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University of Rochester, Rochester,
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Measurements of the dijet angular distributions are relatively irnisensitive to par-
ton distribution functions and thus offer an excellent method of testing the LO
and NL O predictions of perturbative QCD. We present measurements of the dijet
angular distributions for {nj < 3.0 in pp collisions at /s = 1.8 TeV.

1 Introduction

The dijet angular distribution allows us to measure the properties of parton-
parton scattering without strong dependence on the details of the parton dis-
tribution functions. At small center of mass scattering angles, the dijet angular
distribution predicted by leading order QCD is proportional to the Rutherford
cross section: dé;/dcosf* ~ 1/sin*(%), where 6* is the center of mass scat-
tering angle. It is useful to measure the angular distribution in the variable
X, rather than cosf*, where x = (1 + cos 6*)/(1 — cos6*) = e!™ ~73l. The dijet
angular distribution is plotted in the variable x in order to flatten out the
distribution and facilitate an easier comparison to the predictions of QCD !.
In addition, the dijet angular distribution provides a test for possible quark
compositeness.

The quantity measured in this analysis is 1/N(dN /dx), in bins of the dijet
mass M;;. The other variables of interest are the center-of-mass pseudorapidity
of the dijet pair, n* = -é-(m — 72), and the psendorapidity boost: Muoost =
%(7)1 + 72)-

2 Event Selection

The D@ detector is described elsewhere 2. An inclusive two-jet sample was
used. The two leading Er jets were required to have a psendorapidity less
than 3.0. Four mass bins were then chosen so that the trigger was fully efficient
whilst maximizing the statistics and x reach (Xmax). A cut was then made on
the 7poost Of the dijet system so that there was uniform acceptance for the x
range being examined. The mass, X, and M0 ranges are described in Table 1.
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Min ETI Mass Xmax |7Iboost_ma.x|
55 260 - 425 20 1.5
120 475 - 635 13 1.5
120 > 550 18 1.5
175 > 635 i1 1.5

Table 1: The mass bins and their x and 7y,0s; ranges.
3 Results

QCD predictions at leading order (LO) and next to leading order (NLO) were
calculated using JETRAD3. In this calculation, the CTEQ3M parton distribution
functions were used with a renormalization scale equal to the transverse energy
of the leading jet. The theoretical prediction was smeared in Er and 7 in order
to compare it to data. The data are compared to the LO and NLO predictions
of QCD in Fig 1. Fig 2 illustrates the effect on the highest mass bin of adding
a contact term for quark compositeness. Since an added contact term is not
yet available at NLO, its effect was calculated using LO Papageno®. The NLO
JETRAD was then multiplied by the ratio of LO with and without the contact
term, to produce the curves shown.
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Figure 1: Comparisons of data to NLO and LO predictions of QCD using JETRAD with
CTEQ3M and a renormalization scale of E7. The errors bars are statistical. Shown at the
bottom of each plot is the plus and minus 1o systematic error band.
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Figure 2: Comparison of data to NLO prediction of QCD using JETRAD with CTEQ3M and a
renormalization scale of E¢ with an added contact term for quark compositeness. The errors
bars are statistical. Shown at the bottom of the plot is the plus and minus lo systematic

4 Conclusion error band.

The NLO predictions of QCD agree well with the measured dijet angular dis-
tributions in all mass bins, including those which would be affected by the
addition of a contact term for quark compositeness.
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