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APPLICATION AND EVALUATION OF CERAMIC MATERIALS 

IN TORY REACTOR SYSTEMS 

J .H.  Moyer, W.B. Myers ,  C.E.  Walter,  

and W. M. Wells, J r .  

~ a w r e n c e  Radiation Laboratory, University of California 

Livermore ,  California 

ABSTRACT 

The Tory s e r i e s  of t e s t  r eac to r s  i s  intended to lead to a reac tor  capa- 

. . 
ble of use  a s  a ramje t  power plant. Current  designs a r e  presented. Beryl- 

l ium oxide i s  presently the only ser ious  contender a s  the moderator .  Analyt- 

ical  and experimental t rkatment  of the thermal  s t r e s s  in . B e 0  . i s  d i s -  

cussed.  There is  a requirement  that a ramje t  reac tor  sustain very  la rge  

forces  caused by flow-induced p r e s s u r e  drop. Development of ceramic  

s t ruc tura l  elements to  sustain these fo rces  i s  discussed. 
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APPLICATION AND EVALUATION O F  CERAMIC MATERIALS 

IN TORY REACTOR SYSTEMS':' 

J.  H. Moyer, W. B. Myers ,  C.  E .  Walter,  

and W.M. wel ls , '  J r .  

Lawrence Radiation Laboratory,  University of California 

L ive rmore ,  California 

I. INTRODUCTION 

Lawrence Radiation Laboratory . is  cur ren t ly  engaged in the develop- 

ment  of a r eac to r  for  a supersonic  low-altitude nuclear  r amje t .  This  project  

i s  named Pluto by the Atomic Energy Commission.  The tern1 SLAM, which 

i s  an  Air  F o r c e  cont rac tor ' s  designation for  a complete r amje t  mi s s i l e  sys -  

temJusing the Pluto r eac to r ,  i s  a l so  a fami l ia r  one. The  t e s t  r e a c t o r s  being 

developed a t  LRL have been dubbed Tory.  

11. ,REACTOR AND ENVIRONMENT 

The SLAM miss ion  concept, briefly,  i s  to come in on t a rge t  while f ly-  

ing nea r  Mach 3 on the deck" to avoid ea r ly  detection. This  'miss ion con- 

cept,  coupled with consideration of ,aer othermodynamic s ,  neutronic s ,  payload 

volume, and m a t e r i a l  prope.rt ies s e r v e s  t 0 . e  s tabl ish within f a i r l y  na r row 
a.  

l im i t s  the s ize ,  t empera ture ,  ma te r i a l ,  and porosity of the r eac to r .  Such a 

study r e su l t s  in requi rements  for  the r eac to r  which cannot deviate grea t ly ,  in 

the presen t  s ta te  of technology, f r o m  those given in F ig .  1. 

-4. 
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The moderator  choice i s  rapidly narrowed.dpwn by neutronic cqnsider- 

ations to mater ia l s  containing .Be  and C. . The . presence of a i r ,  the high tem-  

pe ra tu re  involved, and the choice of neutronically acceptable compounds of 

these  elements leave only B e 0  a s  a suitable c-hoice. Beryllides show prom.- 
. . 

i s e  but the i r  technology i s  ye t  young. 

It has  been found feasible to  d i spe r se  a uranium compound in B e 0  to 
. . . 

the extent required by cr i t ical i ty .  The' maximum loading required i s  about 

8 percent  by weight. An intensive effort i s  being expended to improve the 

proper t ies  of B e 0  + ~~~~0~ mater ia l  at LRL. High density and p u r i t y  sin- 

t e red  shapes a r e  current ly being produced a t  LRL. The fueled B e 0  process  

development has led to  an  extruded hexagonal' fuel'e'lement: Its basic s i ze  i s  

0. 3 in. flat-to-flat with a 1/4-in. -diam axial  hole and 4 in. long. A flying 

reac tor  requi res  about half a million of  these tubes.  The chosen s ize  i s  a 

compromise  among the competing requirements:  enhancement of per form-  

ance,  reduction of thermal  s t r e s s ,  e a s e  of a s  s embly , and economical. fabri-  

cation. 

The radial  tempera ture  profile i s  flattened by varying the uranium 

concentration radially.  ' The overal l  axial tempera ture  difference shown in' 

Fig.  2 i s  the s a m e  a s  the a i r  ' temperature difference, o r  about. 1100°F in 

5 feet .  The axial.profi1-e i s  not l inear  and has seve re  discontinuities a t  the 

rcfl.cctor interfacco. 
I 

The environment indicated in F igs .  1 and 2 poses no 'easy .problem in 

holding together a .mult ipiece deramic  reac tor  having these charac ter i s t ics .  

. . 

. . III. TORY'REACTORS , , 

To develop a flyable reac tor  LRL i s  now fielding a t e s t  r eac to r ,  desig- 

nated Tory  11-A, a t  the AEC1s Nevada Tes t  Site. In about two y e a r s  a 



prototype designated Tory 11-C, which would actually be capable of flying 

given a suitable a i r f r ame ,  will be tes ted a t  the same' si te.  Time permi ts  

'only a brief description of these reac tors .  

A. Tory 11-A 

Figures  3 and 4 show the Tory  11-A reac tor .  The ceramic  core  was 

reduced in diameter  to conserve ceramic  cost .  Crit icali ty i s  achieved by 

surrounding the core  p res su re  vesse l  with a water-cooled graphite ref lector .  

Control i s  accomplished in the ref lector .  

The ceramic  tubes a r e  separated into modules and supported la teral ly  

by B e 0  s t ruc tura l  l inks.  Alignment of flow holes i s  maintained by s tagger-  

ing the ends of the tubes. The eyes of the s t ruc tura l  links a r e  threaded on 

cooled metal  t ie tubes which run  the length of the core  in a hexagonal a r r a y .  

The tie tubes a r e  attached to a meta l  grid in front ,of the core  and supp0r.t a 

re f rac tory  metal  plate a t  the back of each module. 

With this design, the p res su re  drop  caused by a i r  flow through the 

reac tor  i s  res i s ted  by the re f rac tory  metal  base plates and t ransmit ted to 
. - 

t h e  front support grid by the t ie tubes. ~ e c a u s e  the reac tor  i s  tes ted in a 

horizontal position, the s t ruc tura l  B e 0  links (or dogbanes) support the 

weight of the associated bundle of ce ramic  tubes. This load i s  ca r r i ed  in 

bending by the dogbones and the metal  tie tubes. Photoelastic s t r e s s  analy- 

s i s  of the dogbones indicates that bending s t r e s s e s  a r e  low. Each dogbone 

was carefully inspected for  flaws before assembly  of the core .  

By grouping the ce ramic  tubes into modules the problem associated 
I 

with thermal  expansions was minimized. This is  indeed a problem, par t ic-  

ular ly whln  one considers  the l a rge  tempera ture  (and hence expansion) d is -  

continuities a t  the front reflector interface.  The disadvantage l ies  in the 



relatively great  f ract ion ( z  18% ) of the core  volume taken up nonproductively 

by unfueled B e 0  in the dogbones, t ie tubes,  and incidental void. 

B. Tory  11-C 

Two designs a r e  in p rogress  involving high productive volume ra t ios .  

The f i r s t  one, shown in Fig.  5, ut i l izes  the same p r imary  s t ruc ture  a s  in 

Tory 13-A except that the br i t t le  dogbones have been eliminated. Instead, 

l a t e ra l  loads of the magnitude expected in flight a r e  t ransmit ted through a 

close packed a r r a y  of the ce ramic  tubes to a per ipheral  spring support sys -  

tem.  Again the ends of the tubes a r e  staggered, in this case  to  eliminate 

cleavage planes a s  well a s  to  provide flow hole alignment. The side support 

components a r e  cooled by inlet r a m  a i r .  

  he side support sys t em allows different thermal  expansion of the r e -  

actor  a t  different axlal stations.  The la rge  expansion discontinuity at  the 

front  reflector interface ( re fer r ing  to the tempera ture  profile of F ig .  2 )  

has  been solved in this design a s  shown in Fig.  6, by allowing the bank of 

ref lector  tubes next to the ac t ive .core  to ac t  a s  round end columns. These 

column tubes a r e  not supported la teral ly  by side springs.  Alternate tubes 

extend sufficiently into the adjacent banks of tubes to ha supported by 
. . 

. . 

them. 

In the second Tory  11-C desigr.1 the tie Lubes and ref rac tory  metal  base 

plates a r e  eliminated. The axial thrus t  loading on the reac tor  i s  res i s ted  by 

a l a rge  ce ramic  dome a s  shown in Fig.  7.   his design resu l t s  in  a consider-  

able economy of neutrons since the space ieft  by the t ie  tubes i s  occupied by 

fueled ce ramic  tubes.  This design i s  a imed a t  allowing higher tempera tures .  

' ~ ' 0 t h  designs for    or^ 11-C have internal cavities for  control rods.  The 

presence of control rods  causes  severe.flu& perturbation in adjacent ceramic  



tubes.  Careful consideration of this  perturbation i s  required a s  i t  affects  the 

thermal  s t r e s s  i n  the ce ramic  tube. 

IV. THERMAL STRESS ANALYSIS AND TESTS 

There  i s  a par t icular  in te res t  in  the thermal  s t r e s s e s  i n  the ce ramic  

fuel tubes.  I t  can  be shown that,  for the purpose of thermal  s t r e s s  analysis ,  

a hexagonal tube with an axial c i rcu lar  hole is closely approximated by a c i r -  

cular  tube having the same hole diameter  and. t,otal cross-sect ional  a r e a .  
1 

If the mater ia l  of the ceramic  fuel tube remains  elast ic ,  the maximum 
I 

thermal  s t r e s s  is given by: 

where 

u = maximum thermal  s t r e s s  

E = Young ', s modulus 

a = instantaneous coefficient of thermal  expansion 
. , . . 

k = thermal  conductivity 

Q = uniform volumetric heat generation r a t e  i n  ma te r i a l  

a = hole r a d i ~ ~ s  

$ = dimensionless function of porosity and P o i s s o n ' s  ratio.  

This i s  a biaxial s t r e s s  which. is tensi le  a t  the. inside . su r face  of the tube. The 

tensile . s t r e s s  i n  the equivalent hexagonal tube i s  a few percent  higher near  

the ends. 

Substitution in  Eq. (1)  of numerical  values appropriate for  the Tory  

r eac to r s  proves to  be discouraging. F o r  example, a s  noted subsequently, 

the mean  short  t ime modulus of rupture of B e 0  + ~ 2 ~ ~ 0  f rom one supplier 
2 

a t  2400°F is 12, 500 psi.  Yet Eq. (1) y ie lds  an elast ic  s t r e s s  of 28, 000 ps i !  



~ o r , t u n a t e l ~ ,  i t  i s  apparent f r o m  s imul ie io i  eiip&ri&kn'tsthat the ceramic  
. . 

tubes do not break under expected reac tor  condition's.. Work' i s  no& uhderw'ay 

to  study the inelastic action to  which this  anomaly mus t  be attributed. 
. , 

Equation (1) may be  rewri t ten i n  a par t icular ly convenient manner:  

In Eq.' ( 2 )  the right hand side may be'evaluated withb'ut i-kgard to m a -  

t e r i a l  proper t ies .  F o r  example, i t s  peak value in the Tory II-C reac tor  i s  

. . 17. 7 watts/in. 

The fact that expressions for  elastic thermal  s t r e s s e s  a r e  used means 

only that they a r e  a convenient means of data presentation. As pointed out 

above, they a r e  known not to be p rec i se  for  the mater ia l s  and conditions a t  

hand. 

In the simulation experiments ,  because i t  i s  impract ical  to generate 

heat  within the ce ramic  tube, heat i s  radiated to i t s  outer surface.  The heat 

i s  t r ans fe r red  through the tube wall to gas' flowing through the tube. An ex- 

press ion  s imi l a r  to Eq. .(2) and cofitairiirig the quantity o ' le /~a  can  be derived 

fo r  e last ic  thermal  s t r e s s e s  in  this situation. Thus, experiments can be con- 

ducted for  values of u k / ~ a  which a r e  of in te res t  in  the Tory reac tors .  The 

experiments  were  performed in a facility named ~ l o w ~ i ~ e . '  

F'igur'e 8 presents  some data f r o m  Blowpipe'. The lower curve  represents  

the calculated v'alkes of 'uk/Ea for  Tory II-A. The numbers along the curve 

indicate relat ive axial  position. Fourteen t e s t s  yielding conditions in the 

hatched a r e a  produced relatively minor  c ra ik ing  in  four tubes.   he remaining 

, . .  
ten, were  undamaged. T h e  spec imens  were  BeO- UOZ with thk weight percent 

of U02 vaiying between 5. 3% and 7: 0%. They wer'e pibduced a t  LRL and had 
, . 

nominal dimensions a s  shown in  the figur k.  An appreciable ciuantity.of data 



. . 
i s  not included because'  p re tes t  calibration procedures  heated specimens to 

tempera tures  in excess  of the sintering tempera tures .  

V. CERAMIC DOMES . 

The most  cr i t ical  i tem in the second Tory 11-C design i s  the l a rge  ce-  

ramic  dome. A dome Bppropriate 'for Tory 11-C-2 i s  shown in  Fig. 9 .  Since 

the dome i s  essentially in  compression,  allowable s t r e s s e s  can be  considerably 

gre,ater than tensi le  s t rength would dictate. A review of the propert ies  of 

relatively pure high-density ce ramics  and cheaper grades  of re f rac tor ies  

indicates .that severa l  mater ia l s  could compete for  this application. Silicon 

cai.bide was selected for  thordugh evaluation because' of severa l  desirable  

, propert ies .  S i c  can be relatively easily fabricated. KT.SiC (Carborundum 
. ., 

Company) i s  cold pressed .  It can 'be  easily machined before firing, and be- 

cause of uniquely low shrinkage ( less  than 1%)  i t  should requi re  l i t t le  o r  no 

final machining. The firing operation involves chemical changes and cons e- 

quently differs f r o m  the normal  sintering procedure.  In this c a s e  where ' the 

temperature.  differences a r e  fixed by the flowing a i r  the product Ea  indicates 

the thermal  Btres s behavior. The product Ea  for  S i c  i s  about a factor ,of 3 
\ 

lower than A1203 o r  BeO. 

Since the dome i s  in  compression i t  need not be monolithic. In fact,  

s'hould the dome .c'rack, fa i lure  would not be imminent. The f i r s t  intermediate- 

sca le  dome will be composed of seven pieces.  P ieces  of the required s i ze  

for  this a r e  current ly being fabiicated a t  Carborundum Company. 

. , 

VI. TEST RESULTS ON MECHANICAL BEHAVIOR O F  DOME STRUCTURES 
t ! . . 

Three  types u1 tes ts  dealing with mechanical be'havior of domes have 

been conducted. All t e s t s  deal with smal l - sca le  models and rely on the scaling 

prediction that s t r e s s e s  a r e  conserved for  a given applied p r e s s u r e  regard less  



of the l inear  scale  of the s t ruc ture .  The three  types of t e s t s  and resul ts  a r e  

a s  follows: 

1. Photoelastic s t r e s s  analysis of unperforated domes. F igure  10 

shows the variation of sur face  s t r e s s  in  a radial  plane.' The s t r e s s  plotted 

i s  the compressive s t r e s s  tangent to  the surface a t  the point plotted. ' These 

s t r e s s e s  have been normalized to the applied p res su re .  The model diameter  

was 12 in. and the technique was the "frozen s t r e s s "  procedurc.  

The resul ts  s e rve  to  support calculations and intuition to the effect that 

s t r e s s e s  in these kinds of configurations a r e  largely compressive and that 

the s t r e s s  values a r e  low. In  o rde r  t o  get an indication of the s t r e s s  levels 

in  a perforated dome, the values in F ig .  10 should be multiplied by the rat io  

of hole spacing to  web thickness.  This rat io  is  about 4 o r  5 for  interesting 

geometr ies .  Data on circumferent ial  s t r e s s e s  were  not available in t ime 
, . 

f o r  inclusion here .  

2. Per fora ted  p las te r -of -Par i s  domes. Eight 12-in. domes perforated 

with 1/2-in. holes to  50 % void .fraction were  tested to  destruction .under hydro- 
, . 

stat ical ly  applied load. .Two p r imary  conclusions may be drawn f r o m  these 

data: 

a )  P la s t e r -o f -Pa r i s  domes were  able to  sustain flat  face p res su res  

almost  equal to that required in the application. . Figure  1 1 shows load de - 

.flection data  for  the eight domes. Six were  one-piece domes and two were  

seven-piece domes. The p las te r  of P a r i s  has  a compressive . . strength of 

about 2500 psi. Using this  compressive s t rength and the photoelastic resu l t s ,  
. . 

one can predict  the fai lures  fair ly  well. The Carborundum Company's KT 

sil icon ca.rbide has a compressive s t rength of the . .order -of100,  000 psi at  

t empera tu res  of interest .  
. . . 
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b) The dome configuration and the attendant compressive s t r e s s e s  

can allow load to be sustain'ed af te r  s eve re  cracking of the dome. F igure  12 

is  a photograph of the under surface of a dome while i t  i s  sustaining the maxi- 

mum pressu re .  The cracks  had al l  occurred  ea r l i e r .  F igure  13 shows the , 

same  dome af te r  unloading and af ter  the pieces had been separated by hand. 

3. 3- 1/2-in. si l icon carbide domes.  ~ i ~ u r e  14 shows an  apparatus 

for  testing 3- 1/2-in. -diam domes a t  elevated tempera ture .  The t e s t s  were  

conducted in a n a r g o n  atmosphere to avoid oxidation of the molybdenum par t s .  

The r e s u l t s . a r e  summarized in Table I. 

Table I. High-temperature dome t e s t  data.  

P r e s s u r e  on 
T e m ~  flat face Tim,e 

S i c  dome No. 1 

S i c  dome No. 2 

2200°F 300 psi  2 h r  57  min 
I I 1000 " 2 hr 30 ~ n i n  
1 1  1130 I '  1/2 min 

2350°F 1000 I '  2 h r  12 min 

Some cracking was observed af te r  the pieces were  removed f r o m  the 
. 

t e s t  f ixture;  however, rough handling was required f o r  disassembly because 

par t s  of the t e s t  f ixture bonded to each other .  Consequently, t he re  i s  some 

uncertainty a s  to the source  of the c racks .  In a l l  ca ses  the domes were  in 

one piece af ter  removal f r o m  the t e s t  f ixture .  All t e s t s  were  discontinued 

because of diaphragm failure.  

VII. B ~ O '  PROPERTIES PERTINENT TO RAMJET REACTOR DESIGN 

A.  Modu1.u~ of Rupture of BeO-U02 Fuel  Tubes 

F igure  15 shows bending s t rength,data  for  about 300 hexagonal Be0-7 .  88 

w t b  U02 tubes. These tubes were  purchased by LRL f r o m  the Aircraf t  

Nuclear Propulsion Division of the General  Electr ic  Company a s  Tory 11-A 



fuel e lements .  The tubes were  loaded in three-point bending a s  indicated. 
..-,. 

The s t r e s s  is  calculated with the conventional assumption of l inear s t r e s s  

distribution (modulus of rupture).  Loading was done in a i r .  The plotted 

values a r e  maximum s t r e s s  (a t  center  point). 

B. Modulus of Rupture of Tory  11-A Dogbones 

The f lexural  s t rength of unfueled B e 0  s t ruc tura l  links was measured 

a t  room tempera ture  and approximately 1900°F .  All specimens were  in- 

spected before testing by radiographic and fluorescent penetrant methods 

to insure  soundness. Data a r e  shown in F igs .  16 and 17 for  mater ia l  pro-  

duced by two manufacturing methods. 

These tes t s  ,were made by bending the bar  in three-point loading and 

breaking the eye by loading along a d iameter .  Maximum s t r e s s  was com- 

puted elastically for  the web f rac ture .  S t r e s s  in the eye was related to ap-  

plied force  by a photoelastic study. . d 

C. Effects of I rradiat ion on BeO-UOZ 

The observed effect'of reac tor  radiation on B e 0  containing U02 that 

has  aroused most  concern has  been the effect on thermal  conductivity. There  

a r e  d i rec t  implications with respec t  to thermal  s t r e s s .  

Data obtained by Argonne National ~ a b o r a t o r i e s ' '  in 1946 showed 

l a rge  changes in thermal  conductivity. Post- i r radiat ion annealing removed 

some of the change, but post-annealing ceased to be effective above 1000°C 

( a s  explicitly stated in ref .  2 ) .  

The data a r e  plotted in Fig. 18 as ko /k (the initial conductivity to final 

conductivity rat io)  vs  tempera ture  of the post-irradiation anneal. The i r r ad i -  

ations were  ca r r i ed  out a t  about 650" C on Be0-  10 wt% UO in  vacuo. The 2 
3 Argonne i r radiat ions were  conducted to integrated dosages of about .6 kw-hr/cm . 



4 
Also plotted a r e  two points obtained a t  LRL on Be0-5 .8  wtyo U02. The 

difference in  t e s t  procedure i s  that the LRL data a r e  obtained with:'.irradiation 

a t  1335°C. The point indicating no change in conductivity had a n  integrated 

3 
dosage of about 0.6 kw-hr /cm , and the point showing a 1070 change has  a n  

3 integrated dosage of 6 kw-hr/cm . The l a r g e r  dosage and the tempera ture  

a r e  represen ta t ive  of the maximum conditions for  a Pluto 'miss ion.  

The p r i m a r y  conclusion appea r s  to be that the extrapolation of post-  

annealing data ,  to the effect that ko /k  = 2. 5 for  t empera tu re s  g r e a t e r  than 

1000" C does not apply when i r rad ia t ion  i s  conducted a t  the t empera tu re  of 

our  tes t s .  Tempera tu re s  lower than 1335°C will, of course ,  be p re sen t  in 

Pluto r eac to r s ,  and work i s  continuing in this a r e a .  

D. Typical  Creep  Data on B e 0  

A p r o g r a m  fo r  measuring compress ive  c r e e p  of B e 0  i s  underway a t  

LRL.  F igu re  19 shows some typical c r e e p  data.  The specimens w e r e  

3/4-in. o. d.  by 1/4-in. i. d. by 2 in. long. . They were  fabr icated by ex- 

t rusion and were  tested in a i r  a f t e r  a period of about one hour to  br ing to 

tempera ture .  The densi t ies  of the specimens were  a s  follows: 

. . 10 wt % UU2 : 99. 0 % of theoretical  

5 w t %  U 0 2 :  9 8 . 6 %  I I 

I I pure  BeO: 96 .3  7' 

More complete data can be found in r c f s .  5 and 6. 
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NUCLEAR R A M J E T  M I S S I . L E ,  

L PAY LOAD REACTOR L N O Z Z L E  

REACTOR' CHARP;CTERISTICS REACTOR ENVIRONMENT 

TYPE 
MODERATOR 
FUEL 
D l AMETER 
LENGTH . 

POROSITY 
L/D. FOR HEAT 

TRANSFER 

LIGHTLY REFLECTED 
H0MOGENEOU.S CORE 
BeO. 
u ~ ~ ~ o ~  DISPERSED IN B ~ O  

54 in. INCL.  REFLECTOR.^ 
60 in.} 
5 0 "10 
2 410 

AXIAL 8 L A T E R A L  F L I G H T  LOADS - 5 g  

(BOOST, MANEUVER, GUST, e tc . )  

A X I A L  THRUST LOADING 125 psi 
INLET AIR TOTAL  TEMPERATURE 1060°'F 
E X I T  AIR TOTAL TEMPERATURE 21 8 0 ° F  
PEAK WALL TEMPERATURE 2500°F  
AVE. MATERIAL POWER DENSITY 26 fvlw/ft3 

L I F E  . 3-10 hr 
INTEGRATED FLUX ( n v t )  I ~ ~ ~ " / c ~ I ~  

Fig. I .  Requirements for a nuclear ramjet reactor. 
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Fig. 2. Axial wall  and a i r  t empera tu re  profi le.  
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Fig. 3. Tory 11-A test reactor. 
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Fig. 5. Tory 11-C- 1 test reactor. 
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Fig. 6. Method of accommodating relative thermal expansion. 



I FWD. SHEAR JOlNT SUPPORT AND 8 REFRACTORY FIBER THERMAL 14 REAR SUPPORT STRUCTURE (DOME") 
ASSY. PRELOAD RING INSULATlON (INCONEL FOIL WRAP) 15 TOGGLE BOLT (DOME SEAT ATTACH) 

2 AXIAL PRELOAD SPRING SUPPORT RING 9 CORRUGATED Ni ALLOY GIRDLE 16 DOME SEAT 
3 AXIAL PRELOAD SDRlNG 10 RADIAL PRESSURE CONTROL AND 17 DOME SEAT RETAINER AND 
4 AXIAL PRELOAD GRID BYPASS COOLING AIR ANNULUS SUPPORT RING 
5 FWD. REFLECTOR PIECES I I PRESSURE VESSEL AND DUCT 18 EXIT NOZZLE 
6 SIDE REFLECTOR PIECES 12 FUELED MATRIX ELEMENTS 19 FLOW DOME PASSAGE 
7 FLAME SPRAYED Zr 02THERMAf 1NSULATlON I3 TRANSITION PIECE (S) 

Fig. 7. Tory 11-C-2 test reactor. 
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Fig. 8. Blowpipe thermal stress test results. 



Fig, 9. Tory 11-C-2 dome structure. 
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Fig. 1'0. Radial stress dis-.ribution in an unperforated dome. 
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Fig. 11. Pressure vs deflection of perforated plaster domes (50% porosity). 
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UCRL- 6238 

Fig. 12. single-pi ace plaster dome supporting maximum pres eur e. 

Fig. 13. Single-piece plaeter dome removed from test rig, showing extent 
of damage. 
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Fig. 14. High-temperature test cell. 
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Fig. 15. Modulus of rupture vs temperature. 
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Fig. 16. Strength of beryllium oxide s t ruc tura l  links. 
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Fig. 17. Strength of beryllium oxide s t ruc tura l  links. 
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Fig .  19. Compress ive  c r e e p  of B e 0  at 2500°F  and boos) psi. 



LEGAL NOTICE 

T h i s  report was  prepared as a n  account  of Government sponsored work. 
Neither the United S t a t e s ,  nor the  Commission, nor any  person ac t ing  on 
behalf of the  Commission: 

A. Makes any  warranty or representat ion,  expressed  or implied,  with 
r e s p e c t  to  the accuracy,  completeness ,  or use fu lness  of the information con- 
ta ined in th is  repor t ,  or that  the u s e  of any information, appara tus ,  method, 
or p rocess  d i sc losed  in t h i s  report  may not infringe privately owned rights;  or 

B. Assumes any  l i ab i l i t i e s  with respec t  t o  the u s e  of, or for damages  
resul t ing from the  u s e  of any  information, apparatus ,  method or p rocess  dis-  
c losed  in th is  report. 

A s  used in the  above,  "pe rson  ac t ing  on behalf of the Commission I' 
2 

includes  any  employee or contractor of the  commission, or employee of such  
contractor, .  to  the  ex ten t  that  s u c h  employee or contractor of the Commission, 
or employee of s u c h  contractor prepares ,  d i s semina tes ,  or provides  a c c e s s  
to ,  any  information pursuant t o  h i s  employment or contract  with the  Commis- 
s ion ,  or h i s  employment with s u c h  contractor.  




