

~~TITLE PAGE FORM FOR INFORMAL DOCUMENTS~~

~~Strike over blue lettering where appropriate. Blue lettering will not appear on printed copies. Do not place classification markings on this sheet. Classified title pages will be reproduced on stock printed with red classification markings.~~

UCID - 16446

This is an informal report intended primarily for internal or limited external distribution. (The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.) This report is not to be given additional external distribution or cited in external documents without the consent of the author or LLL Technical Information Department.

This document contains copies.
This is copy of Series

LAWRENCE LIVERMORE LABORATORY

University of California/Livermore, California

**GUIDE FOR CALCULATING COLLECTION EFFICIENCY FOR THE SHALLOW SOLAR POND
(Applicable for Any Horizontal Flat Plate Solar Collector)**

W. C. Dickinson and R. D. Neifert

February 1, 1974

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTENTS

	Page
I. Introduction	1
II. Solar Geometry	2
III. Performance Equation (Collector Output)	3
IV. Construction of ϕ Curves	7
V. Calculation of $\bar{\alpha}$	12
VI. Calculation of U.	15
VII. Computer Program and Sample Results	24
 Table I. Values of r and δ for the 15th of each month	3
Table II. Relation between \bar{K}_T and \bar{K}_d	7
Table III. Some useful physical quantities for air	17
 Figure 1. Examples of shape of ϕ function	6
Figure 2. Theoretical and experimental ratio of the hourly diffuse radiation to the daily diffuse radiation (Figure 15 from our Reference 5)	9
Figure 3. Experimental ratio of the hourly total radiation to the daily total radiation (Figure 16 from our Reference 5)	10
Figure 4. The generalized radiation distribution curves for a horizontal surface (Figure 11 from our Reference 4)	11
Figure 5. Generalized ϕ curves for various values of \bar{K}_T	13
Figure 6. Convection heat transfer coefficient vs. plate spacing	19
Figure 7. Collection efficiencies for 2 and 3 layers of Tedlar at 2 water temperatures	25
Figure 8. Collection efficiencies for 2 and 3 layers of glass at 2 water temperatures.	26

I. Introduction

The collection efficiency, n_c , of a solar collector system is defined as the useful heat collected divided by the solar radiation incident on the top surface. For a particular collector geometry it will be dependent on the position of the sun during the day, the amount of cloudiness, the ambient air temperature, as well as the cleanliness of the top surface.

There are several methods described in the literature for the calculation of n_c . One method is to calculate n_c for a clear equinoctial day and solstice day¹⁾. Another method is to make the calculation for a set of selected clear days each month²⁾. We have followed the method of Hottel and Whillier³⁾ and Liu and Jordan⁴⁾. [Hereafter referred to as HW and LJI respectively.] They present a method of calculating the hourly rate of energy collection but also, more importantly, the long term monthly average collection efficiency based upon monthly average daily solar insolation data and day-time temperatures obtained from Weather Bureau data. This data is appended to LJI for some eighty localities in the U.S. and Canada. We feel that this method provides the most realistic values of collection efficiency which can be obtained for a given collector system in a given location. Not only is the monthly variation taken into account but also the statistical effect of bad weather. The description presented below is necessarily concise and one is referred to the references for additional discussion.

¹⁾H. Tabor, Transactions of the Conference on the Use of Solar Energy - The Scientific Basis, II, Part I, Section A, 1955, pp. 1-23.

²⁾E. R. G. Eckert, et al., Semi-Annual Progress Report prepared by University of Minnesota and Honeywell, supported by NSF (RANN). July 31, 1973. Report: NSF/RANN/SE/GI-34871/PR/73/2.

³⁾H. C. Hottel and A. Whillier, Transactions of the Conference on the Use of Solar Energy - The Scientific Basis, II, Part I, Section A, 1955, pp. 74-104.

⁴⁾B. Y. H. Liu and R. C. Jordan, Solar Energy 7 (2), 53 (1962). Also see article by same authors in Low Temperature Engineering Application of Solar Energy, published by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, N. Y., 1967

II. Solar Geometry

If θ is the solar angle of incidence (also called the zenith angle), δ the solar declination, ω the solar hour angle from solar noon (15° per hour), and L the latitude, then it can be shown by spherical trigonometry that,

$$\cos \theta = \cos L \cos \delta \cos \omega + \sin L \sin \delta \quad (1)$$

The sunset angle, ω_s , is obtained by setting $\cos \theta = 0$ in Eq. (1):

$$\cos \omega_s = - \tan L \tan \delta \quad (2)$$

The number of hours between sunrise and sunset is $2 \omega_s^\circ (24/360) = 0.1333 \omega_s^\circ$.

In the method of LJI the direct and diffuse solar radiation on the earth's surface are expressed as fractions of the radiation on a horizontal surface outside the earth's atmosphere. If I_{sc} is the solar constant; i.e., the intensity on a unit area normal to the sun's rays and at mean distance of the earth from the sun, then the intensity on a horizontal surface outside the atmosphere is

$$I_o = r I_{sc} \cos \theta \quad (3)$$

where r is the square of the ratio of the mean distance to the actual distance between earth and sun. The best present value of I_{sc} is 1353 w/m^2 . Values of r and δ for the 15th of each month are given in Table I.

The average daily radiation* on a horizontal surface outside the earth's atmosphere is obtained by integrating Eq. (3), using the expression for $\cos \theta$ from Eq. (1):

*For all radiation values; instantaneous, average hourly, average daily, etc., we will use units of watts/m^2 . LJI and most others use units of BTU/hr-ft^2 and BTU/day-ft^2 . $1 \text{ BTU/hr-ft}^2 = 3.153 \text{ w/m}^2$, $1 \text{ BTU/day-ft}^2 = 0.1314 \text{ w/m}^2$.

$$\begin{aligned}
 H_o &= \frac{r}{2\pi} I_{sc} \int_{-\omega_s}^{\omega_s} (\cos L \cos \delta \cos \omega + \sin L \sin \delta) d\omega \\
 &= \frac{r}{\pi} I_{sc} (\cos L \cos \delta \sin \omega_s + \omega_s \sin L \sin \delta) \quad (4)
 \end{aligned}$$

Table I. Values of r and δ for the 15th of each month^a.

	r	δ
JANUARY	1.0336	-21°09'
FEBRUARY	1.0250	-12°43'
MARCH	1.0110	-2°11'
APRIL	0.9934	9°44'
MAY	0.9785	18°51'
JUNE	0.9691	23°18'
JULY	0.9679	21°33'
AUGUST	0.9750	14°05'
SEPTEMBER	0.9889	3°01'
OCTOBER	1.0058	-8°32'
NOVEMBER	1.0222	-18°28'
DECEMBER	1.0323	-23°16'

a. From the 1974 Nautical Almanac.

III. Performance Equation (Collector Output)

If the total solar insolation (direct and diffuse) per unit horizontal area is I_T then the instantaneous rate of useful heat collection per unit area of pond is*:

*There should be an additional multiplicative term, F_R , which is the heat extraction efficiency for the particular collector. According to LJI, when water is used to remove the heat from the collector, $F_R \approx 0.9$, and when air is used, it is ≈ 0.8 . We are particularly interested in the case of a shallow solar pond collector module where the water itself serves as the collector and $F_R = 1$.

$$q = I_T (\bar{\tau}\alpha) - U (T_c - T_a) \quad \text{watts/m}^2 \quad (5)$$

where $\bar{\tau}\alpha$ is the transmissivity-absorptivity product (fraction of I_T absorbed by pond water), suitably averaged for direct and diffuse radiation components, U is the overall heat loss coefficient (in $\text{w/m}^2\text{°C}$) which will depend weakly on both T_c and T_a where T_c is the average water temperature of the pond and T_a is the ambient air temperature ($^{\circ}\text{C}$). Evaluation of $\bar{\tau}\alpha$ and U will be discussed below.

From Eq. (5), the instantaneous value of the collection efficiency is

$$\eta_{ci} = \frac{U (T_c - T_a)}{\bar{\tau}\alpha - \frac{U (T_c - T_a)}{I_T}} \quad (6)$$

If the solar insolation is so weak that it can just make up for the heat losses, then the collector pumping system will be turned off and there will be no heat collection. This critical intensity, I_c , is obtained by setting $q = 0$ in Eq. (5):

$$I_c = \frac{U (T_c - T_a)}{\bar{\tau}\alpha} \quad (7)$$

The critical intensity ratio is defined for later use as,

$$x_c = I_c / \bar{I}_T \quad (8)$$

where \bar{I}_T is the average hourly total radiation*. Eq. (5) can now be written as

$$q = \bar{\tau}\alpha [I_T - I_c]^+ \quad (9)$$

Clearly, when I_T falls to I_c or below, no useful heat output is available.

To determine the long-term performance of the pond we need average hourly values of $\bar{\tau}\alpha$, I_T , I_c , and T_a . Then we can calculate the average hourly useful heat collection, \bar{q} , for any hour of any month. Weather

*In the statistical method described here, average values are usually understood to be "long-term", that is, averages taken over 3 to 5 years.

Bureau data is normally presented as monthly average daily total radiation on a horizontal surface, \bar{H} . From values of \bar{H} it is possible to obtain, as discussed below, values of \bar{I}_T , the average hourly total radiation, for any hour of the day from solar noon. Hence we take one month as a period during which the mean air temperature and mean position of the sun, at a particular hour of day, do not vary excessively. Hence $(\bar{\tau}\alpha)$ and I_c can be assumed to have the same average value during the same hour throughout the month. Then the value of \bar{q} [for a particular hour of day from solar noon in a given month] is given by

$$\bar{q} = \bar{\tau}\alpha \bar{I}_T \left[(1/n) \sum_n \left(\frac{I_T}{\bar{I}_T} - \frac{I_c}{\bar{I}_T} \right)^+ \right] \quad (10)$$

where n is the total number of mornings and afternoons in the month and the + sign indicates that only positive values are used in the summation. (The two hours symmetrical with solar noon are assumed to be identical.)

Hottel and Whillier³⁾ first introduced this approach. They named the bracketed term "utilizability", ϕ . Hence,

$$\phi = (1/n) \sum_n \left[\frac{I_T}{\bar{I}_T} - \frac{I_c}{\bar{I}_T} \right]^+ \quad (11)$$

If measured values of T_a , I_T (and hence \bar{I}_T) are available for every hour of a particular month, than a value of I_c can be calculated for each hour and hence values of ϕ can be determined for each hour. Note that ϕ is just the fraction of the total month's incidence on a horizontal surface, for one particular hour from solar noon, which arrives with sufficient intensity to justify collection. The average hourly heat collection can now be written

$$\bar{q} = \bar{\tau}\alpha \bar{I}_T \phi \quad (12)$$

Note that the quantity $\bar{\tau}\alpha$ is a characteristic of the collector geometry and materials whereas the other two quantities are characteristics of the "solar weather".

If a graph of ϕ vs. I_c/\bar{I}_T can be obtained for a particular month at a particular location, then for every hour a value of I_c can be calculated and, if \bar{I}_T is known, then ϕ can be determined. For example, if we hypothesize a month of identical days, then $I_T \equiv \bar{I}_T$ and the ϕ vs. I_c/\bar{I}_T is a straight line as shown below in Figure 1. For a month of variable weather the curve would lie above the straight line, as illustrated in the same figure.

Thus, for a month of identical days, if $I_c = I_T = \bar{I}_T$, then $\phi = 0$. However, for an actual month of variable weather, if $I_c/\bar{I}_T = 1$, there will be some days where the summation of Eq. (11) for the particular hour has a positive value as well as some days where it has a negative value (and hence not counted). So there will be a net positive value of ϕ . The more constant the weather is, the closer the curve will approach the straight line limit.

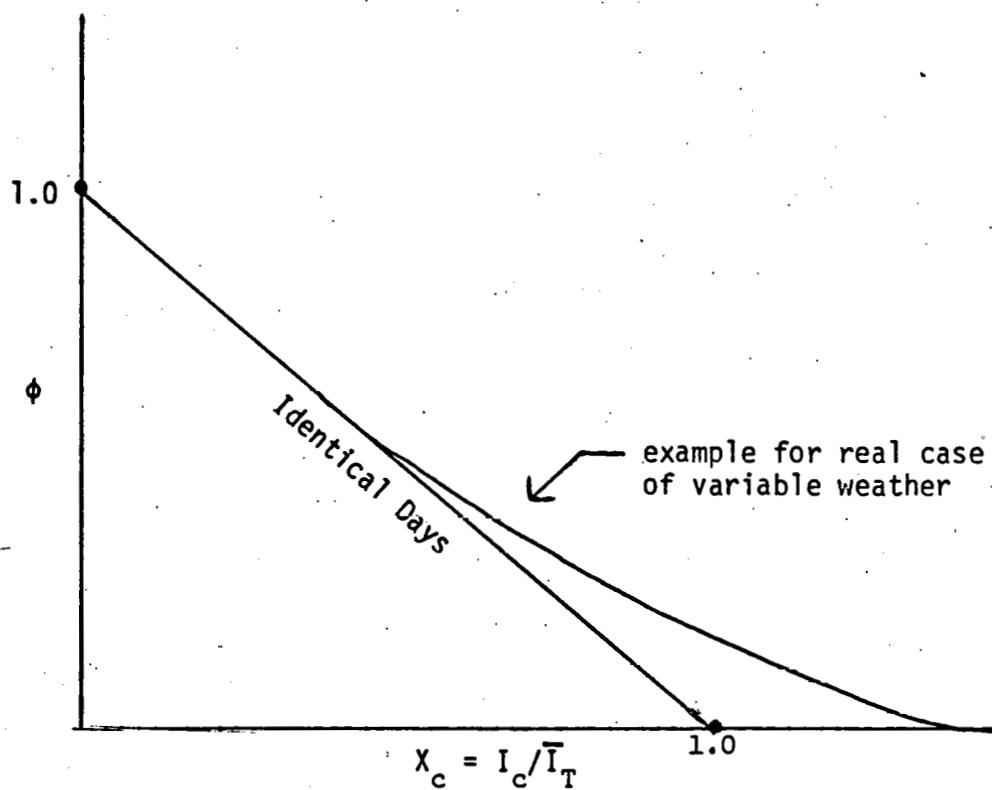


Figure 1. Examples of shape of ϕ function.

IV. Construction of ϕ Curves

Weather Bureau data generally consist of daily total radiation values only as well as average daily temperatures*. HW and LJI give a procedure for constructing generalized ϕ vs. I_c/\bar{I}_T curves which are applicable to any locality where monthly average daily total radiation data are available. This procedure will be briefly outlined here. For more detail one is referred to the above listed papers plus a paper on solar weather by Liu and Jordan⁵. (LJ2)

LJ2 show that a well-defined empirical relationship exists between the average daily diffuse radiation, \bar{D} , and the average total radiation, \bar{H} . Defining $\bar{K}_T = \bar{H}/H_0$ and $\bar{K}_d = \bar{D}/H_0$, the relation between \bar{K}_T and \bar{K}_d is given in Table II. The value of \bar{K}_T is a sort of "cloudiness index". A locality may be considered to be extremely cloudy if $\bar{K}_T = 0.30$. On the other hand, it is a very sunny locality that has $\bar{K}_T \geq 0.70$.

Table II. Relation between \bar{K}_T and \bar{K}_d

\bar{K}_T	0.3	0.4	0.5	0.6	0.7	0.75
\bar{K}_d	0.179	0.183	0.188	0.174	0.149	0.125

Hence if we are given values of the monthly average daily total radiation, \bar{H} , we can calculate $\bar{K}_T = \bar{H}/H_0$ and from Table II we can then determine $\bar{K}_d = \bar{D}/H_0$. From this we can determine \bar{D} . (This will be required later in the calculation of $\bar{\tau}\alpha$.)

Next, it is necessary to obtain relationships between hourly total and daily total radiation and between hourly diffuse and daily diffuse radiation. These have been established, on the basis of long-term weather

*For a few communities in the U.S., hourly total insolation data and hourly temperature data are available over a period of several years.

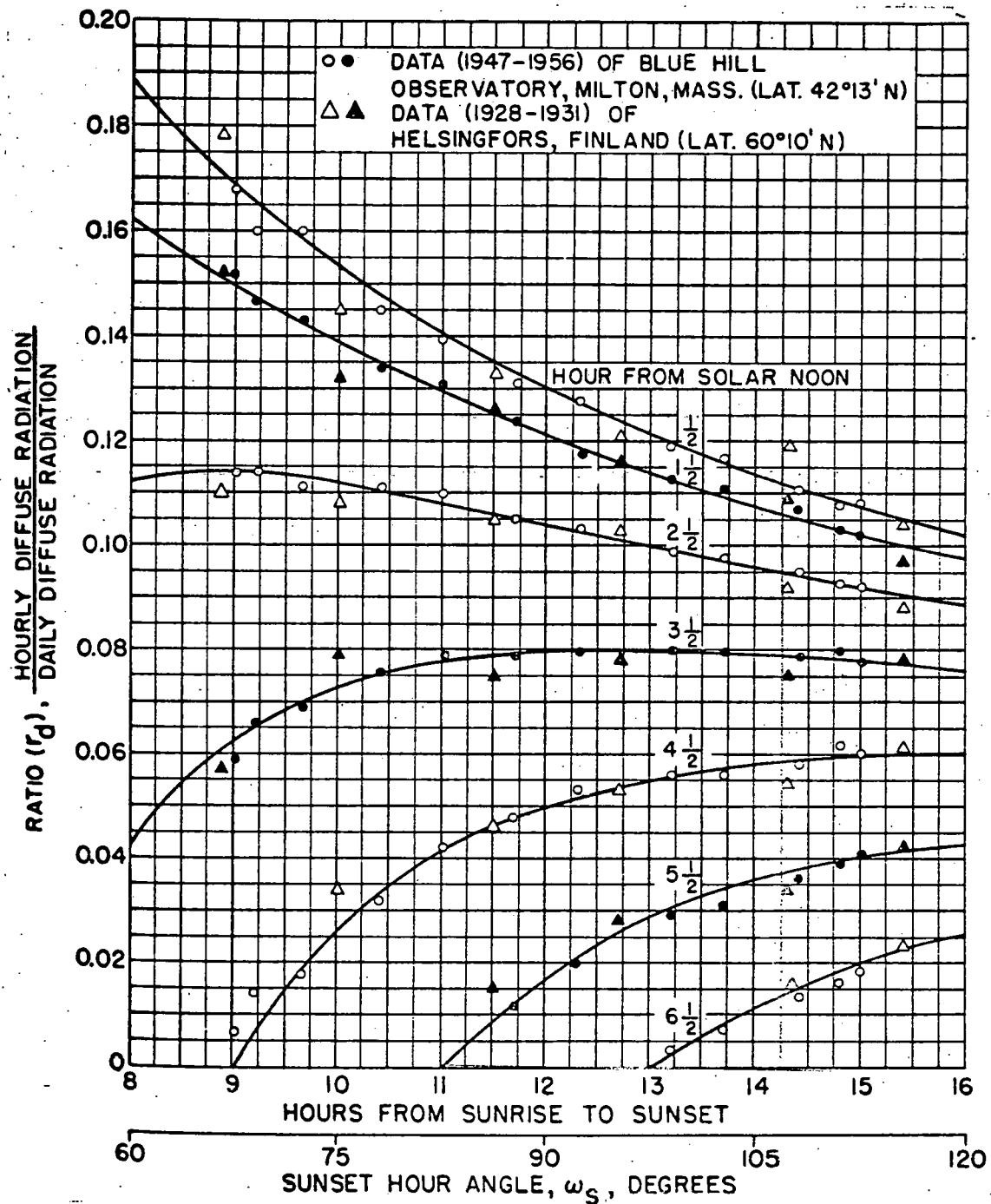
⁵J. B. Y. H. Liu and R. C. Jordan, Solar Energy 4 (3), 1, July 1960.

data by LJ2 and HW. LJ2 assume that, just as $\bar{D} = \bar{K}_d H_o$, so also $\bar{I}_d = \bar{K}_d I_o$. Therefore $r_d = \bar{I}_d/\bar{D} = I_o/H_o$. The expression for H_o is given in Eq. (4) and by a similar integration we can obtain

$$I_o = \frac{rI}{24} (\cos L \cos \delta \cos \omega + \sin L \sin \delta) \quad (13)$$

which gives

$$r_d = \frac{\bar{I}_d}{\bar{D}} = \frac{I_o}{H_o} = \frac{\pi}{24} \frac{\cos \omega - \cos \omega_s}{\sin \omega_s - \omega_s \cos \omega_s} \quad (14)$$


where $\cos \omega_s$ is given by Eq. (2).

In Figure 2 from LJ2 the solid curves are Eq. (14) and the experimental data points are from the two weather stations listed. Agreement is seen to be good so that either Eq. (14) or Figure 2 can be used.

Unfortunately, Eq. (14) is not a good representation of $r_T = \bar{I}_T/\bar{H}$. HW obtained experimental values of r_T from several widely separated localities and the mean curves shown in Figure 3 are a good representation of the experimental data (deviation $< \pm 5\%$).

To summarize the procedure up to this point:

- 1) For a given latitude, calculate H_o for the 15th day of each month, using Eq. (4) and Table I.
- 2) For the given location, look in tables at back of LJ1 for values of \bar{H} for each month.
- 3) Calculate values of $\bar{I}/H_o = \bar{K}_T$ for each month.
- 4) Use Table II to determine $\bar{K}_d = \bar{D}/H_o$. From this determine \bar{D} .
- 5) Use Eq. (14) or Figure 2 to determine r_d (and hence \bar{I}_d) for the middle of each hour from solar noon. This must be done for each month. Sunset hour angle given in Eq. (2).
- 6) Use Figure 3 to determine r_T (and hence \bar{I}_T) for the middle of each hour from solar noon and each month.

Figure 2. Theoretical and experimental ratio of the hourly diffuse radiation to the daily diffuse radiation. (Figure 15: from our reference 5)

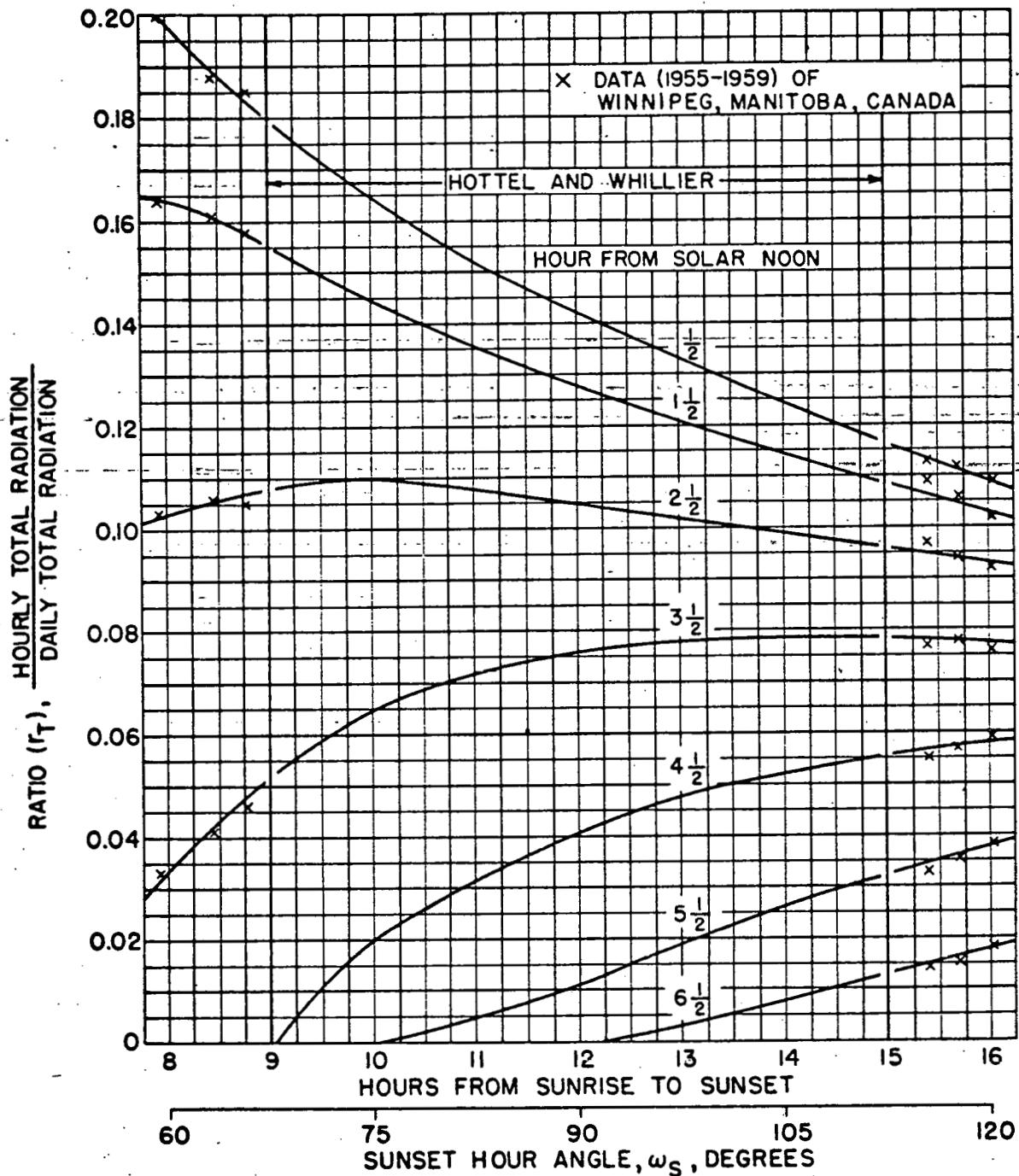


Figure 3. Experimental ratio of the hourly total radiation to the daily total radiation. (Figure 16 from our reference.5)

Now to proceed with determining the utilizability function, ϕ , LJ2 show that for widely different localities with about the same cloudiness index, \bar{K}_T , the statistical distribution over a month of daily total radiation, H , is very similar. From extensive experimental data of 27

localities, LJ2 construct a set of generalized radiation distribution curves shown in Figure 4. For each curve, representing a given value of the cloudiness factor \bar{K}_T , the ordinate gives H/\bar{H} and the abscissae gives the fractional time f during the month for which the daily radiation is less than H . LJ2 find that, independent of the locality, as long as \bar{K}_T has a given value, the appropriate curve from Figure 4 is an excellent representation of the statistical distribution of daily radiation.

It has been shown by HW that the distribution curves for hourly radiation are closely similar to those for daily data. Hence in Figure 4 the ordinate can also stand for $I_T/I_{\bar{T}}$ and the abscissae for fractional time f during the month for which the hourly radiation is less than I_T .

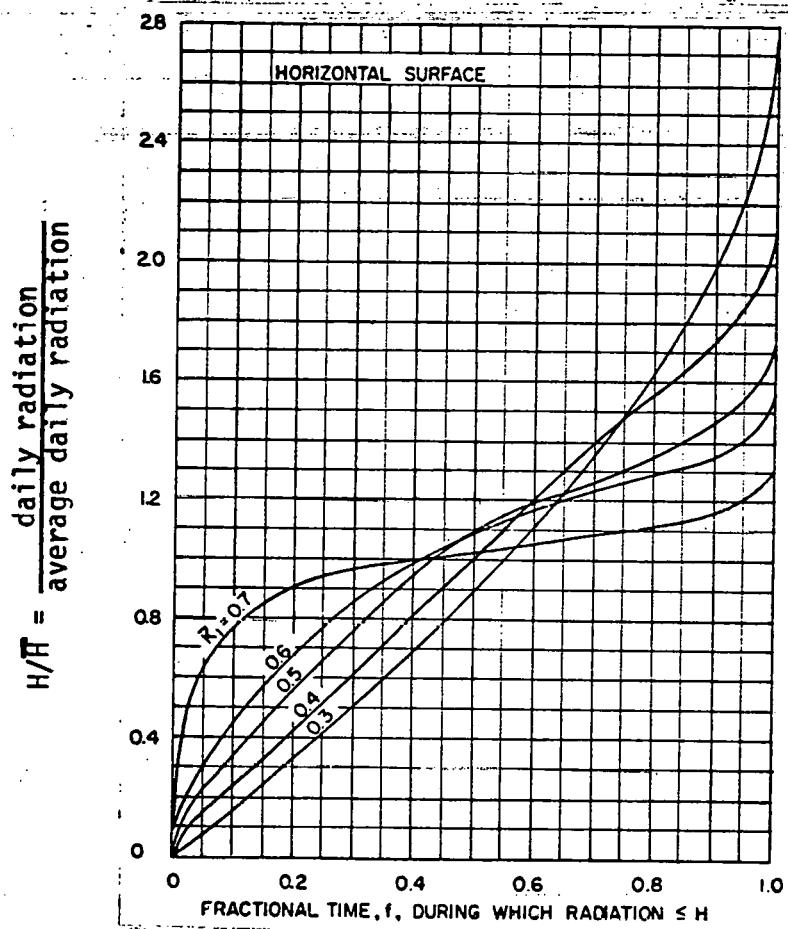


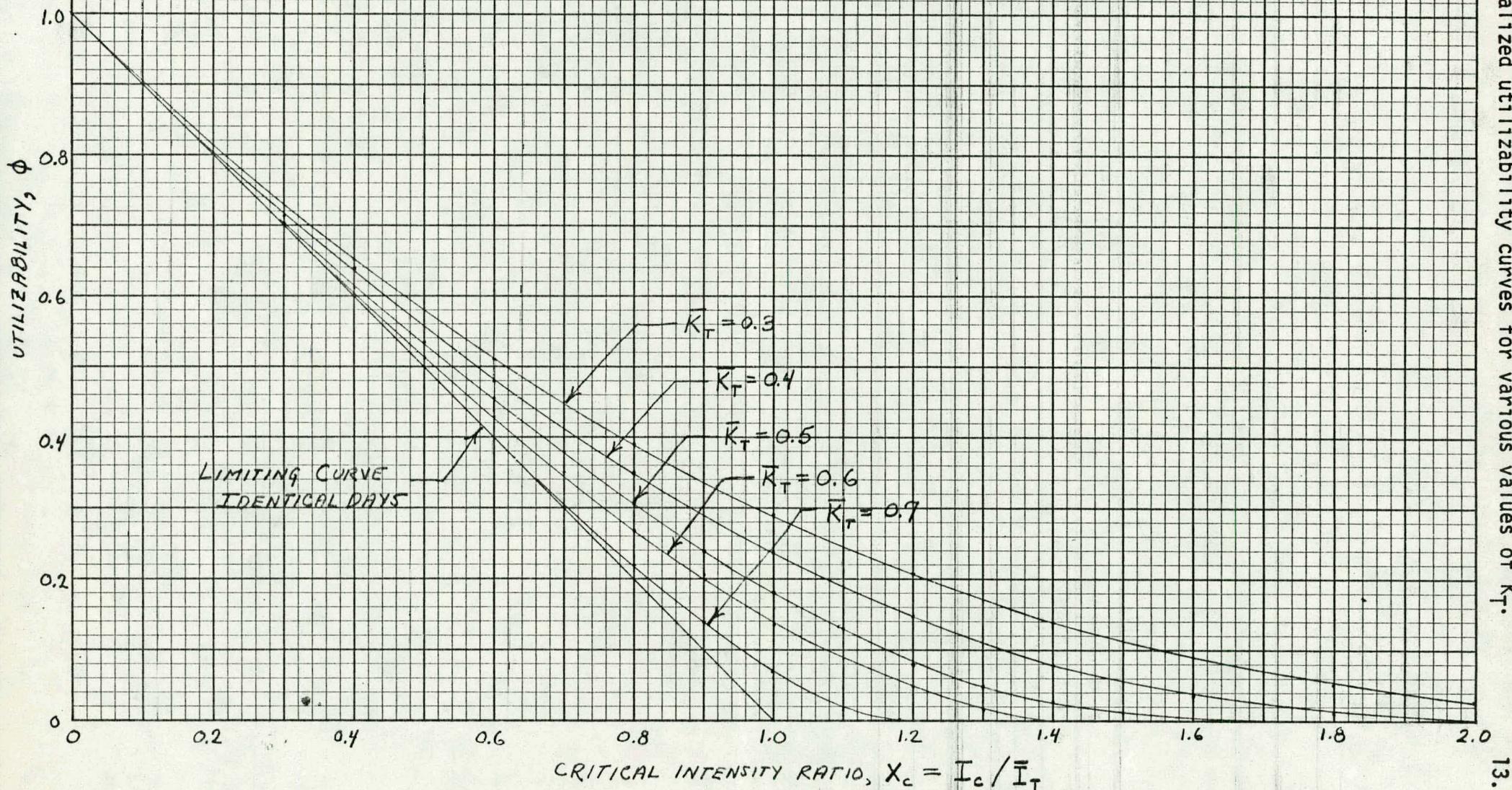
Figure 4. The generalized radiation distribution curves for a horizontal surface. (Figure 11 from our reference 4).

Defining f_c as the fractional time during the month for which the hourly radiation is less than I_c , the critical radiation intensity defined in Eq. (7), then we have

$$\phi = \int_{f_c}^1 \left[\frac{I_T}{\bar{I}_T} - \frac{I_c}{\bar{I}_T} \right] df = \int_{f_c}^1 \left[\frac{I_T}{\bar{I}_T} - X_c \right] df \quad (15)$$

and hence ϕ vs. X_c curves can be constructed for various value of \bar{K}_T using the distribution curves of Figure 4. These generalized utilizability curves are shown in Figure 5 for values of \bar{K}_T from 0.3 through 0.7.

It must be emphasized that this use of generalized ϕ curves will give only the long-term average performance of the solar pond for a given month at a given location. LJ2 claim that the results of this technique will be quite reliable for localities where \bar{K}_T is high (say 0.6 to 0.7). These are very sunny localities where the divergence of the ϕ curve from the straight line for a climate of identical days is small. It is in such localities where solar systems will be situated. In localities with extremely cloudy weather (low \bar{K}_T) the fluctuations from year to year about the generalized ϕ curve will be larger, hence introducing larger errors. However, these localities are of much less interest to us.


V. Calculation of τ

Assume that there are n layers of plastic or glass constituting the thermal blanket over the pond. The layers may be of different thickness but they must all have the same index of refraction. Then the transmittance of the cover is given by^{6J}:

$$\tau = e^{-KL/\cos\theta} \left[(1 - r)/(1 + (2n - 1)r) \right] \quad (16)$$

where K is the extinction coefficient of the material for the solar spectrum, L is the total thickness of the plastic or glass layers and r is

^{6J}A. Whillier, Low Temperature Engineering Application of Solar Energy. See reference 4.

- the reflectivity of a single plastic or glass surface. The expression for τ is derived from the Fresnel equations⁶⁾:

$$\tau = \frac{1}{2} \left[\frac{\sin^2 (\theta - \theta')}{\sin^2 (\theta + \theta')} + \frac{\tan^2 (\theta - \theta')}{\tan^2 (\theta + \theta')} \right] \quad (17)$$

where θ and θ' are the incident and refracted angles, respectively, and $\sin \theta' = \sin \theta / n'$, where n' is the index of refraction of the plastic or glass. For normal incidence, $\theta = 0^\circ$, Eq. (17) does not apply but rather

$$\tau_0 = \left[(n' - 1) / (n' + 1) \right]^2 \quad (18)$$

(Of course for latitude greater than $23\frac{1}{2}^\circ$ N or S we never have normal solar incidence.)

To obtain the absorptivity of the water-black bottom collector, consider a light beam incident on the water at angle θ . A fraction, τ , of the beam will be reflected from the top surface. (If there is a layer of plastic or glass lying on the water surface, the index of refraction used in Eq. (17) will be that of the layer rather than of the water. We can neglect any reflection from the layer-water interface since the indices of refraction are not very different.)

The fraction, $(1 - \tau)$, will pass into the water. Since water is almost completely opaque to the infrared and since about half of the energy in solar radiation lies in the infrared ($\geq 0.7 \mu$), only about half of the beam reaches the black bottom. A typical emissivity for a black surface is 0.96. Hence about 98% of the beam entering the water will be absorbed as heat in the water. We can then write for α :

$$\alpha = 0.98 (1 - \tau) \quad (19)$$

Finally, the $\tau\alpha$ product has to be suitably weighted for the direct and diffuse solar components. We follow the generally accepted convention⁶⁾ of assuming the diffuse radiation has an average angle of incidence for a

horizontal collector of 58°. For the middle of each hour from solar noon, the following expression must be evaluated:

$$\overline{\tau\alpha} = \frac{(\overline{I}_T - \overline{I}_d)(\tau\alpha) + \overline{I}_d(\tau\alpha)_{58^\circ}}{\overline{I}_T} \quad (20)$$

VI. Calculation of U

For a given collector geometry and given materials it is possible to calculate the overall heat loss coefficient, U, defined in Eq. (5). Comparison between calculated and measured values of U usually show agreement^{7,8)} within about 10%.

There is a vast literature in heat transfer and English units are used almost exclusively in English language publications. Therefore we have found it more convenient here to use English units; BTU, hour, feet, °F and °R. Hence our calculated values of U will be in BTU/ft² hr °F. They can be converted to metric units for use in Eq. (5) by:

$$1 \frac{\text{BTU}}{\text{ft}^2 \text{ hr } ^\circ\text{F}} = 5.678 \frac{\text{watts}}{\text{m}^2 \text{ } ^\circ\text{C}}$$

Although we are concerned with the case of a layer of water covered by two, or possibly three, plastic glazings, it is simpler to first consider the case of two or three glass glazings. (This is because glass is totally opaque to thermal radiation whereas plastics are not.) The difference in U for the two cases turns out to be 20% or less⁹⁾.

The theory of heat convection and conduction through a gas (air in our case) involves several dimensionless numbers which we define below¹⁰⁾:

⁷⁾H. C. Hottel and B. B. Woertz, ASME Trans., V. 64, p. 91-104, 1942.

⁸⁾Carl N. Hodges, et al., Solar Distillation Utilizing Multiple-Effect Humidification, Final Report. The University of Arizona Solar Energy Laboratory of the Institute of Atmospheric Physics. 31 Jan., 1966.

⁹⁾A. Whillier, Solar Energy 7, #3, p. 148, 1963.

¹⁰⁾An excellent overall reference is: W. H. McAdams, Heat Transmission, McGraw-Hill, 3rd edition, 1954.

Prandtl number: $Pr = c_p \mu / k$

Grashof number: $Gr = (L^3 \rho^2 g / \mu^2) (\beta \Delta t)$

Nusselt number: $Nu = hL/k$

Stanton number: $St = h/c_p V \rho$

Reynolds number: $Re = LV \rho / \mu$

It is also convenient to define a dimensional parameter, a:

$$a = \rho^2 g \beta c_p / \mu k = (Gr Pr) / L^3 \Delta t \quad [\text{ft}^{-3} \text{ }^{\circ}\text{F}^{-1}] \quad (21)$$

The definitions of the quantities in the above expression are:

c_p = specific heat of air [BTU/lb $^{\circ}\text{F}$]

μ = viscosity of air [lb/hr ft]

k = thermal conductivity of air [BTU/hr ft $^{\circ}\text{F}$]

L = characteristic dimension [ft]

ρ = density of air [lb/ft³]

g = acceleration of gravity = 4.17×10^8 ft/hr²

β = coefficient of volumetric expansion of air
[$^{\circ}\text{F}^{-1}$]

Δt = temperature difference between two layers or
between layer and adjoining air [$^{\circ}\text{F}$]

h = convection heat transfer coefficient
[BTU/hr ft² $^{\circ}\text{F}$]

V = wind velocity [ft hr⁻¹ or mph]

q_c = rate of convection heat transfer [BTU/hr ft²]

$Gr \cdot Pr = aL^3 \Delta t$ (dimensionless)

Some useful values of these quantities for air at temperatures of
interest to us are listed in Table III below:

Table III. Some useful physical quantities for air.

Mean Temp °F	80°	100°	150°	200°
c_p	.240	.240	.241	.241
μ	.0446	.0459	.0484	.0519
k	.0151	.0157	.0167	.0181
ρ	.0735	.0710	.0649	.0602
β	.00200	.00200	.00200	.00200
$10^{-6} a$	1.605	1.400	1.047	0.775
$ka^{1/4}$.537	.540	.534	.537
Pr	0.71	0.70	0.70	0.69

For two horizontal plates separated by distance L (ft), the heat transfer coefficient (including convection and conduction but not radiation) is defined by:

$$q_c = h_c \Delta t \quad (22)$$

where Δt is the °F temperature difference between the plates. From considerations of dimensional analysis¹⁰⁾, it is customary to write h_c in the form:

$$Nu = \frac{h_c L}{k} = C (Gr \cdot Pr)^n = C (aL^3 \Delta t)^n \quad (23)$$

where experimental data is needed to determine C and n . McAdams gives the expressions

$$\begin{aligned} Nu &= 0.192 Gr^{1/4} \quad \text{for } 10^4 < Gr < 3.2 \times 10^5 \\ Nu &= 0.067 Gr^{1/3} \quad \text{for } 3.2 \times 10^5 < Gr < 10^7 \end{aligned} \quad (24)$$

which fits one set of experiments quite well. Tabor¹¹⁾ has made a careful survey of a number of experiments and concludes that work done by NBS give results which are probably most reliable, particularly when applied to large plates as in our case. He gives:

$$Nu = 0.168 (Gr \cdot Pr)^{0.281} = 0.152 Gr^{0.281} \quad 10^4 < Gr < 10^7 \quad (25)$$

which can be written as,

$$h_c = 0.168 \frac{k}{L} (aL^3 \Delta t)^{0.281} \quad (26)$$

In Figure 6 we show both the Tabor and McAdams values of h_c plotted against plate spacing L for a $\Delta t = 50^\circ\text{F}$ and an average temperature between plates of 125°F . These values of h_c will be quite insensitive to average temperature (notice in Table III that $ka^{1/4}$ is essentially independent of temperature.) Also a 20% change in Δt will only change h_c by about 5%. For $L = 1"$ the conduction heat loss is about half the convection heat loss and for smaller L , conduction increases inversely with L , explaining the rise in h_c .

Convection heat loss from the top glass plate in the absence of any wind will be characterized by a $Gr \cdot Pr \approx 3 \times 10^{10}$ which is in the turbulent range. McAdams¹⁰⁾ gives for this case:

$$h_c = 0.22 \Delta t^{1/3} \quad (27)$$

where now Δt is the temperature difference between the top plate and ambient air. In our case, $\Delta t \approx 15$ to 25°F , so that $h_c \approx 0.6$.

If there is a wind the convection heat loss will be increased. For a 10 mph wind the Reynolds number in our case is about 10^6 . McAdams¹⁰⁾ recommends the Colburn relation:

$$St (Pr)^{2/3} = \frac{0.036}{(Re)^{0.2}} \quad (28)$$

¹¹⁾H. Tabor, Bull. Res. Counc. of Israel, Vol. 6C, pp. 155-176, 1958.

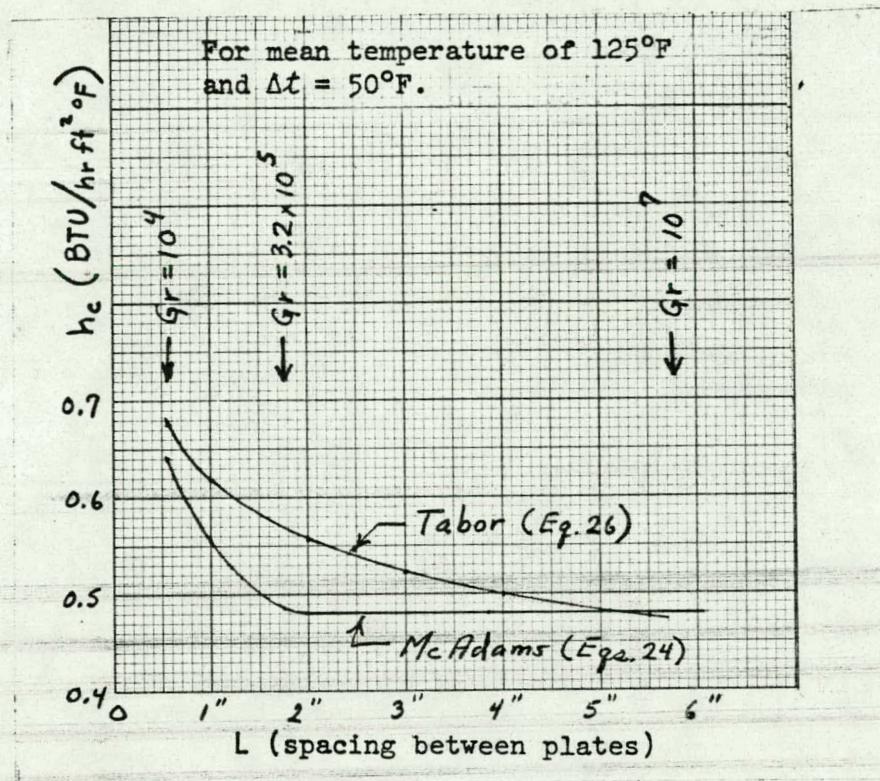


Figure 6. Convection heat transfer coefficient vs. plate spacing.

From Eq. (28) we can derive the following expression for the wind coefficient:

$$h_w = 0.40 V^{0.8} \text{ mph} \quad (29)$$

Eqs. (27) and (29) can be closely approximated by:

$$h_{top} = 0.6 + 0.18 V \text{ mph} \quad (30)$$

The other form of heat loss between the plates and from the top plate is from radiation. In fact, for the case of two plates over the water, the radiation loss between water and first plate and between first and second plate is about a factor of 2 to 3 greater than the respective convection losses for our temperature domain. For the top plate in a 10 mph wind the radiation and convection losses will be comparable.

For two infinite parallel plates with emissivities ϵ_1 and ϵ_2 and absolute temperatures T_1 and T_2 (in $^{\circ}\text{R} = ^{\circ}\text{F} + 460$), McAdams^{1,0} shows that the net radiation heat loss from the hotter to the colder plate is:

$$q_R = \frac{\sigma (T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1} \quad (31)$$

where the Stefan-Boltzmann constant is 0.1716×10^{-8} BTU/hr ft² $^{\circ}\text{R}^4$.

The net radiation loss from the top plate to the atmosphere depends not only on the temperature T of the top plate but also on the water and CO_2 content of the atmosphere since thermal radiation from the atmosphere originates chiefly from these two components. The higher the ambient air temperature, T_a , the greater amount of water vapor usually contained in the air and hence the greater the return atmospheric radiation.

In a recent paper¹² it is shown that experimental data for clear days can be fit well in several different localities from Alaska to Arizona by the following expression for the apparent emissivity of the atmosphere:

$$\epsilon_a = 1 - 0.261 \exp [-7.77 \times 10^{-4} (273 - T_a)^2] \quad (32)$$

where T_a is the ambient air temperature in $^{\circ}\text{K}$. Hence the net radiation loss from the top plate at temperature T can be written as:

$$q_R = \epsilon_g \sigma (T^4 - \epsilon_a T_a^4) \quad (33)$$

where T and T_a are in $^{\circ}\text{R}$ as before. In the temperature range from 60° to 110°F the apparent atmospheric emissivity can be well represented by:

$$\epsilon_a = 0.574 + 0.0035 T_a (\text{°F}) \quad (34)$$

We are now ready to solve for the total upward heat loss q_{up} from the system. From the water at temperature T_o to the first glass plate at temperature T_1 ($^{\circ}\text{R}$):

$$q_{up} = c (T_o - T_1)^{1.28} + \frac{\sigma (T_o^4 - T_1^4)}{\frac{1}{\epsilon_c} + \frac{1}{\epsilon_g} - 1} \quad (35)$$

¹²S. B. Idso and R. D. Jackson, Jour. of Geophysical Research 74, #23, p. 5397, 1969.

From 1st glass plate to 2nd glass plate:

$$q_{up} = c (T_1 - T_2)^{1.28} + \frac{\sigma (T_1^4 - T_2^4)}{2/\epsilon_g - 1} \quad (36)$$

and from 2nd glass plate to sky:

$$q_{up} = h_{top} (T_2 - T_a) + \sigma \epsilon_g (T_2^4 - \epsilon_a T_a^4) \quad (37)$$

This is a system of three equations in three unknowns; q_{up} , T_1 , and T_2 , with the plate spacing, T_o , T_a , and the emissivities of the water, ϵ_c , and glass, ϵ_g , all given. Tabor¹³⁾ points out that one should use the hemispherical values for ϵ_c and ϵ_g rather than the values for normal emittance as used by Hottel and Woertz⁷⁾. Hence for glass, H and W used $\epsilon_g = 0.96$ whereas, according to Tabor, the hemispherical value is 0.90¹³⁾.

The above equations can be solved relatively quickly by trial and error. For example, let $t_o = 185^\circ\text{F}$, $\epsilon_c = \epsilon_g = 0.90$, and plate spacing = 2". Also assume a 10 mph wind giving $h_{top} = 2.4$. From Eq. (26) we obtain $c = 0.18$. After a couple of trials one obtains:

$$t_o = 185^\circ\text{F} = \text{water temperature} \quad (38)$$

$$t_1 = 150^\circ\text{F}, q_{up} = 17.05 + 48.62 = 65.7$$

$$t_2 = 110.5^\circ\text{F}, q_{up} = 19.90 + 45.68 = 65.6 \quad (39)$$

$$t_a = 95.5^\circ\text{F}, q_{up} = 36.00 + 29.81 = 65.8 \quad (40)$$

The upward heat loss coefficient, U_{up} , is now obtained* from:

$$U_{up} = q_{up} / (t_o - t_a) = \frac{65.7}{89.5} = 0.73$$

¹³⁾J. I. Yellott (Solar Energy, 7, #4, p. 167 (1963) quotes a value of hemispherical emittance for "ordinary" glass of 0.84, based on spectral emittance data.

*For no wind this value of U_{up} decreases from 0.73 to 0.63 (about 15%).

(The simplified approximate expression for q_{up} , given as Eq. (13) in Hottel and Woertz^{7J}, gives essentially the same result providing we use our values of c , ϵ_c , ϵ_g , and h_{top} and that we replace T_a^4 in their Eq. (13) by $\epsilon_a T_a^4$.)

To obtain the overall heat coefficient, U , we must add the heat loss from the bottom of the water into the earth. With about a 2" layer of good insulation such as a plastic foam, this can easily be reduced to 10% or less of the upward heat loss. Hence we can write

$$U = 1.1 q_{up} / (t_o - t_a) \approx 0.80$$

The addition of a third glass plate will reduce U_{up} to 0.49 and U to about 0.54. However the incident solar transmission will also be reduced so the net percentage gain in collection efficiency may be only about half the percentage reduction in U .

If plastic glazings are used over the pond rather than glass, the calculation of heat loss through the plastic is more difficult because of the partial transparency of plastic to heat radiation. One must have measured values of monochromatic spectral absorptivity, reflectivity, and transmissivity for the particular plastic. These values must then be integrated over the entire wavelength range.

Hodges^{8J} has treated this case in general and made numerical evaluations of heat loss for Tedlar. For a water temperature of $t_c = 185^{\circ}\text{F}$ and with one Tedlar glazing on the water surface and two above the surface he obtains $U_{up} = 0.91 \text{ BTU/ft}^2 \text{ hr }^{\circ}\text{F}$. Adding a third glazing above the surface reduces U_{up} to 0.65. Both of these values are for a 10 mph wind.

Experimental measurements of heat loss through 1, 2, and 3 Tedlar glazings have recently been made^{14J}. For 2 glazings above the water they obtain (at $t_c = 185^{\circ}\text{F}$) $U_{up} = 1.03$ and for 3 glazings, $U_{up} = 0.78$. Whillier^{9J} calculates U_{up} for 2 Tedlar glazings (at $t_c = 190^{\circ}\text{F}$) to be 0.87.

From the above data we can use an average of $U_{up} = 0.93$ for 2 Tedlar glazings above the water. This is to be compared with our value of $U_{up} = 0.73$ for 2 glass glazings. Whillier states^{9J} that the increased

^{14J}W. H. Gopffarth, et al., Solar Energy 12, 183, 1968.

upward heat loss for Tedlar covered collectors is "more or less fully compensated by the improved solar transmittance of the Tedlar". Let us check his statement by considering a 2 glass glazing covering with $\tau = 0.75$ versus a 2 Tedlar glazing cover with $\tau \approx 0.85$. (Both at normal incidence.) For a solar insolation of $750 \text{ watts/m}^2 = 238 \text{ BTU/ft}^2 \text{ hr}$, and assuming $\alpha = 0.96$, $t_c = 185^\circ\text{F}$, $t_a = 90^\circ\text{F}$, we have for the collection efficiencies:

$$2 \text{ Glass: } \eta_c = 0.72 - \frac{0.73 \times 95}{238} = 0.72 - 0.29 = 0.43$$

$$2 \text{ Tedlar: } \eta_c = 0.82 - \frac{0.93 \times 95}{238} = 0.82 - 0.37 = 0.45$$

and we see that Whillier's statement seems to be justified.

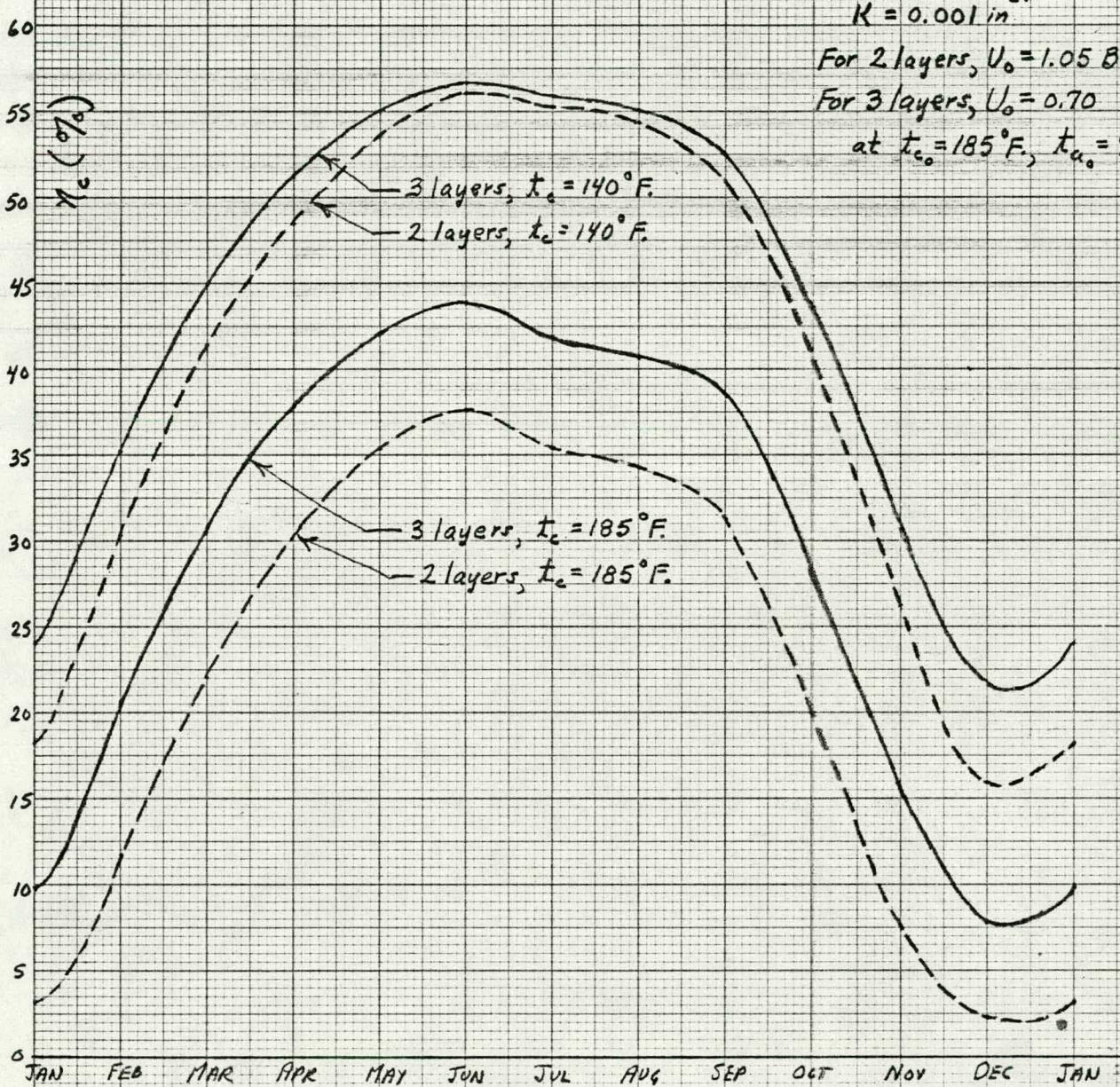
As seen in Hottel and Woertz⁷, the heat loss coefficient is a function of both t_c and t_a . Hence, if Eqs. (35), (36), and (37) are solved to find a value of U for a particular set of values for t_c and t_a , it would be convenient to be able to calculate U for any other values of t_c and t_a . Using the U curves in Figure 16 of Hottel and Woertz we obtain the following expression relating a value of $U = U_o$ at $t_c = t_{co}$ and $t_a = t_{ao}$ to a value U at t_c and t_a :

$$U = U_o \frac{1 + .00512 t_c + .00219 t_a}{1 + .00512 t_{co} + .00219 t_{ao}} \quad [\text{temperature in } ^\circ\text{F}] \quad (41)$$

and

$$U = U_o \frac{1 + .00746 T_c + .00320 T_a}{1 + .00746 T_{co} + .00320 T_{ao}} \quad [\text{temperature in } ^\circ\text{C}] \quad (42)$$

These expressions are quite accurate for one, two, or three glass plates and for collection temperatures equal to or greater than about 110°F (43°C). They also give fairly good agreement with the heat loss vs. collector temperatures calculated by Hodges⁸ for Tedlar (see his Figure 16).


VII. Computer Program and Sample Results

We include in this section the computer program "Solar", which was written to calculate average hourly values of collected heat and average daily values of collection efficiency - the averages taken over each month of the year. Also included is the print-out of a sample problem: A solar pond in Phoenix, Arizona with two 0.125" glass plates, average water temperature = 60°C.

In Figure 7 is shown the collection efficiency for 2 and 3 Tedlar covers (0.004") at two collection temperatures, $T_c = 140^\circ\text{F}$ (60°C) and 185°F (85°C). Note that at 140°F there is little improvement in using a third layer of Tedlar whereas at the higher collector temperature of 185°F it makes a large improvement, particularly in winter. This is because the heat losses are greater at the higher temperature and the additional optical loss of the third layer is more than compensated by the decreased heat loss.

In Figure 8 are shown similar curves for glass. (Sample problem gives top curve.) Note that at 140°F , two layers of glass are better than three for all except the months of January and February. Also, except for the 2 layer, 185°F case, Tedlar always results in a higher collection efficiency for equivalent collector temperatures and number of layers.

Figure 7. Collection efficiencies for 2 and 3 layers of Tedlar at 2 water temperatures.

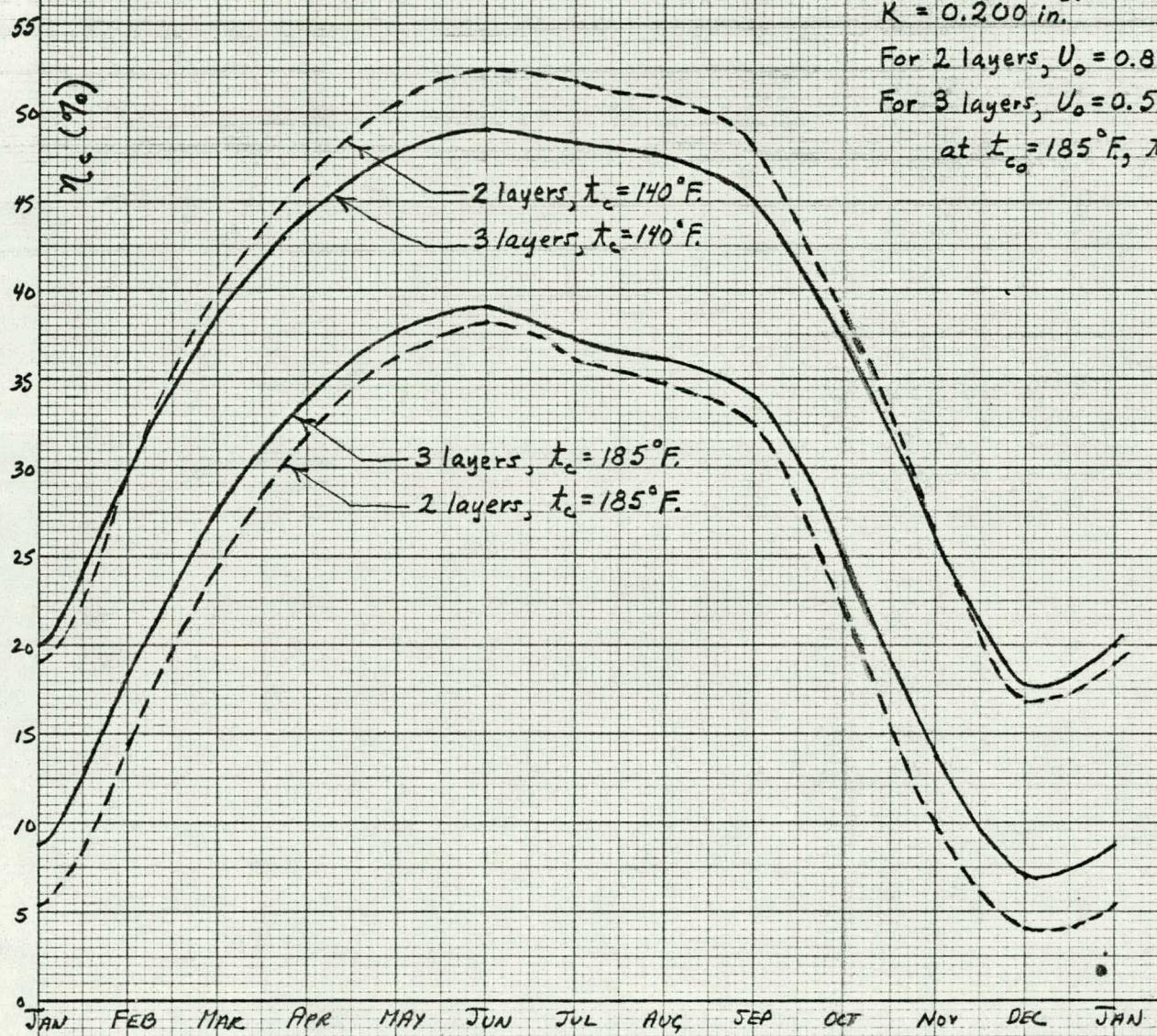
Tedlar

Phoenix, ARIZ.

$L = 33.43^{\circ}$

$m = 1.45$

$d = 0.004^{\prime\prime}$


$K = 0.001 \text{ in}^{-1}$

For 2 layers, $U_o = 1.05 \text{ BTU/ft}^2 \text{ hr}^{\circ}\text{F}$

For 3 layers, $U_o = 0.70 \text{ "}$

at $t_{c_0} = 185^{\circ}\text{F}$, $t_{a_0} = 95^{\circ}\text{F}$

Figure 8. Collection efficiencies for 2 and 3 layers of glass at 2 water temperatures.

Glass

Phoenix, Ariz. $L = 33.43^{\circ}$

$$m = 1.52$$

$$d = 0.125"$$

$$K = 0.200 \text{ in.}^{-1}$$

$$\text{For 2 layers, } U_o = 0.80 \text{ BTU/ft}^2\text{hr}^{\circ}\text{F}$$

$$\text{For 3 layers, } U_o = 0.55 \text{ "}$$

$$\text{at } t_{c_0} = 185^{\circ}\text{F}, t_{a_0} = 95^{\circ}\text{F}$$

*ID 290MLP SOLAR POND NEIFERT BOXH20
* PRINT RDN
* CONTROLLEE 0, SOLAR
* DUMP OCT DEC
* CARDS DBUG
* LOD SUNSYM
* LIST8
* FORTRAN
PROGRAM SOLAR(OUTIT,TAPE3=OUTIT,TAPE2,TAPE63)

* * * * * IDENTIFICATION* * * * *

PROGRAM NAME: SOLAR
ORIGINATED: DECEMBER 1973
VERSION/DATE: 1/24 JANUARY 1974
PROGRAMMER: R. NEIFERT

* * * * * CODE DESCRIPTION * * * * *

THIS CODE CALCULATES THE LONG TERM COLLECTION EFFICIENCY
OF A HORIZONTAL PLATE SOLAR ENERGY COLLECTOR. THE ASSUMPTIONS
AND APPROXIMATIONS USED CLOSELY PARALLEL THE METHOD
DESCRIBED BY HOTTEL AND WHILLIER, "TRANSACTIONS OF THE
CONFERENCE ON THE USE OF SOLAR ENERGY: THE SCIENTIFIC
BASIS," II, PART I, SECTION A, 1955, PAGES 74-104 AND
LIU AND JORDAN, SOLAR ENERGY, VOL. 7, NO. 2, 1963.

* * * * * VARIABLE DEFINITIONS * * * * *

THETA=ANGLE OF INCIDENCE(ZENITH ANGLE) RADIANS
LAT=LATITUDE DEGREES
DELTAP=SOLAR DECLINATION DEGREES
OMEGA=SOLAR HOUR ANGLE FROM SOLAR NOON DEGREES
OMEGAS=SUNSET HOUR ANGLE RADIANS
OMEGAH=SUNSET HOUR ANGLE HOURS
ISC=SOLAR CONSTANT
RATIO=SQUARE OF RATIO OF MEAN DISTANCE TO ACTUAL DISTANCE
BETWEEN EARTH AND SUN

HOURS=24

PI=3.14159

CONV1=3.153 W/M**2 PER BTU/HR-FT**2

CONV2=.1314 W/M**2 PER BTU/DAY-FT**2

HZERO=AVERAGE DAILY RADIATION ON HORIZONTAL SURFACE
OUTSIDE ATMOSPHERE

HBAR=MONTHLY AVERAGE DAILY TOTAL RADIATION ON A
HORIZONTAL SURFACE

KTBAR=HBAR/HZERO

DBAR=MONTHLY AVERAGE DAILY DIFFUSE RADIATION ON A
HORIZONTAL SURFACE

KDBAR=DBAR/HZERO

IBARTH=AVERAGE HOURLY TOTAL RADIATION ON A HORIZONTAL
SURFACE

IBARDH=AVERAGE HOURLY DIFFUSE RADIATION ON A HORIZONTAL
SURFACE

RTOT=IBARTH/HBAR

RDIF=IBARDH/DBAR

IC=CRITICAL INTENSITY OF RADIATION

XC=IC/IBARTH CRITICAL INTENSITY RATIO
 R=REFLECTIVITY OF A SINGLE SURFACE USING FRESNEL EQUATIONS
 K1=EXTINCTION COEFFICIENT OF THE REFLECTING SURFACE
 L1=THICKNESS OF REFLECTING SURFACE
 N=NUMBER OF REFLECTING SURFACES
 CTH=COSINE OF THE ANGLE OF INCIDENCE
 TAU=TRANSMITTANCE OF REFLECTING SURFACE
 ALPHA=ABSORPTIVITY OF THE COLLECTOR
 TABAR=AVERAGE VALUE OF TAU*ALPHA
 NPRIME=INDEX OF REFRACTION OF REFLECTING SURFACE
 TC=COLLECTOR TEMPERATURE DEGREES CENTIGRADE
 T0=AMBIENT AIR TEMPERATURE DEGREES FAHRENHEIT
 DCEFF=DAILY COLLECTION EFFICIENCY
 U=OVERALL HEAT LOSS COEFFICIENT W/M**2-DEGREE C
 U0=HEAT LOSS COEFFICIENT AT INITIAL CONDITIONS
 OF TC AND T0 W/M**2-DEGREE C

CLICHE SET
 REAL ISC, KTBAR, KDBAR, LAT, KTBARX, KDBARY, IBARDH, IBARTH
 REAL N, NPRIME, L1, K1, IC
 COMMON ISC, HOURS, PI, CONV1, CONV2, LAT, ID(2), RADIANS,
 1TAUD, ALPHAD, N, NPRIME, L1, K1, TC, U0
 COMMON RATIO(12), DELTA(12), HZERO(12), HBAR(12),
 1KTBARX(12), KDBARY(12), DBAR(12), OMEGAS(12), DCEFF(12),
 2OMEGAH(12), KDBAR(12), KTBAR(12), MONTH(12), T0(12), U(12)
 COMMON RDIF(12,7), RTOT(12,7), IBARDH(12,7),
 1IBARTH(12,7), IC(12,7), XC(12,7),
 2PHI(12,7), Q(12,7), THETA(12,7), TAU(12,7), ALPHA(12,7),
 3TABAR(12,7), CTH(12,7)
 COMMON OMEGA(8), HRS(9), XCX(11), PHIY(11,7), RT(9,7)
 ENDCLICHE
 USE SET
 ISC=1400.
 HOURS=24.
 PI=3.14159
 CONV1=3.153
 CONV2=0.1314
 RADIANS=6.28318/360.
 CALL TABLE
 CALL DATAIN
 CALL CALC1
 CALL CALC2
 CALL CALC3
 CALL TAUALF
 CALL CALC4
 CALL OUTPUT
 CALL QUIT
 END
 SUBROUTINE TABLE

* * * * * CODE DESCRIPTION * * * * *

THIS SUBROUTINE SETS UP THE VARIOUS TABLES THAT ARE USED
 IN THE EFFICIENCY CALCULATION.

USE SET
 DATA RATIO/1.0315, 1.0235, 1.0103, .9913, .9757,
 1.9680, .9680, .9757, .9898, 1.0087, 1.0238, 1.0318/
 DATA DELTA/-21.27, -12.93, -2.43, 9.50, 18.68.

```

123.28,21.65,14.30,3.33,-8.23,-18.30,-23.23/
DATA KTBARY/.3.,4.,5.,6.,7.,75,1.0/
DATA KDBARY/.179.,183.,188.,174.,149.,125.,120/
DATA OMEGA/7.5,22.5,37.5,52.5,67.5,82.5,97.5/
DATA HRS/8.,9.,10.,11.,12.,13.,14.,15.,16./
DATA(((RT(I,J),I=1,9),J=1,7)=
1.198.,179.,165.,152.,142.,133.,124.,116.,107,
2.164.,155.,145.,136.,128.,121.,114.,108.,102,
3.103.,108.,110.,108.,105.,102.,099.,096.,092,
4.033.,053.,064.,072.,076.,078.,079.,078.,077,
5.000.,000.,020.,032.,041.,048.,052.,056.,058,
6.000.,000.,000.,005.,011.,019.,026.,032.,038,
7.000.,000.,000.,003.,000.,008.,013.,018)
DATA XCX/0.,.2.,.4.,.6.,.8,1.0,1.2,1.4,1.6,1.8,2.0/
DATA(((PHIY(I,J),I=1,11),J=1,7)=
11.0.,815.,655.,510.,390.,290.,207.,140.,090.,055.,025,
21.0.,305.,635.,480.,350.,235.,145.,080.,040.,015.,000,
31.0.,300.,615.,455.,305.,180.,085.,025.,005.,000.,000,
41.0.,300.,605.,427.,267.,137.,049.,000.,000.,000.,000,
51.0.,300.,600.,400.,217.,070.,000.,000.,000.,000.,000,
61.0.,800.,600.,400.,214.,058.,000.,000.,000.,000.,000,
71.0.,800.,600.,400.,200.,000.,000.,000.,000.,000.,000)
MONTH(1)=3HJAN
MONTH(2)=3HFEB
MONTH(3)=3HMAR
MONTH(4)=3HAPR
MONTH(5)=3HMAY
MONTH(6)=3HJUN
MONTH(7)=3HJUL
MONTH(8)=3HAUG
MONTH(9)=3HSEP
MONTH(10)=3HOCT
MONTH(11)=3HNJV
MONTH(12)=3HDEC
RETURN
END
SUBROUTINE DATAIN

```

```

C* * * * * CODE DESCRIPTION * * * * *

```

```

C
C      THIS IS THE INPUT SUBROUTINE FOR SOLAR. A DISK FILE NAMED
C      SOLARIN ASSIGNED TO LOGICAL UNIT 2 IS REQUIRED AS THE
C      INPUT DATA FILE.
C

```

```

C
C      USE SET
C      CALL ASSIGN(2,0,7RSOLARIN,0)
C      RIT 2,1,(ID(I),I=1,2)
C      RIT 2,3,LAT
C      RIT 2,3,N,NPRIME,-1,K1
C      RIT 2,3,TC,U0
C      RIT 2,3,(HBAR(I),I=1,12)
C      RIT 2,3,(T0(I),I=1,12)
C      DO 4 I=1,12
C          CONVERT INPUT AMBIENT TEMPERATURE TO DEGREES CENTIGRADE
C          T0(I)=(T0(I)-32.0)*5.0/9.0
C          CONVERT INPUT AVERAGE DAILY TOTAL RADIATION TO WATTS/M**2
C          HBAR(I)=HBAR(I)*CONV2
C 4  CONTINUE
C 1  FORMAT(2A10)
C 3  FORMAT(6E10.3)

```

```
RETURN
```

```
END
```

```
SUBROUTINE CALC1
```

```
C* * * * * CODE DESCRIPTION * * * * *
```

```
C THIS SUBROUTINE CALCULATES HZERO, THE AVERAGE DAILY  
C RADIATION ON A HORIZONTAL SURFACE OUTSIDE THE ATMOSPHERE.
```

```
USE SET
```

```
DO 1 I=1,12
```

```
OMEGAS(I)=ACOS(-(TAN(LAT*RADIAN)*TAN(DELTA(I)*RADIAN)))
```

```
A=RATIO(I)*ISC/PI
```

```
B=COS(LAT*RADIAN)*COS(DELTA(I)*RADIAN)*SIN(OMEGAS(I))
```

```
C=OMEGAS(I)*SIN(LAT*RADIAN)*SIN(DELTA(I)*RADIAN)
```

```
HZERO(I)=A*(B+C)
```

```
1 CONTINUE
```

```
RETURN
```

```
END
```

```
SUBROUTINE CALC2
```

```
C* * * * * CODE DESCRIPTION * * * * *
```

```
C THIS SUBROUTINE CAACULATES THE VALUES OF KTBAR, KDBAR  
C AND DBAR. INTERPOLATED VALUES OF KTBAR ARE CALCULATED  
C FROM AN INPLT DATA ARRAY IN SUBROUTINE TABLE.
```

```
USE SET
```

```
DO 1 I=1,12
```

```
KTBAR(I)=HBAR(I)/HZERO(I)
```

```
CALL TERP(KTBARX,KTBARY,7,KTBAR(I),KTBAR(I),0)
```

```
DBAR(I)=KDBAR(I)*HZERO(I)
```

```
1 CONTINUE
```

```
RETLRN
```

```
END.
```

```
SUBROUTINE CALC3
```

```
C* * * * * CODE DESCRIPTION * * * * *
```

```
C THIS SUBROUTINE CALCULATES THE VALUES OF RDIF,IBARDH AND  
C RTOT,IBARTH. RDIF IS CALCULATED FROM AN ANALYTIC  
C EXPRESSION GIVEN IN THE PREVIOUS REFERENCES. INTERPOLATED  
C VALUES OF RTOT ARE CALCULATED FROM INPUT DATA ARRAYS  
C IN SUBROUTINE TABLE.
```

```
USE SET
```

```
DO 1 J=1,12
```

```
DO 1 I=1,7
```

```
A=COS(OMEGA(I)*RADIAN)-COS(OMEGAS(J))
```

```
B=SIN(OMEGAS(J))-OMEGAS(J)*COS(OMEGAS(J))
```

```
IF(A)2,2,
```

```
RDIF(J,I)=(PI*A)/(B*HOURS)
```

```
GO TO 3
```

```
2 RDIF(J,I)=0.
```

```
3 OMEGAH(J)=OMEGAS(J)*HOURS/PI
```

```
CALL TERP(HRS,RT(1,I),9,OMEGAH(J),RTOT(J,I),0)
```

```
IBARDH(J,I)=RDIF(J,I)*DBAR(J)*HOURS
```

```
IBARTH(J,I)=RTOT(J,I)*HBAR(J)*HOURS
```

```
1 CONTINUE
```

```
RETURN
```

```
END
SUBROUTINE CALC4
```

```
C* * * * * CODE DESCRIPTION * * * * *
C
C      THIS SUBROUTINE CALCULATES THE VALUES OF U, IC, XC, PHI
C      AND DCEFF.
C
C      USE SET
C      CALCULATE PHI=UTILIZABILITY
C      DO A1 I=1,12
C      SUM=0.
C      DO 1 J=1,7
C      IF(TABAR(I,J)),,4
C      IC(I,J)=XC(I,J)=PHI(I,J)=Q(I,J)=0.
C      GO TO 1
C      4 TCO=85.0
C      TAB0=35.0
C      A=(1.0+.00746*T0+.0032*T0(I))
C      B=(1.0+.00746*TC0+.0032*TA0)
C      U(I)=U0*(A/B)
C      IC(I,J)=U(I)*(TC-TO(I))/TABAR(I,J)
C      XC(I,J)=IC(I,J)/IBARTH(I,J)
C      DO 2 K=1,7
C      JA=K
C      IF(KTBAR(I)-KTBARX(K))3,,
C      2 CONTINUE
C      3 K=JA-1
C      CALL TERP(XCX,PHI^(1,K),11,XC(I,J),PHI1,0)
C      CALL TERP(XCX,PHI^(1,K+1),11,XC(I,J),PHI2,0)
C      PHI(I,J)=PHI1+((PHI2-PHI1)/(KTBARX(K+1)-KTBARX(K)))*
C      1(KTBAR(I)-KTBARX(K)))
C      Q(I,J)=PHI(I,J)*TABAR(I,J)*IBARTH(I,J)
C      SUM=SUM+Q(I,J)
C      1 CONTINUE
C      DCEFF(I)=SUM/(12.*HBAR(I))
C      A1 CONTINUE
C      RETURN
C      END
C      SUBROUTINE TAUALF
```

```
C* * * * * CODE DESCRIPTION * * * * *
C
C      THIS SUBROUTINE CALCULATES THE AVERAGE OF TAU $\alpha$ 
C      USING DIRECT AND DIFFUSE SOLAR RADIATION
C
```

```
USE SET
DIFFUSE RADIATION ASSUMING EFFECTIVE ANGLE OF
INCIDENCE IS 58 DEGREES
THETAD=58.0*RADIAN
CALL FRESNL(THETAD,NPRIME,RD)
A=EXP(-K1*N*L1/COS(THETAD))
B=1-RD
C=1+(2*N-1)*RD
TAUD=A*(B/C)
ALPHAD=.98*B

DIRECT RADIATION
ARAD=LAT*RADIAN
DO 1 I=1,12
```

```

DO 1 J=1,7
CTH(I,J)=(COS (ARAD) *COS(DELTA(I)*RADIANT)*
1COS(GMEGA(J)*RADIANT))+(SIN (ARAD)*SIN(DELTA(I)*RADIANT))
IF(CTH(I,J),.2
CTH(I,J)=0.
2 THETA(I,J)=ACOS(CTH(I,J))
CALL FRESNL(THETA(I,J),NPRIME,R)
IF(CTH(I,J),.4
A=0.
GO TO 5
4 A=EXP(-K1*NKL1/CTH(I,J))
5 B=1-R
C=1+(2*N-1)*R
TAU(I,J)=A*(B/C)
ALPHA(I,J)=.98*B
TABAR(I,J)=((IBARTH(I,J)-IBARDH(I,J))*1
1TAU(I,J)*ALPHA(I,J))+(IBARDH(I,J)*TAUD*ALPHAD)
IF(IBARTH(I,J),.3
TABAR(I,J)=0.
GO TO 1
3 TABAR(I,J)=TABAR(I,J)/IBARTH(I,J)
1 CONTINUE
RETURN
END
SUBROUTINE FRESNL(ANGL1,NPRIM,REFL)

```

C* * * * * CODE DESCRIPTION * * * * *

THIS SUBROUTINE CALCULATES THE REFLECTIVITY OF A SURFACE
USING THE FRESNEL EQUATIONS.

C* * * * * VARIABLE DEFINITIONS * * * * *

ANGL1=INCIDENT ANGLE IN RADIANS
ANGL2=REFRACTED ANGLE IN RADIANS
REFL=REFLECTIVITY OF THE SURFACE
NPRIM=INDEX OF REFRACTION OF THE SURFACE

```

REAL NPRIM
IF(ANGL1-1.57)1,.
REFL=1.
GO TO 2
1 ANGL2=ASIN((SIN(ANGL1))/NPRIM)
DIFA=ANGL1-ANGL2
SUMA=ANGL1+ANGL2
R1=((SIN (DIFA))**2)/((SIN (SUMA))**2)
R2=((TAN (DIFA))**2)/((TAN (SUMA))**2)
REFL=.5*(R1+R2)
2 RETURN
END
SUBROUTINE OUTPUT
USE SET
NN=3
WOT 3.1,(ID(I),I=1,2)
WOT 3.2,LAT
WOT 3.A1,N
WOT 3.A2,NPRIME
WOT 3.A3,L1
WOT 3.A4,K1

```

```

WOT 3,A5,TC
WOT 3,A6,U0
WOT 3,A7
WOT 3,3,(MONTH(I),HBAR(I),T0(I),I=1,12)
WOT 3,4
WOT 3,5,(MONTH(I),DELTA(I),RATIO(I),OMEGAS(I),OMEGAH(I),
1HZERO(I),HBAR(I),KTBAR(I),KDBAR(I),DBAR(I),I=1,12)
WOT 3,6
WOT 3,7
DO 20 J=1,12
IF((J-1).NE.NN) GO TO B1
WOT 3,6
WOT 3,7
NN=NN+3
B1 CONTINUE
OMEGAS(J)=OMEGAS(J)/RADIAN
WOT 3,8,MONTH(J),OMEGAS(J),OMEGAH(J)
WOT 3,9,(RTOT(J,I),I=1,7)
WOT 3,10,(IBARTH(J,I),I=1,7)
WOT 3,11,(RDIF(J,I),I=1,7)
WOT 3,12,(IBARDH(J,I),I=1,7)
WOT 3,13,(CTH(J,I),I=1,7)
WOT 3,14,(THETA(J,I),I=1,7)
WOT 3,15,(TABAR(J,I),I=1,7)
WOT 3,16,(IC(J,I),I=1,7)
WOT 3,17,(XC(J,I),I=1,7)
WOT 3,18,(PHI(J,I),I=1,7)
WOT 3,19,(Q(J,I),I=1,7)
WOT 3,A19,U(J)
WOT 3,A20,DCEFF(J)
20 CONTINUE
WOT 3,6
1 FORMAT(5X,2A10)
2 FORMAT(21X,9HLATITUDE=.F10.3,2X,7HDEGREES)
A1 FORMAT(21X,9HSURFACES=.F10.3)
A2 FORMAT(13X,17HREFRACTIVE INDEX=.F10.3)
A3 FORMAT(20X,10HTHICKNESS=.F10.3)
A4 FORMAT(7X,23HEXTINCTION COEFFICIENT=.F10.3)
A5 FORMAT(8X,22HCOLLECTOR TEMPERATURE=.F10.3)
A6 FORMAT(8X,22HHEAT LOSS COEFFICIENT=.F10.3///)
3 FORMAT(10X,A10,F10.3,6X,F10.3)
A7 FORMAT(10X,5HMONTH,10X,4HHBAR,5X,19HAMBIENT TEMPERATURE)
4 FORMAT(///2X,5HMONTH,7X,5HDELTA,5X,5HRATIO,5X,6HOMEGAS,4X,
16HOMEGAH,4X,5HZERO,6X,4HHBAR,6X,5HKTBAR,5X,5HKDBAR,5X,4HDBAR//)
5 FORMAT(A10,F10.3,F10.5,7F10.3)
6 FORMAT(1H1)
7 FORMAT(14X,3H1/2,5X,5H1 1/2,5X,5H2 1/2,5X,5H3 1/2,
15X,5H4 1/2,5X,5H5 1/2,5X,5H6 1/2//)
8 FORMAT(1X,A10/1X,13HSUNSET ANGLE=.F10.3,2X,7HDEGREES/,
11X,18HSUNRISE TO SUNSET=.F10.3,2X,5HHOURS//)
9 FORMAT(3X,4HRTOT,6X,7F10.3)
10 FORMAT(1X,6HIBARTH,3X,7F10.3)
11 FORMAT(3X,4HRDIF,3X,7F10.3)
12 FORMAT(1X,6HIBARDH,3X,7F10.3)
13 FORMAT(4X,3HCTH,3X,7F10.3)
14 FORMAT(2X,5HTHETA,3X,7F10.3)
15 FORMAT(2X,5HTABAR,3X,7F10.3)
16 FORMAT(5X,2HIC,3X,7F10.3)
17 FORMAT(5X,2HNC,3X,7F10.3)
18 FORMAT(4X,3HPHI,3X,7F10.3)

```

```
13 FORMAT(6X,1H0,3X,7F10.3)
A13 FORMAT(//15X,23HHEAT LOSS COEFFICIENT =,F10.3)
A20 FORMAT(10X,28HDAILY COLLECTION EFFICIENCY=,F10.3//)
RETURN
END
SUBROUTINE TERP (X,Y,N,XA,YA,IT)
DIMENSION X(1),Y(1)
```

C* * * * * CODE DESCRIPTION * * * * *

THIS SUBROUTINE PERFORMS A STRAIGHT LINE INTERPOLATION
IF THE INPUT VALUE XA IS OUTSIDE THE TABLE VALUES OF X THEN
A STRAIGHT LINE EXTRAPOLATION IS DONE TO OBTAIN THE
VALUE OF YA

REVISED 1 JAN 1974

C* * * * * VARIABLE DEFINITIONS * * * * *

X=TABLE OF X VALUES
Y=TABLE OF Y VALUES
N=NUMBER OF (X,Y) VALUES IN TABLES
XA=INPUT VALUE OF X
YA=INTERPOLATED VALUE OF Y
IT=TYPE OF INTERPOLATION
0 X LINEAR, Y LINEAR
1 X LOG, Y LOG
2 X LINEAR, Y LOG
3 X LOG, Y LINEAR

```
IL = 0
IE=0
DO 5 I=2,N
IF(XA-X(I)) 7,6,5
5 CONTINUE
I=I-1
IE=1
IF(IT-1)10,14,10
6 YA = Y(I)
GO TO 50
7 I = I
IF(IT-1) 10,14,10
10 XV = XA
XVA = X(I-1)
XVB = X(I)
12 IF(IT-2) 19,16,14
14 XV = LOGF(XA)
XVA = LOGF(X(I-1))
XVB = LOGF(X(I))
15 IF(IT-2) 16,16,15
16 IF(Y(I-1))60,60,17
17 IF(Y(I)) 60,60,18
50 YA= 0
GO TO 50
18 YVA = LOGF(Y(I-1))
YVB = LOGF(Y(I))
```

IL = 1
GO TO 20
19 YVA = Y(I-1)
YVB = Y(I)
C DO INTERPOLATION
20 CONTINUE
IF(IE.EQ.0) GO TO 21
YA=YVB+(YVB-YVA)*(XV-XVB)/(XVB-XVA)
GO TO 23
21 YA = YVA + (YVB-YVA) * (XV-XVA) / (XVB - XVA)
23 IF(IL) 50,50,22
22 YA = EXPF(YA)
50 RETURN
END

SAMPLE PROBLEM

CARD INPUT FOR PROGRAM SOLAR

CARD 1	ID(1), ID(2)	(2A10)
	ID(1), ID(2) = IDENTIFICATION	
CARD 2	LAT	(E10.3)
	LAT = LATITUDE IN DEGREES	
CARD 3	N, Nprime, L1, K1	(4E10.3)
	N = NUMBER OF COVER SURFACES	
	Nprime = INDEX OF REFRACTION	
	L1 = THICKNESS OF A SINGLE SURFACE	
	K1 = EXTINCTION COEFFICIENT	
CARD 4	TC, UØ	(2E10.3)
	TC = COLLECTOR TEMPERATURE IN DEGREES CENTIGRADE	
	UØ = HEAT LOSS COEFFICIENT AT INITIAL CONDITIONS OF TC AND TØ	
CARD 5	HBAR(I), I = 1, 6	(6E10.3)
	HBAR = MONTHLY AVERAGE DAILY TOTAL RADIATION ON A HORIZONTAL SURFACE	
CARD 6	HBAR(I), I = 7, 12	(6E10.3)
CARD 7	TØ(I), I = 1, 6	(6E10.3)
	TØ = AMBIENT AIR TEMPERATURE IN DEGREES FAHRENHEIT	
CARD 8	TØ(I), I = 7, 12	(6E10.3)

SAMPLE INPUT

```

1  PHOENIX,ARIZONA
2  33.43
3  2.,1.52,.125,.200,
4  60.,4.54,
5  1126.6,1514.7,1967.1,2388.2,2709.6,2781.5,
6  2450.5,2299.6,2131.3,1688.9,1290.0,1040.9,
7  54.2,58.8,64.7,72.2,80.8,89.2,
8  94.6,92.5,87.4,75.8,63.6,56.7,
.

```

PHOENIX, ARIZONA

LATITUDE= 33.430 DEGREES
 SURFACES= 2.000
 REFRACTIVE INDEX= 1.520
 THICKNESS= 0.125
 EXTINCTION COEFFICIENT= 0.200
 COLLECTOR TEMPERATURE= 60.000
 HEAT LOSS COEFFICIENT= 4.540

MONTH	HEAR	AMBIENT TEMPERATURE
JAN	148.035	12.333
FEB	199.032	14.889
MAR	258.477	13.167
APR	313.809	22.333
MAY	356.041	27.111
JUN	365.489	31.778
JUL	321.996	34.778
AUG	302.167	33.611
SEP	280.053	30.778
OCT	221.921	24.333
NOV	169.506	17.556
DEC	136.774	13.722

MONTH	DELTA	RATIO	OMEGAS	OMEGAH	HZERO	HBAR	KTBAR	KDBAR	DBAR
JAN	-21.270	1.03150	1.311	10.015	225.058	148.035	0.658	0.160	35.910
FEB	-12.930	1.02350	1.419	10.838	286.946	199.032	0.694	0.151	43.213
MAR	-2.430	1.01030	1.543	11.786	359.029	258.477	0.720	0.139	50.060
APR	9.500	0.99130	1.681	12.846	428.933	313.809	0.732	0.134	57.404
MAY	18.680	0.97570	1.796	13.719	472.866	356.041	0.753	0.125	59.080
JUN	23.280	0.96800	1.859	14.200	491.666	365.489	0.743	0.128	63.023
JUL	21.650	0.96800	1.836	14.025	483.889	321.996	0.665	0.158	76.281
AUG	14.300	0.97570	1.740	13.292	449.556	302.167	0.672	0.156	70.114
SEP	3.330	0.98980	1.609	12.294	389.937	280.053	0.718	0.140	54.694
OCT	-8.230	1.00870	1.475	11.269	317.290	221.921	0.699	0.149	47.322
NOV	-18.300	1.02380	1.351	10.319	246.182	169.506	0.689	0.152	37.387
DEC	-23.230	1.03180	1.284	9.805	209.934	136.774	0.652	0.161	33.825

	1/2	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2
--	-----	-------	-------	-------	-------	-------	-------

JAN

SUNSET ANGLE= 75.109 DEGREES

SUNRISE TO SUNSET= 10.015 HOURS

RTOT	0.165	0.145	0.110	0.064	0.020	0.000	0.
IBARTH	585.546	514.696	390.709	227.797	71.679	0.259	0.
RDIF	0.153	0.139	0.112	0.073	0.026	0.	0.
IBARDH	131.616	119.509	96.119	63.040	22.527	0.	0.
CTH	0.571	0.519	0.417	0.274	0.098	0.	0.
THETA	0.963	1.026	1.140	1.294	1.473	1.571	1.571
TABAR	0.625	0.591	0.509	0.365	0.214	0.	0.
IC	295.090	311.638	361.798	505.406	860.920	0.	0.
XC	0.504	0.605	0.926	2.219	12.011	0.	0.
PHI	0.503	0.407	0.150	0.	0.	0.	0.
Q	183.947	123.783	29.861	0.	0.	0.	0.

HEAT LOSS COEFFICIENT = 3.866
 DAILY COLLECTION EFFICIENCY= 0.190

FEB

SUNSET ANGLE= 81.283 DEGREES

SUNRISE TO SUNSET= 10.838 HOURS

RTOT	0.154	0.137	0.108	0.071	0.030	0.004	0.
IBARTH	736.143	656.614	517.440	337.726	143.556	20.009	0.
RDIF	0.142	0.131	0.109	0.077	0.039	0.	0.
IBARDH	147.419	135.560	112.650	80.250	40.568	0.	0.
CTH	0.683	0.628	0.522	0.372	0.188	0.	0.
THETA	0.819	0.892	1.022	1.190	1.382	1.571	1.571
TABAR	0.677	0.655	0.594	0.463	0.274	0.	0.
IC	259.045	267.937	295.440	378.709	640.805	0.	0.
XC	0.352	0.408	0.571	1.121	4.464	0.	0.
PHI	0.648	0.592	0.431	0.031	0.	0.	0.
Q	323.130	254.574	132.251	4.865	0.	0.	0.

HEAT LOSS COEFFICIENT = 3.888
 DAILY COLLECTION EFFICIENCY= 0.299

MAR

SUNSET ANGLE= 88.395 DEGREES

SUNRISE TO SUNSET= 11.786 HOURS

RTOT	0.144	0.130	0.106	0.075	0.039	0.010	0.
IBARTH	894.167	804.663	655.345	466.151	242.392	60.272	0.
RDIF	0.132	0.123	0.105	0.079	0.049	0.014	0.
IBARDH	158.427	147.317	125.853	95.498	58.322	16.857	0.
CTH	0.803	0.747	0.638	0.484	0.296	0.085	0.
THETA	0.638	0.727	0.879	1.065	1.271	1.485	1.571
TABAR	0.711	0.698	0.660	0.565	0.379	0.187	0.
IC	230.374	234.636	248.134	289.938	432.308	874.257	0.
XC	0.258	0.292	0.379	0.622	1.784	14.505	0.
PHI	0.742	0.708	0.621	0.380	0.	0.	0.
Q	471.308	397.885	268.777	99.935	0.	0.	0.

HEAT LOSS COEFFICIENT = 3.915
 DAILY COLLECTION EFFICIENCY= 0.399

	1/2	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2
--	-----	-------	-------	-------	-------	-------	-------

APR

SUNSET ANGLE= 96.342 DEGREES

SUNRISE TO SUNSET= 12.846 HOURS

RTOT	0.134	0.122	0.102	0.078	0.047	0.018	0.003
IBARTH	1012.142	919.440	771.693	585.126	353.371	133.797	19.107
RDIF	0.122	0.115	0.100	0.080	0.055	0.027	0.
IBARDH	168.459	158.129	138.175	109.955	75.392	36.843	0.
CTH	0.907	0.851	0.744	0.592	0.406	0.198	0.
THETA	0.435	0.552	0.732	0.937	1.153	1.371	1.571
TABAR	0.726	0.719	0.698	0.638	0.494	0.281	0.
IC	204.917	206.871	213.225	233.318	300.921	528.984	0.
XC	0.202	0.225	0.276	0.399	0.852	3.954	0.
PHI	0.798	0.775	0.724	0.601	0.176	0.	0.
Q	586.053	512.447	389.655	224.325	30.700	0.	0.

HEAT LOSS COEFFICIENT = 3.950
 DAILY COLLECTION EFFICIENCY= 0.463

MAY

SUNSET ANGLE= 102.896 DEGREES

SUNRISE TO SUNSET= 13.719 HOURS

RTOT	0.127	0.116	0.100	0.079	0.051	0.024	0.007
IBARTH	1081.151	990.908	853.145	672.658	434.752	205.392	56.375
RDIF	0.116	0.109	0.097	0.079	0.058	0.034	0.009
IBARDH	163.889	154.772	137.160	112.254	81.749	47.726	12.502
CTH	0.960	0.907	0.804	0.658	0.479	0.280	0.073
THETA	0.293	0.435	0.637	0.853	1.071	1.287	1.497
TABAR	0.732	0.728	0.713	0.670	0.560	0.357	0.147
IC	179.250	180.341	183.966	195.710	234.390	367.051	889.630
XC	0.156	0.182	0.216	0.291	0.539	1.787	15.780
PHI	0.834	0.818	0.784	0.709	0.461	0.	0.
Q	660.180	589.734	477.274	319.756	112.160	0.	0.

HEAT LOSS COEFFICIENT = 3.989
 DAILY COLLECTION EFFICIENCY= 0.505

JUN

SUNSET ANGLE= 106.501 DEGREES

SUNRISE TO SUNSET= 14.200 HOURS

RTOT	0.122	0.113	0.098	0.079	0.053	0.027	0.009
IBARTH	1073.656	989.448	863.137	691.212	463.150	238.595	78.949
RDIF	0.112	0.106	0.095	0.079	0.059	0.036	0.014
IBARDH	169.855	160.858	143.475	118.893	88.786	55.266	20.442
CTH	0.978	0.926	0.826	0.684	0.511	0.318	0.118
THETA	0.211	0.387	0.599	0.817	1.034	1.247	1.453
TABAR	0.732	0.728	0.716	0.680	0.585	0.402	0.197
IC	155.356	156.138	158.718	167.129	194.197	282.868	576.298
XC	0.145	0.158	0.184	0.242	0.419	1.186	7.300
PHI	0.855	0.842	0.816	0.758	0.581	0.004	0.
Q	671.998	606.750	504.563	356.501	157.451	0.413	0.

HEAT LOSS COEFFICIENT = 4.028
 DAILY COLLECTION EFFICIENCY= 0.524

	1/2	1 1/2	2 1/2	3 1/2	4 1/2	5 1/2	6 1/2
--	-----	-------	-------	-------	-------	-------	-------

JUL

SUNSET ANGLE= 105.191 DEGREES

SUNRISE TO SUNSET= 14.025 HOURS

RTOT	0.124	0.114	0.099	0.079	0.052	0.026	0.008
IBARTH	956.688	879.802	764.472	610.307	402.636	202.104	62.805
RDIF	0.113	0.107	0.096	0.079	0.058	0.036	0.012
IEARDH	207.719	196.523	174.892	144.303	106.839	65.052	21.792
CTH	0.972	0.920	0.819	0.675	0.500	0.305	0.102
THETA	0.236	0.403	0.612	0.829	1.047	1.261	1.469
TABAR	0.722	0.718	0.706	0.671	0.579	0.411	0.235
IC	141.543	142.320	144.724	152.384	176.561	248.443	435.147
XC	0.148	0.162	0.189	0.250	0.439	1.229	6.929
PHI	0.852	0.838	0.811	0.751	0.565	0.014	0.
Q	588.752	529.747	437.785	307.388	131.645	1.202	0.

HEAT LOSS COEFFICIENT = 4.053

DAILY COLLECTION EFFICIENCY= 0.517

ALG

SUNSET ANGLE= 99.687 DEGREES

SUNRISE TO SUNSET= 13.292 HOURS

RTOT	0.130	0.119	0.101	0.078	0.049	0.021	0.004
IBARTH	945.466	862.691	733.362	567.772	356.556	152.591	32.330
RDIF	0.119	0.112	0.098	0.080	0.056	0.031	0.004
IEARDH	199.804	188.164	165.675	133.872	94.922	51.478	6.502
CTH	0.938	0.883	0.778	0.628	0.446	0.242	0.031
THETA	0.354	0.488	0.680	0.891	1.109	1.327	1.540
TABAR	0.721	0.716	0.700	0.653	0.537	0.352	0.122
IC	147.916	149.027	152.533	163.511	198.795	303.496	877.632
XC	0.156	0.173	0.208	0.288	0.558	1.989	27.146
PHI	0.844	0.827	0.792	0.713	0.449	0.	0.
Q	575.353	510.988	406.348	264.041	85.869	0.	0.

HEAT LOSS COEFFICIENT = 4.044

DAILY COLLECTION EFFICIENCY= 0.508

SEP

SUNSET ANGLE= 92.201 DEGREES

SUNRISE TO SUNSET= 12.294 HOURS

RTOT	0.139	0.126	0.104	0.077	0.043	0.013	0.001
IBARTH	936.665	846.513	699.815	514.762	289.381	89.716	5.918
RDIF	0.127	0.119	0.103	0.080	0.052	0.021	0.
IEARDH	166.771	155.830	134.693	104.801	68.190	27.357	0.
CTH	0.858	0.802	0.693	0.539	0.351	0.141	0.
THETA	0.539	0.641	0.805	1.001	1.212	1.430	1.571
TABAR	0.719	0.710	0.681	0.605	0.440	0.240	0.
IC	163.354	165.523	172.458	194.072	266.921	488.855	0.
XC	0.174	0.196	0.246	0.377	0.922	5.449	0.
PHI	0.826	0.804	0.754	0.623	0.124	0.	0.
Q	556.107	483.298	359.215	194.114	15.786	0.	0.

HEAT LOSS COEFFICIENT = 4.020

DAILY COLLECTION EFFICIENCY= 0.479

1 1/2 1 1/2 2 1/2 3 1/2 4 1/2 5 1/2 6 1/2

OCT

SUNSET ANGLE= 84.521 DEGREES
 SUNRISE TO SUNSET= 11.269 HOURS
 RTOT 0.149 0.134 0.107 0.073 0.034 0.007 0.
 IBARTH 795.216 712.869 570.914 389.222 183.354 35.243 0.
 RDIF 0.137 0.127 0.107 0.079 0.044 0.005 0.
 IBARDH 155.864 144.111 121.404 89.292 49.963 6.097 0.
 CTH 0.740 0.684 0.576 0.424 0.237 0.029 0.
 THETA 0.738 0.817 0.956 1.133 1.331 1.542 1.571
 TABAR 0.695 0.677 0.628 0.514 0.322 0.105 0.
 IC 203.641 208.894 225.285 275.280 438.747 1352.712 0.
 XC 0.256 0.293 0.395 0.707 2.393 38.383 0.
 PHI 0.744 0.707 0.605 0.302 0. 0. 0.
 Q 410.962 341.304 217.045 60.423 0. 0. 0.

HEAT LOSS COEFFICIENT = 3.966
 DAILY COLLECTION EFFICIENCY= 0.387

NOV

SUNSET ANGLE= 77.390 DEGREES
 SUNRISE TO SUNSET= 10.319 HOURS
 RTOT 0.161 0.142 0.109 0.067 0.024 0.002 0.
 IBARTH 654.392 578.214 444.903 270.732 96.919 6.482 0.
 RDIF 0.149 0.136 0.111 0.075 0.032 0. 0.
 IBARDH 133.343 121.690 99.178 67.341 28.349 0. 0.
 CTH 0.613 0.559 0.456 0.309 0.130 0. 0.
 THETA 0.911 0.978 1.098 1.256 1.440 1.571 1.571
 TABAR 0.647 0.618 0.542 0.397 0.225 0. 0.
 IC 256.344 268.612 306.220 418.222 736.980 0. 0.
 XC 0.392 0.465 0.688 1.545 7.604 0. 0.
 PHI 0.609 0.537 0.323 0. 0. 0. 0.
 Q 257.927 191.775 77.995 0. 0. 0. 0.

HEAT LOSS COEFFICIENT = 3.910
 DAILY COLLECTION EFFICIENCY= 0.259

DEC

SUNSET ANGLE= 73.540 DEGREES
 SUNRISE TO SUNSET= 9.805 HOURS
 RTOT 0.168 0.147 0.110 0.062 0.016 0. 0.
 IBARTH 550.570 482.363 359.806 203.058 52.875 0. 0.
 RDIF 0.156 0.141 0.112 0.072 0.022 0. 0.
 IBARDH 126.391 114.331 91.033 58.085 17.732 0. 0.
 CTH 0.543 0.491 0.391 0.250 0.076 0. 0.
 THETA 0.997 1.057 1.169 1.319 1.495 1.571 1.571
 TABAR 0.608 0.572 0.485 0.341 0.215 0. 0.
 IC 295.393 313.961 369.824 526.064 835.967 0. 0.
 XC 0.537 0.651 1.028 2.591 15.810 0. 0.
 PHI 0.473 0.369 0.092 0. 0. 0. 0.
 Q 158.281 101.847 15.981 0. 0. 0. 0.

HEAT LOSS COEFFICIENT = 3.878
 DAILY COLLECTION EFFICIENCY= 0.168

DISTRIBUTION:

Internal

G. E. Bush L-40
A. F. Clark L-14
J. A. Day L-14
W. C. Dickinson (25) L-14
A. Holzer L-43
R. D. Neifert (10) L-40
J. N. Shearer L-18
L. F. Wouters L-48
TID (5) L-9

External

C. E. Backus
Arizona State University
School of Engineering
Tempe, Arizona 85281

F. E. Edlin
9517 Cedar Hill
Sun City, Arizona 85851

M. F. Merriam
UC Berkeley
Dept. of Material Sciences 276-HM
Berkeley, California 94720

M. A. Wahlig
LBL
R&D Bldg. 50A Rm. 6121

NOTICE

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."