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I. Introduction

Hidden Markov models (HMM’s) are among the most popular tools for performing
computer speech recognition (see Huang, Ariki & Jack, 1990). One of the primary reasons
that HMM’s typically outperform other speech recognition techniques is that the parameters
used for recognition are determined by the data, not by preconceived notions of what the
parameters should be. This makes HMM’s better able to deal with intra- and inter- speaker
variability despite our limited knowledge of how speech signals vary and despite our often
limited ability to correctly formulate rules describing variability and invariance in speech. In
fact, it is often the case that when HMM parameter values are constrained using our limited
knowledge of speech, recognition performance decreases.

However, the structure of an HMM has little in common with the mechanisms underlying
speech production. Below, we argue that by using probabilistic models that more accurately
embody the process of speech production, we can create models that have all the advantages
of HMM'’s, but that should more accurately capture the statistical properties of real speech -
samples -- presumably leading to more accurate speech recognition. The model we will
discuss uses the fact that speech articulators (the tongue, jaw, lips, etc.) move smoothly and
continuously (the word “continuously” is used in the mathematical sense: articulators don’t
move from one location to another without occupying intermediate positions). Before
discussing how to use articulatory constraints, we will give a brief description of HMM’s.
This will allow us to highlight the similarities and differences between HMM’s and the
proposed technique.

In a straightforward implementation of the HMM approach, models are made of each word in
the vocabulary. The word models are constructed such that we can determine the probability
that any speech sample would be produced given a particular word model. The word model
most likely to have created a speech sample is taken to be the model of the word that was
actually spoken. For example, suppose we produce some new speech sample, Y. If w; is the
model for word i, and w; maximizes the probability of Y givenw;, then a HMM speech
recognition algorithm would take word i to be the word which was spoken. In other variants
of HMM speech recognition, models are made of phonemes, syllables, or other subword units,
and the subword units are recognized.

Figure 1 shows a 5 state HMM applicable to speech recognition (Rabiner & Juang, 1986).
Each of the circles in Figure 1 represents a HMM state. At any time, the HMM has one active
state and a sound is assumed to be emitted when the state becomes active. The probability of
sound y being emitted by state s; is determined by some parameterized distribution associated
with state s; (e.g. a multivariate Gaussian parameterized by a mean and a covariance matrix).
The connections between the states represent the possible interstate transitions. For example,
in the Bakis model below, if the model is in state s, at time ¢z, then the probability of moving to
state s, at time 7+ is a,,

Left-to-right HMM

Figure 1
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HMM’s are trained using a labeled speech data base. For example, the data set may contain
several samples of speakers producing the word “president”. Using this data, the parameters
of the “president” word model (the transition probabilities and the state output probabilities)
are adjusted to maximize the likelihood that the “president” word model will output the
known speech samples. Similarly, the parameters of the other word models are also adjusted
to maximize the likelihood of the appropriate speech samples given the models. We expect
that as the word models more closely match the distributions of actual speech samples (i.e. the
probability of the data given the word models increases), the recognition performance will
improve -- which is why the models are trained in the first place.

One way to make the word models give better estimates of the distributions of speech data is
to base the models on the actual processes underlying speech production. Consider that
speech sounds are produced by slowly moving articulators (articulator motions have almost
all of their energy below 15 Hz. compared to the ~10 kHz acoustic signal). Thus, if we knew
the relationship between articulator positions and speech acoustics, we should be able to use
information about the articulator positions preceding time ¢ to accurately predict the
articulator positions at time ¢, and therefore predict the acoustic signal at time ¢. In the
following discussion, we show how information about articulation can be used without
requiring any training sets other than what is already used to train HMM’s. Thus, there is no
need to collect extra data about articulator positions, or to use computer simulations to
estimate the maping from articulator positions to acoustics.

II. The Model

As with HMM’s, in order to determine which sequence of words was most likely to have -
created the observed data, we want to be able to determine the probability of the observed
data given a word model. In the articulatory recognition algorithm presented here, each word
will be described in terms of the sequence of articulator positions used to create the word.
This is not sufficient, however -- we will also use a parameterized model of the mapping from
articulator positions to VQ codes. Using the articulator sequences together with the mapping
from articulation to VQ codes gives us a way to estimate the probability of an observed data
sequence given a word. In section II.A we describe how an articulator path (a word model)
that maximizes the probability of the data can be found, but we will assume that we know
about the mapping from speech sounds to articulator positions. In the section IL.B we show
how to find the mapping from speech sounds to articulator positions using only acoustic
speech samples.

II.LA Finding Articulatory Trajectories that Maximize the Probability of the Observed Data. -

In order to describe how to use articulatorily constrained probabilistic model to perform
speech recognition, we will start with some definitions. Let:

= the number of vector quantization codes in a given speech sample,
cf t} = the VQ code assigned to the /" window of speech,
¢ = [c(1), c(2), ... ¢(n)] = a sequence of VQ codes used to describe a speech sample,
x{t) = the position of articulator { at time ¢,

x(8) = [x,(t), x,(2), ... x(t)] = a vector composed of the positions of all the articulators at time
t, and

X = [x(1), x(2), ... x(n)] = a sequence of articulator configuratior'ls.'

Further definitions are needed to specify the mapping from articulation to VQ codes. Let:




Minimum Entropy Continuity Mapping -- John Hogden 9/23/96

P(c;) = the probability of observing code ¢, given no information about context,
P(xlc, @) = the probability that articulator position x was used to produce VQ code c; where

¢ = a set of model parameters, e.g. ¢ could include the mean and covariance matrix of a
Gaussian probability density function used to model the distribution of x given c.

Note that we have left the distributions that give P(xlc, @) unspecified. We have done this
because we want to allow for the various possible mappings from acoustics to articulator
positions. For example, it has often been argued that many different articulator positions can
be used to produce the same acoustic signal (Atal, Chang, Mathews & Tukey, 1978;
Schroeter & Sondhi, 1994), although human experiments have not yet verified that this a
problem (Hogden et al., 1996; Ladefoged, Harshman, Goldstein & Rice, 1978; Papcun et
al., 1992). If there are multimodal distributions of articulator positions that can be used to
pir?oguce identical acoustic signals, then it may be necessary to specify P(x!c, @) as a mixture
of Gaussians.

With these definitions, the probability of observing code c; given that the current articulator
position is X, is expressed as:

P(c,Xjg) _ P(cpxlp) _ P(xle,,0)P(c;)
P(xlp) Y P(c o) Y P(Xci@)P(c)

P(c,[x,0) =

Assuming conditional independence, i.e. that P[c(z)ix(z),@] is independent-of Plc(?’)Ix(t’),¢]
for t=t':

X, 0] =T Plclx®).0]
t=0

Note that the probability of observing a code is not independent of the preceding and
subsequent codes, it is only conditionally independent. So if x(z) is dependent on x(#’) then
¢(t) is dependent on ¢(t’). As demonstrated below, by using an appropriately constrained
model of possible articulator trajectories the sequences of codes can be tightly constrained in
a biologically plausible manner.

It is possible to find the articulator path that maximizes the probability of a sequence of
codes, i.e. find the X that maximizes P[C I X,(P], or equivalently, that maximizes
LogP[c1X,0], where:

LogP[dX,¢]= Y LogP[c()}x(®).¢]

To show how, we first find LogP[c(t)Ix(t),(p]:
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P[x(®)|c(®),9]P[c(®)]
ZP[x(t) c..0|Plc]

= Log(P[x(®|c(2), 9]P[c®)]) - Log[zi“ P[x(c; 0]P[c; ]]

LogP[c())x(1),9] = Log

= LogP[x(1)c(?), 9]+ LogP[c(t)] - Logz P[x(0lc.,9]P[c]
From this, we get:

LogP[c!X, (P] = ZLogP[c(t)Ix(t), (p]
= E{LogP[x(t)[c(t),(p] + LogP[c()] - Log Y. P[x(t)c;. ] p[(;i]}

Using V to denote the gradient with respect to the components of x(t'), LogP[cIX, (p] is
maximized when:

VLogP[X,p]=0 V¥

. Substituting for the left hand side and reducing gives:

VZ{LogP[x(t)k(t),(p] + LogP[c(t)] - Logg P[x(t)|c,.]P[c,.]} =0 V¢

VAx@e(o), <x>]+ VAe] Ok o))

=0 V¢
2,‘ Plx(®e®).0]  Ple(®] ZP[x(t)lc,,(p]P[c t
VRxOk),0] VR 2Tk 0 )] o v
P[x(t")e),0] ~ Plc] ZP[x(t e 0]Ple]
concluding with the equation:
N ZP[ci]VP[x(t’)lc‘.,(p]
VLogP[c[X,0]= VPX(Ole()0] % =0 V¢

Px@le),0] 3 Ax e, o]P[c]

The preceding analysis is incomplete because it ignores constraints on the possible articulator
paths. To incorporate biologically plausible constraints on articulator motion, we will allow
only those articulator trajectories that have all their energy below some cut-off frequency (say
15 Hz, since actual articulator paths have very little energy above 15 Hz). The constraint that
the articulator path have all of its energy below the cut-off frequency is equivalent to
requiring that the path lie on a hyperplane composed of the axes defined by low frequency
sine and cosine waves.
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When VLog(clX,) is perpendicular to the constraining hyperplane, so that Log(clX,¢) can
not increase without traveling off of the hyperplane, then we have reached a constrained local
minimum. Thus, the smooth path that maximizes the likelihood of the observed data is the
path for which VLog(cIX,¢) has no components with energy below the cut-off frequency.
This suggests the following algorithm for finding the smooth path that maximizes the
probability of the data:

1) start with any smooth path.
2) find the gradient of the log probability of the smooth path.

3) low-pass filtered the gradient to determine the gradient projected onto the constraining
hyperplane.

4) add the low-pass filtered gradient times some small constant to the path to get a better
estimate of the most likely smooth path.

5) repeat steps 2 - 4 until the algorithm converges.

There are also a variety of standard numerical algorithms that can be used to maximize
functions. Using one of these algorithms can speed up the process of finding the most likely
smooth path. One of these techniques, the conjugate gradient algorithm, is used in the
current implementation.

One additional point should be made here: the path which maximizes the conditional
probability of the data is also the path that minimizes the number of bits that need to be
transmitted in addition to the smooth path to specify the data. This can be seen from
information theory (Sayood, 1996), which shows that the number of bits that must be
transmitted in addition to the smooth path is:

bits= Y (1— LogP[c(d)}x().9]) = Y 1- Y, LogPc(t)x(1). 9]

t

Since we are maximizing ZLogP[c(t)]x(t),(p], we are minimizing the number of bits. This

result suggests that this apl;roach has potential as a speech coding technique.

IL.LB Finding a Mapping from Articulation to Acoustics

In the preceding section, we assumed that we knew P(c) and P(xlc,®). In this section we show
that these values can be determined using only acoustic data. This is an important section,
because P(xlc,®) is a probabilistic mapping from speech sounds to articulator positions, and
our-claim is that this mapping can be inferred using only acoustic data. To emphasize the
importance of this section, consider what would previously have been required to calculate
P(xlc,). If we had a sufficiently large speech database containing both acoustics and
measurements of articulator positions, then it would not be difficult to calculate P(xlc,@) -- we
would merely need to perform VQ on all the acoustic signals and then find the distribution of
x for each code (Hogden et al., 1996). Alternately, we could use a neural network or some
other form of nonlinear reguression to find the relationship between acoustics and
articulation (Ladefoged et al., 1978; Papcun et al., 1992; Zlokarnik, 1995). Unfortunately,
collecting a sufficiently large database of articulator measurements, including information
about the velum, pharynx, lips, tongue, and jaw would be impractical. To avoid the difficulty
of collecting inordinate amounts of articulator position measurements, we could use a model
of the vocal tract to generate the speech sounds from known (albeit modeled) articulator
positions (Atal et al., 1978; Boe, Perrier & Bailly, 1992; Rahim, Kleijn, Schroeter &
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Goodyear, 1991; Schroeter & Sondhi, 1992; Schroeter & Sondhi, 1994). This approach is
also problematic because there is reason to believe that the relationship between acoustics and
articulation for human speech may be very different than for articulatory speech synthesizers,

and, in fact, may be very different with different articulatory speech synthesizers (Hogden et
al., 1996). :

However, using maximum likelihood estimation, it is possible to find a good approximation
of the relationship between acoustics and articulations by building on the framework
presented above. All we have to do is iteratively repeat two steps:

1) given a collection of quantized speech signals and some initial estimate of the mapping
from acoustics to speech, use the procedures in the preceding section to find the paths that
maximize the probability of the observed data.

2) given the paths that maximize the probability of the data, find the value of ¢ and the P(c,)
values that will increase the probability of the data.

Since both of these steps will increase the probability of the data, by iteratively repeating
them, we will increase the probability of the data until we have reached a local (possibly
global) maximum.

It is easy to find the maximum likelihood estimate of P(c) given enough speech samples --
the model P(c) values should be set equal to the observed probabilities of ¢. Calculating ¢
can be accomplished using standard maximization algorithms. Maximization algorithms that
use gradient information are typically faster than algorithms that don’t use the gradient,
making it advantageous to have an expression for VLog(clX,¢) with respect to ¢. This
expression can be derived as below:

VLogP|cX,0]
=Vy {LogP[x(t)Ic(t),(p] + LogPle(t)] - Log Y, P[x()fc, }Pc; ]}

AL LOORI W E0) 2 VA[x()

Px0le.o] = Pled] Y P[x(0)

Ci» q)]P[ci]
Cis (P]P [Ci]

VP[x(0le).0] ;VP [x(e, 0]P[c]
Px@le(,0] Y, P[x(®e, 9]P[c]

Thus, using only acoustic speech samples, it is possible to derive the relationship between
acoustics and articulation, and also the articulator paths that are most likely to have created a
speech sample.
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