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Abstract

In the local quantum field theory of magnetic monopole
propogsed by Hagen, not all of the equations of motion are
covariant under the Lorentz transformation. In this note we
show that with the introduction of a shadow electromagnetic
field quantized with "wrong sign", the locality in the sense
of local commutation relations and local equations of motion
is still retained, while the equations of motion become

covariant under the Lorentz transformation.



The lack of symmetry in the usual Maxwell's equation
for the field tensor FMV and its dual F¥¥ = %‘uvKXFKA has
led to the interesting postulate of the existence of magnetic
monopoles first proposed by Dirac. Dirac's idea of magnetic
monopole has further been generalized to the case where a
particle is both electrically and magnetically charged. In
all of the studies so far it seems to indicate that the
locality is incompatible with the Lorentz group, both in
classical theories and in quantum field theoxi:s. The first
guantum field theory for magnetic monopole'presented by
Dirac was nonlocal and involved the introduction of nonphysical
dynamical variables associated with strings. More recent
formulations, either the electric charge and the magnetic
charge treated as separate entities or a particle carrying
both the electric and the magnetic charge, have avoided string
variables. However the incompatibility of the locality and
the Lorentz group is still retained. 1In the Lorentz covariant
theories, they are either based upon a Hamiltonian density
which is a nonlocal function of the field variables, and an
independently posited nonlocal commutation relation, which
together yield nonlocal field equations,z) or started from a
local Lagrangian dengity which by applying the canonical
quantization procedure yields nonlocal commutation relations
between the potentials.a) A local theory in which the

electric charge and the magnetic charge are separately at-

tached to different particles has also be constructed.q) In



this theory, starting from a local Lagrangian, one obtains
local commutation relations, and local field equations. How-
ever, the field equations are not covariant under the Lorentz
transformation. The incompatibility of the locality and the
Loxentz group has also been observed in the classical theory
of magnetic monopole. RBhlichS) has shown that in the
relativistic local theory, no action integral exicts from
which both the particle equations and the field equations can
be derived. On the contrary, yYan$) has constructed a
relativistic classical theory with a nonlocal action.

In conventional classical theory of electron and guantum
field theory, the requirement of locality always induces some
unpleasant difficulties. Recent development in gquantum field
theory shows that a consistent local Lagrangian field theory
can be constructed by making use of the indefinite metric and
the idea of shadow states.7) In connection with the theory of
electromagnetism, it is very interesting to observe that in
the dipole approximation electrodynamics, the runaway modes
can be avoided if a shadow electromagnetic field quantized
with "wrong sign" is introduced.a) In the classical theory of
electrons, it has also been shown that the introduction of a
shadow electromagnetic field makes the electron stable in the

point particle limit.s)

All of these studies indicate that
within the framework of quantum field theory with indefinite
metric one might be able to formulate a local, Lorentz co-

variant theory of magnetic menopole. 1In this note we will



closely follow the model suggested by Hagend) and show that
the terms which destroy the covariance of the field equations
disappear if we introduce a shadow electromagnetic field.

All of the commutation relations and the field equations are

still local.

In Hagen's model, one starts with the Lagrangian

Ly = 3 ivBY'ap- 3 mesy + 3 1v'ByVa y’
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Here ¢ is the electron field and y' the magnetic monopole
field. F,, is the electromagnetic field tensor and A, the

corresponding potential. The electric current j“(x) is

defined as

P = 3 vevrqy )

where g is the imaginary antisymmetric charge matrix which
actg in the two-dimensional internal space of the Hermitian

field w.lo) The maghetic current 3"(x) is defined as



) = 3 vreygrHaty! (3)

where q' is the symmetrical matrix

01
q' = .
(Zl 0
The magnetic current is designed in such a way that the in-
variance of the theory with respect to both parity and charge
conjugation is preserved. Furthermore, the bare mass of the
P* is taken to be zero in order to have 3u§“ = 0, Hagen has
shown that not all of the equations of motion obtained from
the Lagrangian (l) are covariant under the Lorentz transforma-
tion when eg # 0.
As in the classical theory of electrons and in the dipole
approximation electrodynamics, let us now introduce a shadow

electromagnetic potential B, with mass M, and modify the

Lagrangian as follows

L= 3 ivBYMa,0 - 3 muBy + 3 LvreYVaLy
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+ g(Fok + gok)kimy g-23m
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Here G"Y is the shadow electromagnetic field tensor. Note
that the free Lagrangian for the shadow electromagnetic field
has an opposite sign of the free Lagrangian of the physical
electromagnetic field. This is due to the fact that the
shadow field is to be quantized with "wrong sign".

The equations of motion implied by the Lagrangian (4)

can easily be obtained

FOK = -3 oay - 3,80 + gk 923" (5.a)
F*™ = 3,8, - 3,p, + gektMs, 97230 (5.b)
6% = -3, - 3,80 - gekiMy 2] (5.c)
" = 3,8, - 3,8 - gc*'M v72y° (5.d)
(W3, - eq(a, + BY) + mly = 0 (5.e)
(v¥ % 3, + gvgv,a'c ™, v (r%™ + ®™ 1yt = 0 (5.£)

These equations can be recast into the more symmetrical

form



3uFV“ =
auivu =

a“c“" +

3uG

u,l
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where

The equal time commutation relations among the canonical

ejv

IV
gl

MZBV = _ejV
~g3"

- 9q'vg (A, + BV =0 .
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B° = -gV'23° .

{(6.a)

(6.b)

{6.c)

(6.4)

(6.e)

{6.£)

(7.a)

(7.b)

(7.¢)

(7.4)

variables ¥(x), ¥'(x), F:k(x). Ak(x), G°k(x), and By (x) can

also easily be found.

V(X)) P (x*)I8(xC -~ x°') = (X ~ %')

(8.a)



(V' (%), 4" (x*) 16 (x° - x°') = §(X - X') (8.b)
(%K (x), A% ()16 (x° - x0') = 165, (% - X") (8.c)
16% (x) B4 (x)16(x° - x01) = =18, (x - x*) .  (8.d)

Note that in (8.d) we have used the “"wrong sign" for the
quantization of the shadow field. From (8) we can derive the

following equal time commutation relations which will be use-

ful in the later computation,

(FS* (x),a% (x) 16 (x° - x°1) = -16], (% - &) (9.a)

(K (x) FO (x')16 (x° = xO') = -iey, B 6 (K - k') (9.b)

(A% () A% (x") 16 (x° = x°') = =iy, BV 25X - X') (9.¢)

(625 (x) B (x) 16 (x° - x°0) = i6, (% - &) (9.4)

(6% (x) , &2 (x) 18 (x° = x°1) = ey, DS (R - K1) (9.¢)

(8% (x),B* (x*) 16 (x° - x°') = ie, B V726 (x - x') (9.£)
’ kim m *

To show that the eguations of motion (6) are covariant
under the Lorentz transformation, let us first construct the

enexrxgy-momentum tensor operator TV such that the generators



L Jdax M (x)
g4V = _[d3x[x“T°“(x) - 1% (x)]
satisfy the structure relations
(p¥,pV] = 0
=1[P),Jyyl = GavPy = gapPy

=1%o Tpvl = 9uadue = Juaduc = Fuedyur *+ Fucdua

(10.a)

(10.b)

(1l.a)

(11.b)

(11l.¢)

of the inhomogeneous Lorentz group. This can easily be done

by adding proper terms due to the shadow field tc the energy-

momentum tensor operator constructed by Hagen. We have

therefore

ok . of 1,1 1,01

+ 30,00 3 oW + 33,000 oy )

ok ol

and

1
T°°(x) = 3 VY3 B, - eald, + BV + T misy

(12)
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(13)
with T°%(x) given in (12), one can show by straight-

forward calculation that Pk and Jy g indeed generate the group
of spatial translations and rotations upon all the basic field
operators of the theory. Furthermore, it can also be shown

that with T°%(x) given in (13), P° is indeed the time develop-

ment operator of all operators in the theory, i.e.,
Jdax' (T°°(x') ,x(x)] = %'%x(x)

for any operator x(x). Finally one can show that gok trans-
forms F*V and GMY as second rank tensors, and j¥ and 3” as
four~vectors. Thus the covariance of Egs. (6.a) - (6.d) is
established,

It remains to see whether Egs. (6.e) and (6.f) are also
covariant under pure Lorentz transformation. 1In the case
g = 0, the vector potentials Au(x) and Bu(x), and the electron
field y(x) satisfy the commutation relations

~113%,a%) = (%) - xd2a, - 5, A% + B 8 (14.a)



10

-115%,8Y) = (%, - %, 3%, - §,,BO (14.D)

i+

-i[JokaI = (x°ak - xka°)w - Bka + % eq{ak,w} (14.¢)

N

where

a, = [3,7"2%,x*jpom

One can explicitly show that the equation of motion
W& 3 - eq(a, + By)) +mly =0
YT 9y T ealdy + By

is covariant with respect to the Lorentz transformation
described by (l14). Similarly, in the case e = 0, the vector

potentials iu(x) and ﬁu(x), and the magnetic monopole field

¥'(x) satisfy the commutation relations

-1(3%%, &% = (x%8) - x30)AY - 6, EO + 3,5 (15.a)
-113%, B = (x%; - x,30)B% - 6, BO + 8,5, - m2eM™P(a v72,xK B0
(15.b)
1 igysa' ~
-110% ') = (%8, - %, 3°) ' - 3 BxKy 4 i * Bt}
(15.¢)
where

& = - (8,972, xk]FO®

> -2 kypom
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and the equation of motion
¥ 3, - ga'vy (R, + B)Iv' (x) = 0
T % 7 99 Y510y M

is covariant with respect to the Lorentz transformation

described by (15).

In the case of nonvanishing electric and magnetic couplings,
v and ' satisfy the commutation relations (l4.c) and (15.c¢)
respectively. However, instead (14.a), (14.b) (15.a) and

(15.b)," Ay, By, Ay, and B, satisfy the commutation relations

-110%,8%) = (%3, - x,3°)A) - 8, ,A° + 3 a + ge'" (8,972, kK] 3"
(16.a)
-113%%,8%] = (%8, - ,3°)B, - §, ,B° - gc'™ 3 v"2,x*13" (16.b)
-1k 2%y = - oyt 20 ~ Lmn -2 k.40
i3 ,a") (x°6k x3°) A Sy g A% + Ozak + ec [OmV X013
(16.c)
ok =8 o YY) ~ ~ gon . -2 _k
-1[3°%,B%] = (x%9) - xd°)B* - §, B® + ¥b, - € (B8 7 °,x"]
(ey™ + M2BD) (16.4)

In the original model of Hagen, where there is no shadow
potentials, the last term proportional to g in (16.a) and the
last term proportional to e in (16.c) destroy the covariance of

the equations of motion (6.e) and (6.f), since they induce a
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direct interaction proportional to eg between the fields

¥ and y'. However, with the introduction of the shadow
potential, due to the linear sum of Au and Bu. and iu and

Bu with equal weight in the equations of motion, the un-
pleasant terms proportional to eg induced by the Lorentz
transformation (16) cancel out each other and the covariance
of the equations of motion (6.e) and (6.£f) are therefore
preserved. It is important to emphasize that the cancellation
of the noncovariant terms happens only when the electric
current (magnetic current) is coupled to the linear sum of

the physical potential (physical field tensor) and the

shadow potential (shadow field tensor) with the gsame weight.
This establishes the electromagnetic character of the auxiliary

shadow potential and field tensor in terms of the coupling

congtants.
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