

UNCLASSIFIED

X-822

OAK RIDGE NATIONAL LABORATORY
Operated By
UNION CARBIDE NUCLEAR COMPANY
UCC
POST OFFICE BOX X
OAK RIDGE, TENNESSEE

EXTERNAL TRANSMITTAL
AUTHORIZED

ORNL
CENTRAL FILES NUMBER

58-1-41

COPY NO. 31

DATE: January 16, 1958

SUBJECT: STRATIFIED SLAB GAMMA-RAY DOSE-RATE BUILDUP
FACTORS FOR LEAD AND WATER SHIELDS

TO: Distribution

FROM: L. A. Bowman* and K. K. Trubey

INTERNAL DISTRIBUTION

1. E. P. Blizzard	14. F. C. Maienschein	27. W. Zobel
2-11. L. A. Bowman	15. S. K. Penny	28. M. J. Skinner
12. C. E. Clifford	16-25. D. K. Trubey	29. ORNL-RC
13. F. L. Keller	26. C. D. Zerby	30-31. Laboratory Records

EXTERNAL DISTRIBUTION

32. R. Aronson (TRG)
33. F. A. Aschenbrenner (GE, Cincinnati, Ohio)
34. S. Auslender (Pratt and Whitney, East Hartford, Conn.)
35. J. B. Dee (Pratt and Whitney, East Hartford, Conn.)
36. W. E. Edward (GE, Cincinnati, Ohio)
37. H. Goldstein (NDA)
38. M. H. Kalos (NDA)
39. John MacDonald (GE, Cincinnati, Ohio)
40. R. K. Osborn (Univ. of Michigan, Ann Arbor, Michigan)
41. G. Rausa (The Martin Co., Baltimore, Maryland)
42. N. M. Schaeffer (Convair, Ft. Worth, Texas)
43. J. Van Hoomissen (GE, Idaho)
44. F. N. Watson (Lockheed, Marietta, Ga.)
45. Capt. E. Zawalick (WCLJX- Wright-Patterson AFB, Ohio)
46. Bureau of Aeronautics (Attn: LCDR Russell, RS51)
47. Convair, San Diego (Attn: Dr. Donaldson)

*On assignment from WADC.

NOTICE

This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

UNCLASSIFIED

837-1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DO NOT
PHOTOSTAT

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Stratified Slab Gamma-Ray Dose-Rate Buildup Factors
for Lead and Water Shields

L. A. Bowman¹ D. K. Trubey

The ORACLE Monte Carlo code² for the calculation of the penetration of gamma rays through stratified slabs was used to calculate a total of 512 problems for eight different lead and water configurations as shown in Fig. 1. The energy of the incident radiation, the angle of incidence, the thickness of the shield, and the percentage of lead preceding or following water were varied. The source was assumed to be a monodirectional beam with energies of 1, 3, 6, and 10 Mev. The incident angles chosen were those which would give slant thicknesses of 1, 2, 3, and 4 times the normal thickness. The infinite slabs had finite normal thicknesses of 1, 2, 4, and 6 mean free paths.

The results obtained included the dose rate and energy flux throughout the slab and at the rear; dose-rate buildup factors; the heat deposited throughout the slab; and the energy and angular distribution reflected from and transmitted through the slab. Only the buildup factors at the rear of the slabs for normal incidence are considered in this report.

Figures 2 and 3 show a comparison between the finite thickness slab and NDA³ infinite medium buildup factors for pure lead and water, respectively. Table 1 and Figs. 4, 5, 6, and 7 show the buildup factors for the various percentages of lead preceding and following water for the four thicknesses used.

All of the buildup factors determined for composite slabs in this series have been compared with values obtained by use of a formula proposed by M. H. Kalos of NDA⁴ in which the buildup factors independently computed for lead and water are combined to determine the buildup factor for a composite slab consisting of two materials. For a lead-water slab (that is, lead followed by water) the formula is written as follows:

1. On assignment from U. S. Air Force.
2. S. Auslender, Compilations of Monte Carlo Calculations of Gamma-Ray Penetration in Multiregion Shields with Slab Geometry, ORNL-2310 (to be published).
3. H. Goldstein and J. E. Wilkins, Jr., Calculations of the Penetration of Gamma Rays, NYO-3075, June 30, 1954.
4. H. Goldstein, The Attenuation of Gamma Rays and Neutrons in Reactor Shields, pp. 192-193, U. S. Government Printing Office, Washington 25, D. C., May 1, 1957.

UNCLASSIFIED

$$B(x_1, x_2) = B_2(x_2) + \frac{B_1(x_1) - 1}{B_2(x_1) - 1} [B_2(x_1 + x_2) - B_2(x_2)]$$

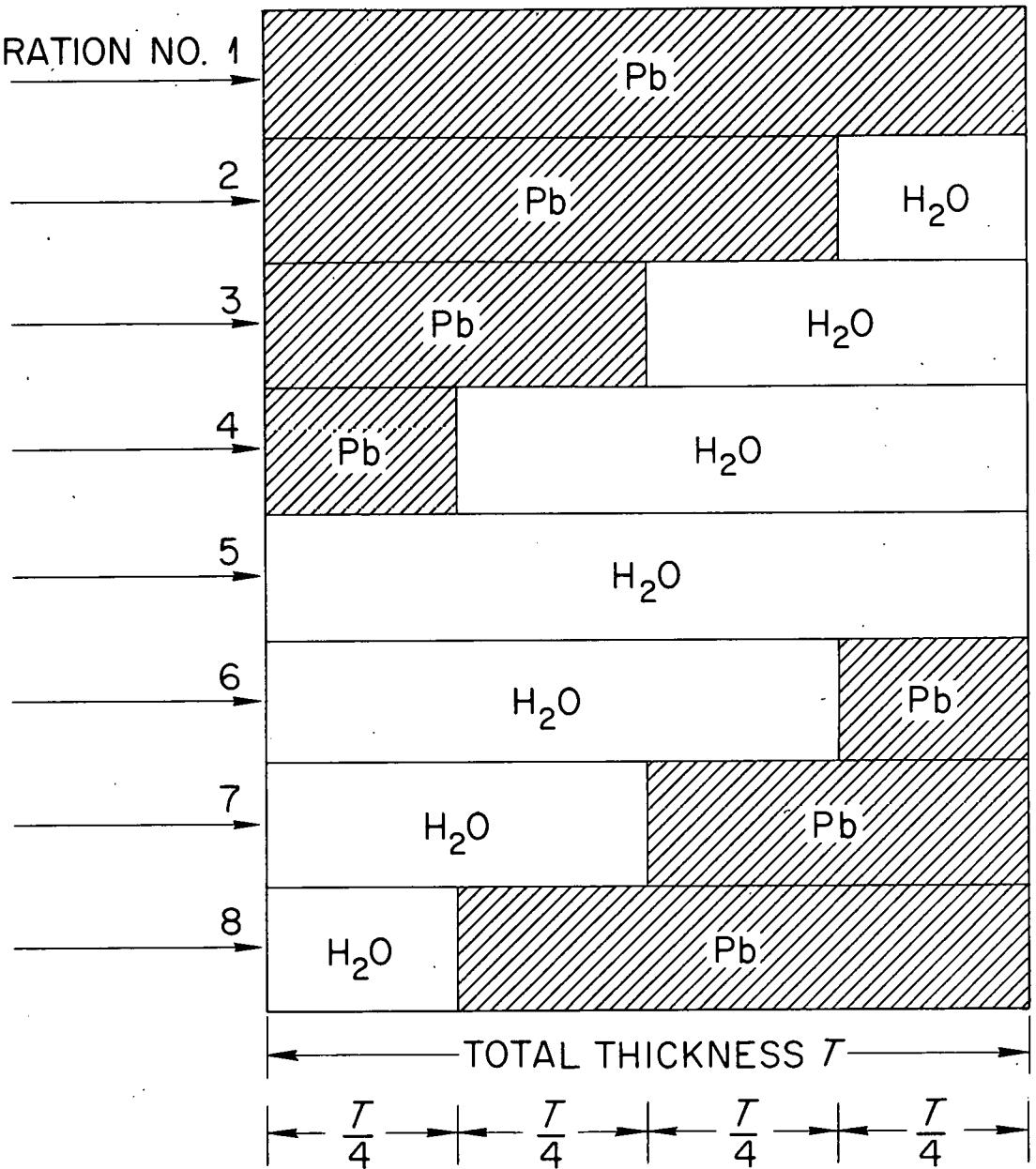
where

B_1, B_2 = gamma-ray dose rate buildup factors for the first and second materials, respectively,

x_1, x_2 = thickness in mean free paths of the first and second materials, respectively.

For a water-lead shield the formula is:

$$B(x_1, x_2) = B_2(x_2) + \left[\frac{B_1(x_1) - 1}{B_2(x_1) - 1} e^{-1.7x_2} + \left(\frac{\mu_{cs}}{\mu_t} \right)_1 (1 - e^{-x_2}) \right] x [B_2(x_1 + x_2) - B_2(x_2)]$$


where

μ_{cs} = Compton scattering cross section,

μ_t = total cross section.

Tables 2 and 3 give the buildup factors determined both by ORACLE calculations and by the Kalos' formula.

SLAB CONFIGURATION NO. 1

PARAMETERS:

INCIDENT ENERGY = 1, 3, 6, AND 10 Mev

TOTAL THICKNESS T = 1, 2, 4, AND 6 MEAN FREE PATHS

$\sec \theta$ = 1, 2, 3, AND 4

Fig. 1. Stratified Slab Configurations.

UNCLASSIFIED

2-01-059-249

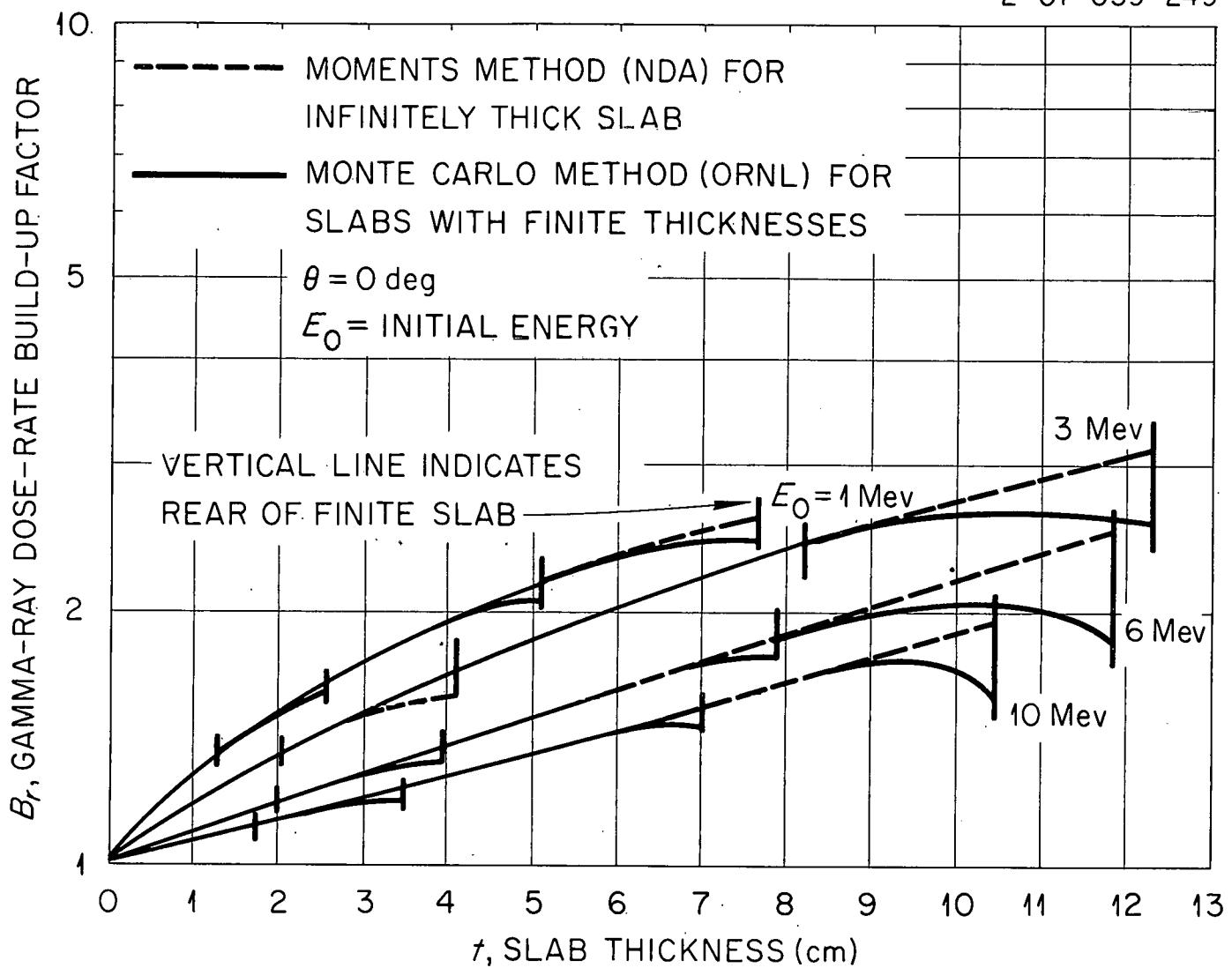


Fig. 2. Comparison of Dose-Rate Build-up Factors for Lead Slabs Computed by Monte Carlo Method with those Computed by Moments Method. Normally-Incident Gamma Rays.

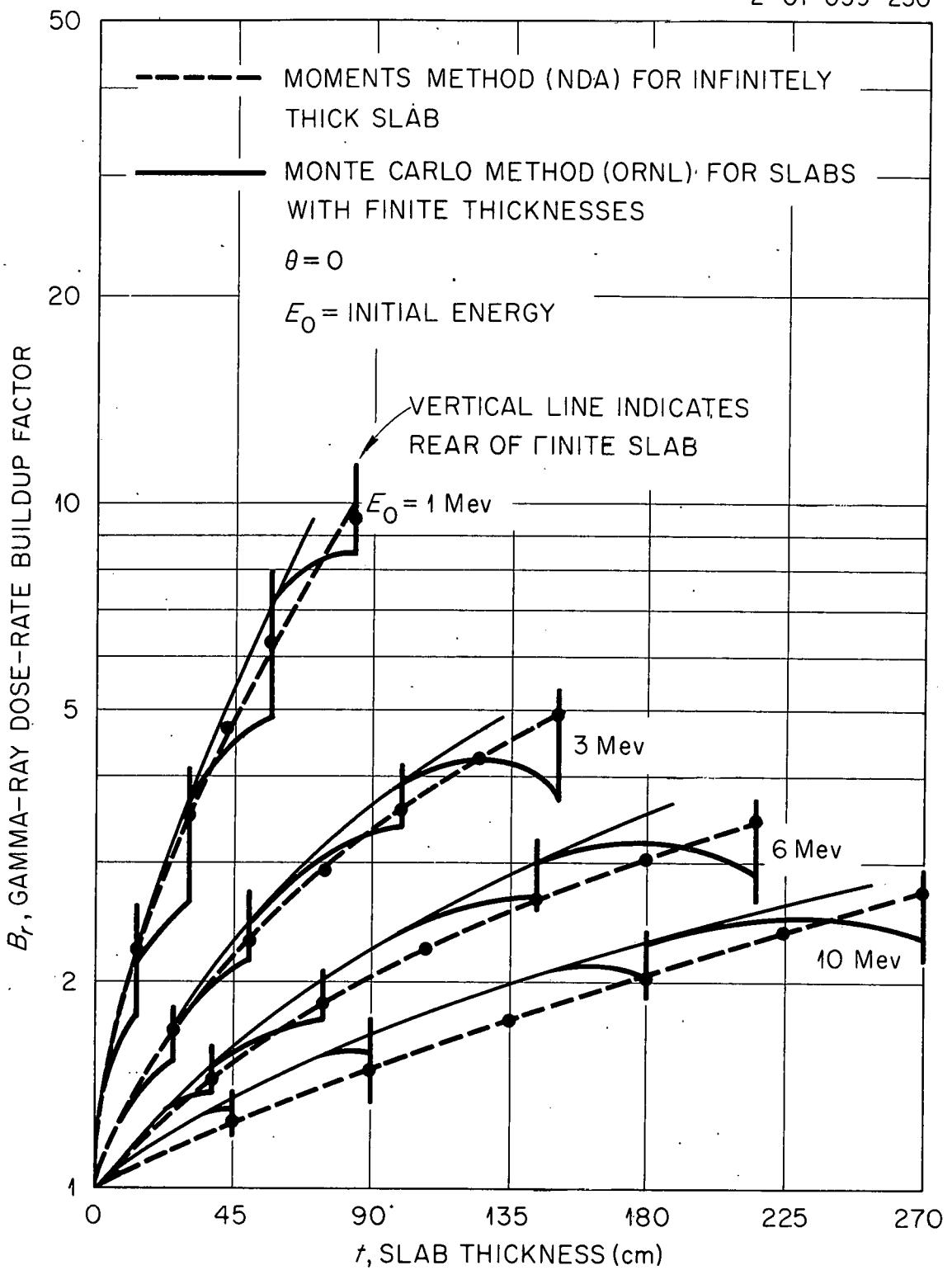


Fig. 3. Comparison of Dose-Rate Build-up Factors for Water Slabs Computed by Monte Carlo Method with those Computed by Moments Method. Normally Incident Gamma-Rays.

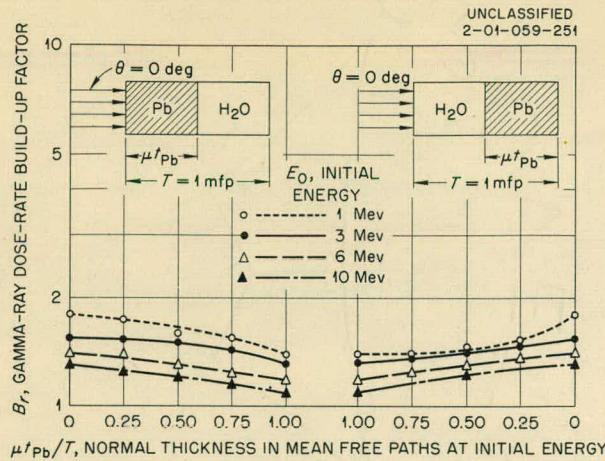


Fig. 4. Monte Carlo Dose-Rate Build-up Factors at the Rear of Composite Lead-Water Slab Shields 1 Mean Free Path Thick. Normally Incident Gamma Rays.

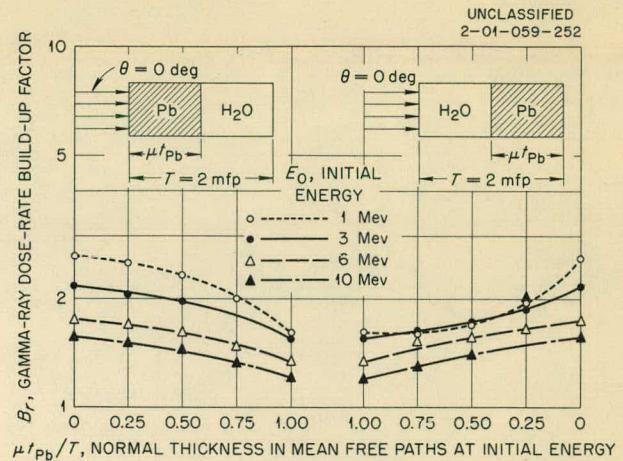


Fig. 5. Monte Carlo Dose-Rate Build-up Factors at the Rear of Composite Lead-Water Slab Shields 2 Mean Free Paths Thick. Normally Incident Gamma Rays.

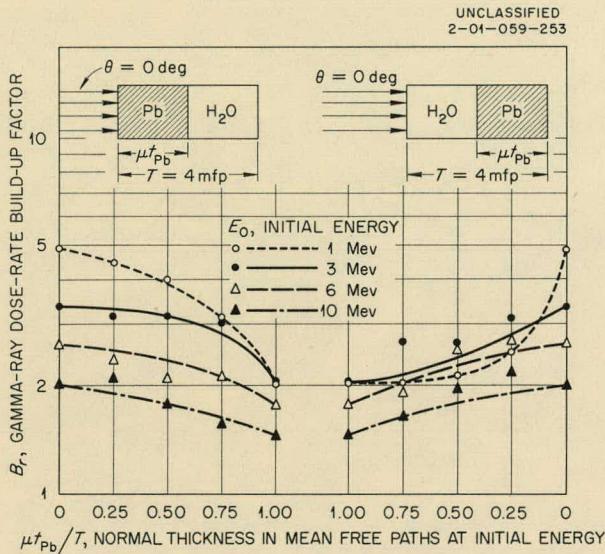


Fig. 6. Monte Carlo Dose-Rate Build-up Factors at the Rear of Composite Lead-Water Slab Shields 4 Mean Free Paths Thick. Normally Incident Gamma Rays.



Fig. 7. Monte Carlo Dose-Rate Build-up Factors at the Rear of Composite Lead-Water Slab Shields 6 Mean Free Paths Thick. Normally Incident Gamma Rays.

UNCLASSIFIED

Table 1. Transmission Dose Buildup Factors for Normally Incident Gamma Radiation on Stratified Slabs of Water and Lead Using a Point Isotropic Detector

Source Energy E_0 (Mev)	Total Slab Thickness T (mfp)	Buildup Factor									
		Lead Followed by Water					Water Followed by Lead				
		$(\mu_0 t)_{Pb}/T$		(a)			$(\mu_0 t)_{Pb}/T$		(a)		
		0	0.25	0.50	0.75	1.0	1.0	0.75	0.50	0.25	0
1	1	1.78	1.73	1.64	1.53	1.37	1.37	1.40	1.43	1.53	1.78
	2	2.62	2.52	2.33	2.02	1.61	1.61	1.62	1.70	1.97	2.62
	4	4.95	4.48	3.90	3.10	2.04	2.04	2.06	2.16	2.50	4.95
	6	8.00	7.25	6.20	4.80	2.48	2.48	2.53	2.72	3.31	8.00
3	1	1.54	1.53	1.50	1.43	1.31	1.31	1.35	1.40	1.46	1.54
	2	2.16	2.08	1.97	1.80	1.56	1.56	1.63	1.73	1.87	2.16
	4	3.36	3.30	3.16	2.81	2.07	2.07	2.16	2.40	2.80	3.36
	6	4.30	4.22	4.00	3.55	2.57	2.57	2.71	2.96	3.35	4.30
6	1	1.39	1.35	1.30	1.24	1.17	1.17	1.23	1.29	1.35	1.39
	2	1.82	1.69	1.61	1.49	1.34	1.34	1.45	1.56	1.65	1.82
	4	2.61	2.51	2.36	2.12	1.78	1.78	2.02	2.26	2.49	2.61
	6	2.80	2.68	2.55	2.40	2.26	2.26	2.48	2.62	2.72	2.80
10	1	1.31	1.25	1.21	1.15	1.08	1.08	1.14	1.21	1.26	1.31
	2	1.57	1.50	1.42	1.33	1.20	1.20	1.31	1.39	1.48	1.57
	4	2.02	1.91	1.79	1.64	1.46	1.46	1.64	1.79	1.91	2.02
	6	2.18	2.12	2.06	1.94	1.75	1.75	1.97	2.08	2.15	2.18

a. $(\mu_0 t)_{Pb}/T$ = lead fraction of total slab thickness.

UNCLASSIFIED

Table 2. Monte Carlo Gamma-Ray Dose Rate Buildup Factors at Rear
of Lead-Water Slab Shields: Comparison of Oracle Calculations
with Values Obtained with Kalos Formula

Incident Gamma-Ray Energy (Mev)	Shield (mfp)			B _r	Ratio of B _r (calc.) to B _r (Kalos)	
		Lead	Water	Oracle Calculations		
1	1	1	1	2.33	2.18	1.069
		2	1	3.30	3.13	1.054
		3	1	4.48	4.27	1.049
		4	1	5.81	5.60	1.038
		5	1	7.51	7.14	1.052
	2	1	1	2.72	2.51	1.084
		2	1	3.90	3.47	1.124
		3	1	5.33	4.73	1.127
		4	1	6.95	6.06	1.147
	3	1	1	3.10	3.00	1.033
		2	1	4.50	4.05	1.111
		3	1	6.22	5.36	1.160
3	1	1	1	1.95	1.90	1.026
		2	1	2.58	2.54	1.016
		3	1	3.30	3.10	1.065
		4	1	3.80	3.60	1.056
		5	1	4.21	4.07	1.034
	2	1	1	2.47	2.46	1.004
		2	1	3.15	3.00	1.050
		3	1	3.69	3.52	1.048
		4	1	4.18	4.03	1.037
	3	1	1	2.80	2.85	0.982
		2	1	3.44	2.89	1.190
		3	1	4.00	3.47	1.153
6	1	1	1	1.60	1.55	1.032
		2	1	2.03	1.98	1.025
		3	1	2.50	2.43	1.029
		4	1	2.66	2.67	0.996
		5	1	2.71	2.74	0.989
	2	1	1	1.98	1.80	1.100
		2	1	2.34	2.14	1.093
		3	1	2.55	2.50	1.020
		4	1	2.62	2.70	0.970
	3	1	1	2.11	1.96	1.077
		2	1	2.31	2.18	1.060
		3	1	2.41	2.52	0.956
10	1	1	1	1.41	1.38	1.022
		2	1	1.68	1.64	1.024
		3	1	1.90	1.88	1.011
		4	1	2.04	2.03	1.005
		5	1	2.14	2.12	1.009
	2	1	1	1.55	1.50	1.033
		2	1	1.78	1.72	1.035
		3	1	1.97	1.93	1.021
		4	1	2.10	2.07	1.014
	3	1	1	1.65	1.65	1.000
		2	1	1.81	1.84	0.984
		3	1	1.94	2.02	0.960

UNCLASSIFIED

Table 3. Monte Carlo Gamma-Ray Dose Rate Buildup Factors at Rear
of Water-Lead Slab Shields: Comparison of Oracle Calculations
with Values Obtained with Kalos Formula

Incident Gamma-Ray Energy (Mev)	Shield (mfp)			B _r	Ratio of B _r (calc.) to B _r (Kalos)
		Water	Lead		
1	1	1	1	1.70	1.024
		2	1.86	1.92	0.969
		3	2.05	2.12	0.967
		4	2.22	2.35	0.945
		5	2.42	2.55	0.949
	2	1	2.20	1.96	1.122
		2	2.18	2.17	1.005
		3	2.31	2.45	0.943
		4	2.52	2.63	0.958
		5	2.72	2.73	0.996
3	1	1	2.50	2.27	1.101
		2	2.46	2.50	0.984
		3	2.72	2.73	0.996
	2	1	1.74	1.62	1.074
		2	1.92	1.88	1.021
		3	2.15	2.16	0.995
		4	2.39	2.44	0.980
		5	2.66	2.68	0.993
	3	1	2.28	1.96	1.163
		2	2.39	2.24	1.067
		3	2.51	2.54	0.988
		4	2.70	2.78	0.971
		5	2.80	2.33	1.202
	6	1	2.88	2.60	1.108
		2	2.97	2.88	1.031
		3			
		1	1.55	1.50	1.033
		2	1.75	1.79	0.978
10	1	3	2.01	2.04	0.985
		4	2.20	2.27	0.969
		5	2.40	2.56	0.938
	2	1	2.09	1.89	1.106
		2	2.24	2.23	1.004
		3	2.38	2.50	0.952
		4	2.48	2.82	0.879
		5	2.48	2.31	1.074
	3	1	2.58	2.68	0.963
		2	2.61	3.04	0.859
		3			
		1	1.39	1.41	0.986
		2	1.52	1.55	0.981
	2	3	1.65	1.70	0.971
		4	1.77	1.92	0.922
		5	1.90	2.07	0.918
		1	1.70	1.72	0.988
		2	1.79	1.92	0.932
	3	3	1.88	2.16	0.870
		4	1.96	2.39	0.820
		1	1.95	2.00	0.975
		2	1.99	2.34	0.850
		3	2.08	2.61	0.797