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ABSTRACT

The differential equation developed by Wilkins to represent the velocity spec-
trum of neutrons in a heavy moderator is investigated for the case of I/v absorp-
tion. An exact solution to terms of second order in the absorption parameter
allows an accurate determination of the asymptotic neutron density. For large
absorption parameters a numerical integration can yield higher accuracy. The
analytic solution is applied to the calculation of the total migration area of

neutrons from a mono-energetic source.



. GENERAL DISCUSSION

1 2.3
It has been shown by Wilkins and by Hurwitz ' that the neutron spectrum in
a heavy moderator in the presence of an absorption cross section with a pure in-
verse velocity dependence can be reduced to the solution of the following differ-

ential equation:

xN™(*) + {2x2 — )N'(x) + (4* - YN(x) = 0. (1)

In this expression x is the velocity variable normalized to unity at the velocity
corresponding to the energy IcT, T is the moderator temperature, N{x) is the
number of neutrons per unit of x, and A is the absorption parameter. In this
case A = 2ma where m = moderator mass in units of the neutron mass, and a is
the ratio of absorption to scattering cross sections at the energy kT . The scat-
tering cross section S is assumed constant over the entire velocity interval,

and the absorption cross section is cal) = ajx = aojx.

Equation (1) reduces, in the case A =0, to the equation:

xN'\x) + (2*2 — [)N\x) + 4*/VU) = 0 e (2)

The complete solution of this equation is:

N(x) = a*xze~x + a2[x2e'x Eiix2) - 1] . ---(3)

The second term of the solution is negative at x = 0 and positive for large «x
Hence 02 must be set equal to zero for a physically significant solution. How-
ever, the singular component of the solution should reappear when absorption
is introduced into the physical problem. This singular component, which behaves
like 1/(*2 -2) for large values of x, represents the slowing down distribution of
neutrons from a source at high energies and therefore can not be part of a steady

solution unless there is absorption to remove those neutrons which become



thermalized. Otherwise, a steady source of neutrons at high energy would pro-
duce a build-up of thermal neutrons to infinite amplitude. This second solution
could also appear if there were an absorption of neutrons below some velocity

x = xy and no absorption above that velocity. Then, in the region of no absorp-
tion, Eq. (3) would represent the neutron distribution; the parameters a, and a2

would be determined by the physical conditions of the particular problem.

Il. SERIES SOLUTION

In the presence of absorption, A /70, Eq. (1) canbe integrated once to give

(with the boundary condition that N(x) approaches zero as x goes to zero)

xNXx) + 2(x2 = 1)M*) = A [* N()dt .
JO

.(4)

The number of neutrons which slow down per second past the velocity * must
be equal to the total absorption of neutrons at velocities less than x. This is
simply stating the law of the conservation of neutrons. Denoting the slowing

down density at velocity x by gq(x) , we have

<?(")

«(5)

(2 = DM*) +5 *VF)

Since this equation expresses a relation between </(*) and M*) and its first deriv-
ative in which A does not appear, we can conclude that the expression is valid

for the case of zero absorption, even though it was derived from a consideration
of absorption rates. In this way we can conclude that the coefficient a2 in Eq. (3)

is given by a2 = mqg/as , where q is the slowing down density (q is a constant since



there is no absorption). This relation should also exist in the high energy portion

of a spectrum with A/ 0, since the ratio of absorption to scattering is assumed to

fall off as 7/x , and hence will be negligible for sufficiently large values of *.
The same conclusion may also be reached by the observation that, for large
values of x we may neglect A << 4% and hence reduce Eq. (1) to Eq. (2). Thus,
in the limit of large x the solution of Eq. (1) must also approach the solution of

Eq. (2).

Equation (5) may be formally integrated a second time to give an integral

equation for N(x):

u

Nix) = x2e + A N{t)dt du ..-(6)

wo

The constant of integration of Eq. (6) has been chosen to be such that the Maxwell
component of the neutron flux is normalized. It has been pointed out by Nelkin
that this expression can serve as a basis for an iterative solution for Nix), in

particular we can write

Nix) = x2e'’x [xQU) + AAr*) + A2fi2ix) + .1 (7)

and we then obtain, by inserting this into Eq. (6) and equating coefficients in A;

HQ = b/Vn

2
~ 1w lirit)tze  dt du ..-(8)



In particular we find

H(w) — uH'u) --(8.1)

where

tfU) erfiu) (8.2)

The solution for A "0 may also be developed directly in a power series in x.

2
It is most convenient to write N{x) = xze'x Mix) , which converts the differential

equation, Eq. (1), into
xM"{x) + (3 — 2x2)M'{x) — \M{x) - 0 . .(9)

The solution of this equation (see Appendix A) is:

Mix) = ~~anxn \rii.rix)
where
2in — 2)an_2 + Aan_, ..-(10)
nin + 2)
Choosing the normalization that = 4/vn*® we find, Ref. 1,
4 A
a
1 VA 3
4 A2
y~'~2A

v JT
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It is apparent from the structure of these coefficients that they break down into
two series, each of which contains only even, or only odd, powers of A. Thus
if we attempt to extract from this power series expansion the successive approxi-
mations of Eq. (7), we will find that n/*) contains the leading termf----- and only
odd powers of x. The second approximation function, *(x) , will ha\:/;ell;ll'-re leading
term x2/6vrrTi anci will contain only even powers of x. Similarly, n3(x) will begin
with x3/90/11 , and ~(x) will begin with *:4/2160vWT . It is, in fact, fairly easy to

extract completely the first two approximation functions from the power series

solution.

The first two approximation functions may most easily be found by defining

n 271+1 ---(12.1)
c, . ---(12.2)
These substitutions convert Eq. (10) into the coupled set of equations:
hn = e e - 1)&, , + Ac | ...(10.1)
" 2B+ 1)2B +3) n—| n
1
2zs — 2)en_1 + A6n_1] ---(10.2)

c
" 2n(2n + 2)



Since cn is of order A2, we can neglect the term in Acn , which will be of

order A3, and hence obtain

22n — 1N, A

= (2n + 1)(2n +3) = (2n + DFU + |) --(13)
The second recursion formula, (10.2), is more complicated since and
C,q are both of second order in A. However, the bn are now known so that we

have an inhomogeneous linear first-order difference equation to solve. This

difference equation may be written:

A2
+l)ec —(re—Nc .= .(14
nin ) n ( ) n—~i 4(2re — DHre + 1) a4)
The homogeneous equation has the solution—M -------- 7 37 ; hence we let
re +
eo =0 .(15)

n nire + 1)/

and the difference equation then becomes

A2 re/

et = oni - (2, _l)r(re + ) ..(15.1)

By summing these equations fromr =1 tor =re, we obtain

A2 D' k + 1)!
C" = dre(re + 1)/ Zv (2k + DFik + 1) ...(16)
k-o

The neutron density, accurate to second order in the absorption parameter, is

therefore given by

10



H -— "y 4
Nix) = *2e™1 + Nmhix) + N2H2(x) + OCA3)

co
x*1 *r

I {2n + DFCn + f)

7%, ..(17)

dat 2*2 4x4 8x? 16xe 32*10

1 + |s—* 175 + 2205 + 31185 + 495495 - (17.1)

1 V_' XzZn ik + 1)/
=IT A nin + 1)! 1 (2k + Dra =+1)

lc~n

x2 19*2  157*4 1263%6
1 —+ + +- + ...(17.2)
&/ 90 3780 176400

The power series for /*,(*) given in Eq. (17. 1) may also be developed directly

from Eq. (8. 1). The details of this evaluation are given in Appendix B.

. THE ASYMPTOTIC NEUTRON DENSITY

We are interested in the neutron density in the limit of large * corresponding
to the normalized Maxwell distribution at small *. It is known from the elementary
theory of slowing down in a stationary moderator that the neutron distribution is

of the form C/*2; we now wish to find C as a function of A to connect with the

R - . . 4 2
normalized Maxwell distribution,--—----xze’x
y~n~

From Eq. (5) we see that the slowing down density at large velocities, gi*),
is a constant since the integral of the neutron density over all velocities is finite.
If the energy of the neutron is much larger than the energy of the moderator
atoms, (*2>> 1) , the kinetic energy of the moderator will be unimportant in deter-
mining the neutron distribution. Hence for large velocities, Nix) must approach

the form of the elementary solution. Therefore for large x we have:

11



-5(NXx) = — N(x)

therefore
C = lim [ X2N{x)] .(18)
X->
since
A
¥ N@®dt = lim U2 — N(x) + 5 xN \x)

Iim [ (x2 — 2)N{x)] = lim [xzN{x)]

*->00 *->00

It is also possible to argue from Eq. (3): for large x one can neglect A << 4%
hence Eq. (3) is asymptotically the solution of Eq. (1). Thus, without recourse
to the elementary theory of slowing down in a stationary moderator (except per-

haps as a check) we can establish that {x2 — 2)N(x) = mq{*)/os in the limit of large

From Eq. (17) we obtain

C = [A/AU) + h.2iiz{x) + ...Jix ...(19)

The integrations may be easily carried out, and we find

m|>

I V.’ x2n+3e-*2 dx

(2n + DFU +

1Z



adx + eee

n(n + 1)/
7*=1
A A~  (n+ 1) A2 r'a + I*re
v Y Zv (2n + DHn + |) + AT /-> n(n + 1)/ -(20)
n-o n-\
where
(k + D!
/
n {2k + DYXk + |)

Appendix C presents the evaluation of these sums, The result, correct to second

order, is:

C = + 0.798873A + 0.286606A2] .-(21)

This expression is a lower bound to C since it neglects the higher order terms,

/xze'x fin{x) dx, all of which are positive.

We can also obtain an upper bound for C. The successive approximation

2
functions, /,,(*) = nn{x)xze’x , all behave like 1/x2 as x->°°. It follows, in fact

directly from Eq. (18), that for large values of Xx,

fn+i{x) fn{u) du .

For small values of x we can easily show, using Eq. (8) and the observation

that [in{x)~xn , that

(6% [ — 149 .--(22)

n{n + 2)

13



Hence, we will have an upper bound approximation for large values of x if we

replace all the higher functions iin{x) by functions having the form of n2(x).

Thus, we write

4
N(x) X2 + AIACY) + (1 + ...(23)

For large values of * we may therefore deduce:

C = lim X2N{x) = —1{1 + 0.798873(1 + 0)A], ..(24.1)
2

X ->00

where 0O is a constant to be determined. Another expression for C is obtained

from the integral of the neutron density:

c = / N(x)dx = 2—[1 + 0.798873A + 0.286606(1 + 6></)A2]; 0 < 0 < 1. (24.2)

The condition on d, that it be bounded between 0 and 1, arises from the following
argument: If we consider Eq. (23) to define a function <>() such that the equation
is an exact expression for N(x) , we know that 0U) = x/IS for small values of

for large values of x, <f>(x)> = <f. The expression for C given by Eq. (24. 1)
involves only the value of <£(°%0) while the expression for C given by Eq. (24. 2)
involves <f(x) in the integrand of an integral. Hence by the mean value theorem

we introduce the fraction, 4 When we equate these two expressions we obtain

110 i <

A 0.286606A 2 A 1+ 0.440129 A
2 1 — 0O.3587440A 2

1 — 0.358744 A

14



A curve of C v£ A is shown in Fig. 1. Actually we do not plot C directly but plot

instead the quantity y(A) from which C can be computed by the relation

C=—exp[ Ay(A)] ,

where, from Eq. (24.2), we may deduce that for small values of A,

y(A) = 0.798873 — 0.032493A + ...

The results of a mechanical integration of Eq. (4) using the Nordsieck Differential
Analyzer is shown in Fig. 1. In obtaining this curve the neutron densities (Fig. 2)
were calculated from the power series of Eq. (10) in the region of low x, and the
solution was then extended mechanically beyond that point. For larger values of
A this was not a sufficiently accurate procedure, and it was necessary to use the
asymptotic solution given by Wilkins for the range 5 <* < ¢. This was then matched
at * =5 to the result of the mechanical integration in order to determine the value

of C from the limiting value of xzN(x).

The accuracy of the numerical integration is good for large values of A; for
smaller A's the numerical results exhibit errors of the order of a few per cent
in the value of y(A). Such an error, however, implies a quite accurate value
of C- The solid line indicates a "best guess™ at the true dependence based upon
the known analytical limits for small A and the quite accurately determined

numerical solution for large A.

IV. SLOWING DOWN DENSITY

The slowing down density, g{x) , is given in Eq. (5) as a linear combination of
N(x) and its first derivative. The simple Fermi expression for the slowing down
gives g(x) in terms of the neutron density itself. It is therefore instructive, in
order to evaluate the differences between the present formulation and the simpler
model, to see to what extent Eq. (5) may be replaced by an expression which

involves only /V(x). Such a replacement will obviously be possible only in the

15
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asymptotic region. Here we have

A
Nix) + ...(26)
2x 2
and therefore,
A2
_ 2c A 4o
N'lx) — J— 3- 1 Z ;—+ ..(261)

These expressions are obtained directly from the differential equation, Eq. (2),
when Nix) is expressed as a power series in inverse powers of * in order to

obtain an expansion which is valid near the point at infinity. The expansion has
been given by Wilkins. **#

If we want to replace N'ix) by an expression involving only Nix) , our best

possible choice is therefore
_ IxN'ix) - Nix)
This substitution converts Eq. (5) into the approximate form:

qix) = — ix2 — 2)Nix) .
m

So

S
Since q'ix) =-é----Nix), we are thus led to the following approximate differ-
m

ential equation for Nix):
2ix2 -— 2)N’ix) + (4* — YNix) = 0 . .(27.1)

4
This solution has been previously given. Nelkin, 3 however, has pointed

out that a more accurate representation is possible. Instead of approximating



in Eq. (5), his procedure is equivalent to going back to the second order equation,
Eq. (1) Then, in order to reduce it to a first order equation, one asks for the
best approximation to N"(x) in terms of a linear combination of N{x) and N'{x).

From Eq. (26. 1) one obtains

6C A 5(16 + A2)
N"(X) = 1 + .(262)

- 12*2

and hence deduces the approximation:

6 6C A 3016 + A2)
N"(x) = ——[Nfx) + xN'ix)] = - 1 + !
* 8x2

The relative error in this expression is therefore,

16 + A2

24*2
When this expression for N"ix) is inserted into Eq. (1) we obtain Nelkin's first
order differential equation:

(22 = T)V'+ a4~ A _— )V = 0. .(27.2)

The adequacy of these two approximations may be judged by comparing the exact

asymptotic expansion with the approximate expansions. The exact solution is:

, c A A2+ 16 A(A2 + 76) A4 + 220A2 + 2304
Nix) = — 1 — =+ -+
"2 2x 8x* 48%: 384%#4

...(28)

The approximation of Eq. (27. 1) yields:



c A A2 + 16 A(A2 + 64) A4 + 160 A2 + 1536
+ +

vw = 1 ..-(28.1)
~2 2* 8%2 48+%) 384*4
while Eq. (27. 2) yields:
, A A2 + 16 A(A2 + 76) A4 + 208A2 + 2112
Ni{x) = 1T — + - = + ...(28.2)

2x Rr.2 48*3 384*4

Thus, Eq. (27. 2) yields higher accuracy than Eq. (27. 1). As Nelkin has noted,
the price of this increase in accuracy is the loss of a simple relationship be-
tween the flux and the slowing down density. Whereas Eq. (27. 1) corresponds

to the relation

qix) =— (*2 — 2) Nix) , .(5.1)
m

the best we can achieve from Eq. (27. 2) is the expression

£ dt
qi ix2 _ —) Nix) + 3
ix) ix2 _ —) Nix) 1 NU)7- (5.2)

In comparison, the exact expression, Eq. (5), is probably simpler to use.

V. NEUTRON AGE

In addition to calculating the neutron spectrum, a major emphasis of the
present study has been the determination of the effect of absorption on the migra-
tion area of neutrons. This quantity may be readily calculated from a considera-
tion of the scattering collisions which the neutron makes during the slowing down

process.

We have postulated a model in which the neutron scattering cross section

of the moderating material is a constant independent of energy, and the neutron

20



absorption cross section has an inverse velocity dependence on energy. The
number of scattering collisions which occur per unit time in the medium in the
velocity interval dx is asxN{x)dx ; the number of absorptions which occur in this
interval is aasN(x)dx. Thus, the total number of scattering collisions which

occur in the medium below the velocity xa is

chxN{x)dx

while the total number of neutrons absorbed in the moderating medium at a

velocity less than % is

acrsN(x)dx .

The ratio of these two rates is the average number of scattering collisions
which a neutron makes before it is absorbed. The mean square distance which

the neutron travels from velocity x0 to absorption is then given by:

...(29)

N(x) dx

The migration area, M2U) , is one sixth of this quantity.

Equation (29) is not an exact expression for neutron age; it ignores quantities
of order a. However, since our approximation parameter is A = 2ma and we are
treating the large mass limit, m» 1, it will be quite consistent with other approxi-
mations which we have made to neglect those terms which are smaller by the

factor 1/m than those which are of immediate concern here.

21



The integration of the flux is carried out in Appendix D; the result, correct

to second order in A, is:

2
xN{x)dx =—-— + CInx + 0.4908775A + 0.230889A2 + ...(30)

The migration area therefore becomes

> = [Inxo — 0.821108 + 0.56345A + ...] (31)

where aa = aas is the mean absorption cross section averaged over a Maxwell
distribution.

The migration area of the neutrons from a source at high energy to absorption
is therefore expressible as the sum of two terms: one is the usual thermal dif-
fusion area of neutrons in a pure Maxwell distribution; the other is a Fermi Age
term which depends logarithmically on the source energy. The usual development
of the Fermi Age leads to an expression for the slowing down area which is given
in terms of an integral over the logarithmic energy interval from the source
energy to thermal energy. The exact value of this lower limit is not specified —
nor is such a specification at all possible without a development similar to the
one given here. Equation (24) allows us to define an effective value for the energy
of the lower limit of the Fermi integral although, of course, there is no sharp
distinction between the slowing down region and the thermal region. We may,
however, specify an energy which may be used at the lower limit of the
Fermi Age integral. We define the effective age as the total migration area

minus the thermal diffusion area in a pure Maxwell spectrum. Thus,

Teff = M2(*o> ~ L2 = “ .(32)
3as ay

22



and the effective lower limit of the Fermi age integral is then given by:

*x*T
\ dE A
Tefi ~ - 3872 E m +(33)
Ee((
whence, from Eq. (31) we deduce:
Eeff = ~r[e*p(0.821108 — 0.56345A)]2= S-ieVAT e'1-127A ..(34)

The separation of the migration area into a thermal diffusion area plus a slowing
down age is an arbitrary procedure and the exact manner in which it should be
done is not well defined. Thus, the only physically significant entity is the total
migration area, and the separation made here is at best arbitrary if not com-

pletely artificial.

VI. NEUTRON TEMPERATURE

Several attempts have been made to describe the low energy portion of the
neutron spectrum in terms of a Maxwellian distribution with a fictitious tempera-
ture. 6.7.8 Such a description is qualitatively attractive, but a close examination
of Fig. 3 shows that it is deceptively so. Figure 3 shows the fraction of neutrons
absorbed at energies less than x2kT for different values of the absorption para-
meter A. If it were possible to define an effective neutron temperature, this
would say that the curves for A * 0 were obtainable from the curve for A = 0 (pure
Maxwellian - no absorption) by a simple change of scale. Since the abscissa in
the figure is logarithmic, a change of scale would be equivalent to a rigid dis-
placement required to bring that curve into correspondence with one of the other
curves. This displacement is then directly a measure of the effective tempera-
ture. It is, however, apparent that no such simple displacement is possible.
Thus, although it may be possible to define effective temperature by means of
some appropriate analytical recipe, such a definition is ambiguous to the extent

that different recipes will give quite different effective temperatures.

23
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APPENDIX A

POWER SERIES SOLUTION FOR NEUTRON SPECTRUM

Equation (9) is:

xM"{x) + (3 - 2x)M\x) — AM{x) = 0.

If we assume that Mix) can be expanded in a power series about the point

=0 , at which there is a simple pole, we write:

...(4.1)

Mix) = Y, «,*n+s
n=o

where s is as yet undetermined. Inserting this expression into the differential

equation, we obtain

IT [(ra + s)in + s — 1)*™™ + (3 — 2xz)in + s)xn"— Axn)xsan = 0. .--(4.2)

n~o

We now collect like powers of x by rearranging the sum.

Axvp(71 + s + Din + 'Slkn+1 + 3(ra + s + l)ant1 _ 2(n + s - Don., — Aojj] = 0,

so that

a ,, 2(in + s — l)o + Aa,l]. .-.(4.3
iy in+s+1)(T|+s+3)[( )7|-1 ] 4-3)
Since a__= a =0 while a =/ 0 , we must have

25



In this way we find s = 0. (The second solution, corresponding to s =-2, is singu-
lar at the origin and hence will be excluded. It can not be obtained directly in

a power series form and will not be further discussed here.)

The coefficients of the power series are then related by the recursion formula

of Eq. (1).

26



APPENDIX B

FIRST ORDER CORRECTION TO MAXWELL DISTRIBUTION

Equation (8. 1) is:

Huw) - uH'iu)

h

() =
where
2 u2 2 i 2"
i = =2 e V()
/I n
hence
2n+\
2 ()
H(y) —  (u) =—— / 2t
—_ n! 2n + 1
n n-o
4 ~ () +’un+’
(2n + 1)U = 1)/
or
1 4 v— (—)nu2n
) — uH'{w)] = )
u3 /T “~ (2rc + 3)n/

n—o

The expression for can therefore be written in the form:



(-)nu2n

n!/(2n + 3)
(-)nu2kdu
JT n!{tk — n)!(2n + 3)

Jo n,k

We now make the substitution:

en+zdy{.
2re + 3

and interchange the order of integration and summation. This strategem allows
us to carry out the summation over the n-index easily and reduces the £- inte -

gration to a beta-function:

) = | n!{kn_ )! J[en Adturdu
Hl ; ’ 2@l - H)kd£%du

S(lA+1)
_ X -uzkdu

r()

ii(*)=
ST i*o nk +1)

ii(*) == ,2lc +1

k=o (2k + i)r(k +

28



From Eq. (20

APPENDIX C

EVALUATION OF N{x)dx = C

) we have:

00

(m + 1) A2 r{n + |)

+ 1)/ +
I (2« + i)r(e + f) n]; n(n

*k + i)/

(2/i + DHA + §)

1. The first order term corresponds to the evaluation of

in the form:

00

Now

/2

in + 1)/

(2ra + 1)FU + |)

vrn~(n + 1)/

,2n+3 Odd

Vo

hence

00

2ria + |)

M+3 4

SITI

2re + 1

we can write this

29



7/ 2

sinzd tanh™ (sind) dO

We now make the Gudermannian transformation:

tank ¢ = sin 9
cosh ¢ = sec 6
seek = cos 9
tank?
then / bdd
cosh ¢
- ) sinh of sink < i
of) Sinh cf =mmmmmm=== dcf>
N\ X cosh3 ¢f
00
1
1 = 1+ o) sech o def)
Jo

The integration by parts has reduced the problem to the calculation of a fairly
well behaved integral. Several methods exist for evaluating this integral; the

most direct is to expand seck ¢§ as a series in e"A

o) sech o) df> = 2 o>e N [ — e + S



2¢C 1 1 1 1
L ~25 ~ 49~ + "sT _

5
The series in the square brackets defines Catalan's constant. Its value is
G = 0.91596 55941 18

Hence we have

—+ G/=0.79887 3038 ...
2

2. The second order term can be best evaluated by interchanging the order of

summation. The second order term is, therefore,

A2 U + D.Tin + f)
I /\
1T
{2k + 1)FU + |)n(n + 1)/
A2 tk + D! Sk

8 (2k + DHA + |)

where

r(n + f)
I nn + X)/

n=A+1

To evaluate Sk , we make use of the integral representation of the Beta-function.

It follows directly, then, that

n« + f)

Un+,/2(1 - u)"1*2 du,
m + 1)l
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and therefore,

and

This integral is tabulated by Grobner and Hofreiter5 then with

rra + ) (2/i + 1)
A= (n+ 1) (2n+2) Sn-*

we can write

We further improve the convergence of the summation by noting that

r7i n3/2 a+i),/2

hence

u + D/s, 4

2k + 1)FA: + ) 2k + 1)2
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The second order term can therefore be written in a more convenient form

for computation:

\K + DI(2k + Sk
S VAR B 2 VAR
> fe m+1)) fe m+wl  am =+

The first sum is well known; its value is n2/8 = 1.23370 05501 ...

The second sum is rapidly convergent and can be easily computed.

Using ten

terms and estimating a correction for the sum of the remaining terms gives us

— 0.660488.

The second order term therefore is computed to be 0.286606A2 .
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APPENDIX D

INTEGRATION OF xN{x)dx .

From Eq. (17) we can write

e 4 /0 - T/ = Tontde™ dx
xN(x)dx =-—-- / XxBe~x dx + \
) N
yir o D @e+ Dr(« +])
— %o o N

a + 1) xzn+3ze~x

(2k + DIXKk + |.)n(n + 1)/

1 —1Q + *2) e-*o + A X, + A2K2

We shall treat and K2 separately.

1
The integrand of approaches —for large values of x and is therefore
logarithmically divergent. However, this divergence can be controlled by adding
and subtracting from the integrand an expression which is on the one hand easily

integrable and on the other hand represses the divergent part of . Such an

expression is

1 =
2u

Therefore we shall write, replacing x2 by u,



e'udu

du +.— In - du
2

We now expand the function eu - 1in a power series, Also we recognize that

.............. du du ~ y ~ 0.5772157 ...

and write

un+3/2 1 1
K (fii B—y,+ —4nx
(on w DHa & |y Mt 1) 2"

We are interested primarily in the limit, as xa becomes very large, of the
quantity — In xo0 . This expression is finite and hence we may extend the

integral to infinity and interchange the order of summation and integration:

K +— Inx +—1y
2(n + 1) 2 0 4

It is easy to see that the summation which now appears in is simply the

series for 1/2ire2; hence,
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K 1 (In2+1 + In x
= — ._
2\ 2 v

1
= 0.4908775 —+ /nx0

We must follow the same procedure for the evaluation of &2.

behavior of fi2(x) can be obtained from Eq. (8).
in Appendix C that

V> dt > 0.798873 as u
whence Eq. (8) in the limit of large x, can be written:

1 /
U) =— (0.798873) dv
2 / (x2 — v)2

]
lifx) = —— (0.798873) e.-1 (— SF) ev dv

ex
(0.798873) —

0.798873
The integrand of K2 therefore approaches

2X
We add and subtract as before and obtain:

The asymptotic

We know from the calculation

for large values of

1 (k + 1)/ ” a + D! T14
K yoly — Yy du
=1 < Dru + f) n*t290 (2 + +-1) (n+ 1)
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+.1 (0.798873)(y + 2 In xj

where, for symmetry reasons we have retained the summation

oo U+ 1y
) 1= 0.798873 inside the integral. The integral is convergent
2 2k + PDr(k + F)

and we can write:

oo

-4lfrZ ..
' =r 2 Wk+f) "T2 D @+ YFU )

0.798873
(y + 2 iInx)

The summation which appears here can be simplified somewhat by writing:

00 00

1 1 (k + 1)/ 1y-"1 (k + 1)!
=t n n+ Jo (2A + Dr{k + ¥ U {2k + 1)ra + ¥
0.798873 ,
e 6)’ -------- (yu+ 2 In XA] .
But
3
2
so that
0.798873 Y ' 1y Sn
K2 = yr2mxgty o
n
s0 =
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in which

3 1
St s, g = _(G +—) 2,12394 83913
2n + 1 0 2 2
2(n + 1) *
th 2n + 3 tn-* t, = 1
so that finally
0.798873
K, S (y + 0.000818 + 2 In xo)
2 2

Therefore,

2 B as B A + 0.798873 (-~-y + .000409" A2 + ...
XN{X)dX B 71 + C In Xg *+ —z\ra 2 + —2'¥

2
= + Clnx + 0.4908775A + 0.230889A2 + ...

/17
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