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ABSTRACT

It is common practice in structural dynamics to develop
mathematical models for system behavior, and we are now
capable of developing stochastic models, ie., models
whose parameters are random variables. Such models have
random characteristics that are meant to simulate the
randomness in characteristics of experimentally observed
systems. This paper suggests a formal statistical procedure
for the validation of mathematical models of stochastic
systems when data taken during operation of the stochastic
system are available. The statistical characteristics of the
experimental system are obtained using the bootstrap, a
technique for the statistical analysis of non-Gaussian data.
We propose a procedure to determine whether or not a
mathematical model is an acceptable model of a stochastic
system with regard to user-specified measures of system
behavior. A numerical example is presented to demonstrate
the application of the technique.
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1. INTRODUCTION

Development of a stochastic system model is commonly
guided by a balance between two requirements: (1) the need
to represent reality, reflected by the measured data, and (2)
the pragmatic need for a relatively simple mathematical
model. Therefore, the validation of a model would depend on
the degree of uncertainty associated with the measured data
reflecting system behavior and the number of basic
variables, parameters and complexity of their
interrelationships that have been included in the model. It is
obvious from this that it is not particularly helpful to try to
validate a model by calculating the differences of the results
from the measured data. However, any alternative validation
scheme should have a level of sophistication which does not
alter the pragmatic level of complexity that characterizes the
model. Further, it would be convenient if the model validation
scheme makes full use of the information provided by the
measured data.

The authors have proposed a statistical validation
methodology for deterministic models of dynamic systems
(Paez, et.al., 1996, Barney, et.al,, 1997). The methodology
is based on the bootstrap. The bootstrap was developed by
Efron (1979), and is clearly described by Efron and
Tibshirani (1893). It is a technique for the statistical analysis
of non-Gaussian statistics of measured data. The statistical
validation methodology uses the bootstrap with data
measured experimentally to estimate confidence intervals
for measures of the system behavior. Then, these same
measures are evaluated from the mathematical model and
located relative to the confidence intervals. If the measures
of system behavior predicted by the deterministic model fall
within the confidence intervals the model is accepted at the
significance level represented by the interval, otherwise the
madel is rejected.
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This paper extends the proposed methodology to the
validation of stochastic models of system performance and
applies the extended methodology to problems in structural
vibrations. The proposed procedure includes the following
steps. First, identify one or more measures of system
performance as the basis for validation of the mathematical
model. Next, using the bootstrap and the experimental data
from the physical system derive marginal or joint probability
density functions (PDF) or cumulative distribution functions
(CDF) of the statistics of interest. Using the stochastic
model built, obtain the probabilistic functions of the same
measures of system performance. Once the experimental
and theoretical PDFs or CDFs are found, perform a goodness
of fit test to accept or reject the hypothesis that the
stochastic mathematical model is a satisfactory
representation of the physical system behavior. In addition
to visual inspection a Chi-square or a Kolmogorov-Smirnov
test can be run to execute the hypothesis test.

in the following a brief description of the bootstrap is
presented. Next, it is shown how the bootstrap can be used
to generate a sample of statistics of system behavior
measures from limited modal test data. Next, stochastic
mathematical models are discussed. Then, the framework
for statistical validation of random models is developed.
Finally, the methodology is applied to the validation of a
stochastic finite element model of an aluminum beam.

2. THE BOOTSTRAP

The bootstrap is a data-based technique for estimating the
accuracy of parameters derived from probability
distributions. The bootstrap was developed by Efron (1979),
and is readily applicable tc estimating the accuracy of the
mean estimate, the variance estimate, and the estimates of
other probability distribution moments, as well as more
complex statistics of random variables and random
processes. The bootstrap is well suited to the estimation of
bias, standard error, and confidence intervals of parameters
derived from measured data. In the process of estimating
confidence intervals we approximate the sampling
distribution of the statistic of interest - this will be discussed
in more detail later in this section and in the foliowing
section.

A bootstrap analysis is based on a sequence of data values,
Xj, j=1....n. We assume that these values are produced

by a source with an unknown probability distribution. Our
only knowledge of the source is the measured sequence of
data values. Each observed data point is assigned a
probability of occurrence of 1/n, where n is the number of
measured data points. A bootstrap sample is created by
selecting at random, with replacement, n elements from the
measured data set. The creation of a bootstrap sample is
illustrated in Figure 1. This procedure is readily implemented
using a uniform random number generator which selects,
with equal probability, integer values in the range 1 to n.
Sampling is done with replacement, so each bootstrap

sample may have several occurrences of some data values
and other data values may be absent.

F=X-= (X1 X2,....X16) (Samples have equal probability)
Creation of bootstrap sample is
accomplished through random
selection among elements of X.

\L For example, let X = (xy__ x16).

A potential bootstrap sample is
shown below. The sample
contains 16 elements,

X' = (X2,X7,X4,X1 1,...,)(4)

Figure 1. Obtaining a bootstrap sample.

In a typical bootstrap analysis, numerous bootstrap
samples, X 'b,b=1,...,B, are created. The statistic of
interest is computed for each bootstrap sample; the
resulting quantities are known as bootstrap replicates of the
statistic of interest. The bootstrap replicates are denoted

6*(b),b=1...,8, and are defined

§'b)=s(x?) b=1..8 1)

where s(.) denotes the formula applied to the data to
compute the statistic.

The hope in bootstrap analysis is that the bootstrap
replicates are governed by a probability law that is
approximately the same as the theoretical sampling
distribution of the statistic of interest. The sampling
distribution of the statistic of interest is the probability law
that governs realizations of the statistic - the realizations
that could be generated if unlimited data from the underlying
source were available.

One class of applications of the bootstrap seeks to estimate
standard error, confidence intervals, and bias of the statistic
of interest. The standard error is estimated using the
bootstrap replicates in the usual formula for the standard
deviation. Confidence intervals are estimated by sorting the
bootstrap replicates and defining intervals associated with
percentiles in the sorted list. However, this is not the class
to be investigated here, so we will not elaborate on this
further.

Bootstrap sampling provides an optimal estimate of the
probability density function which characterizes the data
source given that our knowledge of the source is limited to
the measured data. Computation of a statistic from the
bootstrap samples simulates computation of the same
statistic on samples drawn from the real world distribution.
Propetties of the ‘real world’ distribution are estimated in the
‘bootstrap world’ as illustrated in Figure 2.
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Figure 2. The bootstrap approximation to the real world. The observed distribution is our best estimate of the true distribution.
The observed sample is X, and the statistic of interest 6= s{(X) can be computed based on this. In the bootstrap world the

observed data are used to generate as many bootstrap samples X' as we wish. Each bootstrap sample is used in the formula
6 = s(X ') to compute a bootstrap replicate of the statistic of interest. The bootstrap replicates are used to analyze the

standard error, confidence intervals and bias of the statistical estimator.

One class of applications of the bootstrap seeks to estimate
standard error, confidence intervals, and bias of the statistic
of interest. The standard error is estimated using the
bootstrap replicates in the usual formula for the standard
deviation. Confidence intervals are estimated by sorting the
bootstrap replicates and defining intervals associated with
percentiles in the sorted list. However, this is not the class
to be investigated here, so we will not elaborate on this
further.

Bootstrap sampling provides an optimal estimate of the
probability density function which characterizes the data
source given that our knowledge of the source is limited to
the measured data. Computation of a statistic from the
bootstrap samples simulates computation of the same
statistic on samples drawn from the real world distribution.
Properties of the ‘real world’ distribution are estimated in the
‘bootstrap world’ as illustrated in Figure 2.

3. SAMPLING DISTRIBUTION OF MEASURE OF
MECHANICAL SYSTEM BEHAVIOR

The previous section briefly introduced the bootstrap and
noted that it is a technique for the accuracy analysis of
statistics of random data. Among other things, it can be
used to estimate standard error and the confidence intervals
of statistical estimators. However, in the process of
establishing these estimates the bootstrap generates
information that can be used to approximate the sampling
distribution of the statistic of interest. Because our goal is to
assess the accuracy of a stochastic mathematical model of
a physical system, it is this distribution in which we are
interested, and therefore, we now focus on its
approximation.

Recall that to use the bootstrap, it is necessary to build an
ensemble of bootstrap replicates of the statistic of interest.
We will describe later in this section how to use vibration
data to create bootstrap replicates of quantities that
influence the dynamic behavior of structural systems. Now
though, we assume that we have bootstrap replicates of a
statistic of interest and describe the tools that are used to
approximate the probability density function (PDF) of the
source of the replicates.

There are several approaches to the approximation of the
PDF of a random variable based on realizations measured
from the random source, and some of these are described in
Silverman, 1986. In this investigation we use the kernel
density estimator (KDE). As in the previous section, dencte

the bootstrap replicates 8 * () b=1,...,B. The KDE based
on these data is defined

B o *
f(a):éFZK(g#b—)J —m< @< 2
b=1

where K{.) is the kernel function, and basically, must satisfy
the requirements to be a valid PDF (see Wirsching, Paez,
and Ortiz, 1995, for these requirements), and h is the
window width and must be nonnegative. In the applications
to follow, we define the kernel function to have the form of
the standard normal PDF. Equation (2) is the estimator of the
PDF of the bootstrap replicates.

In the general case where the bootstrap replicates are
vector quantities we can define a multivariate KDE to
approximate the multivariate PDF, and the validation to be
described in the sequel can be carried out in a multi-
dimensional space. For present purposes, however, we will
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Figure 3. Schematic showing how the bootstrap is used to create bootstrap replicates of system modal frequencies.

be satisfied to consider individual variables and their
univariate distributions.

We now show how bootstrap replicates of dynamic systems
performance data can be developed in a very practical
framework. The overall process is illustrated in Figure 3. To
commence the development we assume that measured
inputs and outputs from the system to be characterized are
available. Denote the collecticn of inputs and output pairs as
(X,Y)=(X1ce. X, Y41, Y ) Where yy is the output function
corresponding to the input function x;. These pairs may be,

for example, input and response segments of a stationary
random process, shock inputs and their corresponding
responses, or any other form of input and corresponding
responses. We assume that one or more statistics of these
data are the measures of system behavior or parameter
estimates of interest. For example, if the system being
modeled is a linear structural system and X represents the
excitation function and Y the response function (e.g.
acceleraticn) then a frequency response function (FRF) can
be derived by combining all the x,y pairs the usual way
(Wirsching, Paez, and Ortiz, 1995). Once the FRF is known a

linear model can be used to extract the modal frequencies of
the system wg,k=1,...m. We could also extract mode
shapes and modal frequencies from a linear model. If we
assume that the response is nonlinear then parameters of
nonlinear input/output models can be established, or
parameters of the response only can be established. In
figure 3 and the following discussion we assume that the
modal frequencies are the statistics of interest of the
random input/output data.

Given that the natural frequencies can be estimated using
the original set of measurements (X,Y), they can also be
estimated using a bootstrap sample of this original set.
(Hunter and Paez, 1995, and Paez and Hunter, 1996) A
bootstrap sample of the input and output set can be denoted

(X,Y)’b,b=1,...,B where each of the x.y pairs is drawn

randomly from the elements of the original set (X,Y) as
shown graphically in Figure 3. Using this bootstrap sample, a
bootstrap replicate of the statistic of interest is computed. In
the case of the structural system mentioned above, this
would be a bootstrap replicate of natural frequencies

co;(b, b=1..,B,k=1,..,m, of the system. Any number B of




bootstrap replicates can be generated using this approach.
The collection of bootstrap replicates generated can be used
in Eq. (2) to approximate the PDF of the sampling distribution
of each wy . This will be done later in the numerical example.

4. STOCHASTIC MATHEMATICAL MODELS

Our objective in this study is to establish a technique for the
validation of stochastic mathematical models, and we have
shown in the previous sections how to develop an estimate
for the probability distribution of one or more measure of the
character of a physical system (modal frequencies, in the
examples). It now remains to show how to establish the
probability distributions of these same measures of
character of a structure, but now based on the stochastic
mathematical model.

A stochastic mathematical model of a physical system is
normally (1) a set of differential equations with random
variable or random process parameters, (2) the solution of a
set of differential equations involving random variable or
random process terms, or (3) an empirical expression
characterizing physical  system response and involving
random variable or random process terms. The
developments and applications of stochastic mathematical
models are so broad that we cannot provide a general
discussion here. We can, however, briefly show the form of a
stochastic finite element model of a structural dynamic
system, and explain how the stochastic model leads to
random characteristics.

The equation of motion for an undamped, unforced, linear
structural dynamic system is

Mx+Kx=0 (3

where X is an Nx1 vector of displacement responses, M is
the NxN system mass matrix, Kis the MxN system stiffness
matrix, N is the number of degrees of freedom in the model,
dots denote differentiation with respect to time. See Clough
and Penzien (1975) for further details and discussion of this
equation of motion. lf the system is time invariant, i.e., its
characteristics do not change with time, then the mass and
stiffness matrices are populated with constants. When the
system is assumed to be stochastic, then some or all of the
elements in the mass and stiffness matrices are random
variables. (The random elements do not vary in time, but
rather assume one constant random value for alt time.)

The modal frequencies of the system described in Eq. (3) are
related to the roots of the characteristic equation

oM+ K|=0 (@)

The equation has N roots, and usually the lowest m are
evaluated. The modal frequencies can be denoted
og, k=1..m. When any of the elements in M of K is

random, then all the modal frequencies are random.

There are many potential approaches to the probabilistic
characterization of the modal frequencies. Among these are
(1) Monte Carlo, (2) first and second order reliability methods
(FORM/SORM) (Madsen, Krenk, and Lind, 1986), (3) the
advanced mean value (AMV) method, (Wu and Wirsching,
1987), and others. We choose to analyze the probabilistic
character of the modal frequencies using the AMV method.
The basic idea behind the AMV method is that it finds an
approximate expression for the modal frequencies in terms
of the random variables in M and K, then iteratively
approximates the probability distribution of each modal
frequency using a transformation to standard normal space.
It is used to establish the approximate CDF of each modal
frequency.
Fo(@)=Plog<a) a<0k=1.,m {5)

This function can be approximately differentiated to obtain
the approximate PDF for comparison to the bootstrap-based
PDF in Eq. (2), or the bootstrap-based PDF can be integrated
to obtain the data-based CDF approximation, and that can be
compared to Eq. (5). Such a comparison Is carried out later
in the numerical example.

5. VALIDATION OF STOCHASTIC MODELS

The validation of a stochastic model is carried out by
comparing the probability distributions of some measures of
its performance to the probability distributions of the
corresponding measures obtained from experimental data
from a physical system. The comparison can be performed
using PDFs or CDFs, and these can be marginal or joint.
When the individual characteristics of model and system are
to be compared, then the marginal distributions are used.
When the joint behavior of multiple characteristics is to be
compared, then the joint distributions are used. An example
of the former is the comparison of individual modal
frequencies. An example of the latter is the comparison of
mode shapes. Of course, the stochastic mathematical
model is judged valid with respect to the characteristics
tested when its probabilistic character matches the
probabilistic character of the experimental system closely
enough. Otherwise, it is judged not representative.

The comparison that is the basis of the validation can be
done in several ways. The first possibility is a visual
comparison of PDFs or CDFs. This can be used when
marginal distributions are to be compared. More formally,
distributions can be compared using the chi squared test,
the Kolmogorov-Smirnov test, or probability paper (Ang and
Tang, 1975). Further, the distributions can be compared
using the bootstrap approach, an extension of the
development presented here. Both visual and probability
paper comparisons are used in the following numerical
example.




6. NUMERICAL EXAMPLE

This example applies the stochastic model validation
technique developed in the previous sections to the
validation of a stochastic finite element model of a beam.
The beam was configured as a cantilever and tested in the
laboratory. lts parameters are listed in Table 1. The clamped
end was attached to the fixture using a bolted stesl
sandwich device with neoprene pads between the fixture and
the beam. The number of pads was varied randomly from one
test to the next to simulate the randomness that might be
encountered in a complex physical experiment.

Table 1. Parameters of beam tested in laboratory.

length 12 inches
depth 0.125 inch
width 1inch
material aluminum
modulus of
elasticity (E) 107 psi

mass density 2.53x10* lb-sec¥in*

The beam was tested by applying an initial deflection,
releasing it, and cbserving the decayed response
acceleration. This was repeated 10 times, and the response
was measured each time.

A stochastic finite element model of the beam was created.
The model uses 48 Bernoulli beam elements with a
translational and a rotational degree of freedom at each
node. The cantilever condition is modeled using a torsional
spring in the rotational degree of freedom at the clamped
end. The torsional spring stiffness is taken to be a normally
distributed random variable with a mean of 657.5 in-lb/rad
and a variance of (13.5)* (in-lo/rad)®. All the other finite
element model parameters are taken as deterministic and
based on the parameters in Table 1.

The data obtained in the experiment were used with the
bootstrap approach to characterize the sampling distribution
of the first modal frequency. The KDE estimate of the PDF is
shown as the solid line in Figure 4. An AMV method analysis
of the finite element model was performed to characterize
the first modal frequency, and the results were used to
approximate the PDF. The PDF approximation is shown as
the dashed line in Figure 4. The curves match well.

The two distributions were also compared using a probability
paper approach. Probability paper can be constructed as
described in Ang and Tang {1975). The comparison is based
on the formula

B=F(Fa) ®

where F() is the CDF approximation corresponding to the
PDF approximation in Eq. (2), and f:'a,1() is the CDF
approximation of Eq. (5). Clearly, if the two CDFs were
identical, then the plot of B versus a would be a straight line.
The nearness of the plot to a straight line reflects the
accuracy of the approximation of Fy, () to F(). Figure 5
shows the result obtained when the approximate CDFs
develcped in this example were used in Eq. (6). The curve
spans abscissa values corresponding to F(.) in the range

[0.001,0.999]. Clearly, the approximation is a relatively good
one over the entire range.
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Figure 4. Comparison of the PDF approximation of the

stochastic mathematical model to the bootstrap-based PDF
approximation.
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Figure 5. Probability paper type comparison of the
approximate stochastic mathematical model CDF 1o the
bootstrap-based CDF, based on Eq. (6).




Other comparisons of the two distributions could also be
performed. t would be desirable to establish a confidence

region for the COF F()) and observe whether or not the cdf
f:'a,1 () lies within that region. in this way a hypothesis test

on the stochastic mathematical model could be performed
and we could reject or accept the stochastic model on that
basis.

7. CONCLUSION

We have extended in this paper the approach to statistical
model validation developed by the authors in previous
investigations. The approach is based on the bootstrap
method for statistical analysis and the probabilistic analysis
of a stochastic mathematical model. We chose to execute
the latter analysis here using the advanced mean value
method. The validation approach accounts for randomness
in real system characteristics and the randomness included
in the mathematical model. The approach is systematic in
that it is based on a well established statistical analysis
procedure, and any of a number of well established
probabilistic analysis procedures. The approach is computer
intensive with regard to both the bootstrap analysis and the
probabilistic system analysis of the stochastic model.
However, its advantage is that it properly accounts for the
non-Gaussian nature of the data and the mathematical
model.

It must be emphasized that the analyst who uses the
proposed procedure for statistical model validation must be
judicious in his or her choice of the specific measures and
the number of measures of model performance used to
validate the model. The number of measures should be
neither too great nor too small, and should reflect the
importance of the application. The specific measures of
performance used should reflect the analyst's expectations
of the model. Some measures of performance will be easier
to validate than others. However, when detailed model
behavior is validated, model performance in the simulation of
detailed behavior will be anticipated to be accurate.

8. ACKNOWLEDGMENT

This work has been supported by the Department of Energy
under contract number DE-AC04-94A1L85000, by the Air
Force Office of Scientific Research under contract number
F49620-95-1-051B, and by the University of Texas at El
Paso.

9. REFERENCES

Ang, A., Tang, W. (1975), Probability Concepts in

Engineering Planning and Design, Volume | - Basic
Principles, Wiley, New York.
Barney, P., Ferregut, C., Perez, L., Hunter, N, Paez, T,
Validation of System Models,”

(1997), “Statistical

HICSS-30  Proceedings, Hawaii International
Conference on System Science, University of Hawaii,
Maui, Hawaii.

Clough, R., Penzien, J., (1975), Dynamics of Structures,
McGraw-Hill, New York.

Efron, B. (1979), "Bootstrap Methods: Another Lock at the
Jackknife,” Annals of Statistics, 7, 1-26.

Efron, Bradley and Tibshirani, Robert J.(1993), An
Introduction to the Bootstrap, Applied Monographs on
Statistics and Applied Probability 57, Chapman and Hall.

Hunter, N., Paez, T., (1995), “Application of the Bootstrap to
the Analysis of Vibration Test Data,” Proceedings of the
66th Shock and Vibration Symposium, Shock &
Vibration Information  Analysis Center, Biloxi,
Mississippi, 99-108.

Madsen, H. O., Krenk, S., Lind, N. C., (1988), Methods of
Structural Safety, Prentice-Hall, Englewood Cliffs, New
Jersey.

Paez, T., Barmey, P., Hunter, N., Ferregut, C., Perez, L.,
(1996), “Statistical Validation of Physical System
Models,” Proceedings of the 67th Shock and Vibration
Symposium, SAVIAC, Monterey, California.

Paez, T., Hunter, N,, (1996), “Statistical Analysis of Modal
Parameters Using the Bootstrap,” Proceedings of the
14th International Modal Analysis Conference, V. 1,
Society for Experimental Mechanics, Inc., Dearborn,
Michigan, 240-245.

Silverman, B. W.(1988), Density Estimation for Statistics
and Data Analysis, Chapman and Hall.

Wirsching, P., Paez, T., Ortiz, (1995), Random Vibrations:
Theory and Practice, Wiley, New York.

Wu, Y. -T., Wirsching, P. H. (1987), "A New Algorithm for
Structural Reliabilty Estimation,” Joumal of the
Engineering Mechanics Division, ASCE, 113, 9, pp.
1319-1334.




