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PERFORMANCE AND POTENTIAL 

OF 
NATURAL CIRCULATION BOILING REACTORS 

by 
W. S. Flinn and M. Pe t r i ck 

ABSTRACT 

A p a r a m e t r i c study of the potential and per formance of 
na tura l c i rculat ion boiling nuclear r e a c t o r s is p resen ted . 
Analyses a r e based on engineering data and cor re la t ion ex­
t rapolat ions obtained from boiling studies at Argonne. Graphs 
a r e used extensively to show in te r re la t ionsh ips of power den­
sity, sys tem p r e s s u r e , average core coolant densi ty, core 
height, r i s e r height, channel hydraul ic d i ame te r , r e c i r c u l a ­
tion flow ra t e , and exit s t eam volume fraction. In teres t ing 
aspec ts of r eac to r design and thei r effects on pe r fo rmance 
a r e d i scussed briefly. 

I. INTRODUCTION 

Although there is considerable in t e re s t in boiling water r e a c t o r s , 
l i t t le is known about the i r design p a r a m e t e r s , let alone the i r future po­
tent ial . Therefore , a study has been init iated at Argonne to evaluate the 
capabil i t ies of na tura l c i rcula t ion r e a c t o r s uti l izing information p resen t ly 
available. The approach used is based p r i m a r i l y upon s t eady-s t a t e engi­
neer ing aspects with nuclear considera t ions being secondary . This r epor t 
r e p r e s e n t s a p re l imina ry s u m m a r y of a port ion of this study. 

An at tempt is made to show the potential of na tu ra l c i rcula t ion boi l ­
ing r e a c t o r s by present ing per formance p a r a m e t e r s and by d iscuss ing in­
te res t ing and significant facets of design. 

This study should not be cons t rued as a comprehens ive analys is of 
boiling r e a c t o r s , since no at tempt has been made to evaluate all p a r a m e t e r 
combinations or r eac to r cycle var ia t ions . Bas ica l ly , the purpose of this 
r epor t is to show that the potential of na tura l c i rcula t ion boiling r e a c t o r s 
is not as l imi ted as many bel ieve. It is hoped that the information p r e ­
sented will be of value in de termining des i r ab le avenues of boiling r e a c t o r 
design and development. 
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II. GENERAL DISCUSSION ^ 

A bas ic problem of r eac to r design is to obtain the max imum amount 
of power from the r eac to r co re . With boiling r e a c t o r s it is usual ly des i rab le 
to genera te this power with a min imum amount of s t eam volume in the co re . 
La rge quantit ies of s t eam r e p r e s e n t a loss in modera t ion , usual ly a loss in 
react ivi ty , and reduce max imum power density due to stabil i ty and burnout 
cons idera t ions . 

The importance of low s t eam volume in the core depends upon the 
type of r eac to r . The effect on modera t ion and reac t iv i ty is l e s s for heavy 
water r e a c t o r s than it is for light water r e a c t o r s . However, the bas ic heat 
flux l imi ta t ions , and many of the stabil i ty p rob l ems , a r e the same for both 
light and heavy water r e a c t o r s . Although the p rope r t i e s of light water were 
used in the calcula t ions , the hydrodynamic and thermodynamic p rope r t i e s of 
light and heavy water a r e sufficiently s imi l a r to give a fair ly r ep resen ta t ive 
pic ture of the re la t ive effects of such p a r a m e t e r s as p r e s s u r e , geometry , 
e tc . , on heavy water r eac to r pe r fo rmance . 

The calculation methods and analyt ical p rocedures used a r e d i s ­
cussed in the Appendix. All calculat ions were checked on the IBM-650 
computer . 

This repor t is concerned p r i m a r i l y with the s imple d i rec t cycle 
shown in F ig . 1. The s t eam genera ted in the co re flows d i rec t ly to the t u r ­
bine, after which it is condensed and pumped back into the r e a c t o r ve s se l 
at a t empe ra tu r e of about 10OF. 

Recircula t ion within the r eac to r vesse l is made up of the sa tu ra ted 
water from the top of the core or r i s e r flowing to the downcomer and mixing 
with the colder make -up water . The mix ture en t e r s the bottom of the core 
and heat is added to this coolant fluid over the active core length. The 
s t eam genera ted in the coolant pas sages c r e a t e s a na tura l c i rcula t ion driving 
head because of the fluid density differential between the c o r e - r i s e r column 
and the downcomer leg. 

III. PERFORMANCE ANALYSES 

In the in t e re s t s of s impl ic i ty , na tu ra l c i rcula t ion boiling r e a c t o r s 
have been divided into two genera l ca t ego r i e s : those with r e s t r i c t i v e - t y p e 
r i s e r s (or chimneys) , and those with open, or re la t ive ly u n r e s t r i c t e d r i s e r s . 
An example of the r e s t r i c t i v e type would be a r e a c t o r with inact ive extensions 
of the fuel channels of the core . This r e su l t s in many r i s e r s of re la t ive ly 
smal l hydraul ic d i ame te r . An example of the open-type r i s e r would be a 
r eac to r having one or m o r e r i s e r s of l a rge hydraul ic d i ame te r . 
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Since the r e s t r i c t ive - type r i s e r offers considerably g rea t e r r e s i s t ­
ance to flow than does the open r i s e r , its assoc ia ted ci rculat ion ra t e s a r e 
l e s s . F o r this reason, the lengths of r e s t r i c t ive - type r i s e r s a r e shor t , 
while for the open-type r i s e r the lengths a r e usually quite long. Another 
cha rac t e r i s t i c of the r e s t r i c t ive - type r i s e r is that, since each core channel 
has its own r i s e r , a r eac to r can be designed so that a core channel can 
re l ieve itself if m o r e power is l ibera ted locally in a channel. The open 
r i s e r - t ypedes ign has mos t of i ts driving head in the r i s e r section which 
would not be affected by the per formance of a single channel. This is 
essent ia l ly the sanne situation that exis ts with forced c i rcula t ion, where 
para l le l channel operat ion is somet imes a problem. 

Per formance curves for r e a c t o r s with r e s t r i c t ive - type and with 
open-type r i s e r s a r e shown in F i g s . 2 to 10 and F i g s . 11 to 25, respect ive ly . 
The purpose of these curves is p r ima r i l y to show the in te r re la t ionsh ips of 
var ious p a r a m e t e r s such as power density, geometry , inlet water velocity, 
s team volvime fraction, etc . 

In o rder to el iminate the grea t number of geometr ic combinations 
poss ible , the hydraulic d i amete r s of the r i s e r and flow channels of F igs . 2 
to 10 were assvimed to be the same . In F igs . 11 to 25 it was a s sumed that 
the hydraulic d iamete r s of the r i s e r s were 1 ft and that the total r i s e r flow 
a r ea was equal to the total core flow a r ea . 

There a r e var ious bases for comparing boiling r eac to r pe r fo rmances , 
but no single one is completely adequate. Compar ison of per formance in 
F igs . 2 to 10 is based on a constant value of 

V ( p "p ) , C w s 

which is the average density deviation of the core coolant from sa tu ra ted 
conditions due to s t eam volume fraction. This t e r m provides a m e a s u r e of 
react ivi ty t ied up by s team in the core and an approximation of the hydro-
dynamic circulat ing head for the case of a r i s e r l e s s co re . It r e p r e s e n t s a 
simple form of compar ison ra the r than a r igorous nuc lear , hydrodynamic, 
or thermodynamic p a r a m e t e r . Three different values of this density devi­
ation t e r m were selected. They r ep re sen t values that a r e about l / 2 , 1, and 
2 t imes that of EBWR at design conditions. 

The p r i m a r y reason for the use of exit s t eam volume fraction as a 
bas i s for compar ison in F igs . 11 to 25 is to show a wide range of pe r fo rm­
ance for a given design. The exit s team volume fraction is also a major 
considerat ion in evaluating the maximum capacity of a r eac to r from the 
standpoint of burnout and stabili ty. For the open r i s e r design it is e s sen ­
tially a d i rect m e a s u r e of driving head since prac t ica l ly all of the driving 
head is due to the s t eam volume fraction in the long r i s e r . 
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Although m F igs . 2 to 10 it appears that the power density i nc reases 
very marked ly with p r e s s u r e , it should be noted that the i nc rease can be a t ­
t r ibuted, in par t , to the bas i s of compar ison used. However, for a given value 
of exit s team volvtme fraction, the power density does i nc rease with p r e s s u r e 
(see F igs . 11 to 25). 

The effect of r i s e r s on r eac to r per formance can be evaluated by de­
termining thei r influence on the coolant flow ra t e . As the flow ra te i n c r e a s e s , 
the ra t io of r eac to r power to s t eam volume fraction i n c r e a s e s , thus improving 
r eac to r per formance . In r e s t r i c t i ve - type r i s e r des igns , the g rea tes t benefit 
is obtained from the f i rs t few feet of r i s e r height since the ra t io of % additioncil 
driving head to % additional flow r e s i s t ance is inherent ly low. By enlarging 
the r i s e r dianaeter, the ra t io of % additional driving head to r e s i s t ance can be 
considerably increased . 

F r o m F igs . 11 to 25 it is apparent that , although some of the core 
channels a r e r e s t r i c t i ve , c i rcula t ing water veloci t ies a r e quite high and exit 
qualit ies and s team volume fract ions a r e low with these open r i s e r des igns . 

In calculating the per formance curves shown in F igs . 2 to 25, the fol­
lowing assumptions were made : (1) uniform axial t he rma l flux; (2) s t eam 
volume fraction in the r i s e r was the same as that at the core exit; and (3) 
the external c i rculat ion flow r e s i s t ance was negligible (H = 2 ) . An example 
of the effect of external r e s i s t ance on a par t i cu la r arrangenaent is shown in 
Fig. 26. 

No study has been made of the possibi l i ty of burnout or instabil i ty; 
the re fore , sonne of the operat ing conditions shown may be unattainable. 

IV. GENERAL DESIGN CONSIDERATIONS 

A. P r e s s u r e 

One of the mos t in teres t ing fea tures of this study is the manner 
in which p r e s s u r e affects per formance . Power density i n c r e a s e s at higher 
p r e s s u r e s and circulat ing r a t e s do not inherent ly drop off with p r e s s u r e . 
The basic reasons for this a r e threefold: 

(1) On the constant density deviation b a s i s , driving head does 
not drop off with p r e s s u r e . 

(2) Although the two-phase frict ion factor mul t ip l ie r does in­
c r e a s e with increas ing s t eam volume fraction, this is m o r e 
than offset by the dec rea se in friction due to p r e s s u r e i n c r e a s e . 

(3) At very high p r e s s u r e t he re is additional driving head due to 
the dens i ty - t empera tu re re la t ionship of wate r . At the high 
power densi t ies of high p r e s s u r e operat ion, this additional 
head can be quite significant. 
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Figure 27 shows a compar ison between the average density 
deviation t e r m , "a „ ( p^ - p ), and the t rue core coolant density deviation, 
( p ^ - PQ)> for a given a r rangement . The t e r m s a r e the same at lower 
p r e s s u r e , but differ considerably at higher p r e s s u r e because of the effect 
of the inlet subcooled water density. 

An in teres t ing per formance cha rac t e r i s t i c of higher p r e s s u r e 
operat ion is shown in F i g s . 23 to 25. As power density is inc reased , the 
t rue core coolant density, PQ, i n c r e a s e s . Such in te r re la t ionsh ips of power 
density, coolant density, and inlet subcooling suggest a r eac to r with low^ 
core s team volume fraction operat ing by na tura l c i rculat ion near the c r i t i ­
cal p r e s s u r e , possibly with t e m p e r a t u r e control . 

At higher p r e s s u r e s the boiling lengths inherent ly become 
shor te r (about 35% of core length at 2500 psi for uniform axial flux d i s ­
tr ibution); therefore lower s t eam volume fractions and quali t ies will exist 
in the zone of higher heat flux. This sho r t e r boiling length and i ts location 
near the discharge end should be beneficial from the standpoints of burnout 
and stabil i ty. 

The possible beneficial aspec ts of high p r e s s u r e operat ion have 
to be weighed against assoc ia ted drawbacks . Burnout considera t ions p resen t ly 
appear to dictate a general lowering of pe rmi s s ib l e heat fluxes above sys tem 
p r e s s u r e s of about 1000 psi . Maximum reac to r vesse l d i ame te r s at high 
p r e s s u r e s further lower attainable total power output. Such additional 
questions as those concerning w^ater dissociation at high power densi t ies 
and p r e s s u r e s , and the resul tant effects on turb ines , piping, foss i l - f i red 
superheat ing, e tc . , have yet to be answered. 

F o r high p r e s s u r e r eac to r operat ion it is m o r e probable that 
s ta in less cladding of the fuel e lements will be requi red . Depending upon 
the par t i cu la r design, this rnay significantly affect neutron economy. Fu r the r 
nuclear cons idera t ions , such as the requ i rement of a g r ea t e r amovint of 
react ivi ty t ied up in core coolant density changes between operat ing t e m ­
pera tu re and room t e m p e r a t u r e , mus t a lso be evaluated. 

B. Geometry 

As one would expect, sma l l e r channels resu l t in lower r e c i r c u ­
lation veloci t ies . However, for given power dens i t ies , l a r g e r channels r e su l t 
in higher heat fluxes. It is difficult to evaluate the t rue significance of chan­
nel s ize since so l i t t le is understood about na tura l c i rcula t ion quality burnout. 

The proper select ion of a r i s e r is probably the mos t important 
single aspect of na tura l circvilation boiling r eac to r design. The optimum r i s e r 
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design will probably incorpora te des i rab le features of both bas ic r i s e r types . 
Information is not available to completely evaluate the effect of a change in 
geometry between the core and r i s e r . A i r - w a t e r exper iments at a tmospher ic 
p r e s s u r e ' ' ) have shown that the vapor fraction (a) i nc r ea se s with a reduction 
of flow a r ea and d e c r e a s e s with an inc rease of flow a rea . The magnitude of 
these changes is not grea t and is a function of the a r e a ra t ios . It is expected 
that the changes will be l e s s at the higher p r e s s u r e s . When information is 
available along these l ines , t ru ly optimum designs of r i s e r s and m o r e thorough 
studies will be possible . 

Because the open r i s e r has such a high rat io of driving head to 
r e s i s t ance , the l imitat ions of height a r e mos t likely to be de termined p r ima r i l y 
by economic or other considera t ions connected with i ts s ize . 

C. Burnout 

In o rder to evaluate the potential of boiling water r e a c t o r s , it is 
n e c e s s a r y to know where and how burnout o c c u r s . This is probably the 
g rea tes t bas ic uncer ta inty in boiling r eac to r design. No cor re la t ions of net 
boiling burnout a r e known that adequately desc r ibe its re la t ionship with p r e s ­
su re , velocity, quality, s team volume fraction, and geometry . As previously 
mentioned, p resen t data indicate a general lowering of burnout heat flux in 
going above 1000 ps i , and, s ince the re a r e promis ing aspec ts of na tura l c i r ­
culation per formance at higher p r e s s u r e s , the question of burnout heat flux 
becomes m o r e important . Since burnout may be significantly inc reased by 
higher velocity, as well as by lower quality and s team volume fraction, the 
open r i s e r - t y p e r eac to r design looks par t i cu la r ly promis ing . 

Very high p r e s s u r e burnout b e a r s further study. The p roper t i e s 
of steana and water at p r e s s u r e s slightly l e s s than the c r i t i ca l p r e s s u r e a r e 
such that a sudden phase change in this region may not lead to a burnout or 
excess ive t empera tu re condition due to channel blockage as can happen at 
lower p r e s s u r e . 

D. Stability 

It is the w r i t e r s ' belief that the boiling r eac to r stabil i ty problem 
is p r ima r i l y one of hydrodynamics , with nuclear aspects being secondary. 
A t rend of inc reased stabil i ty with p r e s s u r e has been shown by reac to r and 
thermal-hydrodynannic exper iments up to 600 psi . Exper iments have shown 
that r e s t r i c t ions in na tura l c i rcula t ion operat ion or the use of a pump (at 
the same flow rate) a r e other means of aiding stabil i ty. 

Reactor stabili ty should improve at higher p r e s s u r e s - one 
reason being the inherent sho r t e r boiling length. It is also expected that 
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higher circulat ion flow r a t e s , along with lower s team volume fraction, will 
be beneficial. However, the effect of water height above the core , with or 
without r i s e r s , on stabili ty is not well known and r equ i r e s further study. 

E. Efficiency 

The effect of s team p r e s s u r e and t empe ra tu r e on Rankine cycle 
efficiency is shown in Fig. 28. Although efficiency general ly i n c r e a s e s with 
p r e s s u r e without superheat , higher p r e s s u r e s t eam beconn.es quite mois t 
upon expansion. Thus mois tu re separa t ion and /o r extract ion becomes m o r e 
important if superheat is not used. At higher p r e s s u r e s , nuclear superheat 
appears promis ing , since there is no ex t reme density reduction in the t r a n ­
sition from the liquid to the vapor phase. Nuclear superheat designs in the 
form of a light water , two-pass a r r angemen t or with a separa te superheat ing 
co re , appear worth investigating. Some nuclear superheat is possible even 
at lower p r e s s u r e s for cer ta in heavy water des igns . 

Feed-wa te r preheat may also be des i rab le . Turbine extract ion 
can be used to heat make-up water as well as to lower turbine moi s tu re con­
tent. However, the resul t ing inc rease in cycle efficiency mus t be balanced 
against the dec reased core coolant density result ing frona the w a r m e r m a k e ­
up water . The effect of make-up t empe ra tu r e on reac to r per formance is 
shown in F ig . 29 for a par t i cu la r a r r angement . 

Many var ia t ions of sys tems with superheat , p rehea t , reheat , 
e tc . , a r e possible . This i s , of cou r se , a major study by itself. Pa r t i cu l a r ly 
in teres t ing var ia t ions with reheat or other types of heat exchange in the top 
of the downcomer may prove worthwhile for ce r ta in designs. 

V. CONCLUSIONS 

The potential of natural c i rculat ion r e a c t o r s appears very good and 
l e s s l imited than has general ly been believed. Since the "ar t" of boiling 
reac to r design is considerably more complex and l e s s es tabl ished than that 
of p r e s s u r i z e d water r e a c t o r s , and since a number of factors that contribute 
toward optimum design requ i re m o r e investigation, the t rue capabil i t ies of 
na tura l c i rculat ion boiling r e a c t o r s a r e not completely known at p resen t . 
However, some specific conclusions that can be drawn a r e : 

1. Fo rced circulat ion is not always n e c e s s a r y to achieve high flow 
r a t e s . Natural c i rculat ion veloci t ies can be g rea t e r than flow ra t e s normal ly 
associa ted with forced circulat ion design. 

2. High p r e s s u r e s offer p romise of high power density operat ion. 

http://beconn.es
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/f 
3. Power density is likely to be a p r i m a r y l imiting feature of low 

p r e s s u r e design, while burnout heat flux is likely to be the p r i m a r y l imit ing 
considerat ion of higher p r e s s u r e design. 

4. There is considerable need for further analytical and exper i ­
mental development of significant pars imeters and cor re la t ions . Information 
about the mechan ism of burnout, the effect of high o p e n - r i s e r geometry , and 
the predict ions of hydrodynamic-nuclear stabil i ty is pa r t i cu la r ly needed. In 
genera l , studies in the higher p r e s s u r e and higher velocity ranges a r e great ly 
needed. 



15 

/S 

TO TOP OF 
DOWNCOMER 

FIG. I 
BASIC SYSTEM 



16 

I I I 

n I I I 

PRESSURE, l b / I 

EFFECT 

S 

Of 
OF 
= 0 

PRESSURE AND 
NATURAL 
24 in., 

FIG. 2 
HEIGHT CF RISER ON PERFORMANCE 

CIRCULATION BOILING REACTORS. 
ac(Pw "Ps' ~ 2 2 Ib/ft^ T„=IOOF 



17 

/ / 

1 1 I I 1 
L L(- = 4 f t 

L RISER HEIGHT, 

1 " ~ \ 
1 1 — ^ 
1 °—x/ 

Y/\ /\ \\ 

ft 11 

' / 

1 

/ -

/ / 

/ : 

/ : 
/ • 

1 

I 

8 
z: 

er̂  
< 
UJ 

O 

> 2 

< 
t-
tn 

2 ,_ 

X 
UJ 

1 

-
-
-

-
_ 
— -

-

1 

1 1 
k = 

1 ^ 

' 1 
= 8 

i 

f t 

1 2 ^ 

8 ^ 

4 ^ ^ 

0 —./W 

nil 
/// L^ //l/j 

/ 

1 

-
-

r 1-
«// ~ 
//// 

iiii ~ 
J 
'II 1 

/ y C -
/ / 

— 

1 

I I I I 

I I I I 

Lr = 12 f t 

6 8 10^ 
PRESSURE, Ib/Ir 

EFFECT 

S 

OF 
OF 
= 0 

PRESSURE AND 
NATURAL 
48 i n . ; 

FIG. 3 
HEIGHT 

CIRCULATION 

='c'Pv. -Ps) = 2 

OF RISER ON PERFORMANCE 
301 LING REACTORS. 
2 I b / f t ^ T , = IOOF 



18 

/ ^ 

6 8 I C 2 

PRESSURE, Ib/in.^ 

FIG. 4 
EFFECT OF PRESSURE AND HEIGHT OF RISER ON PERFORMANCE 

OF NATURAL CIRCULATION BOILING REACTORS. 
S = 0.72 in., S-r(p„-p<.) =2.2 Ib/ft^ T„=IOOF 



19 

1 

-

"—" 

, .L 

M 1 1 

- ^ ^ 
4—-^\„^-1f 

0 — / 

A-
^ / 

y -

1 

I I I I 

- 1 — I I I 

1 

-

- ^ 

1 

1 111 
1 2 \ 

^ 

1 1 1 1 

1 

^ ^ 

^ 4 

^ 0 

1 

-4-7-
-

I I I I 

FIG. 5 
EFFECT OF PRESSURE AND HEIGHT OF RISER ON PERFORMANCE 

OF NATURAL CIRCULATION BOILING REACTORS. 
S = 0.24 in.; ac(Pv,-Ps) =4.4 Ib/ft^; T„=IOOF 



20 

_ 1 
-
— 

— 

,L 

1 1 1 1 

' 2 — \ 

' ^ 

^S 

1 I I 1 

1 

^^. 
> < ^ 

t>f 
^ 0 

1 

/,-
y/-
/ -

L 1 

_ 
-

-

-

— 

-

-

-

i 

1 1 11 
l-c = 12 

12 

8 

4 

0 

-i/, 
/ 
/ i l l 

f t 

^ 

^ 

fir f 

1 

: 
-

| -

/ l~-
/ : 
- * 

-

1 
5 6 8 10'' 

PRESSURE, l b / I n . 

EFFECT 

S 

Of 
OF 
= 0. 

PRESSURE AND 
NATURAL 
48 i n . . 

FIG 
HEIGHT 

6 
OF RISER ON PERFORMANCE 

CIRCULATION BOILING REACTORS. 

"c 'Pw" -Ps ' =-* 4 I b / f t ^ T „ = I O O F 



/ 

21 

1 
_ 
-

-

I I I I 

" " " ^ ^ 
- ^ 

4 ' ^ ^ ^ 

0 ^ 

, , , 1 

' > ^ -
.^Z-

^ / " 
y 

1 

PRESSURE, l b / I n . 2 

EFFECT 

S 

Of 
OF 
= 0. 

PRESSURE AND 
NATURAL 
72 in.; 

FIG. 7 
HEIGHT 

CIRCULATION 
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APPENDIX 

METHOD OF ANALYSIS 

The method of analysis used in these studies is that used for 
general boiling water r eac to r design at ANL.\^) The resu l t s a r e in good 
agreement with 150 - 600 psi boiling studies at ANL. Previous ly devel­
oped equations for calculating the circulat ing water velocity (V^) for 
sys tem p r e s s u r e s up to 600 psi did not take into account the effects of 
subcooling (which become increasingly important at higher p r e s s u r e s ) , 
or account for r i s e r core geometry combinations. Therefore , a m o r e 
general equation has been developed to calculate V.^: 

V2 

2g 

^ ^ ^ I L -F l - ^ ^ I I . . R i 

+ fr 
L N B _ ^ - L B 

+ R — ^ 

NB 

-l.RR.f-
L R i 

R i ' R i 
R i 

Ac + ^ + 2 •+ rp^ -F H 

The factors R and R were obtained from ei ther empi r ica l cor ­
relat ions or analytical considerat ions and a r e based p r ima r i l y on s ingle-
channel boiling studies ca r r i ed out at ANL. Lit t le exper imental data have 
been obtained at ANL for p r e s s u r e s beyond 600 psig. Since a major por­
tion of this study concerns higher p r e s s u r e regions , r ecou r se has been 
made to extrapolation of existing cor re la t ions and obtaining available 
information from the l i t e r a tu re . 

The R cor re la t ion used is a compromise between the actual data 
and an analytical R function developed at ANL.(^) It is felt that this 
analytical express ion adequately predic ts the t rend of the p r e s s u r e effect 
and i s , therefore , used as the bas ic equation for calc\ilating R. An ad­
ditional factor was a rb i t r a r i l y introduced to c o r r e c t for the existing dif­
ference between actual data and the analytical express ion. The factor was 
made a function of p r e s s u r e , being 1.30 at 150 psi and becoming 1 at the 

cr i t ica l p r e s s u r e . This R • a relat ionship is shown in Fig . 30. The r i s e r 
friction factor , R, was derived in a s imi la r manner and is shown in Fig. 31 
Some corrobora t ion of these R - a relat ionships for high p r e s s u r e ranges 
has been obtained recent ly by Isbin.v^) 

The relat ionships of x and a a r e not fully understood. Various 
cor re la t ions have been developed at A N L ' ' * ) that descr ibe these re la t ion­
ships within the range of values normal ly encountered in reac to r design. 
Although other cor re la t ions a re more r igorous and accura te , the slip 
rat io (vg/v.^) - velocity (V-̂ )̂ corre la t ion has been used for this analysis 
because of its convenience for calculating. The values of slip ra t io at the 

http://-l.RR.f
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higher p r e s s u r e s and veloci t ies were obtained by extrapolat ion of exist ing 
ANL cor re la t ions and data. These extrapolated slip ra t io cu rves , shown 
in F ig . 32, have been checked in seve ra l ins tances by compar i son with 
f ragments of data obtained from other sources . (^ '^ ) Essen t ia l ly all of the 
data obtained by ANL is for hydraul ic d i ame te r s of the active sect ions of 
1-2-in. or l e s s . However, s tudies made at ORNL^ ' for very l a rge hydraulic 
d i ame te r s a r e in fair ag reement with ANL data. 

Although s ca t t e r ed f ragments of data obtained from seve ra l sou rces 
have spot checked the extrapolated co r r e l a t i ons , it sho\xld be kept in mind 
that these cor re la t ions a r e not completely proven - pa r t i cu la r ly in the higher 
p r e s s u r e and velocity r anges . 
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