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1 Introduction

The goal of this project was to implement the routines necessary to use
the friction model of Wilson and Korzekwa into the finite element analysis
program hickory, in the case of an Euleriau reference frame. hickory is de-
formation simulation code based on finite element. meodeling of viscoplastic
deformation. When using hickory, time-dependent problems are modeled
from a Lagrangian refercnce frame; while steady-state problems are modeled
from an Eulerian reference frame. The friction model had been implemented
in earlier versions of hickory, for use with a Lagrangian reference frame. Ad-
ditional modifications were required, however, to extend this capability to
the case of an Eulerian reference fratue. That is the subject of this report.

The necessary modifications were related to the time integration of the
friction state variables. In the case of a Lagrangian refercnce frame, the ini-
Lial valucs of the friction state variables are given on all relevant boundary
segments. Then, as time increascs, the material time derivative is evaluated
at all points along the boundary and the state variables arc updated inde-
pendently at cach point. In contrast, the application of an Eulerian refercnce
frame to study a steady-state flow requires that each specified boundary seg-
ment be a streamline of the flow. As such, an initial value for each state
variable must be given at the first point of the strcamline, and subscquent
values must be determined from previous values by integration along the
streamline. Additional routines were added to hickory to implement the
streamline iptegration along the boundary.

A plane strain rolling problem was used both to test the implemcntation
and as a source of comparison among friction models. One may model such
a rolling problem by a stecady flow of material approaching a circular roll,
being reduced in thickness along the roll, and leaving the roll with a specified
reduction in thickness. The driving force of the rolling process is the frictional
force of the roll pulling material through the contact zone. This makes rolling
an ideal test problem.

2 The Friction Model

A number of [riction models are currently implemented in hickory. Each
[riction model relates the frictional traction to a number of variables, includ-
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ing the relative velocity of the contacting bodies. One simple model is the

velocity difference model:
T, = c(u, -- ¢u),

where T'; is the frictional traction, u, is the roll velocity, u,, is the workpiece
velocity and c is a material constant. In this case, the frictional traction
depends continuously on the workpiece velocity. Furthermore, since hickory
is a velocity based code, the model can be implemented implicitly, i.e. the
traction contribution of the workpiece velocity can be incorporated directly
into the velocity stifiness matrix.

Another simple model is the Coulomb madel:

|T,) = T,

where T, is the normal componcent of traction and the direction of T is
opposite that of the rclative velocity. Here, the dependence of the {rictional
traction on the workpiece velocity is not explicitly stated and so must be
treated as an external applied force. Numerically, the velocity-tinplicit fric-
tion models are more stable when implemented in a velocity based code such
as hickory.

The general form of the Korzekwa-Wilson [riction model is

ITtl = CmA;

the frictional traction is determined by the fractional contact area, A, and a
function of the material state, ¢,. As in the Coulomb model, the direction
is opposite that of the velocity difference. The first iruplementation of this
madel in hickory trested ¢, as a constant up to the sign. That implementa-
tion was later modified so that ¢, depended also on the normal compouent
of traction, 7, making it akin to the Coulomb model. The current imple-
mentation treats ¢, as a continuous function of the velocity difference so as
to make it velocity imuplicit. Nevertheless, the primary feature of the model,
the computation of the fractional contact area, remained the same.

The material derivative of the fractional contact area is computed from
the asperity lay vector. The material being modeled is considered to have
surface asperities aligned in a certain dircction, and as the deformation pro-
ceeds, the aligument direction changes with the surface deformation. If the

3
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initial lay vector is ag, the lay vector at a later time is a(t) = F(t)aq, where
F(t) is the deformation gradient at time t. F satisfics the ordinary differen-
tial equation:

F=LF,

where L is the velocity gradient. 1t follows that the equatiop for the asperity
lay is: '
a= La.

The equation is integrated munecrically using a midpoint rule:
1
Qny1 = Gp+ E(Lnan + Ln+lan+1)A 1.

This formula is implicit and so must be applied iteratively. In an Eulerian
reference frame, the time step is determined by the spatial subdivision of
the streamline and the velocity. In hickory, the boundary streamline is first
divided into its constitucnt surface elements. Then each surface elemment
is further subdivided into a specilied number of subintervals. Numerical
integration then proceeds along this refinement.

QOnce the asperity lay vector is known, one may form a local coordinate
system using the Jay vector as the first direction. The sccond dircetion is
taken to lic on the three-dimmensional surface and perpendiculor to the lay
direction, and the third direction is taken normal to the surface. In this
coordinate system, one may keep track of accumulated strains in the first
two dircctions, A; and A;. These variables are then used to compute the
rate of change in the contact area, A. The exact details of the contact area
update arc given in the routincs provided by Dr. D. A. Korzckwa.

It is also neccssary to compute the normal components of traction at
each point on the boundary. This is done by first computing the global force
vector and then solving a sct of variational equations to find an equivalent set
of tractions. "This set of Lractions is given in the standard coordinate gystem
and each component is continnous across surface elements. Then, for each
elernent, the normal and tangential components are computed; note that this
introduces discontinnitics in the tractions across elements, since the clemental
normal vectors are discontinuous. Typically, the tractions computed this way
will be noisy and must be smoothed. In cur implementation, the tractions
arc smoothed on each boundary segment independently. First, the normal
and tangential comnponents arc averaged at the surface element boundaries
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to produce a continuous ficld on a given segment; then, the highest frequency
component of oscillation is removed by orthogonal projection. The resulling
tractions still have some noise, but are consistent ecnough to use in the friction
models.

3 User Input

Using the friction model in the Fulerian case requites the same input as
in the Lagrangian but with the addition of one further line specifying the
direction of integration along the relevant boundary segments. As in the
L.agrangian case, friction models are declared and constants are specified in
the same place. Similarly friction surfaces and initial conditions arc specified
as before. However, one more line must [ollow the initial values for asperity
lay and contact area.

This line contains a list of the boundary segment numbers which require
friction state variables, with the sign of the number indicating the direction
of integration. A boundary segment given a positive number will be taken
in a counterclockwise direction; whereas a boundary segment given a nega-
tive number will be taken in elockwise direction. For example, if boundacy
segments five and six require friction state variables, and if the velocity field
follows surface five and flows against surface six, one would input the line

5 <6

The order docs not matter.

If multiple boundary scgments are specified, each once is integrated inde-
pendently, according to the sign of the segment number, as in the input line
above, and by the inifial values for the friction state variables. A possiblce
cnhancement of the implementation would be to allow for consecutive seg-
ments with the jnitial value on a latter scgment being taken from the final
value of the preceding segment.

4 Examples

A rolliug problem provided a good test of the implementation. After tran-
sicnts have died out, the flow of the metal can be assumed to be steady-state,
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and 80 can be convenicntly modeled in an Eulerian reference frame. In our
sample problem, we modeled bigh temperatuse rolling of 304 stainless steel
using Hart’s model Lo describe the bulk properties. We modeled the friction
using the three models described earlier.

The mesh boundary was divided into six segnents: the inlet (1); the
midroll symmectry plane (2); the outlet (3); the outlet frec surface (4); the
roll contact surface {5); the inlet free surface (6). The free surfaces and the
inlet had traction-free boundary conditions. On the symmetry plane and
the roll contact surface we required the condition of no mass flux. Friction
boundary conditions were specified on the roll-contact boundary to determine
the tangential components of traction. For the Korzekwa-Wilson friction
model and the velocity difference model, the [riction boundary condition
was sufficient to drive the problem, and so the outlet was assumed 1o be
traction free. However, for the Coulomb model, it was necessary to prescribe
a velocity condition on the outlet so as to produce a driving normal traction
on the roll contact surface; otherwise a zero velocity field would satisfy all
the copstraints. 4

The roll surface velocity was given as 1.5 m/s. For the Coulomb model,
the horizontal component of the outlet velocity was given as 1.6 m/s, which
is consistent with the results of the other models. Typically, the models give
a velocity profile slower than the roll speed at the inlet and greater than
the roll speed at the outlet, and with a neutral point, the point where the
material speed matches the roll velocity, under the roll.

Several data sets were run for each friction model to cxamine the effects
of the friction modcl paramecters on the results. Figure 1 shows a typical fric-
tional traction profile for the velocity difference model, and figure 2 shows a
typical profile for the Coulomb model. The difference hetween the profiles
stems from the fact that in the velocity difference model, the frictional trac-
tion depends continuously on the velocity; whereas in the Conlomb model,
the traction abruptly changes sign at the neutral point. In fact, the cw-
rent implementation of Coulomb’s model uses a smooth scaling function to
remnave the discontinuity.

As discussed earlier, the current implementation of the Korzekwa-Wilson
friction model also uses a scaling function to climinate abrupt changes in
sign, but in this case, the scaling is velocity implicit. In addition, the scaling
function takes parameters which make the behavior of the friction model
more or less like the velocity difference model. The inpuf parameter. ¢, is

6
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Figure 1: Velocity Difference Model
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Figure 2: Coulomb Model
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Figure 3: Korzekwa-Wilsou [riction model ¢; = 0.1

a power law type parameter ranging between 0 and 1. When ¢ is close to
zero, the Korzekwa-Wilson [riction model behaves more like the Coulomb
model, and when ¢; is near one, the model behaves more like the velocily
difference model. Figures 3 and 4 show the [riction traction profiles for the
case in which ¢; = 0.1 and the case in which ¢, = 0.8, respectively.

In the Korzekwa-Wilson friction model, the fractional coutact area profile
is of particular intcrest. Figure 5 shows the contact arca profiles for three
different data scts. The friction coefficient ¢; was given values of 4 x 107, 7 x
107 and 1 x 10", in all cases the units being n/m?. The typical behavior is for
the contact arca to saturate rapidly. In the third case, however, the contact
ares never saturates because the friction coefficient is too low.

Finally, we should discuss the normal tractions since they are used ¢x-
plicitly in both the Coulomb model and the Korzekwa-Wilson friction model.
Figure 6 shows the normal tractions. The normal tractions are somewhat
noisy, but gencrally they peak at contact and diminish until release. Qunly
one valuc of the normal traction is used per surface element in computing
the friction traction. In the current implementation, this value is taken as a
weighted average over the surface element nodal points. Figure 6 indicates
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Figure 6: Normal Tractions Along the Roll
the raw normal tractions as given by the traction recovery algorithm and
the smoothed (averaged) normal iractions as used in the friction computa-

tion. Even though the raw norinal tractions are noisy, the smoothed ones
are consistently more regular.

5 Summary

The friction modeling capability of hickory was exiended to include the madel
of Korzekwa and Wilson in the case of an Eulerian reference frame. New
routines were required which involved integration and update of the friction
state variables along segments of the global boundary of the input mesh.
The traction evaluation routines were imnproved to give smoother normal and
frictional tractions. A sample rolling problem was run to illustrate features
of the current implementation.
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