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Abstract

In the local quantum field theory of magnetic monopole 

proposed by Hagen/ not all of the equations of motion are 

covariant under the Lorentz transformation. In this note we 

show that with the introduction of a shadow electromagnetic 

field quantized with "wrong sign", the locality in the sense 

of local commutation relations and local equations of motion 

is still retained^ while the equations of motion become 

covariant under the Lorentz transformation.



The lack of symmetry in the usual Maxwell's equation

for the field tensor PMV and its dual Fyv s |e>JV,<xp|cX has

led to the interesting postulate of the existence of magnetic

monopoles first proposed by Dirac. Dirac's idea of magnetic

monopole has further been generalized to the case where a

particle is both electrically and magnetically charged. In

all of the studies so far it seems to indicate that the

locality is incompatible with the Lorentz group# both in

classical theories and in quantum field theories. The first

quantum field theory for magnetic monopole presented by

Dirac was nonlocal and involved the introduction of nonphysical

dynamical variables associated with strings. More recent

formulations# either the electric charge and the magnetic

charge treated ao separate entities or a particle carrying

both the electric and the magnetic charge# have avoided string

variables. However the incompatibility of the locality and

the Lorentz group is still retained. In the Lorentz covariant

theories# they are either baited upon a Hamiltonian density

which is a nonlocal function of the field variables# and an

independently posited nonlocal commutation relation# which
2)

together yield nonlocal field equations# or started from a

local Lagrangian density which by applying the canonical

quantization procedure yields nonlocal commutation relations

3)between the potentials. 7 A looal theory in whioh the 

electric charge and the magnetic charge are separately at-
A)

tached to different particles has also be constructed. In



2

this theory# starting from a local Lagrangian# one obtains 

local commutation relations# and local field equations. How­

ever# the field equations are not covariant under the Lorentz 

transformation. The incompatibility of the locality and the 

Lorentz group has also been observed in the classical theory 

of magnetic monopole. Rohlich5  ̂ has shown that in the 

relativistic local theory# no action integral exists from 

which both the particle equations and the field equations can 

be derived. On the contrary# Van6) has constructed a 

relativistic classical theory with a nonlocal action.

In conventional classical theory of electron and quantum

field theory# the requirement of locality always induces some

unpleasant difficulties. Recent development in quantum field

theory shows that a consistent local Lagrangian field theory

can be constructed by making use of the indefinite metric and
7)

the idea of shadow states. In connection with the theory of

electromagnetism# it is very interesting to observe that in

the dipole approximation electrodynamics# the runaway modes

can be avoided if a shadow electromagnetic field quantized
8 )

with "wrong sign" is introduced. In the classical theory of 

electrons# it has also been shown that the introduction of a 

shadow electromagnetic field makes the electron stable in the 

point particle limit. All of these studies indicate that 

within the framework of quantum field theory with indefinite 

metric one might be able to formulate a local# Lorentz co­

variant theory of magnetic monopole, in this note we will



closely follow the model suggested by Hagen^ and show that 

the terms which destroy the covarianc® of the field equations 

disappear if we introduce a shadow electromagnetic fie.ld.

All of the commutation relations and the field equations are 

still local.

In Hagen's model, one starts with the Lagrangian

lH ■ | I + I

+ T pyVpv*v " 1 * VV<Vy - V v>

(1 )

+ ejwAy + gP0^ekt®dtV“2Jm

-  1  g p ^ k ^ - a j o  .

Here (Ji is the electron field and tj>' the magnetic monopole 

field. F^v is the electromagnetic field tensor and Ay the 

corresponding potential. The electric current j^(x) is 

defined as

(x) - | W yV  , (2)

where q is the imaginary antisymmetric charge matrix which 

acts in the two-dimensional internal space of the Hermitian 

field The magnetic current jw (x) is defined as



jp U) - | t|>'&Y5Y V ’J'' (3)

where q’ is the symmetrical matrix

4

The magnetic current is designed in such a way that the in­

variance of the theory with respect to both parity and charge 

conjugation is preserved. Furthermore, the bare mass of the 

l|>' is taken to be zero in order to have “ 0. Hagen has

shown that not all of the equations of motion obtained from 

the Lagrangian (1) are covariant under the Lorentz transforma­

tion when eg ? 0.

As in the classical theory of electrons and in the dipole 

approximation electrodynamics, let us now introduce a shadow 

electromagnetic potential with mass M, and modify the 

Lagrangian as follows

+  I  •  7  P “ V  1  V v  -  V
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+ g(Fok + Gok)Ek4in8jV"2jni

- | g(F*m + G£m)ek£m8kV 2j° . (4)

Here G^v is the shadow electromagnetic field tensor. Note 

that the free Lagrangian for the shadow electromagnetic field 

has an opposite sign of the free Lagrangian of the physical 

electromagnetic field. This is due to the fact that the 

shadow field is to be quantized with "wrong sign".

The equations of motion implied by the Lagrangian (4) 

can easily be obtained

Fok - -30Ak - 3kA° + gekAm8Jl7"2j,̂, (5.a)

F1” - ' V *  + 9EM '’3kV-2j° (5.b)

Gok - -30Bk - 3kB° - gek*’m5^7"2jg (5.c)

^  * V m  “ V  " gekaro5kV-25° <5.d)

- eq(Ay + Bm)) + mj^ « 0 (5.e)

ft" X \  + «Y5Ykq’ekAm»av“2(Foro + Gom)lV - 0 (5.f)

These equations can be recast into the more symmetrical

form



* y pVlJ “ e 3 V  ( 6 . a)

6

$VG,'>V + M2Bv = -ejv ( 6 . c )

3yGvvl = -gjv (6.d)

lYU(i - eq(Ay + By>) + m H  * 0 (6.e)

Y y (j; -  g q ' Y 5 ( A u  +  B y ) ) ^ ’ *  0  . ( 6 . f )

r *.kfcnu r7-2c,om ,, .
k “ A C».a)

A° = gV“2j° (7.b)

Bk - -ekAmaA7“2Gom (7.c)

B° - -gV"2j° . <7.d)

She equal time commutation relations among the canonical 

variables (x), F°k (x), Ak (x), Gok<x), and Bk (x) can

also easily be found.

{<•00 ,̂ (x') }5 (x° - x°’) - <S - S') (8.a)

where



•Ĉ * (x) fili’ (x') }6 (x° - x°') » S (x - x') (8.b)

( F ^ x K A ^ x ' n a u 0 - x°') - - x') (8.c)

[G°k (x),B^(x')]6(x° - x°') - -i«kA(x - x') . (8.d)

Note that in (8.d) we have used the "wrong sign” for the 

quantization of the shadow field. From (8) we can derive the 

following equal time commutation relations which will be use­

ful in the later computation.

[Fjk (x) ,A*(x')]6(x° - x°') = -i«J£ (x - x') (9.a)

[F°k (x) ,F°k (x')16 (x° - x°') - -iek£m«m«(x - x') (9.b)

[Ak (x),A£(x')]6(x° - x°') = -iekAjn9mV'26(x - x') (9.c)

lG°k (x),B*<x')]6(x° - x°') = - x'> (9.d)

[Gok(x),G°A (x')]6(x° - x°') = iekJlm9m5(x - x') (9.e)

[Bk (x),BA(x')]6(x° - x°') * ie]ctm‘»mV"2« (x - x') (9.f)

To show that the equations of motion (6) are covariant 

under the Lorentz transformation, let us first construct the 

energy-momentum tensor operator T^v such that the generators

7
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Pp » jd3x T°m (x ) (10.a)

j^v m J^a3xtxyTov(x) - xvToy(x)] (10.b) 

satisfy the structure relations

(PM,PV] » 0 (11.a)

« g\vpu “ (11.b)

" 9yXJv< " 9v Aj jjk “ + 9yKJyX (H.c)

of the inhomogeneous Lorentz group. This can easily be done 

by adding proper terms due to the shadow field tc the energy- 

momentum tensor operator constructed by Hagen. We have 

therefore

Tok - *?*<»*** - V k >  + I ♦ I V  + 5 ♦' r V  

* § V »  I «k»»i s ' W ' 1

- GkAG°A + Bk^ G oA . (12)

and



+ | >l''0yk (jdk - gq'y5 (Ak + Bk))^•

+ | [(Fok)2 + (Fok)2]

- I [(G°k)2 + (G°k)2] - \ M2BkBk - -i- (j° + akG°k)2 2 2 2m2
(13)

With T (x) given in (12), one can show by straight­

forward calculation that Pk and Jk  ̂indeed generate the group 

of spatial translations and rotations upon all the basic field 

operators of the theory. Furthermore, it can also be shown 

that with T°°(x) given in (13), p° is indeed the time develop­

ment operator of all operators in the theory, i.e.,

J d 3x'[T°°(x'),x(x)] * i - a o X (x)

a |>
for any operator x(x)» Finally one can show that J trans­

forms F^v and G^v as second rank tensors, and and as 

four-vectors. Thus the covariance of Eqs. (6.a) - (6.d) is 

established.

It remains to see whether Eqs. (6.e) and (6.f) are also 

covariant under pure Lorentz transformation. In the case 

g *» 0, the vector potentials Ay(x) and Bp(x), and the electron 

field \jj(x) satisfy the commutation relations

9

-itJok,A*) - <x°dk - xk^°)Afc - 6kgA° + 3fcak (14.a)
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= (x°3k - - 6kJlB° (14.b)

-i[Jok,<J/] = (x°3k - xk3°) i/j - i g x H  + | eq{ak ,̂ } (14.c)

where

ak " t V 2^ k)F°ffl

One can explicitly show that the equation of motion 

[YV (i - eq(Ay + Bp)) + m]ij> = 0

is covariant with respect to the Lorentz transformation 

described by (14). Similarly, in the case e = 0, the vector
•*»

potentials Ap(x) and B^(x), and the magnetic monopole field 

(x) satisfy the commutation relations

-i[J°k,AA] = (x°9k - xk3°)AA - 6kiA° + *Aak (15.a)

- i [ J o k , B ,ll =  (x°8 k  " x k 3°)B*- - &k t B ° +  - M 2c*,mntam V“2 ,xk ]Bn

(15.b)

. i . igŶ -t'
-itJok,i|>'] « (x°3k - xk3°) ' - | e x V  + ' :k + bk ^'}

(15.c)

where

a k  -  -  (‘9 m 7 “2 , x k ] F o m  

bR «* - t«mV"2,xk]Gom
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and the equation of motion

[Yw X - gq'Y5 (Ay + Bp)]t|>' (x) - 0

is covariant with respect to the Lorentz transformation 

described by (15).

In the case of nonvanishing electric and magnetic couplings, 

<j> and i|)' satisfy the commutation relations (14.c) and (15.c) 

respectively. However, instead (14.a), (14.b) (15.a) and 

(15.b), Ap, Bp, Ay, and B^ satisfy the commutation relations

-ilJ^A*] = (x°9k - xk9°)Aa - 5k£,A° + + geimn[«m7-2,xk]3n

(16.a)

-i[Jok,BA] = (x°8k - xk30)BA - 6kAB° - ge*mn[9mV"2,xk ]jn (16.b)

-i[Jok,AA] = (x°3k - xk9°) A*1 - 6kAA° + 3 ^  + ec4nm[«mV“2 ,xk ] jn

(16.c)

-i[Jok,BA] * (x°#k - xk»°)B* - 6kJtB° + «abk - Cfcmn[®ro7"2,Xk ]

(e jn + M2Bn) (16.d)

In the original model of Hagen, where there is no shadow 

potentials, the last term proportional to g in (16.a) and the 

last term proportional to e in (16.c) destroy the covariance of 

the equations of motion (6.e) and (6.f), since they induce a
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direct interaction proportional to eg between the fields 

i|» and t|>'. However, with the introduction of the shadow 

potential, due to the linear sum of Ay and By, and Ay and 

By with equal weight in the equations of motion, the un­

pleasant terms proportional to eg induced by the Lorentz 

transformation (16) cancel out each other and the covariance 

of the equations of motion (6.e) and (6.f) are therefore 

preserved. It is important to emphasize that the cancellation 

of the noncovariant terms happens only when the electric 

current (magnetic current) is coupled to the linear sum of 

the physical potential (physical field tensor) and the 

shadow potential (shadow field tensor) with the same weight. 

This establishes the electromagnetic character of the auxiliary 

shadow potential and field tensor in terms of the coupling 

constants.
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