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r
ABSTRACT

The differential equation developed by Wilkins to represent the velocity spec­

trum of neutrons in a heavy moderator is investigated for the case of l/v absorp­

tion. An exact solution to terms of second order in the absorption parameter 

allows an accurate determination of the asymptotic neutron density. For large 

absorption parameters a numerical integration can yield higher accuracy. The 

analytic solution is applied to the calculation of the total migration area of 

neutrons from a mono-energetic source.

L
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I. GENERAL DISCUSSION

1 2 3It has been shown by Wilkins and by Hurwitz ’ that the neutron spectrum in 

a heavy moderator in the presence of an absorption cross section with a pure in­

verse velocity dependence can be reduced to the solution of the following differ­

ential equation:

xN "(*) + {2x2 - l)N'(x) + (4* - \)N(x) = 0. ...(1)

In this expression x is the velocity variable normalized to unity at the velocity 

corresponding to the energy IcT , T is the moderator temperature, N{x) is the 

number of neutrons per unit of x , and A is the absorption parameter. In this 

case A = 2m a where m = moderator mass in units of the neutron mass, and a is 

the ratio of absorption to scattering cross sections at the energy kT . The scat­

tering cross section <7S is assumed constant over the entire velocity interval, 

and the absorption cross section is craU) = ajx = aojx.

Equation (1) reduces, in the case A = 0, to the equation:

xN’\x) + (2*2 - l)N\x) + 4*/VU) = 0 ...(2)

The complete solution of this equation is:

N(x) = a^xze~x + a2[x2e'x Eiix2) - 1] . ...(3)

The second term of the solution is negative at x = 0 and positive for large x. 

Hence o2 must be set equal to zero for a physically significant solution. How­

ever, the singular component of the solution should reappear when absorption 

is introduced into the physical problem. This singular component, which behaves 

like l/(*2 -2) for large values of x, represents the slowing down distribution of 

neutrons from a source at high energies and therefore can not be part of a steady 

solution unless there is absorption to remove those neutrons which become
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thermalized. Otherwise, a steady source of neutrons at high energy would pro­

duce a build-up of thermal neutrons to infinite amplitude. This second solution 

could also appear if there were an absorption of neutrons below some velocity 

x = xy and no absorption above that velocity. Then, in the region of no absorp­

tion, Eq. (3) would represent the neutron distribution; the parameters a, and a2 

would be determined by the physical conditions of the particular problem.

II. SERIES SOLUTION

In the presence of absorption, A / 0 , Eq. (1) canbe integrated once to give 

(with the boundary condition that N(x) approaches zero as x goes to zero)

xNXx) + 2(x2 - 1)M*) = A /* N(t)dt .

J O
...(4)

The number of neutrons which slow down per second past the velocity * must 

be equal to the total absorption of neutrons at velocities less than x. This is 

simply stating the law of the conservation of neutrons. Denoting the slowing 

down density at velocity x by q(x) , we have

<?(*)

S

m
(*2 - DM*) +- */Vl*)

2

.(5)

Since this equation expresses a relation between </(*) and M*) and its first deriv­

ative in which A does not appear, we can conclude that the expression is valid 

for the case of zero absorption, even though it was derived from a consideration 

of absorption rates. In this way we can conclude that the coefficient a2 in Eq. (3) 

is given by a2 = mq/as , where q is the slowing down density (q is a constant since
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there is no absorption). This relation should also exist in the high energy portion 

of a spectrum with A / 0, since the ratio of absorption to scattering is assumed to 

fall off as 1/x , and hence will be negligible for sufficiently large values of * .

The same conclusion may also be reached by the observation that, for large 

values of x we may neglect A << 4% and hence reduce Eq. (1) to Eq. (2). Thus, 

in the limit of large x the solution of Eq. (1) must also approach the solution of 

Eq. (2).

Equation (5) may be formally integrated a second time to give an integral 

equation for N(x):

Nix) = x2e + A

U

N{t)dt du

wo

...(6)

The constant of integration of Eq. (6) has been chosen to be such that the Maxwell
3

component of the neutron flux is normalized. It has been pointed out by Nelkin 

that this expression can serve as a basis for an iterative solution for Nix), in 

particular we can write

Nix) = x2e'x [/xQU) + A^^*) + A2fi2ix) + ...1 ...(7)

and we then obtain, by inserting this into Eq. (6) and equating coefficients in A;

HQ = b/Vn

^+1w lirit)tze
2

dt du ...(8)
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In particular we find

=

X

w o

H(u) — uH'{u)
du ,

where

tfU) erfiu)

...(8.1)

...(8.2)

The solution for A ^0 may also be developed directly in a power series in x.
2

It is most convenient to write N{x) = xze'x Mix) , which converts the differential 

equation, Eq. (1), into

xM"{x) + (3 — 2x2)M'{x) — \M{x) - 0 . .(9)

The solution of this equation (see Appendix A) is:

Mix) = ^^anxn \rii.rix)

where

nin + 2)
2in - 2)an_2 + Aan_ ,

Choosing the normalization that = 4/vn^ we find, Ref. 1,

a 1
4

V^ff

A
3~

4 A2 
y~'~2A
V JT

...(10)
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4 A / A2
a„ = -----• -------- 1 2 h-------

45 \ 8rr

4 19A2 / A'
a. = ------  -------- 1 +

2160 \ 76TT

a5
4 2A / 7 , A4
----------- 1 + _ A2 +--------------

105 \ 36 5760
, eic. ... ( 11)

It is apparent from the structure of these coefficients that they break down into

two series, each of which contains only even, or only odd, powers of A. Thus

if we attempt to extract from this power series expansion the successive approxi-
4*

mations of Eq. (7), we will find that n/*) contains the leading term------- and only
3 /IT

odd powers of x. The second approximation function, ^(.x) , will have the leading 

term x2/6vrrTi anci will contain only even powers of x. Similarly, n3(x) will begin 

with x3/90/1t , and ^(x) will begin with *:4/2160v^tT . It is, in fact, fairly easy to 

extract completely the first two approximation functions from the power series 

solution.

The first two approximation functions may most easily be found by defining

b n 271+1
...(12.1)

c n 271
...(12.2)

These substitutions convert Eq. (10) into the coupled set of equations:

hn = ;----------- ------------r - 1)&„ , + Ac :
" (2b + 1)(2b +3) n-1 n

...(10.1)

c
71

1
[2(2b - 2)cn_1 + A6n_1]

2n(2n + 2)
...(10.2)



Since c is of order A2 , we can neglect the term in Ac , which will be ofn ’ 6 n
order A3 , and hence obtain

2(2n - l)^, A

= (2n + l)(2n +3) = (2n + DFU + |) ...(13)

The second recursion formula, (10.2), is more complicated since and

c are both of second order in A. However, the b are now known so that we n-1 n
have an inhomogeneous linear first-order difference equation to solve. This 

difference equation may be written:

A2
n{n + l)c — (re — l)c . =--------------------------—

n n~1 4(2re - DHre + 1)
.(14)

The homogeneous equation has the solution— ----------- ; hence we let
Mre + 1)/

n n(re + 1)/
eo = 0 .(15)

and the difference equation then becomes

A2 re/
ere = en— i +-J- (2„ _l)r(re + |)

By summing these equations from re = 1 to re = re, we obtain

A2 Y {k + 1)!
C" = 4re(re + 1)/ Zv (2k + DFik + 1)

k-o

...(15.1)

...(16)

The neutron density, accurate to second order in the absorption parameter, is 

therefore given by
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Nix) = *2e"*Z 4
+ Nn^ix) + N2h2(x) + OCA3)

/*,(*)

CO

I
n

x*1*'
{2n + DFCn + f)

...(17)

4at
1 +

2*2 4x4 8x? 16xe 32*10
Is-* 175 + 2205 + 31185 + 495495 ... (17. 1)

1 V-' xzn
= IT A nin + 1)! 1

lc ~n

ik + 1)/
(2k + Dra +1)

x 2

6/ 77

19*2 157*4 1263*6
1 +-------------+ ------------- +- ------------------- +

90 3780 176400
...(17.2)

The power series for /*,(*) given in Eq. (17. 1) may also be developed directly 

from Eq. (8. 1). The details of this evaluation are given in Appendix B.

III. THE ASYMPTOTIC NEUTRON DENSITY

We are interested in the neutron density in the limit of large * corresponding

to the normalized Maxwell distribution at small * . It is known from the elementary

theory of slowing down in a stationary moderator that the neutron distribution is

of the form C/*2; we now wish to find C as a function of A to connect with the
4 2normalized Maxwell distribution,-------xze’x

y~n~
From Eq. (5) we see that the slowing down density at large velocities, qi^,), 

is a constant since the integral of the neutron density over all velocities is finite.

If the energy of the neutron is much larger than the energy of the moderator 

atoms, (*2>> 1) , the kinetic energy of the moderator will be unimportant in deter­

mining the neutron distribution. Hence for large velocities, Nix) must approach 

the form of the elementary solution. Therefore for large x we have:
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-xNXx) = - N(x) 
2

therefore

C = lim [ x2N{x)]
x->

.(18)

since

A
¥ N(t)dt = lim 

*->a>
U2 — l)N(x) + — xN \x) 

2

= lim [ (x2 — 2)N{x)] = lim [xzN{x)] 
*->00 *->00

It is also possible to argue from Eq. (3): for large x one can neglect A < < 4*, 

hence Eq. (3) is asymptotically the solution of Eq. (1). Thus, without recourse 

to the elementary theory of slowing down in a stationary moderator (except per­

haps as a check) we can establish that {x2 — 2)N(x) = mq{^)/os in the limit of large

From Eq. (17) we obtain

C =
A
2"

[A/^U) + h.2iiz{x) + ...]ix

The integrations may be easily carried out, and we find

...(19)

A
C = — 

2 I (2n + DFU +
v! x2n+3e -*2 dx

1Z



7*=1
n(n + 1)/

dx + •••

A

Y

A ^ (n + 1)/ A2 r^ra + l^re

Y Zv (2n + DHn +• |) + IT /-> n(n + 1)/ 
n-o n-\

.(20)

where

/n
(k + D!

{2k + l)YXk + |)

Appendix C presents the evaluation of these sums, 

order, is:

The result, correct to second

C = + 0.798873A + 0.286606A2] ...(21)

This expression is a lower bound to C since it neglects the higher order terms,

/ xze'x fin{x) dx, all of which are positive.

We can also obtain an upper bound for C. The successive approximation

2
functions, /„(*) = nn{x)xze'x , all behave like 1/x2 as x->°° . It follows, in fact 

directly from Eq. (18), that for large values of x,

fn+i{x) fn{u) du .

For small values of x we can easily show, using Eq. (8) and the observation 

that [in{x)~xn , that

(x)=--------------
n{n + 2)

1 {x) ...(22)
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Hence, we will have an upper bound approximation for large values of x if we 

replace all the higher functions iin{x) by functions having the form of n2(x). 

Thus, we write

N(x) x2e
z 4

+ A/^C*) + (1 +

For large values of * we may therefore deduce:

C = lim x2N{x) = —[1 + 0.798873(1 + 0)A] ,
X ->oo 2

...(23)

...(24.1)

where 0 is a constant to be determined. Another expression for C is obtained 

from the integral of the neutron density:

C = —/ N(x)dx = — [1 + 0.798873A + 0.286606(1 + 6></.)A2]; 0 < 0 < 1. 
2

.(24.2)

The condition on d , that it be bounded between 0 and 1, arises from the following 

argument: If we consider Eq. (23) to define a function </>(*) such that the equation 

is an exact expression for N(x) , we know that 0U) = x/lS for small values of 

for large values of x, <f>(x)-> = <£. The expression for C given by Eq. (24. 1)

involves only the value of <£(°o) while the expression for C given by Eq. (24. 2) 

involves <f,(x) in the integrand of an integral. Hence by the mean value theorem 

we introduce the fraction, d. When we equate these two expressions we obtain

A 0.286606 A 2 A 1 + 0.440129 A
1 i 0 i < — 

_ 22 1 - O.3587440A 1 - 0.358744 A

14



A curve of C v£ A is shown in Fig. 1. Actually we do not plot C directly but plot 

instead the quantity y(A) from which C can be computed by the relation

C = — exp [ Ay(A)] ,

where, from Eq. (24.2), we may deduce that for small values of A,

y(A) = 0.798873 - 0.032493A + ...

The results of a mechanical integration of Eq. (4) using the Nordsieck Differential 

Analyzer is shown in Fig. 1. In obtaining this curve the neutron densities (Fig. 2) 

were calculated from the power series of Eq. (10) in the region of low x, and the 

solution was then extended mechanically beyond that point. For larger values of 

A this was not a sufficiently accurate procedure, and it was necessary to use the 

asymptotic solution given by Wilkins for the range 5 <* < «>. This was then matched 

at * = 5 to the result of the mechanical integration in order to determine the value 

of C from the limiting value of xzN(x).

The accuracy of the numerical integration is good for large values of A; for 

smaller A's the numerical results exhibit errors of the order of a few per cent 

in the value of y(A). Such an error, however, implies a quite accurate value 

of C- The solid line indicates a "best guess" at the true dependence based upon 

the known analytical limits for small A and the quite accurately determined 

numerical solution for large A.

IV. SLOWING DOWN DENSITY

The slowing down density, q{x) , is given in Eq. (5) as a linear combination of 

N(x) and its first derivative. The simple Fermi expression for the slowing down 

gives q(x) in terms of the neutron density itself. It is therefore instructive, in 

order to evaluate the differences between the present formulation and the simpler 

model, to see to what extent Eq. (5) may be replaced by an expression which 

involves only /V(x). Such a replacement will obviously be possible only in the

15
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asymptotic region. Here we have

N{x)
A
2x

+

*2
...(26)

and therefore,

...(26.1)

These expressions are obtained directly from the differential equation, Eq. (2), 

when Nix) is expressed as a power series in inverse powers of * in order to 

obtain an expansion which is valid near the point at infinity. The expansion has 
been given by Wilkins. * ^

If we want to replace N'ix) by an expression involving only Nix) , our best 

possible choice is therefore

_ IxN'ix) - Nix) .

This substitution converts Eq. (5) into the approximate form:

qix) = — ix2, — 2)Nix) . 
m

So
S

Since q'ix) =------Nix) , we are thus led to the following approximate differ-
2m

ential equation for Nix):

2ix2 - 2)N'ix) + (4* - \)Nix) = 0 . ...(27.1)

4 3This solution has been previously given. Nelkin, however, has pointed 

out that a more accurate representation is possible. Instead of approximating

2C
N'ix) =--------

3

3A
1-----------+

4*

A2 
4 + — 

4



in Eq. (5), his procedure is equivalent to going back to the second order equation, 

Eq. (1). Then, in order to reduce it to a first order equation, one asks for the 

best approximation to N"(x) in terms of a linear combination of N{x) and N'{x). 

From Eq. (26. 1) one obtains

N"(x) =
6C A 5(16 + A2) 

1-----------+ -------------------------

* 12*2

and hence deduces the approximation:

6 6C
N"(x) = - — [N{x) + xN'ix)] = -----

A 3(16 + A2) 
1----------+ --------------------------- --

* 8x2

...(26.2)

The relative error in this expression is therefore,

16 + A2 

24* 2

When this expression for N"ix) is inserted into Eq. (1) we obtain Nelkin's first 

order differential equation:

(2*2 - 7)/V' + 4* A - —)/V = 0. ...(27.2)

The adequacy of these two approximations may be judged by comparing the exact 

asymptotic expansion with the approximate expansions. The exact solution is:

, , C 
Nix) = — 

„2

A A2 + 16 A(A2 + 76) A4 + 220A2 + 2304 
1 _ — +------------------ ------------------------------------+-------------------------------------------------

2x 8x‘ 48%; 384% 4

...(28)

The approximation of Eq. (27. 1) yields:



...(28.1)
C

/vw =-----
~2

A A2 + 16
1-------- + ----------------

2* 8*2

A(A2 + 64) A4 + 160 A2 + 1536 
-------------------+--------------------------------

48*2 384* 4

while Eq. (27. 2) yields:

N{x) =
, A A2 + 16 A (A2 + 76) A4 + 208A2 + 2112 
1 —  + —    —*------- + ----------------------------------

2x Rr.2 48*3 384*4
...(28.2)

Thus, Eq. (27. 2) yields higher accuracy than Eq. (27. 1). As Nelkin has noted, 

the price of this increase in accuracy is the loss of a simple relationship be­

tween the flux and the slowing down density. Whereas Eq. (27. 1) corresponds 

to the relation

qix) = — (*2 - 2) Nix) , 
m

.(5.1)

the best we can achieve from Eq. (27. 2) is the expression

qix) ix2 _ —) Nix) + 3 
2

f00 dt

1 NU)t
.(5.2)

In comparison, the exact expression, Eq. (5), is probably simpler to use.

V. NEUTRON AGE

In addition to calculating the neutron spectrum, a major emphasis of the 

present study has been the determination of the effect of absorption on the migra­

tion area of neutrons. This quantity may be readily calculated from a considera­

tion of the scattering collisions which the neutron makes during the slowing down 

process.

We have postulated a model in which the neutron scattering cross section 

of the moderating material is a constant independent of energy, and the neutron

20



absorption cross section has an inverse velocity dependence on energy. The 

number of scattering collisions which occur per unit time in the medium in the 

velocity interval dx is asxN{x)dx ; the number of absorptions which occur in this 

interval is aasN(x)dx . Thus, the total number of scattering collisions which 

occur in the medium below the velocity xa is

cr xN{x)dx
S

while the total number of neutrons absorbed in the moderating medium at a 

velocity less than % is

Ra acrsN(x)dx .

The ratio of these two rates is the average number of scattering collisions 

which a neutron makes before it is absorbed. The mean square distance which 

the neutron travels from velocity x0 to absorption is then given by:

N(x) dx

...(29)

The migration area, M2U) , is one sixth of this quantity.

Equation (29) is not an exact expression for neutron age; it ignores quantities 

of order a. However, since our approximation parameter is A = 2ma and we are 

treating the large mass limit, m» 1, it will be quite consistent with other approxi­

mations which we have made to neglect those terms which are smaller by the 

factor 1/m than those which are of immediate concern here.
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The integration of the flux is carried out in Appendix D; the result, correct 

to second order in A, is:

° 2
xN{x)dx =------ + C Inx + 0.4908775A + 0.230889A2 +

The migration area therefore becomes

...(30)

> =

3a a s a

[lnxo - 0.821108 + 0.56345A + ...] .(31)

where aa =——aas is the mean absorption cross section averaged over a Maxwell 

distribution.

The migration area of the neutrons from a source at high energy to absorption 

is therefore expressible as the sum of two terms: one is the usual thermal dif­

fusion area of neutrons in a pure Maxwell distribution; the other is a Fermi Age 

term which depends logarithmically on the source energy. The usual development 

of the Fermi Age leads to an expression for the slowing down area which is given 

in terms of an integral over the logarithmic energy interval from the source 

energy to thermal energy. The exact value of this lower limit is not specified — 

nor is such a specification at all possible without a development similar to the 

one given here. Equation (24) allows us to define an effective value for the energy 

of the lower limit of the Fermi integral although, of course, there is no sharp 

distinction between the slowing down region and the thermal region. We may, 

however, specify an energy which may be used at the lower limit of the

Fermi Age integral. We define the effective age as the total migration area 

minus the thermal diffusion area in a pure Maxwell spectrum. Thus,

Teff = M2(*o> ~ L2 = “ .(32)

3 a. ans a
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and the effective lower limit of the Fermi age integral is then given by:

Tef{ ~

*x*kT
\ dE ^ 2

rF 3£c72 E ’ m
Ee((

whence, from Eq. (31) we deduce:

...(33)

Eeff = ^r[e*p(0.821108 - 0.56345A)]2= S-ieVAT’e'1-127A ...(34)

The separation of the migration area into a thermal diffusion area plus a slowing 

down age is an arbitrary procedure and the exact manner in which it should be 

done is not well defined. Thus, the only physically significant entity is the total 

migration area, and the separation made here is at best arbitrary if not com­

pletely artificial.

VI. NEUTRON TEMPERATURE

Several attempts have been made to describe the low energy portion of the

neutron spectrum in terms of a Maxwellian distribution with a fictitious tempera- 
6 7 8ture. ' * Such a description is qualitatively attractive, but a close examination

of Fig. 3 shows that it is deceptively so. Figure 3 shows the fraction of neutrons 

absorbed at energies less than x2kT for different values of the absorption para­

meter A. If it were possible to define an effective neutron temperature, this 

would say that the curves for A ^ 0 were obtainable from the curve for A = 0 (pure 

Maxwellian - no absorption) by a simple change of scale. Since the abscissa in 

the figure is logarithmic, a change of scale would be equivalent to a rigid dis­

placement required to bring that curve into correspondence with one of the other 

curves. This displacement is then directly a measure of the effective tempera­

ture. It is, however, apparent that no such simple displacement is possible.

Thus, although it may be possible to define effective temperature by means of 

some appropriate analytical recipe, such a definition is ambiguous to the extent 

that different recipes will give quite different effective temperatures.
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APPENDIX A

POWER SERIES SOLUTION FOR NEUTRON SPECTRUM

Equation (9) is:

xM"{x) + (3 - 2x)M\x) - AM{x) = 0.

If we assume that Mix) can be expanded in a power series about the point 

* = 0 , at which there is a simple pole, we write:

Mix) = Y, «„*n+s> 
n=o

...(4.1)

where s is as yet undetermined. Inserting this expression into the differential 

equation, we obtain

]T [(ra + s)in + s — l)*"'1 + (3 — 2xz)in + s)xn'^— Axn)xsan = 0. ...(4.2)
n~o

We now collect like powers of x by rearranging the sum.

^*"[(71 + s + Din + 'S)«n+1 + 3(ra + .s + l)an+1 - 2(ti + s - Don., — Ao;j] = 0,

so that

a ,, --------------------------------------  [2(n + s — l)o , + Aa„].
',+ , in + s + 1)(ti + s + 3) 7l-1

Since a = a =0 while a =/ 0 , we must have -2-1

sis + 2) = 0.

...(4.3)
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In this way we find s = 0 . (The second solution, corresponding to s =-2, is singu­

lar at the origin and hence will be excluded. It can not be obtained directly in 

a power series form and will not be further discussed here.)

The coefficients of the power series are then related by the recursion formula 

of Eq. (1).
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APPENDIX B

FIRST ORDER CORRECTION TO MAXWELL DISTRIBUTION

Equation (8. 1) is:

/*,(*) =f- H(u) - uH'iu)
du

where

H'(u) = ------- e
2 u2 2V'(-)"u

/ n

y(-)nun„2n

hence

2 V
H( u) — '(u) =------ / --------

— n!n n-o

(-) 2n + \

2n + 1
,2n+\

4 ^ (_)'*+’u2n + '

(2n + 1)U - 1)/

or

1 4 v-> (—)nu2n
-----mu) - uH'{u)] =-------- ) -----------------
u3 /T" ^ (2rc + 3)n/

n—o

The expression for can therefore be written in the form:



(-)nu2n 

n!(2n + 3)

(-)nu2kdu

JT Jo n,k
n!{k — n)! (2n + 3)

We now make the substitution:

1

2re + 3
en+zd{.

and interchange the order of integration and summation. This strategem 

us to carry out the summation over the n-index easily and reduces the £- 

gration to a beta-function:

**,(*) = I <->■ rn!{k -n)! Jo en ^dtu^du

HU' ^2(l - H)k d£ —— du
Kl

2k

k!

-- f X^ jo u

x S(| a + 1)

k!
-uzkdu

ii(*)=
r(|)

ST i^o nk +1)

ii(*) =z ,2/c + 1

k=o (2k + i) r(k +

allows 

inte -
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APPENDIX C

EVALUATION OF N{x)dx = C

From Eq. (20) we have:

C =-

oo

I (n + 1)/ A2

^ (2« + i)r(re + f)

oo

I
n- 1

r{n + |)
+ 1)//n +

n(n

n = 1

where / =n
k—o

(k + i)/

(2/i + DHA + §•)

1. The first order term corresponds to the evaluation of we can write this 

in the form:

I
OO

1

n —n

in + 1)/

(2ra + 1)FU + |)

Now

tt/2

,2n + 3 Odd

V O

vrn~ (n + 1)/

2r(ra + |)

hence

/OO

2^1 + 3 a S ITl ts

2re + l
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2
77/ 2

sinzd tanh'^ (sind) dO

We now make the Gudermannian transformation: 

tank cf> = sin 9

cosh cf> = sec 6

seek = cos 9

then / =

tank2 cf> 

cosh cf)
<(> d cf) ,

-f

^ X
sink <f>

cf) sinh cf ----------  dcf> ,
cosh3 cf

I =
OO

1
1 +

OO

cf) sech cf> def)

Jo

The integration by parts has reduced the problem to the calculation of a fairly 

well behaved integral. Several methods exist for evaluating this integral; the 
most direct is to expand sech <jS as a series in e"^.

cf) sech cf) dcf> = 2 cf>e ^ [l — e’2<^ + — ...] dcf>

o



2 Ci 1 1 1 1
|_ ~25 ~ 49~ + "sT _

5
The series in the square brackets defines Catalan's constant. Its value is 

G = 0.91596 55941 18 ....

Hence we have

1
— + G(=0.79887 3038 ... 
2 /

2. The second order term can be best evaluated by interchanging the order of 

summation. The second order term is, therefore,

A2
IT I ^

Uc + D.Tin + f)
{2k + 1)FU + |)n(n + 1)/

A2 {k + l)! Sk

8 (2k + DHA + |)

where

I
n=A+ 1

r(n + f) 
n(n + X)/

To evaluate Sk , we make use of the integral representation of the Beta-function. 

It follows directly, then, that

n« + f)
(n + 1)/

Un+,/2(l - u)'1^2 du ,
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and therefore,

S
k ~

and

This integral is tabulated by Grobner and Hofreiter 5 then with

r(ra + f) (2/i + 1)
^ = (n + 1)! (2n + 2) Sn-'

we can write

'*-1
1
— s
k k

We further improve the convergence of the summation by noting that

r7i n3/2 a+i),/2

hence

u + D/s, 4

(2k + 1)F(A: + f) (2k + l)2
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The second order term can therefore be written in a more convenient form 

for computation:

A2 V 1 + V 1
\k + l)!(2k + l)Sk

2 fe M +1)2 fe M + w2 4m +1)

The first sum is well known; its value is n-2/8 = 1.23370 05501 ...

The second sum is rapidly convergent and can be easily computed. Using ten 

terms and estimating a correction for the sum of the remaining terms gives us 

— 0.660488. The second order term therefore is computed to be 0.286606A2 .

33



APPENDIX D

INTEGRATION OF xN{x)dx .

From Eq. (17) we can write

r° 4 / 0 , -
xN(x)dx =------- / x3e~x dx + \

y-jr

~r°z-

J ^ (2•'o n-o

2n+4e'* dx

(2re + l)r(« + |)

+ A:

/X .o oc n-1

II
n = 1 A=o

a + 1)/ xZn+3 e~x 

(2k + DlXk + |.)n(n + 1)/
dx

1 - (1 + *2) e-*o + A X, + A2K2

We shall treat and K2 separately.
1

The integrand of approaches -—for large values of x and is therefore 

logarithmically divergent. However, this divergence can be controlled by adding 

and subtracting from the integrand an expression which is on the one hand easily 

integrable and on the other hand represses the divergent part of . Such an 

expression is

1 -
2u

Therefore we shall write, replacing x2 by u,



e“ - 1 

2u
e'u du

We now expand the function eu

du +. — In ------
2 0 4

I

- 1 in a power series,

du

Also we recognize that

1 - e'“
-------------- du

u
du ~ y ~ 0.5772157 ...

and write

K

OO

un+3/2

(2n +•' DHa + |) 2(ra + 1)/
1 1

(fii H---- y + — In x4 ^ 2 °

We are interested primarily in the limit, as xa becomes very large, of the 

quantity — In xo . This expression is finite and hence we may extend the 

integral to infinity and interchange the order of summation and integration:

K
2(n + 1)

1 1 
+ — Inx + — y • 

2 0 4

It is easy to see that the summation which now appears in is simply the 

series for l/2ire2; hence,
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1 ( 1
K = — ln2 +■— y + In x 

1 2 \ 2

1
= 0.4908775 +_/nx 

2 0

We must follow the same procedure for the evaluation of &2. The asymptotic 

behavior of fi2(x) can be obtained from Eq. (8). We know from the calculation 

in Appendix C that

V* dt -> 0.798873 as u

whence Eq. (8) in the limit of large x , can be written:

1 / e-
U) = — (0.798873)

2 / (x1 2 - v)2
dv

1 e
li lx) =» — (0.798873)

2 2
■-1 (-S-)+ ... e'v dv

1 ex
(0.798873) —

The integrand of K2 therefore approaches 

We add and subtract as before and obtain:

0.798873

2x
for large values of

Kr /
oo oo (~ n— 1y(-i y — 

h:l“ h <“ +
(k + 1) /

Dru + f)

oo

yn + 2 / /

a + D! ,71+1

(2k + + -I) (n + 1)!
du
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+ .1 (0.798873)(y + 2 In xj ,

where, for symmetry reasons we have retained the summation

1 OO U + l)/

2 (2k + i)r(k + f)

and we can write:

■ = 0.798873 inside the integral. The integral is convergent

K. 4lfrZ (k + 1)/

„ = , .=0 <2^ + W(k + f)

oo

yn + 2 / ,

(k + 1)!

o (2k + 1)FU + |)

0.798873
(y + 2 In x) ' o

The summation which appears here can be simplified somewhat by writing:

n = 1

1
n

oo oo
1 (k + 1)/ 1 y-' 1 (k + 1)!

n + Jo (2A + l)r{k + ¥ U {2k + 1)ra + ¥

0.798873 ,
+----------------(y + 2 In x) .c) '' U

But
3

2

so that

K2 =
0.798873

y + 2 In x„ H------/ 0 2
1 y Sn

s Z_/ n
0 ra = 1
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in which

s n+ 1 s n 2n + 1

3 1
e = —(G +-)
0 2 2

2,12394 83913 ,

t n
2(n + 1) ^
2n + 3 tn-' to = 1

so that finally
0.798873

K, =------------------(y + 0.000818 + 2 In x)
2 2 0

Therefore,

2 1/1 
xN{x)dx = -------- + C In x„ + —ura 2 + —y/T ° 2\ 27

A + 0.798873 (-^-y + .000409^ A2 + ...9)

2
= -------- + C In x
/7

+ 0.4908775A + 0.230889A2 + ...
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