

UNCLASSIFIED

UNCL
APAE-MEMO-43

REACTORS--POWER

0
TEMPERATURE DISTRIBUTION
AND
THERMAL STRESS IN
REACTOR CORE APPR-1

Photostat Price \$ 3.30

Microfilm Price \$ 2.40

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

CONTRACT NO. AT (11-1) -318

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

W. P. Berggren
H. R. Kroeger

ASTRA

P. O. Box 163
Milford, Connecticut

CLASSIFICATION CANCELLED

DATE MAR 12 1957

For The Atomic Energy Commission

H. R. Carroll
Chief, Declassification Branch TC

February 15, 1956

ALCO PRODUCTS, INC.
POST OFFICE BOX 414
SCHENECTADY, N. Y.

475 001

UNCLASSIFIED

UNCLASSIFIED

1 6494

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONFIDENTIAL

ILLUSTRATIONS

Figure		Page
1	TEMPERATURE PROFILE THROUGH FUELED SECTION	13
2	ISOTHERMS IN FUEL PLATE ASSEMBLY (ASSUMING NO SURFACE SCALE)	14
3	ISOTHERMS IN FUEL PLATE ASSEMBLY (ASSUMING .010" SCALE, $k = 1$)	15
4	THERMAL DISTORTION OF FUEL PLATE	16

475 002

DECLASSIFIED

CONFIDENTIAL

TABLE OF CONTENTS

	Page
I SUMMARY AND CONCLUSIONS	4
II TEMPERATURE PROFILE THROUGH VERTICAL CROSS SECTION OF FUEL PLATE	5
III DETERMINATION OF TEMPERATURE DISTRIBUTIONS IN HORIZONTAL SECTION NEAR EDGE OF PLATE	6
IV THERMAL STRESS IN INTERIOR FUEL PLATES	7
V SHEAR ON BRAZED JOINT AND TENSION IN SIDE PLATES	8
VI THERMAL STRESS IN OUTER FUEL PLATES	10
VII SYMBOLS AND MAGNITUDES	11

475 003

RECLASSIFIED

CONFIDENTIAL

In carrying out the study, basic APPR-1 specifications were used where available. Necessary assumptions involving analysis methods, data, and fuel element configuration were made arbitrarily conservative. As a result the computed stress values are indicative of adequate structural design, but do not represent actual expected values.

475 004

- 3 -

CONFIDENTIAL

ASTRA

RECLASSIFIED

CONFIDENTIAL

I - SUMMARY AND CONCLUSIONS

This study was initiated to determine the adequacy of the fuel element structural design of APPR-1. The results obtained lead to the conclusion that the element design is structurally sound for all normal operating conditions from the standpoint of thermal stress.

In carrying out the study, APPR-1 design data was used where available. Necessary assumptions involving methods, data, and configuration were made arbitrarily conservative. As a result the computed stress values are indicative of adequate structural design, but do not represent actual expected values.

Approximate temperature distributions (accurate to 5°F) are shown for fuel plate assemblies with and without assumed surface scale (Figures 2 and 3). Temperature differences between fuel region and brazed joint are 65°F and 100°F for these respective cases.

No thermal stresses in excess of 2500 psi appear to be developed in fuel plates or brazed joints, even when no credit is given for braze penetration in side-plate grooves.

The only significant stresses are the tensile stresses developed in the end plates, which would average about 30,000 psi for the most unfavorable surface scale condition, but which might locally approach 45,000 psi near the junction with the outer fuel plates.

Radiation heating in the core structure would tend to reduce temperature differences; hence relieve thermal stresses.

475 005

CONFIDENTIAL
.....CLASSIFIED

II - TEMPERATURE PROFILE THROUGH VERTICAL CROSS SECTION OF FUEL PLATE (See
Figure 1)

A - SURFACE WITHOUT SCALE

Temperature datum: Maximum metal temperature: $t_0 = 566^{\circ}\text{F}$ (from APPR-1
design data).

Using maximum $q = 4x$ avg heat-transfer rate,

$$q = 4 \times 55,900 = 224,000 \frac{\text{Btu}}{\text{ft}^2 \cdot \text{hr.}}$$

Heat generation rate in fuel (maximum):

$$Q = \frac{q}{a} = \frac{224000}{.010/12} = 2.68 \times 10^8 \frac{\text{Btu}}{\text{ft}^3 \cdot \text{hr.}}$$

$$\Delta t \text{ (ctr to edge of fuel)} = \frac{Qa^2}{2k} = 9.9^{\circ}\text{F}$$

$$\Delta t \text{ (edge of fuel to surface of plate)} = \frac{qc}{k} = 9.9^{\circ}\text{F}$$

Using datum $t_0 = 566^{\circ}\text{F}$, $t_1 = 556^{\circ}$, and $t_s = 546^{\circ}$.

Fluid bulk temperature: $t_f = (t_s - q/h) = 546 - \frac{224000}{2570} = 460^{\circ}\text{F}$.

B - WITH SURFACE SCALE .010" ($k = 1.0$)

$t_0 = 742^{\circ}\text{F}$ (from design data); $t_1 = 732^{\circ}$, and $t_s = 722^{\circ}$ (under scale).

Δt through .010" scale with $k = 1$:

$$\frac{qx.010}{12x1} = 186^{\circ}\text{F}$$

$$t_s' = 722 - 186 = 536^{\circ}\text{F} \text{ (surface of scale)}$$

Fluid bulk temperature: $536 - \frac{224000}{2570} = 450^{\circ}\text{F}$.

475 006

CLASSIFIED

III - DETERMINATION OF TEMPERATURE DISTRIBUTIONS IN HORIZONTAL SECTION

NEAR EDGE OF PLATE (Figures 2 and 3)

The isotherms are plotted by comparing thermal resistances of various paths from fuel region to fluid, allowing for variations in effective area. The unfueled portion of the fuel plate is treated as an imperfectly insulated slab, making side-loss corrections about every 10 mils. Intersections of isotherms with plate surface are established by equating ratio of temperature drop within plate to surface-to-fluid temperature difference $(\frac{t_0 - t_s}{t_s - t_f})$ to thermal resistance $\frac{\ell}{K}$ of solid path divided by surface resistance $1/h$.

Allowance is made for conductivity of braze metal about twice that of steel (21/9.4), but poor mechanical strength and poor thermal contact are assumed in the slots where the fuel plates fit into the side plates. This assumption is probably unnecessarily conservative.

For the surface scale case (Figure 3) a few temperatures, marked outside the boundary, represent the outer surface of the scale, and are of no direct concern in stress determinations. The significant metal temperatures are all marked on the isothermal lines. The scale accounts for $\sim 70\%$ of the metal-to-fluid temperature drop at any point.

The temperature distributions appearing in Figures 2 and 3 represent a heat-flux four times average for the core. This occurs only in a short section of the hottest element. Hence temperature differences in most regions will be much smaller than these.

475 007

.....CLASSIFIED

IV - THERMAL STRESS IN INTERIOR FUEL PLATES

Stresses on $\frac{1}{2}$ of fuel plates are small (Glasstone, Reactor Engineering, pp 709 - 710)*

(Mid-plane)

$$\sigma_o = - \frac{EQa^2}{2k(1-\nu)} \left(\frac{c}{a} + \frac{2a^2}{3(a+c)^2} \right) \quad (11.201.1)$$

$$= - \frac{10^{-5} \times 3 \times 10^7 \times 2.69 \times 10^8 \times 10^{-4}}{2.0 \times 9.4 \times (1-0.3) \times 144} = - \underline{4010 \text{ psi}}$$

(Surface)

$$\sigma_s = \frac{EQa^2}{2k(1-\nu)} \left(1 + \frac{c}{a} - \frac{2a^2}{3(a+c)^2} \right) \quad (11.201.2)$$

$$= \underline{5110 \text{ psi}}$$

Tension at edge of fuel plate, assuming monolithic joint and one direction of restraint; Δt , ctr to edge, no scale, 65°F (Figure 2).

$$\sigma_e = \frac{\alpha E \Delta T}{1 - \nu} = \frac{10^{-5} \times 3 \times 10^7 \times 6.5}{1-0.3} = 27,800 \text{ psi}**$$

which ignores yield of braze and elongation of side plate. Corresponding tensile stress for assumed .010" scale ($k = 1$) is based on $\Delta t = 100^{\circ}\text{F}$ (figure 3).

$$\sigma_e' = 27800 \times \frac{100}{65} = 42,800 \text{ psi}**$$

475 008

*Note exponents missing in text; also Q value in numerical example, p 710, should be 2×10^8 . Results in example OK.

**These stresses are later shown to be at least 20-30 times too great, when elongation of side plate is considered.

UNCLASSIFIED

V - SHEAR ON BRAZED JOINT AND TENSION IN SIDE PLATE

Assume width of braze metal at critical section = .010" on each surface. Let amount of suppressed longitudinal expansion at C of fuel plate = e_1 (inches). Let elongation of side plate = e_2 .

Then $e_1 + e_2 = e$ will permit evaluation of S_s and S_t ,

where e = elongation at fuel plate \downarrow resulting from unimpeded thermal expansion with $\Delta t = 65^{\circ}\text{F}$. Consider horizontal plane at mid-length to be fixed reference (see Figure 4).

$$e = \alpha L \Delta t = 10^{-5} \times 11.5 \times 65 = .00747 \text{ inches}$$

Letting S_s = shear stress on braze metal.

$$\epsilon = \text{shear strain} = \frac{e_1}{1.36} = \frac{S}{E_s}$$

$$e_1 = \frac{1.36 S}{8 \times 10^6} = 1.7 \times 10^{-7} S_s \quad (1)$$

Assuming shear stress varies linearly along brazed joint from zero at mid-length, the tensile load (lb) on the side plate will be

$$F = \frac{S}{2} \times 0.02 \times 11.5 = 0.115 S_s$$

where $.02 \times 11.5$ = effective braze area, 2 sides, half length (assuming braze effective only at corners). Tensile stress in side plate, in terms of its half-length elongation e_2 will be

$$S_t = \frac{F}{0.05 \times 0.164} = 14.0 S_s = \frac{e_2}{11.5} \times 3 \times 10^7 \quad (2)$$

where 3×10^7 = E for steel.

475 009

ASTRA

$$\text{Hence } e_2 = \frac{11.5 \times 14.0}{3 \times 10^7} S_s = 53.6 \times 10^{-7} S_s \quad (3)$$

Adding equations (1) and (3),

$$(1.7 \times 10^{-7} + 53.6 \times 10^{-7}) S_s = 55.3 \times 10^{-7} S_s = .00747 (= e)$$

$$S_s = 1350 \text{ psi (for no-scale case)}$$

$$S_s' = 1350 \times \frac{100}{65} = \underline{2080 \text{ psi with scale}}$$

Shear stress on braze is negligible because of elongation of side plate, which develops tensile stress given by equation (2).

$$S_t = 14.0 \times 1350 = \underline{18,900 \text{ psi (no scale)}}$$

$$S_t' = 14.0 \times 2080 = \underline{29,100 \text{ psi with scale.}}$$

The elongation of the side plate is, from equation (3),

$$e_2 = 53.6 \times 10^{-7} \times 1350 = .00724" \text{ (no scale)}$$

and the suppressed expansion of the fuel plate (equation 1)

$$e_1 = 1.7 \times 10^{-7} \times 1350 = .00023",$$

which produces an average stress in the fuel plate

$$\sigma_e = \frac{e_1}{e} \times 27800 = 855 \text{ psi (no scale)}$$

and

$$\sigma_e' = \frac{.00023}{.00747} \times 42800 = 1320 \text{ psi (with scale)}$$

475 010

UNCLASSIFIED

VI - THERMAL STRESS IN OUTER FUEL PLATES

The outer fuel plates have additional end restraint, and this condition may be approximated by multiplying the σ values in the foregoing section by

$$\frac{1-\nu}{1-2\nu} = \frac{0.7}{0.4} = 1.75, \text{ giving}$$

$$\sigma_e = 1.75 \times 855 = \underline{1500 \text{ psi}} \text{ (no scale)}$$

and

$$\sigma'_e = 1.75 \times 1320 = \underline{2310 \text{ psi}} \text{ (with scale)}$$

The side plates would carry a nearly uniform tensile stress, which might reach 1.5 times the average magnitudes of the foregoing section, in the vicinity of the outer fuel plates (because of less area than average "span").

$$s_t = 1.5 \times 18,900 = \underline{28,300 \text{ psi}} \text{ (no scale)}$$

$$s'_t = 1.5 \times 29,100 = \underline{43,600 \text{ psi}} \text{ (with scale)}$$

475 011

VII - SYMBOLS AND MAGNITUDES

a = half thickness of fueled region, $\frac{.010}{12}$ ft.

c = thickness of cladding (each side), $\frac{.005}{12}$ ft.

E_s = Shear modulus of braze metal (assumed $= 8 \times 10^6$ psi)

e_1 = longitudinal strain (suppressed thermal expansion) of fuel plate

e_2 = elongation of side plate (inches)

h = surface conductance $= 2570 \frac{\text{Btu}}{\text{hr} \cdot \text{ft}^2 \cdot \text{OF}}$

k = thermal conductivity of SS(304L) $= 9.4 \left(\frac{\text{Btu}}{\text{hr} \cdot \text{ft}^2 \cdot {}^\circ\text{F/ft}} \right)$

Q = Heat generation rate in fuel $\frac{\text{Btu}}{\text{ft}^3 \cdot \text{hr}} = 2.68 \times 10^8$

q = Heat transfer rate, across fuel plate $\frac{\text{Btu}}{\text{ft}^2 \cdot \text{hr}} = 2.24 \times 10^5$

s_s = Shear stress on brazed joint

s_t = Tensile stress in side plate

t_0 = Maximum center temperature, fueled region of plate =

566°F without surface scale
 742°F with $.010"$ scale ($k = 1$)

from APPR-1 design data

t_1 = temperature at edge of fueled region =

556°F (no scale)

732°F (with scale)

475 012

DECLASSIFIED

t_s = Plate surface temperature:

546°F (no scale)

722°F (metal under scale)

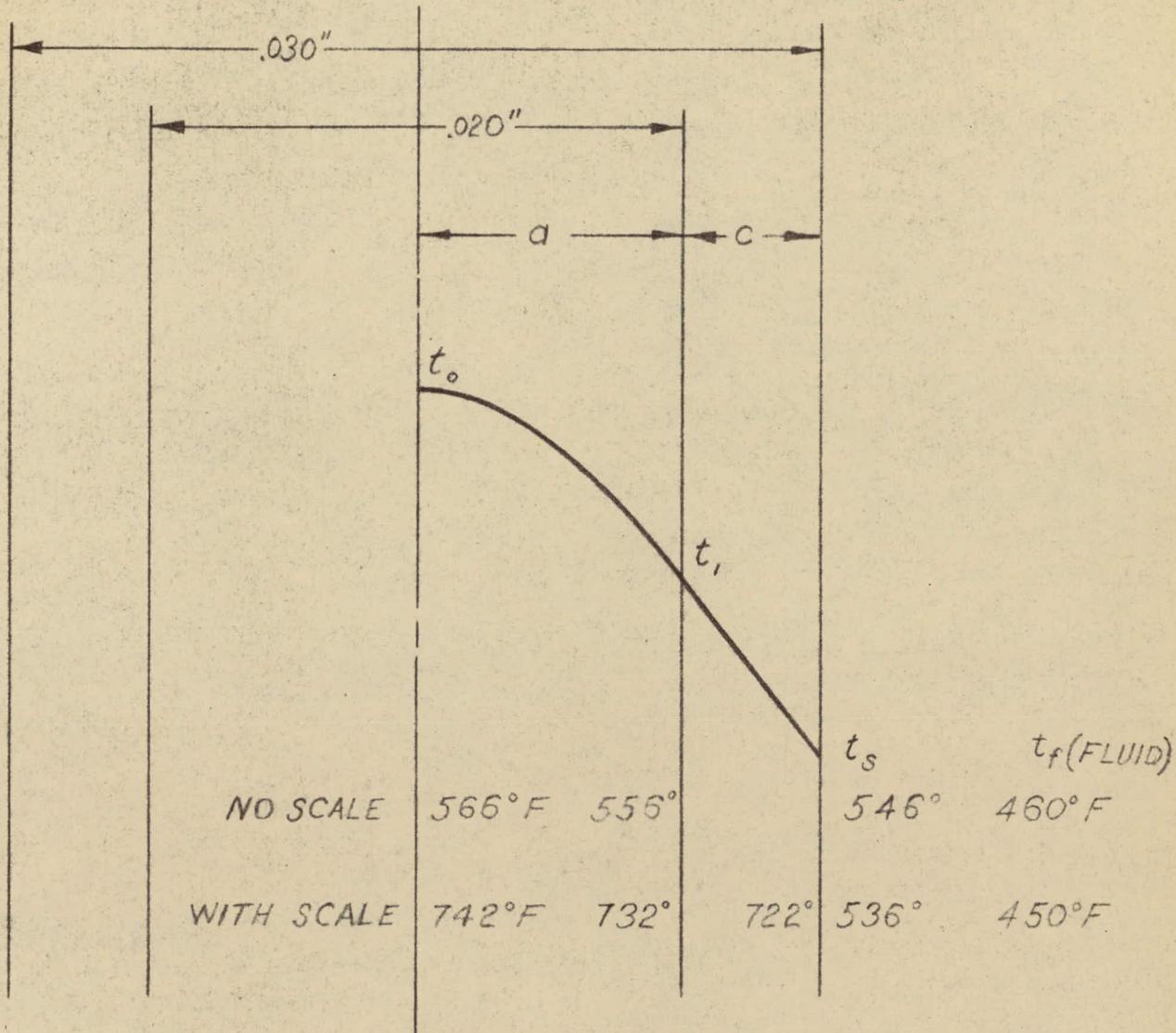
536°F (surface of scale)

t_f = Fluid bulk temperature

460°F (no scale)

450°F (with scale)

ϵ = Unit shear strain in fuel plate = $\frac{\epsilon_1}{1.36}$


σ_o = Thermal stress in mid-plane of fuel plate

σ_s = Thermal stress at surface of fuel plate

σ_e = Thermal stress at edge of fuel plate

σ'_e = σ_e for surface scale case

475 013

13

475 014

FIG. 1
TEMPERATURE PROFILE THROUGH
FUELED SECTION

CONFIDENTIAL

DECLASSIFIED

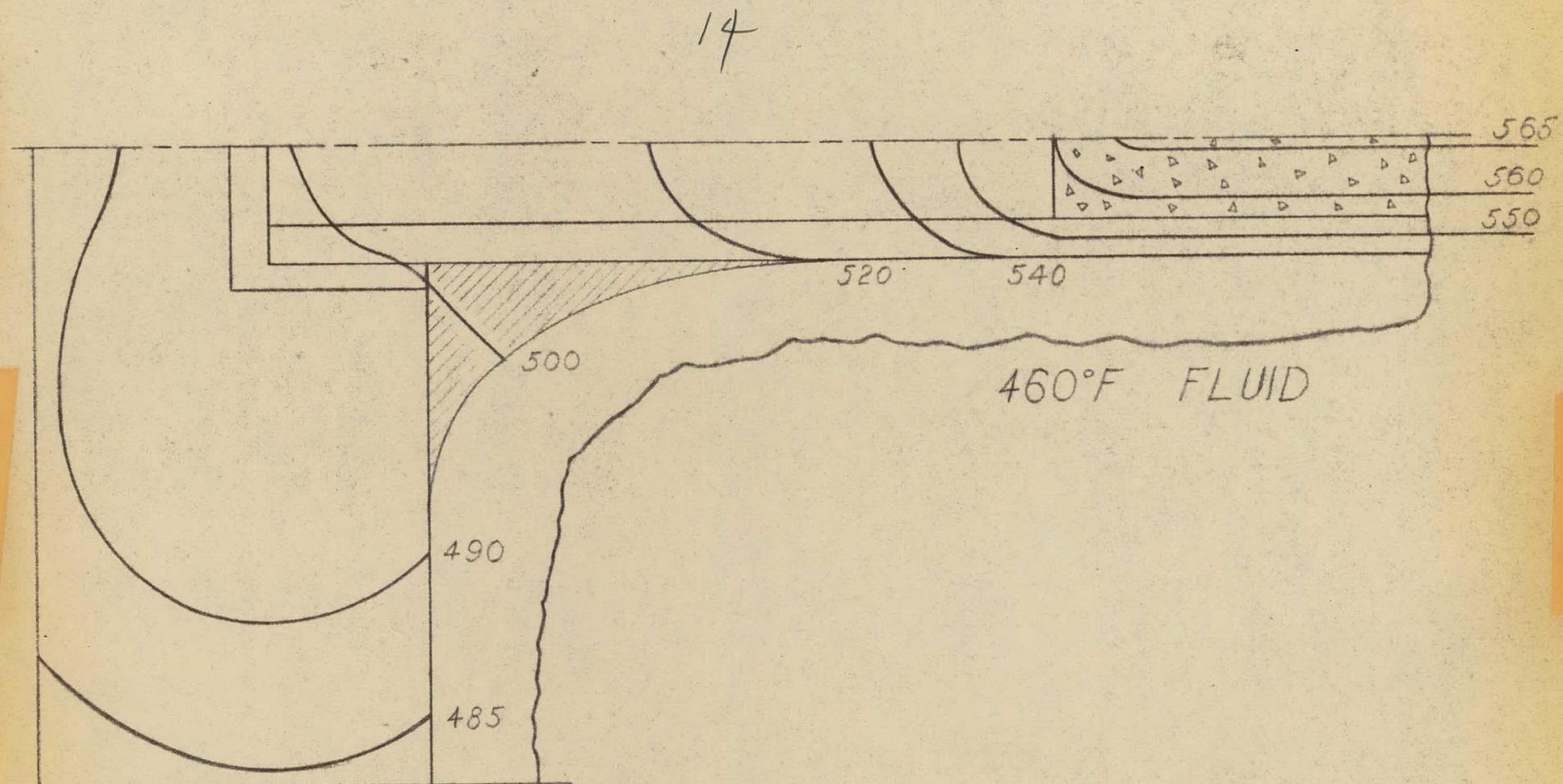


FIG. 2
ISOTHERMS IN FUEL PLATE
ASSEMBLY
ASSUMING NO SURFACE SCALE

15

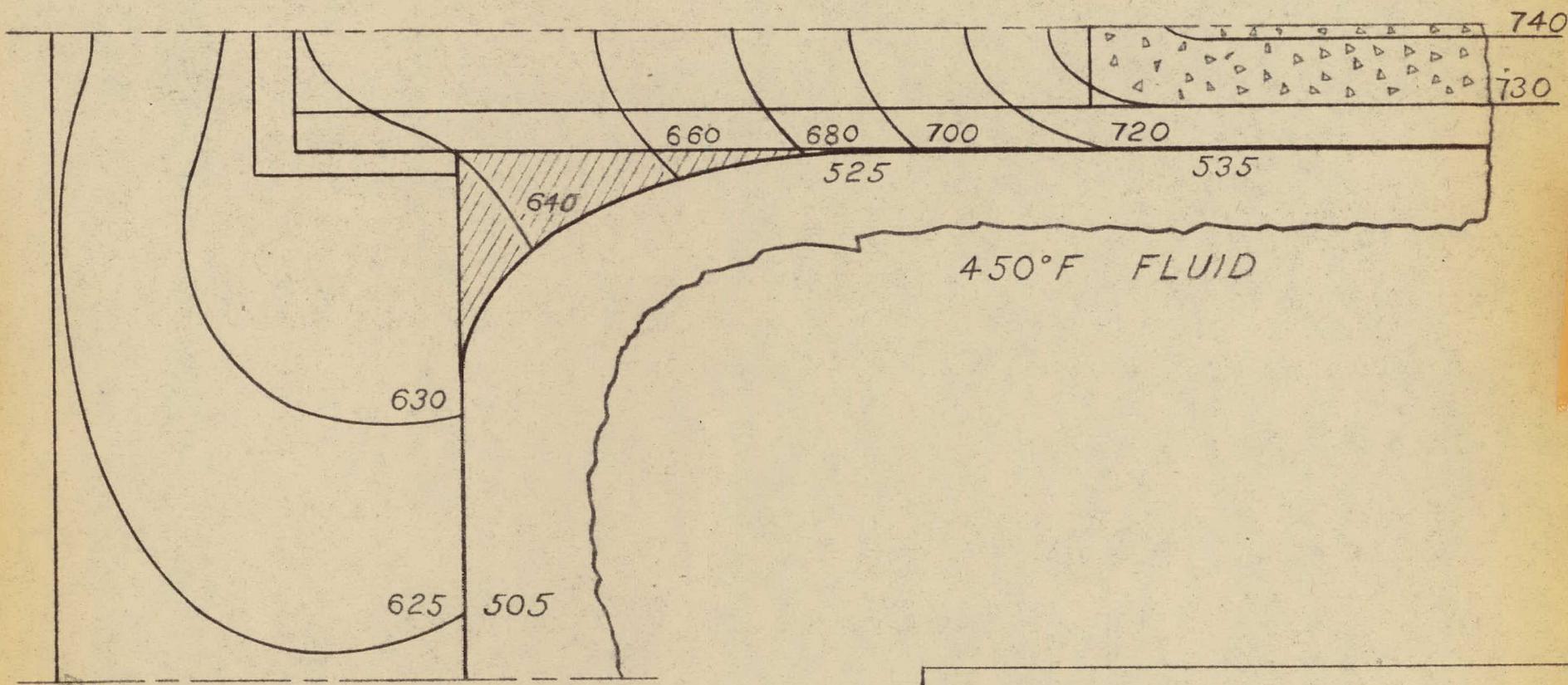
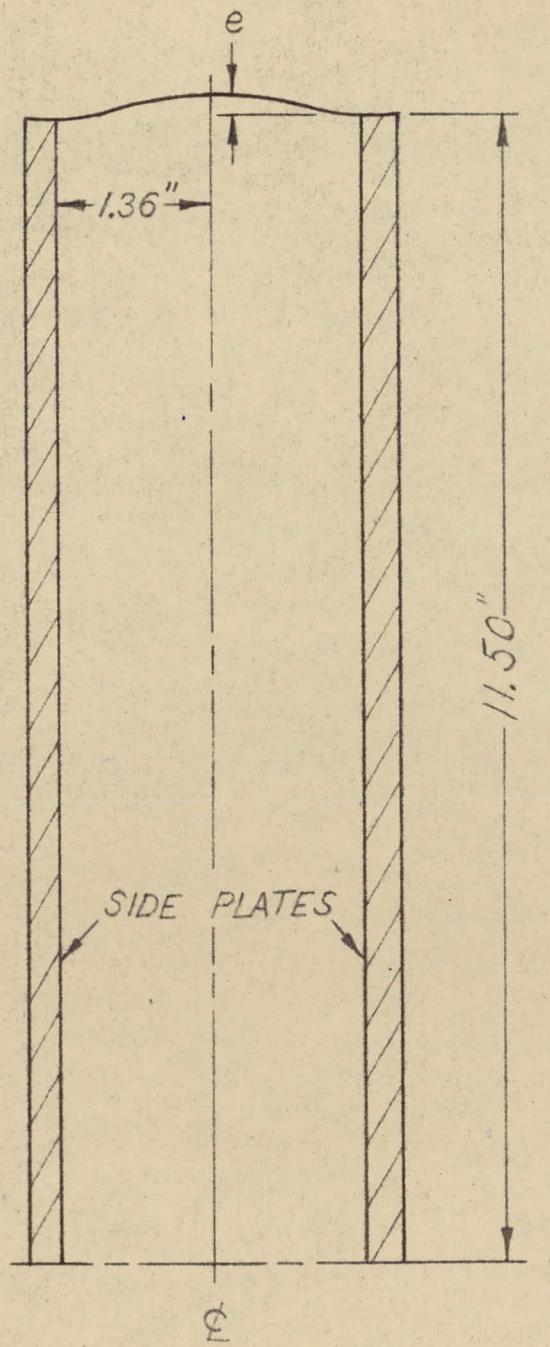



FIG. 3
ISOTHERMS IN FUEL PLATE
ASSEMBLY
ASSUMING .010" SCALE WITH $k = 1$

475 017

FIG. 4

THERMAL DISTORTION
OF FUEL PLATE

16

CONFIDENTIAL

DECLASSIFIED

0-16

~~CONFIDENTIAL~~

~~CONFIDENTIAL~~

0317122A1030

