F hold:

Assumption Al : Equation (1) has a solution z*.

Assumption A2: The Jacobian at the solution is nonsingular.

The affine approximation to F at z®) + d is I[(z® + d) = F(z®) + VF(z®)d. The
step d that makes [(z(¥) + d) = 0 defines the Newton iteration for solving (1)

dy = —(VF(e®)1FE®), k=0,1,... ()

where z(*+1) = g 4 dy. It is known that (2) is locally quadratically convergent to z*
(see proof in Dennis and Schnabel (1983)).

It is reasonable to expect that ||F(z( *)|| should be less that ||F(z®)||, for some
norm. If the 2-norm is used then a decrease of || F(z)||; is required at each iteration and
our attention could be focussed on the related problem

minzem f(c) = %F(a:)TF(x). 3)

VF(z); =

,7=1,...,n.

This function f takes on its least value at a solution point of (1). Therefore, in finding
the minimum for f, we could find a solution of F' = 0. The Newton step (2) also minimizes
the quadratic function

m(z® + d) = -;-F(a;(k))TF(m(k)) + [VF (T F(z™)Td + -;-dT VE(z®)YTVF(@®)d (4)
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which is not the quadratic model approximation to” f(z). When the Jacobian VF' is
singular or badly conditioned, the Newton iteration does not give a reliable step and
need not converge. In this paper we are concerned with an algorithm which improves
the Jacobian conditioning, retains as much as possible the local convergence property of
Newton’s method and introduces a global convergence characteristic. It is based on the
Newton equation and combines Newton and steepest descent directions for f for solving
(1).

The paper is organized as follows. In the next Section the modified Newton equation
is defined and some properties are established. Results of some comparative experiments
are discussed in Section 3 and Section 4 is devoted to concluding remarks.

2. The combined modification of the Newton equation

In this section we describe the modified Newton step direction and state the main
result of the algorithm.

Definition 1 : The vector d € R" is a descent direction for f(z), in (3), at a point z if
it satisfies

F(z)TVF(z)d <0

where V F(z)TF(z) is the gradient of f computed at x.
Definition 2 : The direction dsq defined by

dys = —VF(2)TF(z) | (5)

is called the steepest descent direction for f to solve F' = 0.
Definition 3 : The direction dgy is said to be the Gauss-Newton direction for f if

don = —(VF(2)'VF(2))'VF(z)TF(=). (6)

Since the Gauss-Newton direction is the step which goes to the minimum of the model
(4), from now on it would be referred to as Newton step. Since forming the matrix
VFTVF can square the conditioning of the problem in comparison to a method that uses
VF directy, the structure of equation (2) for dy will be used instead. .

Definition 4 : Let VF satisfy Assumptions Al and A2. A function defined by

w(z) = wo(x) — ywo(2) : (7)
where | T -
F(z)'(VF(z)VF () ) F(c) (8)
F(2)T(VF(z)VF(z)T — I)F(z)
is said to be a weight function, for some positive constant 0 <y < 1.

Definition 5 : Let a;(z) and ay(z) be continuous coefficient functions on R". A
direction dasy is said to be a modified Newton step direction if

wo(z) =

dun = al(a:)dN + ag(a:)dsd (9)

where a1 (z) = w(z), a2(z) = 1 — w(z) and w(z) is the weight function of (7).




A similar linear combination has been implemented to optimization problems with
constraints (Fernandes (1995)).

Proposition : The direction dyy is a descent direction for f at  to solve (1), provided
that Assumption 2 is verified.

Proof: From (9) with dy of (2) and dy4 of (5), we have

(VF(2) F(2)) dun = ~[w(z) F () F(z) + (1 — w(=))F(=)"V F () VF ()T F ()]
which using (7) and (8) yields

_ __[7(F (@) VE(2)VF () F(2))(F(z)"(VF(2)VF(e)" — D)F (m))]
’ F(z)Y(VF(2)VF(z)T — I)F(z)

or

= —yF(2)"VF(z)VF(z)"F(z)

which is negative as long as VF' is nonsingular.

At this point two step directions could be used, the Newton or the Modified Newton
directions. Progress towards the solution is measured in terms of the values of the non-
linear functions. To decide which step direction should be used at each iteration we
compare | F(z(*) + dn)||2 with || F(z® + dasw)||2- The step direction which gives the least
value of F is accepted.

When VF(z) is nearly singular, the Newton direction should not be computed,
w(z) ~ 0 from (8) and dyy = —VF(z)TF(z) is the steepest descent direction. A step in
this direction minimizes the quadratic function

r(e® + d) = %F(m("))TF(a:(’“)) + [VF(=®)T Pz d + —;—dTH(:c("))d

where H(z*)) is the identity matrix. This model proved to be unsatisfactory and a
perturbation model is used instead. The H(z) is now VF(m)T(%%%; + I)~! and this
corresponds to the following step

VEF(z)T

3. Comparative experiments

In order to evaluate the efficiency of combined modification Newton’s algorithm some
numerical experiments were performed based on twenty seven test problems. For some of
them more than one starting approximation were used. These are shown in the Appendix
and the results are summarized in the Table. The column identified with nit(MN) con-
tains the number of iterations taken by the combined modification Newton’s algorithm.
The first term corresponds to accepted Newton directions and the second to Modified
Newton directions. For comparative purposes, the table contains columns with results of
a basic Newton implementation, nit(/N), and results taken from a report by Machado and
Pereira (1995) where a Broyden secant method was implemented, nit(B).




In the table, nprob corresponds to the problem number as in the Appendix, n is
the number of equations, a) means singularity of the Jacobian and F'C means failure to
converge within 50 iterations. nfe gives the number of function evaluations and ||F]|s is
the least value attained by F' when the algorithm terminated due to the following stopping
criteria (Dennis and Schnabel (1983)):
| _,B(k+1) (k)l

tol

ma:z:ls,-SnIF,-(a:(kH))] <tol and mazicicn
maz{|o{"Y], typa:}

where tol = 10~9. typz; is the user estimate of a typical magnitude of z;.

4. Concluding remarks
The following points are worthy of mention.

(i) There are problems (5, 10, 15, 17 and 18) in which combined modification Newton’s
algorithm required less iterations than Newton’s algorithm.

(ii) Jacobian singularity has occurred on problems 8, 16 and 19. The step defined in
(10) solved them successfully.

(iii) On the remaining problems the overall number of iterations is the same for the two
Newton based algorithms. ‘

(iv) There were three cases where the combined modification Newton’s algorithm failed
to converge.

One run of problem 8 required a backtracking scheme to prevent large steps d to be
taken. The nfe increased to 104. We conclude this paper with the following comment
about the v constant in the definition of the weight function. We have tested three
values 0.1,0.001 and 10~°. For some problems the value provided could be critical for
convergence purposes.
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TABLE - Numerical results

| nprob | n || nit(N) [ nit(B) [ nit(MN) [ v | nfe 1o
1 2 4 ) 3+1 0.001| 8 .25D-17
2 2 5 9 540 0.1 10 .33D-15

7 11 542 0.1 14
3 2 6 7 640 0.1 12 .00D00
7 7+0 107° | 14
4 2 6 8 640 0.1 12 .00D00
5 2 7 12 740 0.1 14 .00D00
9 940 0.1 18
8 18 7+1 0.001 | 16
overfl 1148 0.001 | 38 .16D-15
6 2 6 11 6-+0 0.1 12 .00D00
7 2 13 15 FC 21D-16
6 642 107° | 16 .58D-16
8 2 a) 6 343 107° | 12 .51D-16
a) 9+27 | 1079 | 104
9 2 13 1340 0.001 | 26 .26D-16
I 14 1341 | 10-° | 28
10 2 6 10 640 0.1 12 .39D-15
15 15 13+1 0.1 28 .10D-14
11 4 T 17 740 0.1 14 .10D-14
14 FC 1341 0.001 | 28 .89D-14
12 2 5 FC 540 0.1 10 42D-14
13 3 6 12 60 0.1 12 .54D-19
15 FC 1144 10~° | 30 .00D00
14 3 8 8 8+0 107° | 16 .15D-15
15 2 7 6+1 0.1 14 .12D-15
25 6+2 0.1 16
5 540 0.1 10
16 2 a) 8+4 0.001 | 24 .00D00
8 8+0 0.1 16
17 3 20 9+1 0.001 | 20 | .60D-15/.15D-15
5 540 0.1 10 .00D00
30 1243 0.001 | 30 | .24D-16/.12D-15
18 3 8 7+1 0.001 | 16 .00D00
60 3444 107° | 76 .60D-18
FC 15+12 10-° | 54 .49D-33
26 2041 107° | 42 .00D00
19 2 a) 10+1 10-° | 22 11D-15
20 2 8 840 0.1 16 .86D-16
21 2 FC FC
22 4 32 3240 0.1 64 .69D-18
23 3 7 6+1 0.1 14 JA7D-17
24 3 4 44-0 0.1 8 22D-16
25 3 4 440 0.1 8 .156D-16
26 2 6 FC .15D-16
27 3 5 54-0 0.1 10 .23D-15




Appendix - Test functions

1.

10.

11.

"12.

Fi(z) = 0.2sin(z1 -+ 22) — 21
Fy(z) = 0.2cos(zy — x2) — z2
2o = (0.1,0.2)T
Fi(z) = ~bz1 + 2sin(z1) + cos(z2)
Fo(z) = 4cos(z1) + 2sin(z2) — 52
zo = (1,1)T;(10,10)7

. Fl(:c) =z1+x2—3
Po(z)=22+23-9
To = (17 5)T; (2: 7)T

. F]_(:c) =ef1—1
Fg(x) =e2 -1
zo = (1, l)T

. F(z)=22+z}3-2

F(z) =1+ 23 -2

zo = (15,2)"; (0.5,0.5)7; (2, 8)"; (2,0.5)7
. Fl(:z:) = 2(:81 + 21:2)2 + (231 - :vz)z —8

Fy(z) = 52 + (m2 — 3)2 — 9

zo = (2,0)T

Fi(z) = 0.1zy25 — 1

Fy(z) = e~ 107" 4 =2 — 1,0001
zo = (0,1)7;(0,10)T

Fi(z) = 10752325, — 1

Fy(z) = e~1077°51 4 ¢=1022 _ 1 9001
zo = (0,)T;(0,0.07

. Powell badly scaled function

Fi(z) = 10%z32, — 1

Fy(z) = e~ + e=%2 — 1.0001
o = (O, 1)T
Fi(z)=z?+2%-5

Fz(w) =% 420, —3

zo = (1,1)T;(20,10)
F(z)=2}—z}+a3—23-5 :
Fy(z) = 2z122 + 2232 — 4

Fs(z) = e®1cos(z2) + 23 =3
Fy(z) = e®rsin(z2) + 24

zo = (1,1,1,1)T; (10, 10, 10, 10)T

Fi(z) = 10z} + 20(z1 — z2) — 75
Fz(:l:) = 30z — 2021 + 200122 _ 25
zo = (5,10)T

13,

. 14,

16.

18.

19.

©90.

21.

22.

F(z)==2 .
Fo(z) =23+ 22
Fa(z)=e™~1

zo = (1,1,1)T; (10, 10,10)
Fy(z) = 3.1z5 — cos(z123) — 0.6
Fy(z) = 1.03e~%1"2 4+ 19.5z5 + 11

Fi(z) = 2% — 83(z1 + 0.11)% + sin(zs) +0.97
zo = (1,1,1)T
15.

Fi(z) =22 —zp—1
Fy(z) = (21— 2)2 + (z2 —0.5)2 — 1
2o = (0,0)T;(0.1,2)T; (1,0)7

Fi(z) =ziza— 23— 1

Py(z) =alzz 22— 5
2o = (0,0)7;(2,3)T

. Fi(z) = z1c08(x2) — 3

Fo(z) =22 +z3

“Fa(m) = e“’l"'“sz'n(izl) + 23
2o = (1,2,3)7;(0.1,0.1,0.1)%;(0.5,2,—0.5)T

Fi(z) =2 + 328 +1

Fz(:v) = :c%a:ga:s

' F3(:E) =:t:§—-1

zo = (1,1,1)7;(0.1,0.1,0.1)%;
(—0.01,-0.01,—0.01)%; (100, 0, 100)T
Fi(z)=z}+2z3-6 '

Fo(z) = e~ + sin(z3) — 2

Lo = (0’ O)T

Fi(z) = z; — 1 — 0.005(e®2VZ1 + 5z3x2)

' Fy(z) = z3 + 2 — 0.005tan(e®? + z2)

zo = (1,-2)T

Fi(z) = 10(z2 — z%)
FBiz)=1-=

zo = (-1.2,1)T

Powell sihgular function
F;(a:) =z +10z2
Fy(=) = v/5(23 — z4)
Fs(z) = (z2 — 223)2
Fy(z) = V10(z1 — z4)?
zo = (3,—1,0,1)T




23.

24,

25,

Brown almost linear function
Fi(z) =2z +zo+23—4
F(z)=21+ 222+ 23 ~4
F3(z) = 212023 — 1

zo = (0.5,0.5,0.5)T

Discrete boundary value function

Fy(z) = 221 — z2 + 0.03125(z; + 1.25)3
Fy(z) = —21 + 229 — 23+ 0.03125(z, + 1.5)3
Fa(z) = —z3 + 223 + 0.03125(x3 + 1.75)3
zo = (—0.1875,-0.25,—0.1875)7

Discrete integral equation function

Fi(z) = =z + 0.0234375(z; + 1.25)3 +
0.015625(z2 + 1.5)® + 0.0078125(z3 4 1.75)

26.

27.

Fy(z) = =z + 0.015625(z; + 1.25)3 +
0.03125(z2 + 1.5) + 0.015625(x3 + 1.75)3

F3(z) = o3 + 0.0078125(z; + 1.25)% +
0.015625(z2 + 1.5)3 + 0.0234375(z5 + 1.75)3

zo = (—0.1875,—0.25, —0.1875)T
Trigonometric function

Fi(z) = 8 — 2cos(z1) — cos(z2) — sin(z;)
Fy(z) = 4 — 3cos(z2) — cos(z1) — sin(zz)
2o = (0.5,0.5)T

Broyden tridiagonal function

Fi(z) = (3-221)z1 — 222+ 1

Fa(z) = —z1 + (83 — 2z2)23 — 223+ 1
F3(z) = ~z2+ (3 — 2z3)z3 + 1

zg = (~1,-1,-1)T
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Abstract. We present a method to approximately determine the effective diffusion coefficient
on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients.
It is based on techniques used also in multigrid, like Dendy’s matrix-dependent prolongations and
the construction of coarse grid operators by means of the Galerkin approximation. In numerical
experiments, we compare our multigrid-homogenization method with homogenization, renormalization
and averaging approaches.

1. Introduction. Exact solutions for problems, which model locally strong vary-
ing phenomena on a micro-scale level, require that all length scales appearing in the
problem are completely resolved. In numerical simulation however, due to reasons of
storage requirements and numerical complexity, this requirement can often not be met,
i.e. the grid for numerical simulation can not be chosen sufficiently fine enough. A
typical example for such kind of problem is the diffusion equation with strongly varying
diffusion coefficient, as it arises from Darcy’s law in reservoir simulation and related
problems for flow in porous media. There, the diffusion coefficient models the local
permeability of the medium.

However, in many practical applications, the fine-scale details of the solution are
not of interest, but merely a coarse-scale solution is sought. Therefore, it is necessary,
to work with averaged equations, which describe directly the large-scale behavior of
the problem under consideration. Thus, the first step in the direction of a numerical
treatment of the coarse scale problem is the determination of equations which model
the influence of the unresolved fine scales sufficiently.

In the earlier times of numerical simulation of reservoir performance this upscaling
process was done by simply averaging the (measured or randomly generated) fine-scale
diffusion coefficients using the arithmetic, geometric or harmonic mean. However, this
approach turned out to be invalid for systems with strong permeability variations.
Therefore, more advanced techniques like renormalization or homogenization are used
nowadays.

The discretization of an elliptic differential equation can also be interpreted as a
certain kind of averaging or filtering, where smaller scales than the respective grid size
* are eliminated. In multigrid methods, discretizations on successive coarser grids are
needed. To obtain them, beside direct discretization on these grids, the Galerkin coarse
grid discretization method is used frequently. It involves the discretization on the finest
grid only and produces the operators and equations on the coarser levels relatively to it
by only using an interpolation operator between two successive grids. This corresponds
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basically to just an averaging of the fine grid equations. Now, in the multigrid field, there
exist methods to determine the interpolation involved in the Galerkin coarsening in a
matriz-dependent way. This results in stable and ” physically meaningful” coarse grid
operators which are necessary for good convergence rates of the corresponding multigrid
method also in the case of interface problems and singular perturbed operators.

Thus, on the one hand, methods known from modelling (homogenization, renor-
malization) could be used for the determination of coarse grid operators in multigrid
methods, by directly discretizing the homogenized or renormalized continuous equa-
tions, and using them as coarse grid operators. On the other hand, matrix-dependent
Galerkin approximations used in some multigrid methods to obtain robust solvers, lead
to coarse grid operators, that directly describe the behavior of the coarse scale solution.
These discrete coarse grid operators then lead to approximations of the effective diffu-
sion equation, by interpreting them as discrete coarse scale operators. This is illustrated
in Figure 1.

Modelling MG-methods
continuous problem discrete problem
Lu=f discretization Lugf,

homogenization,

renormalization, prolongation, restriction
averagings Galerkin approximation
discretization
i —~e— discrete coars
continuous coarse- 0 v iscre: e-
reinterpretation
scale problem P scale problem
Lu=f

Fic. 1. Relation between mathematical modelling methods and multigrid coarsening

In this paper, we present the idea to use such multigrid Galerkin coarsening methods
to derive a technique for modelling the effective, i.e. coarse-scale diffusion coefficient.
It gives results that are better than the ones obtained with renormalization and nearly
as accurate as the ones obtained with homogenization. However, our method can also
be applied in the case of non-periodic structures where homogenization is not more
directly applicable.

First, we consider a simple diffusion problem and describe the approaches and
problems related to the mathematical modelling of coarse scale equations. Then, we
consider the multigrid method and describe how matrix-dependent prolongations and
Schur complement approximations lead to energy dependent averaging procedures and
to averaged equations. Finally, we give some results from numerical experiments for the
diffusion equation with different types of diffusion fields and compare our new method
with averaging, renormalization and homogenization.




2. The problem of effective diffusion on large scales. We consider the model
problem

~V(DVu)=f inQ=]0,1]? _{ du(z,y) dix(z,9)
(1) =0 on 6§ where D = ( d;(x, ) d:z(a:, ) ) )

In porous media flow, under the assumption § = 0 (zero gravity), the conservation
of mass, the slight incompressibility assumption = = uge® and the restriction to the
stationary case, this equation results results from Darcy’s law §'= —%—(Vp —ug).!

There, the diffusion coefficient matrix D describes the permeability of the medium.
In general, D is not continuous, highly varying and anisotropic. For isotropic media, D
is a diagonal matirix with diag(D) =: d - I, where d is a scalar function?.

For locally strong varying D, a problem arises when it comes to numerical sim-
ulation: Due to storage requirements and numerical complexity, the grid Q; used in
the discretization process can in general not be made fine enough to fully resolve the
diffusion coefficient D. However, since fine scale details of the solution are usually
not of interest, only a coarse scale solution is sought anyway. Therefore, the task of
mathematical modelling is now to find a coarse scale problem describing directly the
coarse scale solution of the problem. Thus, we are left with the problem to determine
a so-called effective diffusion coefficient D, where

e Dis slowly varying or even constant,
e VDV is a direct description of the problem on the coarse scale,
o D takes the influence of the unresolved fine scales as good as possible into
account.
Replacing D by D in (1) then gives a continuous coarse scale problem, whose solution
directly describes % on a coarse scale.

One way to gain an approximation of the effective diffusion coefficient is by simple

averaging. There, for example the arithmetic mean

arith __ i .
(2) di,j - IUI '/[-jdt,](x’ y)dQ) U - Qa

or the geometric or harmonic mean can be applied (component-wise). However, these
simple methods are not very accurate — especially in the case of strongly varying dif-
fusion coefficients — and therefore are of little or even no use. This can easily be seen
from the example of a diagonal matrix D for which any averaging procedure must result
in again an effective diagonal matrix D. However, for a diffusion coefficient involving
layers in diagonal direction (which still can be described on the fine scale by a diagonal
D) this is not more adequate, as D must contain non-diagonal entries which describe
cross-diffusion.

1 Here, p denotes the pressure, u the density, u the dynamic viscosity of the fluid, § describes the
gravity and ¢’ the volume of the fluid transported per time unit and area unit.

2If D is a bounded, symmetric and elliptic function, that is 3o € R+ : dij(z)6:&5 > abiéVNz €
€= (&) € R” and di; = dj;, (1 < 4,5 < n) and if f in L?(R), then (1) is an elliptic boundary value
problem.
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Another; more sophisticated approach, is the so-called renormalization, described
in [Kin89]. The idea is, to locally compute an approximation of the effective diffusion
coefficient by treating it as a resistance network (with the inverse of the diffusion as
resistance, that is R = D). However, a severe drawback of this approach is, that only
diagonal matrices for D can be used. Again the resulting D is diagonal and, therefore,
this method also fails for layered structures in the diagonal directions.

Finally, there is the method of homogenization. For a general description of this
approach3, see [Bab76], [San80] or [BLP87]. There, one assumes a periodic structure
of the diffusion coefficient (with the parameter € as a characteristic length). Is u. the
solution of

(3) | —V(D(z)Vue) = f(z)in Q,
(4) | oo ue = 0on 0Q

with D¢ periodic with characteristic length e, then, the homogenization approach is to
find the equétions describing u. as € \, 0, and to find g, the limit of #.. The problem
with homogenization is, that it is only useable in a periodic setting and that one must
solve a local problem to obtain the homogenized coefficient. But, in contrast to simple
averaging and to renormalization, the homogenized diffusion coefficient is in general no
longer ‘a diagonal matrix. '

3. Matrix-dependent multigrid coarsening as an approximate homoge-
nization method. Now, we turn to our approach for the computation of an effective
diffusion coefficient. It is based on methods used already for some time in robust multi-
grid algorithms which use matrix-dependent prolongations. The main point is, that
the coarse grid operators built with matrix-dependent prolongations by means of the
Galerkin approximation can be viewed as some sort of discrete homogenized operators,
see also Figure 1. From the coarse grid limit operator, approximations of the effective
diffusion coefficient can be read of, which are (in the periodic case) in 1D the exact
homogenized diffusion coefficients, and in 2D quite good approximations of the homog-
enized coefficient (depending on the strategy how the matrix-dependent prolongation
is chosen). Note that the coarse grid limit operator, where we assume a periodic ex-
tension of the domain € and its fine level diffusion values to the whole R?, differs from
the computed operator of the coarsest level due to boundary effects. Additionally, how-
ever, the coarse grid diffusion value gives us an effective diffusion coefficient for the case
of a bounded Q with generally given values on the finest level. Thus, our approach
favourably associates the advantages of renormalization and homogenization, but does
not have the drawbacks of these approacheé, i.e. the limitation to periodic settings as
homogenization and the problem of diagonal matrices D like renormalization.

In the following we shortly consider multigrid and then discuss matrix-dependent
prolongations. We give a general principle on which all schemes we know of can be

3 One main field of its application is in the modelling of ‘fissured media’, see for example [Arb89),
[ADH90], [Hor90], [Pes92], [SW91].




based. This shows their relationship to incomplete factorization and approximate block
Gaussian elimination.

3.1. Multigrid discretization. Multigrid is the most efficient method for solving
partial differential equations. There, a sequence of grids

Qo C Yy Cch...CQk_1CQk

is set up. Furthermore, mappings between the associated grid function spaces are
needed. Here, R~ denotes the restriction from level I to I — 1 and P}, denotes the
prolongation from level I — 1 to ! which is a (possibly weighted) interpolation. Then,
given a discretization Ly on the finest level k, coarse grid operators L, = k—1, ..0, must
be determined. Beside direct discretization on level /, often the Galerkin approximation
is used, i.e. L;_; is computed from L; by the application of restriction and prolongation:

(5) Ly =R 'LiP}, where mostly R\ := (P}_,)T.

Thus, the coarse grid operators are (recursively) determined by the discretization on
the finest grid Ly and the prolongations P} ;.

It is well known that, for singular perturbed problems and operator with locally
highly varying or discontinuous coefficient functions, the performance and robustness
of a multigrid solver depends on the right choice of the coarse grid operators, and thus,
in the context of (5), on the fine grid discretization and the choice of the prolongations
only. For example, for jumps in the coefficient matrix D, standard prolongation and
restriction lead to a deterioration of the convergence rate. A remedy to this problem
is the choice of matrix-dependent prolongations, which will be described later. They
lead via (5) to coarse grid operators, which describe the large scale behavior of the
problem more properly. Note, that in this way the Galerkin approximation can then be
interpreted as a discrete method for calculating averaged equations, which also model
the influence of the scales smaller than the grid size of the actual level.

3.2. Matrix-dependent prolongations. The often used standard prolongations

1/4 1/2 1/4
Pli'=[1/2 1 1/2],endPf"=|1/2 1 1/2
1/4 1/2 1/4

(here in stencil notation for the 1D- and 2D-case) involving (bi-)linear interpolation
correspond to standard nodal basis functions on every level. Now, a short calculation
shows that with this choice in the Galerkin approach (5) just an arithmetic averaging
of D is performed. As mentioned already, arithmetic averaging is however not suited
for the computation of the effective diffusion coefficient in the case of strongly varying
or discontinuous D. Therefore, we will not use standard prolongation in the multi-
grid coarsening process. Instead, we rely on the information stored in the matrix L;
to construct a locally weighted prolongation P , that resembles an operator-induced
interplation which leads via (5) to an implicitly weighted averaging of D.
5
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Masitrix-dependent prolongations P}, can be derived using a general-principle: They
can be interpreted as transformations to pérform (approximately). a: block Gaussian
elimination of the operator L, which will be explained in the following. Let there be
given a discrete problem Lju; = f; on a grid €. Partitioning of L; in coarse grid and
fine-without-coarse grid parts gives |

" (Lo ) (m)=(%)

where u; denotes the unknowns in Q.z \ ©;—; and u, the unknowns in the next coarser
grid Q;.;. Now, the optimal matrix-dependent prolongation arises from the exact block
Gaussian elimination of the outer diagonal blocks Lz and Laj, i.e. from transforming
Ll tO

1) I —Ly'Ly T Ly L I —LygLp \_{( Lu 0
' 0 I L21 L22 0 . I 0 L22—L21L;11L12 )

The associated matrix-dependent prolongation operator between grid I —1 and ! is then
defined by ‘ '

’ _ -1
® A= THE)

and the coarse grid ope;:ator obtained via the Galerkin approach (5) is then
) Lioy = (PLy)TLiPL, = Loy — L Ly Lna

which is just the well known Schur complement of L; with respect to €—3.

Of course, this approach can usually not be used for the corstruction of a coarse
grid 'opera.tor' , since, in general, L;; is not a diagonal matrix, and therefore, L;_1 would
be no local operator any more. The result would be an inefficient multigrid algorithm.
‘However, in the 1D case, this is different: Let L; be given by the 3-point stencil

(10) t(@:) = [ La(z:) Lo(zs) La(z:) |-

The partitioning of the associated matrix according to (6) now results in just a diagonal
matrix Ly;. Then Lii is diagonal and, consequently, the prolongation P! ; and the
coarse grid operator L;_; are local operators. In stencil notation, we obtain from (8)

sk L 1 L. T3
(11) PLi*(@ip) = [ —L(‘,EZ% 1 Lol(:(z:.;2)) ]

and by the Galerkin approach (9)

s (o) = [ i) Elloenl ¢ hegad bl

for a:,-l,.l € Q1.




For the special case of the diffusion equation (d(z)u(z)sz)s =f (z), where d(z) is
assumed to be piecewise constant on €2, having jumps only at the grid points, we obtain,
by discretizing with finite differences or finite elements on 2, the stencil

1

(12) Li*(wrpa) = 5 [ ~dhrer dippr+dips —dipy, |
with d¥p,; = d(zrp41 — hx/2), compare also Figure 2.
e o ma o Eme
dmé'l l dmz
X - Xicu
dlﬂl

Fig. 2. 1D case: fine and coarse grid
Now, using the corresponding prolongation (11)

k * dk d§F 1
13 P, z = [ a—tEa ] A5 | for ;0 €
( ) k-1 ( IC) df e+ dIF+1+dIF+2 IcC k—1,
we obtain
2 ko d¥ dk . d¥ dko . db dro  dk
14) Li1*(zr0) = [ 1F-19rF 1r-19rp rrnirre Y frpse
(1) Lir"(zr0) hr_1 dip1tdip  dip_1tdip | dipyatdipg. dip 1 tdpyn

for ;¢ € Q1. Then, comparing (14) with (12) gives the coarse grid diffusion coefficient
on the interval [z;¢c, Zic41):

(1 5) dk—l — d’f F—*-ld’Ic F4-2
Ton = dIF+1 + dbpyy

which is just the harmonic mean of the two corresponding fine grid values. In other
words: The direct discretization on the coarse grid §2;_; using the local harmonic average
of the fine grid diffusion coeflicient would give the same coarse grid operator. Now, if we
apply this approach recursively for the sequence of successively coarser grids, we obtain
in the end on £ the global harmonic mean as effective diffusion coefficient. Here, we
can use periodic conditions on the boundary as well. Then, we obtain the same result
as with homogenization.

However, in the two-dimensional case, the exact matrix-dependent prolongation
cannot be used any more, since now, the unknowns belonging to the points from € \
Q41 are coupled to the unknowns belonging to coarse grid points and neighbored fine
grid points by the entries in ( L1 Ly ) . Then, L;; is no longer a diagonal matrix as
it was in the one-dimensional case. Consequently, the matrix-dependent prolongation
is no local operator any more and would need the computation of L.

Therefore, instead of the optimal matrix-dependent prolongation, approximations
to it are used, which result in local operators. They can be gained using the following
general approach: Substitute the set of equations associated to the grid points O\ Qz—1
by an altered set of equations, i.e. substitute ( Ly Ly ) by some ( Ly Lo ) , which
meets the following demands:
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;e EmISZ- éasy’ to invert,
o L3t En is a ‘good’ apprommatlon of Lt Lia, a,nd

-
. ( ‘ 1} Ly ) is a local operator.

Then, the associated prolongation operator P¥_, is defined by
. ) PR
(16) P,f_l =( Ll} L12 ) .

Thus, the approximation of the optimal ma.trix-depeﬁdent prolongation is the exact
optimal matrix-dependent prolongation of an altered discretization, namely

g | Ly Ly
17 L= .
(17 * ( Lay Ly
. Now, we consider two simple examples how to construct an approximate matrix-

dependent prolongation. To this end, we proceed as fo]lows If [ > 0, then every grid
Q; can be divided in four disjunct grids:

Q0 = {(z,9) € Q:z=th,y=7jh,i,j € Z,ieven,jeven} =
Q0 = {(z,9) € U:3=1ih,y=jhy,i,j €Z,io0dd,] even}
Q= {(z,9) € Y :z=1ih,y=jl,i,7 € Z,ieven,j odd}

v Ot = {(z,9) € Uiz =ih,y=jM,i,j € Z,i0dd,j odd}.

(18)

Then we can partition the matrix L; as

I I ln l12 l13"" ‘ l11' l12 } ll3 ,
(19) L= ( L:i L:Z ) g lyp lys |'= log Iy las
' lan la lss l31 lao l33

. Here, ( lin Lo Ui ) corresponds to the equations belongmg to the unknowns associ-

ated to the points in Q, ( lon log lyg ) corresporids to the equatlons belonging to

the unknowns associated to the points in Q1%U Q" and ( lag lgo las ) corresponds to
the equations belonging to the unknowns associated to the points in 0% = ;_;. Now,
if L; can be described by a 9—p01nt stencil then l;1 is a diagonal and [l33 is a diagonal
matrix.

Surely, the easiest way for a substltutlon is to replace L by its diagonal dzag{Lu}
Another p0351b1hty, which is obwously more accurate, is to choose .

w me(t k)

I

(remember that l;; is diagonal!). Then, the inverse is given by

| e I 1Al
ey Lnl:(,lg s 22)




and the prolongation can be defined by

_, _ig ( hs ) —li7 (s — lialyy o)
‘Pl—l = las = —l2_21l23
I I

Note that this is the optimal prolongation of the altered discretization

) i bLe bs
(22) L= 0 lyn s |.
l31 Iz 33

There is additionally the possibility to perform the following substitutions, which involve
'directional’ lumping:

0 0 0
L.y, Loy Ly L_1p Log Lip
Loyo Log Lig | — | +Loy1 | +Lo~1 | +L11 | in QY
L.y Lo—1 Ly +L_1, +Lo, +L11
0 0 0

L._1,0 Lo’o L1,0 0 Lo,o + L_1,0 + LI,O 0 in QOI.

Ly Ly Iy, 0 Lyy+Ly,+Li; O
—
L_y1 Loy L1 0 Lya+L_y,1+Lij; O

Then Iy, becomes a diagonal matrix, too. These substitutions lead to the prolongation
described in [Den82].

Further prolongations can easily be constructed in a similar way. Such matrix-
dependent prolongations are described, for example, in [ABDP81], [Den83], [Den82],
[FG93], [Fuh94], [Re93a], [Re93D], and [AV89], [AV90], [AV91], [Zee90]. We state that
all the matrix-dependent schemes we know of can be based on the principle mentioned
above and can be denoted also in form of a substitution (17). This shows their relation-
ship to incomplete factorization and approximate block Gaussian elimination. Since, for
our simple model problem (1), most of these methods coincide with the scheme due to
[Den82], we will restrict ourselves in the numerical experiments of the following section
to it.

Then, the resulting coarse grid operator L;_; built from a 9-point stencil matrix
L, and the associated matrix-dependent prolongation P!, by means of the Galerkin
approximation (9) are again by 9-point stencils and our matrix-dependent coarsening
procedure can be repeated recursively on coarser grids. The resulting operator on the
coarse grid describes the large scale problem quite good.

In the two-dimensional case, for periodic boundary conditions, we thus have not
more the exact equivalence of homogenization and recursive matrix-dependent Galerkin
coarsening as we had in the one-dimensional case. Now we introduced a slight error
compared with homogenization due to the substitution (17) which is necessary to keep
the coarse grid operators in the recursive process local.
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4. Numerical experiments. In the following, we compare the different meth-
ods to obtain an effective diffusion coefficient for our model problem (1). Here, if
not indicated otherwise, we consider the periodic setting for the computation of the
approximation DMG—hom of the effective diffusion coefficient by repeated Galerkin ap-
proximation using matrix-dependent pfolongations. To this end, the domain can be
imagined to be implicitly repeated and to tile the whole R2 to get rid of the influences
from boundary conditions. This is achieved by using periodic conditions on the bound-
ary of the domain. In this way, we obtain 9-point stencils in every point of the coarse
grid Q_; (including boundary) and, after applying the respective Galerkin coarsening
recursively? we obtain in the limit a stencil which is in every point the same®. From this
star we directly read off the so-called MG-homogenized diffusion coefficient D&,
The same is done in the computations of the approximations D™" using renormaliza-
tion according to [Kin89] and D" D9 and D"*™™ using arithmetic, geometric and
harmonic averaging, respectively. This makes it possible to compare our results with
that of homogenization since there, a periodic structure is involved inherently.

4.1. Example 1: Domain with inclusion. Now, we define the diffusion coeffi-
cient of our first model problem by

_ [ @-I in subdomain Y7
D(z,y) = { I in subdomain Yij.

This is illustrated in Figure 3 (left). By mean of periodicity, structures like in Figure 3
(right) are associated.

y vy, (EEEEEH
EEEEBER

Y1 EEEEA

"  |eEEEBE
o 14 34 1 , EEEEBEE

F1G. 3. Diffusion. coefficient of ezample 1

Because of the symmetry of the problem and the diagonél structure of D, we obtain
from all methods an approximation of the effective diffusion operator VDV where

D=d-I, deR.

The value for d depends on the value a and the respective method under consideration.
For two different o the results are given in Table 1. We clearly see that the approach
based on recursive matrix-dependent Galerkin coarsening gives values which are most
close to the exact values obtainable for this periodic problem by homogenization. All
other approaches give worse values. ' '

4 Here, we copy the stencils of §x_; four times properly to the four quadrants of the fine grid 2 to
obtain periodicity and repeat this process.
5 Note however, that the method of successive Galerkin coarsening can be applied without this
periodicity approach also directly on the sequence of grids Qk, Qx~1,---, Qp. :
- . ) 10 - ‘




TABLE 1
Problem 1: Comparison of the approzimations of the effective diffusion coefficient

[ o Il dhom I dM G—hom l drer l da.rith I dgee | dharm |
10 || 6.52 | 6.70088 | 6.16712 | 7.75 | 5.6234 | 3.0769
100 || 59.2 | 61.73646 | 54.24763 | 75.25 | 31.6228 | 3.8835

4.2. Example 2: Cross-wind diffusion. In our second considered example, we
now set the diffusion coefficient to

(11 i(zy)eY:
D(x:y)“‘{s.I if (z,y) € Yir

where the subdomains Y7 and Y7; are indicated in Figure 4 (left). Then, by means of
periodicity, layered structures like the one given in 4 (right) are built. Because of the

0 141234 1

F1G. 4. Subdomains for diffusion coefficient of problem 2

layering of the diffusion coefficient in diagonal direction, the effective diffusion coefficient
must be a full matrix, i.e. it contains diffusion in the off-diagonal entries of D as well.
The approximations that we obtained with our different methods were

phom — 3.09 0.93 DMG—hom _ 2.99 1.13
0.93 3.09 T 1.13 3.28

ren __ 2.44 0 arith __ 45 0
b _(0 944 0 P70 a5 )

The approaches based on renormalization and the arithmetic mean (as well as the other
simple averaging schemes) are not able to produce diffusion entries in the off-diagonal
and, thus, give a completely wrong picture of the coarse scale equation. However,
MG-homogenization as well as homogenization give cross-wind diffusion terms. (The
inequality of the diagonal entries of DMS—*°™ comes from the slight imbalance in the
diffusion coefficient D induced by the different sizes of the subdomains Y7 and Y, see
also Figure 4 (left).)

4.3. Example 3: Randomly distributed diffusion. The last example involves
an isotropic diffusion coefficient D(z,y) = d(z,y) - I where the values of d(z,y) are
randomly chosen over §2. Here, in contrast to the previous two examples, we apply no
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periodicity trick i the coarsening process (since it would influence the results and spoil
the effective diffusion coefficient) but merely use the sequence of grids 2z, Qx—1,...8%
and determine the corresponding approximation of the effective diffusion coefficient on
the second coarsest level. We took here a 257 x 256 grid on the finest level. Note
that. such types of problems are frequently used in oil industry to model porous media
statistically. There, a log-distribution is often assumed. Homogenization can not be
directly applied any more® due to its non-periodic nature. The results obtained with our
different coarsening methods are given in-Table 2. Here, the diffusion values were chosen
equally distributed from the interval [a,d]. Therefore, the theoretically optimal values
must be (a+b)/2. We see that MG-homogenization again gives the best approximation
to the effective diffusion (beside arithmetic averaging of course which is exact for this
specific example). It is clearly superior to the other methods. Note that, up to now, we
did not obtain real life data from oil fields yet to test our method also in this respect.
This will be done in the near future.

TABLE 2
Problem 3: Results for random diffusion coefficient which are equally distributed in [a, b].

I [, 8] [ .90 | 1,99 |
arith. mean 5.0 50.0
geom. mean || 4.357 | 38.168
harm. mean 3.641 | 21.327

renormalization 4.28 | 37.9
MG- homogenization || 4.61 | 44.09

5. Concluding remarks. We have introduced a method to compute an approx-
imation to the effective diffusion coefficient. This type of problem arises frequently
in the area of porous media flow. Our technique is based on the Galerkin coarsening
approach involving matrix-dependent prolongations. The method can be applied both,
in a periodic setting and in the non-periodic case. For the presented problems and also
in many further experiments not discussed here [Kna95], our method produced quite
good results. In the periodic case, it gave results close to the optimal values obtained
from homogenization which had been better than that obtained from renormalization
or simple averaging. In applications where no periodicity of the diffusion structure was
present and homogenization is not applicable any more, it also gave results better than
that obtained from renormalization or simple averaging. ‘

To us it was interesting, that techniques which are applied successfully in multigrid
algorithms to produce a ’good’ coarse grid operator are also applicable in another area
where multiscale questions arise. We conjecture that there exist other techniques used
to maintain a fast and robust convergence rate in multigrid methods which can be
exploited also in many areas of mathematical modelling where multiscale questions are
important.

6 Note that there exist recent attempts to generalize the theory of homogenization to stochastic
diffusion fields.
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A Superlinear Convergence Estimate for an Iterative Method
for the Biharmonic Equation

Mark A. Hornti,
Department of Mathematics and Statistics, Wichita State University,
Wichita, KS 67260-0033

1. Introduction. In [CDH] a method for the solution of boundary value problems
for the biharmonic equation using conformal mapping was investigated. The method is
an implementation of the classical method of Muskhelishvili [Musk]. In [CDH] it was
shown, using the Hankel structure, that the linear system in [Musk] is the discretization
of the identity plus a compact operator, and therefore the conjugate gradient method will
converge superlinearly. The purpose of this paper is to give an estimate of the superlinear
convergence in the case when the boundary curve is in a Holder class.

The paper is organized as follows. Section 2 describes the original method for simply
connected regions. The representation of the biharmonic function and the boundary con-
ditions in terms of the analytic Goursat functions is given. Transplanting the boundary
conditions to the unit disk with a conformal map then leads to a linear system for the
Taylor coefficients of the Goursat functions on the disk. In Section 3, some results from
conformal mapping are used to show that the linear system can be formulated in terms of a
compact operator with a Hankel structure. In Section 4, the superlinear convergence rate
of the conjugate gradient method applied to the linear system is established. In section 5,
numerical results are given to illustrate the theorems.

2. The biharmonic equation. As in [CDH]|, we will follow the presentation in
[KK] and [Musk]. We wish to find a function v = u(7,¢) which satisfies the biharmonic
equation,

A%y =0,

for ¢ = n 4+ iu € Q where Q is a region with a smooth boundary I' and u satisfies the
boundary conditions
Uy =G1 and wu, =G,

on I'. This boundary value problem arises, for instance, in plane stress problems where »
is the so-called Airy stress function. u can be represented as

u(¢) = Re(So(s) + x(¢)),

where ¢(¢) and x(¢) are analytic functions in  known as the Goursat functions. Letting
G = G5 + G2, the boundary conditions become

$(¢) +¢#'(¢) + D) = G(), ¢€T (1)

t The author’s research was partially supported by U. S. Department of Energy grant
DE-FG02-92ER25124 and National Science Foundation EPSCoR grant OSR-9255223.
1 Email address: mhorn@twsuvm.uc.twsu.edu
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where 9(¢) = x'(¢). The problem is to find ¢ and ¢ satisfying (1).
Let ¢ = f(2) be the conformal map from the unit disk to {1, fixing f(0) = 0 € Q. Then

with d(2) := f(2)/f(2), (2) := $(f(2)),%(2) := ¥(f(2)), and G(2) := G(f(2)), equation
(1) transplants to the unit disk as
$(2) + d(2)#'(2) + ¥(2) = G(2), |2|=1. (2)
Let - o
é(2) = Z axz® and ¢¥(2) = Z bizF.
k=1

k=0

The;-problem is now to find fhe ai’s and the b;’s.
‘For |z| = 1, define the Fourier series

d(z) := f(z)/-F(TzT= Z he2®, G(2) = f: Agz*.

k=—o00 k=—oc0

Substituting into (2) gives a linear system of equations for the ax’s and by’s,

oo
a; + Z karhprj—1=4;, 35=1,2,3,... (3)
k=1
N 00
bj + Z kﬁkhk—j—l = A—.‘ia J=0,1,2,... (4)
k=1

If (3) is solved for the ag’s, then the by’s can be easily computed from (4). These systems
are derived in [Musk] and [KK] and solved for some simple examples. In [CDH], (3) was
truncated after n terms and solved efficiently using the conjugate gradient method. The
matrix-vector multiplications can be done in O(Nlog N) using fast Fourier transforms
(FFTs). :

There is 2 moment condition to be satisfied by the data. After transplantation to the
disk, this condition can be stated as Re| fl z=1 G(2)f'(2)dz] = 0. Furthermore, ¢ and ¢
are not unique. In short, one needs to specify ag = ¢(0) = 0 and Im(e,/f'(0)) = 0 which
will be incorporated into the derivations.

It should be noted that if our boundary data corresponds to G = 0 then the only
possible (nonzero) choice for ¢ is ¢(z) = Cif(z), for some nonzero C € R. This implies
that the null space corresponding to the infinite system in (3) is one dimensional and
the eigenvector spanning this space is given by ax = icx,k = 1,2,3,--- where f(2) =
Yoo cxzF.

3. Compact Operators. As in [CDH], we take real and imaginary parts of equation
(3) to get

- , .
o; + Z k(nk4j—10k + Ye4j—18:) = By, §=1,2,3,... (5)
k=1




©o
Bi+ Y k(Mtj—10 — Mksj—1Br) = Cj, 5 =1,2,3,... (6)
k=1

where we have used the notation ax = ay + 16k, by = 73 + Yk, and Ax = By + 1Cy.
For visualization purposes, we combine equations (5) and (6) into a doubly infinite matrix
equation in which the two sums are combined into a block Hankel matrix composed with
a diagonal matrix. (A Hankel matriz is a matrix which is constant on the antidiagonals.)
In fact, (5) and (6) can be written as

(Ioo + Hr,ooDoo)Q + Hi,ooDooé =B
(Ioo - Hr,ooDoo)_é_ + Hi,ooDoo.‘Z = Q

(5 )+ 5)0 2)@-B) o

so that

where o = (ala Q2,.. ')T, é = (ﬂl’ B2 - -)Ts B = (BI: By, .. ')Ta C = (Cla Ca,.. °)T, I
is the infinite identity matrix, Do = diag(1,2,...), Hy oo is an infinite Hankel matrix
generated by the 5, and H; o is an infinite Hankel matrix generated by the ~z.

Now suppose (g, §) represents a solution to (5),(6). Define

Dééza éézB
== (5:) == (5ie):
Then (7) can be written as
(Ioo + M)z =1 (8)

where M, is given by

M — Mr,oo Mi,oo — gézHr,OoDééz ¥2Hi,OODC¥2
°° M")OO —Mraoo gézHi,oo (];</>2 - ééz-Hi,ooDC];éz )

Note that M, is symmetric. We would now like to justify the formal manipulations above
and show that M., is a compact operator. This will require the following definitions and
lemmas; see, e.g., [Po].
Definition 1. v € C™%[0,27]| if 4 is n-times differentiable for 0 < s < 27 and

Iq(“)(sl) — A (s2)] <Clsi—s2f*, n>1,0<a<l.

Definition 2. The Jordan curve I' is of class C™® if it has a parameterization T : ~(s),
0 < 8 < 2m, such that v € C™*|[0,2x] and ~'(s) # 0.

Next, we state a few well known results about Fourier coefficients and conformal maps.




- m .
Theorem 1. Let f be periodic with Fourier series f(e®) = 3 c,e™®. Then f €

n=1
Ch[0, 27 implies
len|=0(n7""%) 1>1, 0<a<l.

Warschawski’s Theorem. Let f map the disk D conformally onto the inner domain of
the Jordan curve T' of class C™* where n = 1,2,... and 0 < a < 1. Then () has a
continuous extension to D and

1F ™) (21) — £ (25)| < Cloy = 23|%, 21,2, € D.

Note that in general one cannot take o = 1 in the above theorem.

Lemma 1. Let f be a conformal map from the unit disk to the region Q@ with boundary T.
Assume

oo
HEN T = 3 haei
n=-—0oo
Then T € CHLe implies
kel =0O(r7""%), 1>2, O<a<l.

Proof: By Warschawski’s Theorem T of class C*+1:® implies f(e'’) € C'+1:*[0,2n] and
F(e*® € CH*[0,27]. The proof then follows from Theorem 1 since f [T € Che[0,2q7], for
1>2,0<a<l.

Theorem 2. IfT is of class C**1®, | > 2, 0 < @ < 1, then M, o : I* — I and

M; o : 11 — I are compact operators where for yelt,

oo
Mr,oog = Z V kj’?lc+j-—1yks J=12,...
k=1

o0
Mi,oog = E \% kj7k+j—1yka J=12,...
k=1

Proof: We will prove the theorem for M; co. As above, M; o, follows similarly. Define the
finite rank operators {M,,} = {D,I,/ 2H,,,D,1,,/ 2} by

n
Mr,ng = Z V kjﬂk+j—1yk, J=12,...,n
k=1

for ally = (y1,¥2,...) € I1. The goal is to show that M, o, can be approximated uniformly
by these finite rank operators. (Then, e.g., a version of Theorem 4.4c [Con, p. 41] for




Banach spaces shows that M;, is itself compact.) If A = (a;) is an infinite matrix, then
the induced I' operator norm is given by

1Al = sup Y |axs;
7 k=1

see, e.g., [Con, p. 171, prob. 8.
Assume T' is of class CH1L:e, Let mg,; denote the (k, j)th component of M, . Then
clearly, my,; = v/kjRe(hj_1). From Lemma 1 we obtain the following estimate. For

any j > 1, - -
vkj
Z Imxil < C Z RV
k=1 k=1 (k +J - 1) *

oo
; 1

k=0
1 r 4
. n
= C\/‘;{jl—l/2+a +Z (= +j)l—1/2+oz}
1
=t

where C is a constant that depends only on the conformal map. Consequently,

o0 o0
[|[Mr,00 — My n||ir = sup { E I, nv1ls Z Imk,ntals.-- }
k=1 k=1

1 1
S Csup{(n+1)l_2+a’ (n+2)l_2+a’-..}

1
= Chree

The result follows.

Corollary 1. Under the notation and assumptions of Theorem 1 M, ts compact on I1 x1*
where for z = (zt,z2) € I x 1!,

o0 (e,
ot Y. VEesi-12 % + Y VEIVE+-12%%
JM'°° (;2> — ko=c;l . ko_ol ,
kZ VEngsj—12t — kzl VEIVR+i—12%
=1 =
The norm on I* x I is given by ||z|lnxr = [|z*||i + ||z?]|s.
Proof: From the notation of the problem, it is easily verified that
”M°° - Mn”llxll S 2(“Mr’°° - Mr)n”ll + ”Mi,oo - Mi:"'”ll)
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The result follows as in Theorem 2.

Though Corollary 1 shows that M, is compact, a precise estimate on the eigenvalues
of M, is needed to obtain superlinear convergence rates for error vectors of the conjugate
gradient method. This leads us to the next section.

4. Superlinear Convergence Rate. First, we will discretize the infinite systems
above. As in [CDH], we do this by truncating (3) after n terms, replacing the hj for
k = 1,...,n by the values computed with the discrete Fourier transform, and setting
hy=0fork=n+1,...,N — 1, where N = 2n. The decay of the h’s given in Lemma 1
will guarantee that the resulting finite system is only a small perturbation of the infinite
system. We denote by z(™ and (), the N-vectors formed by truncating z and r and by
M, the N X N matrix formed by truncating M., etc. Then, for instance,

. Mr,n Mi,n
Mn - (Mi,n "Mr,n> )

where the (k, j)th enfry‘of M., and M; ,, are respectively \/kjRe(hr+;) and v/kjIm(hrs).
Our problem is then to solve the truncated version of (8), the N X N system

(In + Myp)z(™ =),

Recall that (™ is subject to a uniqueness condition. Since f/(0) > 0, the condition
Im(a1/f'(0)) = 0 implies 35:21 =0.

Put Aoo = Ioo + Mo, and A, = I, + M,,. Then Ay, has a one dimensional null space
with null vector

v=(—-Im c1,-—\/§Im c2,...,Re cl,\/fRe €2y.. .)T.

Since M, is compact, A, has numerical rank N — 1 for large N = 2n. Moreover, the
corresponding near-null vector is approximated by the truncated version of v; see [An].
We will assume that Ao, is positive semidefinite. This will imply that A, is positive
semidefinite for large n. (This is the case in our numerical examples.) But then this implies
A, is positive definite on (™)L and conjugate gradient will converge in this subspace if
the initial guess g((,") =0 is chosen.

Our solution can be written in the form

™ = 2 4 55,

where § is to be determined from the uniqueness condition. Thus, conjugate gradient
will be applied to find the z(®) in v»(®)L, Our goal is to give a precise estimate for the
superlinear convergence of the method. Define the norm ||z||3 = gTA_:g and the error

vector at the gth step e, = z(®) — g(,"). We are now ready for the main result.




Theorem 3. Assume Ao, #s positive semidefinite with ezactly one null vector v. IfT is
of class CHL2 | >2 0 < o < 1, then, for large n, the error vector €4 at the gth step of
the conjugate gradient method applied to p(m)L satisfies the estimate

lesallan < r—ygmmrrayleolan ()

Here C 1s a constant that depends on the conformal map.

Proof: The proof follows closely the proof of Theorem 3 in [Chan]. From the standard
error analysis of the conjugate gradient method, we have

legllan < [min, max [P ] lleolla, (10)

where the minimum is taken over polynomials of degree g with constant term 1 and the
maximum is taken over o(A,), the spectrum of A,; see for instance [GVL]. Actually, we
restrict A, to v(®L as discussed above so that by [An], for large n, o(4,) C (e, 00),
for some € > 0 which is independent of n. In the following, we will try to estimate the
minimum in (10).
First, we write
M,=W® +U®, vE>1, (11)

where U,(,k) is the matrix obtained from keeping the number 1,2,... ,k and number n 4
1,n+2,...,n+k columns and rows of M, while replacing all other entries of M, by zeros.
Clearly, rank (U,(,k)) < 4k. By Lemma 1, for all £ > 1, WiF) satisfies

n
WEi < sup > Viflhipjal

k+1<j<n

t=k+1
n d
c\V1g
< sup —
k+1sj.<_n,-=zk_:i_1 (f+5—1)Hte

< i
su B
- h+151;5n 7 ) (z+7 —1)i-1/24a
[+
S kl—-2+a *

Note that W,sk') is symmetric since M,, is symmetric. Moreover, for any symmetric matrix
we have [|A[|2 < ||A]|1. It follows that

[
W2 < ra VE21 (12)

Let us order the eigenvalues of M,, =: W,£°) as

~ - ~ - + + +
Ho S Hijs ST Sy <o Sudp Suf <pf, <uof




By applying Cauchy Interlace Theorem [GVL] to (11) and using the bound of ]]W,g )||2 in

(12), we see that
c
| < Nt V|k] > 1.

Thus if we order the eigenvalues of 4, = I, + W, (0)

0<A5 <Ay, SAT <A, <o <Y, <A <A, <,
then Af:l-}— p,f for all k > 0 with
c e

Having obtained the bounds for z\}f, we can now construct the polynomial that will
give us a bound for (10). Our idea is to choose P,, that annihilates the 2g extreme pairs
of eigenvalues. Thus consider

pr(z) = (1 - +)(1— =) -

)1- =), Vk>o0.
k+1/2 Ak

}‘k+1/2

Between the roots A, the maximum of |(1 - 3=)(1 — 5%)| is attained at the average
k k

= %(/\;:" + ;). Consequently,

OF = 22)® Wiyys = Ataya)®

max = |pk(z)| <

2€A Ly 2 s 1/ AAFAL 4’\k+1/2 k+1/2

< (AF —2%) (’\;:+1/2 >‘k+1/2)

=T a4 5,12
+_y—)2

<DE =) s
16(A5)?

But then by (13) we have
+ _ 3—)2
max ou(e) < BE= M) o C Vk > 1.

2€ e M 173 16(A7)2 — k2(-2+a)
Hence the polynomial P4y = pop; -+ pg—1, which annihilates the 2 extreme pairs of

eigenvalues, satisfies .
C
|P4q($)| < ((q _ 1)!)2(1—2+a)

(14)

for all z = Af in the inner interval between z\q"_l /2 and A;‘_l /22 where the remaining
eigenvalues are. Here C is constant that depend only on f. It should be noted that due
to the one dimensjonal null space of compact My,, we must have Ay uniformly bounded




away from zero for large N [An, Thm 4.8]. Thus, C is uniformly bounded for large N. (9)
now follows directly from (10) and (14).

In the case that A, is not semidefinite we can solve the normal equations by the
conjugate gradient method. It is clear that (I + M,)? will then be positive definite on
PLOES Using the techniques in the proof of Theorem 3 one can establish a similar result
for the normal equations. This will not be done here. Also, in a future paper, we will show
that if T is analytic, then ||e,,|la, < C9% |||l 4, for some r < 1.

5. Numerical example. In our example we choose ¢(¢) = ¢3, and x(¢) = 0. Then
u(n, ) = n* — p*. Note that, for the conformal map f(z) from the disk, #(2) = (f(2))® and
the boundary values at the mesh points are given by G(z) = 4(Ref(2))® — i4(Imf(2))3.
The discretization error in Table 1 is given by the sup norm

275 /Ny __ 12«5 /N
oI [N — g (5273

where ¢,, is our nth degree approximation to ¢. In the Table 1 below, ster is the number of
iterations required by conjugate gradient for the residuals to be < 10~14, The computations
were performed on a SUN Sparc 5 workstation using MATLAB.

For our boundary T' : 4(s), we take the Holder continuous curve given in [Weg, example
cj: Let r be a positive real number, r =1+ 1 + «, then

4(s) = A - €* + B|2sin %lrezp(if(s—;ﬂ) =C, 0<s<2nm, (15)

is for 0 < & < 1 a function in Holder class C*+1*, If C = 0.44+0.6"B, and |4| > | B|r27"1,
then the function
f(z) = A¥(2) + B(1—¥(2))" - C,

where ¥(2) = (52 + 2)/(5 + 22), maps the unit disk conformally onto the region bounded
by the curve parameterized by (15). (A numerical approximation to f can be used with
similar results.) In this example we take A =1, B = 0.01,! = 2, = 0.5. (In a later paper
we will show that the discrete error behaves like O(N %) which can be seen in Table
1.) According to Theorem 3 the error vectors should approach O rapidly. We illustrate
this in Table 2, where we have computed ||z, ; — Z,||4. as an approximation of ||| 4,
for several ¢g. In Figure 1, we plot the eigenvalues of A,. Note that they are well grouped
around 1, as shown in the proof of Theorem 3.

‘‘‘‘‘
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N disc. error | iter
32 1.1-103 |6
64 1.4-10°% |5
128 [3.2-10°8 |5
256 |5.5-107° |5
512 [9.5-10710 | 5
1024 1 2.1-10710 | 5

Table 1. A=1, B=0.01, r=3.5.

||$q+1 — !I?q"A,,

2.1-10°

4.1-1071

-2.6-1072

1.1-10°°

" 9.8 . 10—10

ot x| ool —|ola

1.9.1071

Table 2. N=256.

1.8

1.6f

141

1.2

0.8

0.6

04r

0.2}

+++

1
0.5

1.5

Figure 1. Eigenvalue distribution for example,




TRIANGULAR PRECONDITIONERS FOR SADDLE POINT
PROBLEMS WITH A PENALTY TERM

AXEL KLAWONN *
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Abstract. Triangular preconditioners for a class of saddle point problems with a penalty term

, are considered. An important example is the mixed formulation of the pure displacement problem

in linear elasticity. It is shown that the spectrum of the preconditioned system is contained in a real,
positive interval, and that the interval bounds can be made independent of the discretization and
penalty parameters. This fact is used to construct bounds of the convergence rate of the GMRES
method used with an energy norm. Numerical results are given for GMRES and BI-CGSTAB.

Key words. saddle point problems, penalty term, triangular preconditioners
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1. Introduction. In this article, we analyze a triangular preconditioner for sad-
dle point problems with penalty terms. An important example of this type of problems
is the linear system of equations resulting from a mixed formulation of the pure dis-
placement method for the equations of linear elasticity; see e.g. Braess [1], pp. 252.
The penalty parameter then depends on the Poisson ratio or, alternatively the Lamé
parameter A. We only consider symmetric saddle point problems. For related work
on the non-symmetric case, see a paper by Elman and Silvester [6] that analyzes the
Oseen operator which is obtained by applying a Picard iteration to the Navier-Stokes
equations.

We introduce the notation

t
A = (g _ﬁc): F = (';)) tG[O,l],

where A and C are positive definite and continuous operators on the Hilbert spaces
V and M and the continuous operator B satisfies the inf-sup condition

t pt
inf sup _vBe > B2
9€M yev ||v||v|lgllar

We assume that f € V',g € M, where V' and M’ are the dual spaces of V and M.
The product space V x M is denoted by X.
We consider the following problem

(1) Az =F.

From the well-known Babuska-Brezzi theory, we know that (1) is well-posed.

A number of methods have been proposed to solve this type of problems. For a
list of references, see e.g. the introduction in Klawonn [10].

The outline of the remainder of this article is as follows. In Section 2, we discuss
the preconditioning strategy. In the case of exact solvers for A and C, we show that

* Westfalische Wilhelms-Universitit, Institut fiir Numerische und instrumentelle Mathematik,
Einsteinstrafie 62, 48149 Miinster, Germany. Electronic mail address: klawonn@math.uni-
muenster.de. Dieser Artikel ist Teil einer geplanten Dissertation an der Mathematisch-
Naturwissenschaftlichen Fakultadt der Westfialischen Wilhelms-Universitat Miinster. This work was
supported in part by the U.S. Department of Energy under contract DE-FG02-92ER25127.
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the spectrum of the preconditioned system is bounded independently of the critical
parameters by solving a generalized eigenvalue problem. This technique cannot be
apphed to inexact precondltloners Neither can a perturbation argument be used
as in Klawonn [10] since the preconditioner is indefinite. We find that the precon-
ditioned system AB~! is symmetric positive definite in a certain metric which is
defined by a symmetric posmve definite matrix #~! and that the genera.hzed eigen-
values of H~1AB-1 = MH~! are bounded independently of the critical parameters.
From this, we obtain the bounds of the eigenvalues of AB-1. We also use this fact
to show that GMRES, in a certain metric defined by F1~%, converges independently
of these parameters. Here # is an arbitrary symmetric positive definite matrix with
G < H™' < CFHY, where Co,C1 > 0 are constants independent of the dis-
cretization and the penalty parameters. To prove this convergence estimate, we intro-

‘duce an apparently new techmque ‘We exploit that both, GMRES and the method of

conJuga.te residuals (CR), minimize the residual in the norm used and that ! and
#1-1 define equivalent norms. Then, we use that the convergence rate of CR in the
#{~1—metric can be estimated by the generalized eigenvalues of H-TAB-1 = XL,
Finally, we show that AB~1 is diagonalizable and use this property to give a con-
vergence estimate for GMRES in the euclidean metric. We also discuss a connection
between triangular preconditioners and an algorithm by Bramble and Pasciak [2]. In
Section 3, we discuss numerical results for a problem of linear elasticity obtained by
using GMRES and BI-CGSTAB.

2. Preconditioning Techniques. In this section, we consider a triangular pre—
conditioner for problem (1). The preconditioned system is either of the form AB-1
or B~1A where B is the triangular preconditioner.

We use the following notation

5 A Bt 5 A O

BU = (0 —é)’ BL -— (B _é),
Here A and C are p051t1ve definite. We make the following assumptlons on A and B:
The matrix A is a good precondltloner for A, i.e.
2) Jag,a1 >0 autAu < uldu< ddufdu YueV.

The constants ap, a; should preferably be close to each other and be independent of
the discretization parameters but there are also other interesting cases. Multigrid
and domain decomposition methods are examples of preconditioners that meet these
requirements.

We also require that Cisa good precondltmner for the pressure mass matrix Mp,
i.e.

®) 3mg,m1 >0 md p'Cp < pPMp<mip'Cp VpEM
and we finally assume that C is spectrally equivalent to C,ie.
(4) Jeo,e1 >0 EpCp<p'Cp<cEp'Cp Vpe M.

A good choice for C is a one-level overlapping Schwarz method; see Klawonn [10] and
Section 3, Tables 3,6,7.
From the inf-sup condition for B and the continuity of B, we obtain the following
inequality
(5) B p'Mp<p'BA™'B'p < B} p'Mpp VPEM,
2 .




with positive constants o, §1; see Brezzi and Fortin [3]. These constants are indepen-
dent of the discretization and the penalty parameters. We denote by p an eigenvalue
of the generalized eigenvalue problem

BA™'B'p=uCp

and by fmin, Emaz its extreme eigenvalues.

We first restrict our analysis to By and drop the subscript U. In the case of
A=Aand C= C, we use B rather than B.

LEMMaA 1.

o(AB™) C [Bmin, Bmaz + 1] U {1}

Proof: The proof follows by considering the generalized eigenvalue problem

Az = )\ Bz.
]
From this lemma, we obtain
THEOREM 1.
o(AB~) C [B3m3, fimi + 1JU {1}
Proof: Use the bounds for gmin and pimaz obtained from (3) and (5).
a

To provide bounds for AB~!, we cannot solve the generalized eigenvalue problem
easﬂy anymore. Nor is it possible to use the techniques applied in Klawonn [10], since
B! is not positive definite.

By making the assumption that

(6) 1< ap S ai,

which can alwa.ys be achieved by an appropriate scaling, we can show that the spec-
trum of AB~! stays bounded independently of the discretization and the penalty
parameters. Consider

5-1  _ A Bt A-1 A-iptg—

ABT = (B ¢ )\ o = —¢
(A@-l (A- A)A-1BtC? )
BA-l (t2C+ BA-1BY)C-!

Introduce the notation,

28
I}
~~
N
QI
h
Q0
~—

Multiplying AB~1 by #, we obtain

AB-1% ( AATY(A-A) (A-A)A1B )

BA-Y(A—A) *C+ BA-'B!

3




which-is a symmetric positive definite matrix; cf. Lemma 2. Thus, the preconditioned
system AB~! is #—normal(1). Introduce the notation

(I o - (A0
7‘._<BA_1 I) and %._(0 S),

where S :=#2C + BA~1B? denotes the Schur complement of A which is obtained by
block Gaussian elimination. o
LEMMA 2. There exist positive constants Co, C1, independent of t,h, such that
Cofl < AB'#H < Ci H,

with Co = min{(ao — 1),1}/3 and &1 = 3max{(a; — 1), 1}.1 A
Proof: The proof is based on a block Cholesky factorization of AB~1H. A direct
computation shows:

S 14 I 0 AATIA-A O I A™'Bt
M AT = (BA—l I)( 0 s)(o 1)

From the assumptions (2), (6), we obtain

X - A-14 _ s
(8) CoH < (AA(‘)A 4 g) < Ci#H,

where Cp := min{(ap — 1), 1} and G = max{(a; — 1), 1} are positive constants.
We now show that the eigenvalues of THT?* are bounded by the extreme eigen-
values of #,

=)

©) %72 <TAT' <3

. I 0\(4 0\[I 4B
THT® = (BA-l I)(O S>(0 I )

(A B
= \ B S+Ba™'B* )

v\ [ A B u

p ) \ B S+BA™lB! P
u'Au+2p'Bu+p'Sp+p'BA™IB'p
vt Au + 2|p*Bu| + 2p'Sp.

We have

From this, we get

(10) S THT =

IA I

Applying the Cauchy-Schwarz inequality and ab < a2/2 + b%/2, we obtain

lptBul = |ptBA—1/2A1/2uI
< (ptBA—lBtp)l/Z(utAu)l/z
< %ptBA‘lB*p+ -;—u’Au
< lwspevan

1 As usual, A < B means B — A is symmetric positive semi-definite.
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Hence, we get from (10)
STHT s < 2u'Au+3p'Sp
< 35z,

To obtain a lower bound, consider the generalized Rayleigh-quotient

S THAT's o'y
oz  pTHT

where we have used the substitution y := 7. As in the case of the upper bound, we
obtain

oy = () (e D) (ED)(E57)()
() (5 orifn)2)

v'Av —2¢'Bv + ¢*'Sq + ¢' BA~'B'q
v Av + 2|¢' Bu| + 2¢' Sq

3y'Hy.

From (7), (8) and (9), we obtain

INIAN T

éo'ﬁ < AB~ % < 6'172

=]
From this lemma, we derive
LEMMA 3. There exist positive constanis Cy, Cy, independent of t, b, such that

CoH < AB™'H < CyH.

Proof: The lemma follows immediately from Lemma. 2 since Cis spectrally equivalent
to t2C + BA™'B* and A — A to A.
m]

REMARK 1. This lemma could also be used to prove Theorem 1 of Bramble and
Pasciak [2]. ) )

Since we have made the assumption that 1 < ag < a1, A — A and C are positive
definite, and # defines a new inner product on X. We are now able to give bounds
for the spectrum of AB~1.

THEOREM 2. There exist positive constants Co, C1, independent of t, h, such that

o(AB™Y) C [Co, Cil.

Proof: The constants Cp,Cy in Lemma 3 provide lower and upper bounds for the
eigenvalues of the generalized eigenvalue problem

AB 1z = Mz
Since # is non-singular, this problem has the same eigenvalues as

AB 1y = \y.
5




a
COROLLARY 1. H~! also defines an X—inner product and AB~1 is symmetric
positive definite in this inner product, i.e. H-LAB™! is symmetric and there ezist
positive constants Co, C1, such that Co HL<HTABL < CLH
Proof: The proof follows immediately from Lemma 3 by multiplying by #~! from
both sides.
m]

REMARK 2. Since it can be shown that
ABp*H = HBL A,

the previous results obtained for Aér}l also apply 1o the spectrum of BEI.A.

' We now use the bounds of Corollary 1 to provide bounds of the convergence rate
of the GMRES method used with 2 norm equivalent to the #~!—norm. Here, we
exploit the fact that both, CR and GMRES, minimize the residual in the norm used;
see e.g. Bruaset [4], Freund, Golub, and Nachtigal [7] or Saad and Schultz [11].

THEOREM 3. Let H be a positive definite matriz, such that CZ H<L H1<
C? #~!, where Cy,C, are positive constants independent of the discretization and
penalty parameters. Then,

C k—1\"
Irallis < @2 (Y257) ool

where v, is the n-th residual, ro = b — ABlzg and &k = K(AB—I) < %: is the

condition number of AB~! in the H~'—inner product.
Proof:

31 = i B (AB™)roll-
Irallg-s =, i o 1@a(AB™ )roll-s

- R 51

< O, min o 19a(AB rolls-s
=~ o [VE=1\" :

< a2 () ol

G k—1\"
< g2 (L) trolla-s
O

REMARK 3. Our convergence estimate only depends on the square root of the
condition number of the preconditioned problem. Note that this estimate maiches,
ezcept for a leading factor, the standard estimate for the conjugate gradient method
applied to positive definite symmetric problems.

Finally, we give a well-known convergence estimate for GMRES in the Lo—norm;
see e.g. Saad and Schultz [11]. This estimate is based on the eigenvalues of the
preconditioned system. We make use of the fact that AB~1 is diagonalizable. This
can easily be seen from the following arguments:

AB~1H is symmetric positive definite; so is

H2(AB I HYH T = U2 ABTIHY.

Thus, H~Y/2AB-1#'/? is diagonalizable, i.e. there exists an unitary matrix g, such
that

HH2ABT WP = OO,
6




where D := diag{);} with ); the eigenvalues of AB~1. Note that AB~! and H~1/2AB~13{1/2

have the same eigenvalues. We also obtain
ABl = (7{1/2Q) DHM2G)?
= QDQ"!,

ie. AB~! is diagonalizable with the diagonalization matrix Q := #1/2Q. Unfortu-
nately, our estimate depends on the condition number of the matrix /2.
THEOREM 4. We have

_ k—1\"
Iralls <1920 372720 2 (YE3) il

where vy, is the n-th residual and k := n(Al?’l) = Amaz [ Amin s the spectral condition
number of the preconditioned system.
Proof: Under the assumptions made, the following estimate is satisfied,

Irallz < 12Ml2 1272 [@a(A)] [Ioll2,

min max
énepnxén(0)=1 AEU(.AB_")

see Saad and Schultz [11], Proposition 4. Since the spectrum of AB~! is real and
positive, we can use the Chebyshev polynomials to construct an upper bound. The
given estimate follows from the invariance of the euclidean norm under unitary trans-
formations, i.e.

12l I1# 2 G2 = |#H/2]]2,
197l = Q7' H 2|2 = 17~ Y/?]2.

=]
Note that the convergence estimate in Theorem 4 is independent of the penalty param-
eter but unfortunately it normally still depends on k. To give an estimate of x(#1/ )
for a particular discretization, we now restrict ourselves to the mixed formulation of
the equations of linear elasticity discretized by a @1(k) iso Q1(2h) macro-element; see
Section 3. In this case, we have k(#1/2) € O(1/h). Since #/2 is symmetric positive
definite, this can be immediately seen from the extreme eigenvalues:

Amaz(HY?) < const(1/h),

Amin(HY?) > const(1+ h).
A factor of 1/h appears in the bound given by Theorem 4. However, our numerical
experiments do not reflect the presence of such a factor; see Section 3.

3. Numerical Examples. In this section, we apply the triangular precondi-
tioner to the mixed formulation of planar, linear elasticity. For simplicity, we work
with the following formulation

£(Vy, Vo)o+ (dive,ple = < f,v> Vo€V :=(HNQ))?,

1
) =0 Vg € M := Lo(Q),
pypr (? 2o q 2()
with H(Q) := {v € H}(Q) : yr, = 0}. Ty is the part of the boundary where Dirichlet
conditions are imposed and A,z are the Lamé parameters. All results shown are for
7
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TABLE 1
Tteration counts for ezact solvers as preconditioners for A and C, v =0.3.

Grid 20 <10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
GMRES 10 11 11 12 12 12 13

BI-CGSTAB 5 5 6 6 6 6 6

mixed boundary conditions with To := {z = (21,22) € 0Q : 1 < —0.8} and the
region [—1,1] x [—1,1]. We note that our model is mathematically equivalent to the
full elasticity problem only in the case of Dirichlet conditions'on the whole boundary.

For growing ), the considered material becomes more incompressible. Instead of
using the Lamé constants A and p, we can also work with Young’s elasticity modulus
E and the Poisson ratio v. These parameters are related to each other by the following
equations

Ev E
(11) B A= A=) *T 2+

The relation between the penalty parameter ¢ and the Poisson ratio v is given by
t .= (1+ v)(1 — 2v)/(Ev). Without loss of generality, we set E' = 1. We discretize
by a Q1(k) iso Q1(2h) macro-element, i.e. we use piecewise bilinear polynomials on
quadrilaterals on a grid with mesh size A for the displacements u and piecewise bilinear
polynomials on quadrilaterals with mesh size 2k for the Lagrange multiplier p. For a
proof that the inf-sup condition of Bt holds for this element; see Girault and Raviart
[8] or Brezzi and Fortin [3].

All computations were carried our on a SUN SPARC 10 workstation using the
numerical software package PETSc developed by William Gropp and Barry Smith at
the Argonne National Laboratory; see Gropp and Smith [9] or Smith [13]. The initial
guess is 0, and the stopping criterion is [|r[l2/|I7o]l2 < 10~3, where 7 is the k-th
residual. A -

We give numerical results for two Krylov space methods, GMRES and BI-CGSTAB;
see e.g. [5, 11, 12, 14]. We use a version of GMRES without restarts but we also ran
a version with a restart every 10 iterations. The number of iterations for this latter
version was always just 1-2 iterations larger than for the GMRES method without
a restart. We used right-oriented preconditioning with é{,l for GMRES and left-
oriented preconditioning with 3;1 for BI-CGSTAB and we only use the Ls— rather
than the H~!—metric. The numerical results suggest that the number of iterations
is bounded independently of the critical parameters h and t. We point out that
BI-CGSTAB always converges smoothly in our experiments.

To see how the Krylov space methods behave under the best of circumstances,
we first conducted some experiments using exact solvers, i.e. A=Aand & = C; see
Tables 1 and 4. :

In another series of experiments, we use different preconditioners for A and C.
We present results with a two-level multigrid preconditioner with a V-cycle including
one pre- and one post-smoothing symmetric Gauss-Seidel step defining A, and a one-
level symmetric multiplicative overlapping Schwarz method with the minimal overlap
of one node as C; see Tables 2, 3, 5, 6, 7.

Finally, we show that the assumption ap > 1 is not necessary for the convergence
of the Krylov space methods. We conducted some experiments with 4 := €A, where

8




TABLE 2

Tteration counts for o two-level multigrid preconditioner with o standard Vcycle defining A,
and C =C, and v = 0.3.

Grid 20x10 | 40x20 [ 60x30 [ 80x 40 | 100 x 50 | 120 x 60 | 140 x 70
GMRES 13 14 14 15 15 15 15
BI-CGSTAB 7 7 7 7 7 7 7
‘TABLE 3

Iteration counts for a two-level multigrid preconditioner with a standard V-cycle defining A and
a one-level symmetric multiplicative overlapping Schwarz method with the minimal overlep of one
node defining C, and v = 0.3.

Grid 20x10 ) 40x20 | 60x30 [ 80x 40 | 100 x 50 | 120 x 60 | 140 x 70
GMRES 13 14 14 15 15 15 15
BI-CGSTAB 7 7 7 7 7 7 7
TABLE 4
Hteration counts for ezact solvers as preconditioners for A and C on o 80 x 40 grid.
v 0.3 10.4]0.49]0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
GMRES 12 | 13 ] 14 14 14 14 14 14
BI-CGSTAB | 6 7 7 7 7 7 7 7
TABLE 5

Iteration counts for a two-level multigrid method with a standard V-cycle defining A and G = C

on a 80 X 40 grid.

v 0.3]04] 049 | 0.499 ] 0.4999 | 0.49999 | 0.499990 | 0.5
GMRES 15 | 16 17 17 17 17 17 17
BI-CGSTAB | 7 7 7 7 7 7 T 7
TABLE 6

Iteration counts for an ezact solver as A and a one-level symmetric multiplicative overlapping
Schwarz method with the minimal overlap of one node as ¢ on « 80 x 40 grid.

Hteration counts for a two-level multigrid method with ¢ standard Vec

v 0.3 1041049 ] 0.499 | 0.4999 | 0.49999 [ 0.499999 [ 0.5
GMRES 12 [ 13 | 14 14 14 14 14 14
BI-CGSTAB | 6 7 7 7 7 7 7 7
TABLE 7

ycle as A and a one-levg]

symmetric multiplicative overlapping Schwarz method with the minimal overlep of one node as C

on a 80 X 40 grid.

v 0.3 ]0.4]0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 [ 0.5
GMRES 15| 16 | 17 17 17 17 17 17
BI-CGSTAB | 7 | 7 7 7 7 7 7 7

NP




. TABLE 8
Iteration counts for A= ¢A and C=C o1 6 80 X 40 Grid with v = 0.3.

€ 08109[099|101(11]12
GMRES 13 | 13§ 13 13 | 14 ] 14
BI-CGSTAB | 6 6 6 6 6 6

¢ is a parameter at our disposal. The numerical results show that the methods still
converge, even when € > 1; see Table 8.
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