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Abstract

An algorithm is presented for updating finite element models based upon a minimization of dynamic
residuals. The dynamic residual of interest is the force unbalance in the homogeneous form of the equa-
tions of motion arising from errors in the model’s mass and stiffness when evaluated with the identified
modal parameters. The present algorithm is a modification and extension of a previously-developed Sen-
sitivity-Based Element-By-Element (SB-EBE) method for damage detection and finite element model up-
dating. In the present algorithm, SB-EBE has been generalized to minimize a dynamic displacement
residual quantity, which is shown to improve test-analysis mode correspondence. Furthermore, the algo-
rithm has been modified to include Bayesian estimation concepts, and the underlying nonlinear optimiza-
tion problem has been consistently linearized to improve the convergence properties. The resulting

algorithm is demonstrated via numerical and experimental examples to be an efficient and robust method
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for both localizing model errors and estimating physical parameters.
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Nomenclature

Nominal mass, damping and stiffness matrices

[M], [C], [K]

O; Experimental frequency (rad/s) for mode i

{0} Experimental mode shape vector for mode i

{R;} Dynamic residual (modal force) vector

[Z;] Undamped impedance matrix for mode i

[1,11, Measured, unmeasured partitions of [ ]

[P;] Mode shape projection operator

[B;] Parameter sensitivities for mode i

J,{g}, [G] Objective function, linearized gradient and Hessian
[0;1 Approximate covariance matrix of dynamic residual
[Qfl)m:] Covariance matrix of measured mode shape

[lez] Covariance matrix of the experimental eigenvalues
[Op] Covariance matrix of the initial parameters

MAC,;; Modal assurance criteria
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I. Introduction

A significant amount of research in structural dynamics system identification has focused on methods
for reconciling finite element models of structures with modal parameters identified from dynamic testing.
Early approaches to this problem involved the direct updating of assembled stiffness and mass matrices to
correlate to the available modes and mode shapes identified from test. In orcier to choose a particular so-
lution from an infinite number of possible solutions, some quantity, such as the norm of the matrix adjust-
ment, was minimized!2. Recent modifications to this general approach involve retaining the connectivity
pattern of the model through constraints®#>, or minimizing the rank of the matrix update. These methods
are efficient and have been used successfully for both model édjustments and for structural damage detec-

tion, For this discussion, this class of methods can be termed optimal matrix updating.
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A fundameﬂtally differeni -approach involves estimating or updating the “physical” parametef_s of fhe
" structural design, such as cfoss-séctional areas, elastic moduli, or added masses, used in the finite element
model definition”82, There are a number of advantages to such an approach over optimal matrix updating
methods. First, the formulation of the initial model, including its connectivity, is implicitly preserved. This
is quite important since the original model, if formulated by a skilled analyst, contains a significant amount
of engineering judgement about the structure of interest. Such judgement supplements the reliable, yet in-
complete, knowledge gained from experimental data. Secondly, results of model updating can be under-
stood in terms of errors in design parameters or modeling assumptions. This provides a mechanism, at least
ideally, for learning and improving the future modeling of similar structures. Finally, the updated model
is more generally useful for design sensitivity analysis as it retains the flexibility of the finite element
method, rather than being simply a set of equations which predict the limited dynamic measurements. This
approach is termed sensitivity-based model updating, as it utilizes the sensitivity of predicted and estimat-
ed quantities, such as modal parameters or response functions, to the physical parameters of the model.
The present paper addresses the problem of sensitivity-based model updating through the minimiza-
tion of a dynamic residual. This residual arises due to errors in the model stiffness and mass matrices and
is areflection of the difference between the model’s predicted modal parameters and the modal parameters
from experimental datal®. It is a different approach, however, from directly cor.gparing the predicted and
measured modal parameters and does not require the computation of the model modes and determination
of the correspondence between the model modes and the test modes. This is a distinct a&vantage, both in
terms of computational expense and in reducing the complexity to the user, since such mode-to-mode cor-
respondence can be difficult to establish when significant modeling errors exist. The present algorithm is
a modification and extension of a previously-developed Sensitivity-Based Element-By-Element (SB-

EBE) method for finite element model updating®.
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The modiﬁc_atidnvsA of the Bgsic SB-EBE algorithm address a number of practical issues encduntered
when applying the algorithm to complex structures. First, a cqﬂsisten’t linearization of the gdveming min-
imization problem is derived to improve the rate of convergence of the algorithm. The new linearization
couples the mode shape projection and parameter estimation stages of the algorithm at a minor computa-
tional cost, and improves the estimate of curvature in the optimization space. Secondly, the residual gov-
erning the update problem is redefined as a displacement, rather than force, quantity through a flexibility
weighting. It is shown that this weighting improves the correspondence of test and analysis modal param-
eters typically used to assess the model’s accuracy. Finally, Bayesian estimation!! is incorporated to con-
dition the update problem. Bayes estimation involves the use of relative confidence measures for the
parameters being updated and the observed data used to guide the estimation. This important modification
leads to a more reliable algorithm, especially in the presence of small sensitivity coefficients, large model
errors, and correlation between parameters.

The remainder of the paper is organized as follows. In Section 2, the basic SB-EBE theory and algo-
rithm is reviewed. In Section 3, the new modified algorithm is developed theoretically and its implemen-
tation is detailed in Section 4. Numerical and experimental results are given in Section 5, and Section 6

offers concluding remarks.

II. Review of Basic Theory and Algorithin

The governing equations for linear time-invariant structural dynamics are typically given as
M{+Cg+Kqg = Bu 1)
where K, C, and M are the stiffness, damping, and mass matrices from the finite element model, g is a vec-

tor of displacements,  is a vector of applied forces, and B maps those forces to the associated degrees of

freedom of the model. The homogeneous form of Eqn. (1) leads to the following undamped generalized
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eigenproblem:

' K¢‘ = AMo | @
where A is the eigenvalue, which is equal to 0)”2 , the square of the undamped natural frequency, and ¢
is the associated eigenvector, which is the physically the normal (i.e. undamped) mode shape.

The basic SB-EBE theory® determines the change Ap to a set of physical parameters of the model

which minimize the norm of the dynamic force residual, viz.
min( S Jr3) ®
Ap \&1 A2
R, is the dynamic force residual for mode i, defined as

R; = (K- @5 Moy, @)

where ® E, is an experimentally-determined normal frequency of the structure for mode i, and ¢; is the
associated normal mode shape. Unfortunately, the degrees of freedom (DOF) at which the mode shape is
sampled from test is typically much smaller than the number of DOF in the finite element model which
defines K and M. Therefore, to apply Eqn. (4), either the model must be reduced to the measurement DOF,
or the measured portion of the mode shape must be expanded to the displacement basis of the model. Al-
though it is more computationally intensive, the basic algorithm uses an expansion of the experimental
mode shapes to compute the dynamic residual, because of the errors typically introduced in reducing the
analytical model to the measured degrees of freedom (see Section IV). |

The theoretical basis for correcting the model using the dynamic force residual is as follows. If the
“correct” model is givén as

K = K+AK
¢ (5)
{MC = M+AM}
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and fr6ﬁ1 Eqn. (2)

_ (K, - m?s,M .c)q)Ei. =0 (6)
then

R, = (AK - @ AM)0p, (7)

Hence, R; is a function of both magnitudes and locations of the model errors. The basic Hemez algorithm
consists of three key steps: mode shape projection, error localization (parameter selection), and parameter

estimation. These are detailed in the following subsections.
A. Mode Shape Projection

To derive the proper projection operator from Eqn. (3), we must partition the mode shape ¢; into its
measured and unmeasured components, and also partition the associated columns of the mass and stiffness

matrices. Then

2
R; = (K- op M)og;

- ([Km K o] -0y, [, Mo] ){4)5:1} ®

where ¢, is the mode shape for mode i at the measurement DOF, ¢, is the unmeasured portion of the
same mode shape,and X, , M, ,K , and M, are the measured and unmeasured columq sets of the stiff-
ness and mass matrices. The mode shape projection directly results from minimizing the dynamic residual

with respect to ¢ , assuming no change in the model parameters, viz.
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where
®o, (10)

Z; can be termed the impedance or dynamic stiffness of mode i.
After the projection operator for mode i is determined, the mode shape is projected and the dynamic

force residual R; with respect to the model DOF can be computed.
B. Error Localization

Recalling Eqn. (7), the DOF exhibiting the largest force residuals will be associated with the set of
model elements whose parameters are significantly in error. Therefore, it is reasonable to select those pa-
rameters which cause the largest perturbations to the element matrices associated with a set of model DOF
J, where R(j) is above some threshold level. In the original SB-EBE method this process is termed “zoom-

M ”
.

ing
C. Parameter Estimation

The final step, after projecting the mode shapes and choosing which model parameters to vary, is to
compute the updated parameter values which minimize the sum of dynamic force residuals over a set of

modes, viz.




T
min R. R,
Apg o

T ‘ T (n
. Y.B;BAp=-3B; R,
. i 12

where

B = 0Z; A 0Z; b 0Z; b
' leAp,t  dAp,TE T OdAp, i
1 2 np (12)

2
R, = (K - 05 M0,

Here, B, is the sensitivity of R; to the parameters being updated.

III. New Algorithm: Theory

The motivation for developing a new algorithm based upon the SB-EBE method came from tests of
that algorithm on a moderately simple beam structure which will be reviewed in a later section. These tests
revealed a number of problems, including small magnitude parameter updates leading to slow conver-
gence, and convergence to poor solutions as measured by frequency errors and mode shape correlations.

Based on the above concerns, the basic theory and algorithm was re-worked to incorporate:

e Consistent linearization of the optimization problem
* Generalization of the modal error vector
» Inclusion of Bayesian estimation concepts to regularize the updating equations

We now proceed to detail these modifications.
A. Consistent linearization of the optimization problem

The solution proposed by the basic algorithm is staggered in the following sense. Although the model

is being adjusted in the overall procedure, this adjustment is ignored in the determination of the mode




shapei;rojection. While this- simpliﬁes the theory somewhat, 1t may ir;tfpduée a serious computational
cost. This is because, by igno_ring the coupling between the projection and the parameter estimation, the
curvature of the parameter space is poorly estimated. The result is that the curvature is artificially large,
leading to smaller parameter changes and much slower convergence.

This problem can be alleviated by adding a correction to the projected partition of the mode shapes

which accounts for its dependence on the parameter estimation problem. Using

(l) = (ZOl 01) Zm mzq) m’+8¢01 (13)

the linearization of the first-order conditions for Eqn. (3) leads to the following system of equations:

T
B.B. ¢ c c p R
z 1 2 .ee N r 3 T
T 8(Abp 2B R,
T T 1
ci, 2,2, O 0 0 0
T - 3800 t = 1 > 14
¢y 0 z,Z, 0 0
T T ;Sq)oN, L 0
Cy 0 0 e ZonZoN
Solving for 6¢,,; and back subst1tut1ng into the equation for Ap, we determine
GAp = -3 (15)
where
T - T
G = Z(B B,~ci(Zb.Z,) c,.) g=YB;R,
i
[a 3 3 ()
Z Z . Z .
¢; = Bj Zy+ | %R, %R, .. o R.
dAp; * OAp, " aApnp L

Comparing Eqn. (11) to Eqn. (16), it is seen that the consistent linearization reduces the magnitude of




G, which is the curvature of the design Space. This formulation introduces only a modest increase in com-

T7 'is already computed during the mode shape projection step and

putations as the factorization of Z .Z .

thus can be saved for use in Eqn. (15). The introduction of this consistent linearization, however, dramat-

ically improves the convergence of the algorithm, as will be shown in the numerical example problem.
B. Generalization of the modal error vector

The functional selected for the optimization problem is by no means the only clear choice for perform-
ing finite element model update. Its advantage is that it does not require solving for the modes of the finite
element model, and tracking those analytical modes with respect to the test modes. Its disadvantage, how-
ever, is that the updated model may not improve the errors between the analysis and test frequencies, or
improve the correlation of the mode shapes. In fact, these accuracy indicators may be significantly degrad-
ed, and the resultant model cannot be judged as accurate as the initial model.

In seeking to understand the convergence of the basic algorithm to poor solutions as measured by rel-
ative frequency and mode shape errors, it is helpful to compare the dynamic residual to traditional modal
parameter-based error metrics. First, we can re-write the mode i contribution to the objective function in

equivalent modal parameter terms, viz.
T 2 2.2
RiR;, = ;) (0F-0g) (MACy) (17
J
where j ranges over all possible modes of the finite element model, and

2
(0, Mbg)

T T o; = (¢Ei)TM¢Ei (18)
(¢; M) ((9g) Mbg;)

MACij =

Here MA Cij is the modal assurance criterion, which is a normalized measure of the correlation be-

tween two mode shapes, in this case model mode j and test mode i. The parameter ¢, is the modal mass
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£ pased



of the test mode shape. From Eqn. .(17), the conti‘ibution to the overall dynamic force residual from test

mode i is equivalent to éummihg up the squareé of the differences betwegan test eigenvalue i and each of
the eigenvalues of the model, which are scaled by the correlation between the test model shape and the
associated model mode shape. Thus, if small correlations exist between the test mode shape and any model
mode shapes with vastly different frequencies, the product of (0)?’ - 0)%,:'_)2 (which is large) with a small
correlation coefficient MAC jj can lead to a term which can dominate the error index being minimized.
This has the undesirable effect of biasing the algorithm away from reconciling test and model modes
which correspond more closely in both mode shape and frequency.

To alleviate this problem, we can replace the modal force error by a generalized modal error

= WR;, where
I_Q o, Z (MACij) 19)

This result can be obtained approximately by defining W as

1
W=k or MK (20)

which implies that the generalized modal error is a dynamic displacement residual quantity, rather than a

o
%

dynamic force residual. In this way, the problem of large error terms resulting from small correlations be-

tween modes with large differences in frequency has been mitigated by normalizing the error index by 035 .
C. Including Bayesian estimation concepts

Although the parameters being estimated usually evolve from some nonzero initial estimate, the basic
algorithm places no relative confidence on these initial values with respect to the test data used for model

_adjustment. The quantitative result is that there is no penalty placed on the magnitude of the parameter
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chanée. Therefore, any final péramg:ter‘ ;/élue, no matter \n;hat magnitude or sign, is judged as superior to
the original estimate as long as the sum of the dynamic force rgsidua.ls have be_eh reduced. In actuality,
there are usually both hard constraints placed on the parameter values and some degree of confidence in
the initial parameter estimates. Furthermore, the test data used for model adjustment is often imperfect,
and the confidence in the data varies depending on whether frequency or mode shape component estimates
are being considered.

A popular approach in estimation theory to address the aforementioned concerns is the use of Bayesian
estimation [11]. For linear structural dynamics applications such as the present model updating problem,
Bayesian estimation reduces to a generalized least-squares problem [12]. We can modify the performance

index of the basic algorithm as follows:

min J D
Ap, q)oi

where
Y _r - T -1
2 R Oy Ri+Ap O, Ap

i=1 (22)
. T T..T
dlag(ZiPqu)m,.Pi Zi + Qm?MPi((bmiq)mi)Pi M)

~
Il

Q;

o » is the covariance matrix of the initial parameters being estimated, Q¢mi is the-covariance matrix of the
components of measured mode shape i, ng is the variance of the square of the measuregl modal frequen-
cy, and P; is the mode shape projection matrix. The covariance matrix Q; represents the variances of each
component of the dynamic residual vectors R;.

The primary difficulty in iﬁtroducing the Bayesian estimation concept, or equivalently a maximum

likelihood estimator, is that the error quantity being minimized is not directly a measured quantity, hence

the covariance being introduced is not simply the variances of the test data. Instead, the dynamic residual
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is a nonlinear function of the data, the model matrices and the mode shaﬁe projection, ﬁs}hich is itself a
function of the model and based on the minimization of the overall functional. Therefore, although intro-
ducing statistical measures can, in general, increase the robustness of the algorithm, the approach leads to

nonlinearities because the mode shape projection and modal error covariance estimates are coupled.

IV. New Algorithm: Implementation

In this section we review the step-by-step procedure for the new modified algorithm and discuss im-
plementation issues. The procedure is given in Box 1 and represents one pass or iteration through the up-
dating algorithm. Because of the inherent nonlinearity of the optimization, convergence to a solution can
require many iterations. As noted previously, the mode shape projection and residual covariance compu-
tation given in Step 2b is actually a coupled problem, because the projection is dependent on the scaling
provided by the covariance matrix, while the covariance matrix depends on the projection. In the present
work, this nonlinearity is handled in a very cursory manner by computing an initial estimate of Q; using
only the measured component of the mode shapes. That estimate is used to compute a estimate of the mode
shape projection. The mode shape projection estimate is used to re-compute a better estimate of Q;, which
is then used to complete the algorithm. This is basically a predictor-correction approach and seems to work
adequately for the applications studied. Other possibilities might include using a completely different

mode shape projection algorithm to compute Q.
A. Control of Curvature Estimate

As mentioned in the preceding sections, a consistent linearization of the optimization is employed in
the modified algorithm to improve its convergence properties. Caution must be exercised, however, as this
linearization does not guarantee a positive-definite hessian. The present procedure offers two mechanisms

for controlling the curvature to avoid this result. The first is the use of Bayes estimation, which conditions
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Box 1: Summary 6f the Present Algorithm -

i 9K M = 1 n
Step 1. Given K,M,p,, Qp 3 Pj’ 3 Pj’ J=1..,n,

E . =

Step 2, For modes i=1 to N

Step 2a. Form Z; = W(K - mé.M ) and partition into Z; = [Zmi Zo;l

Step 2b. Compute Q; using Eqn. (22), factor ZoTiQ;lZ ,; and solve the mode shape projection:

T -1 T -1
(Z20;Q; Z,)Po; = —Z45iQ; Zpp;

Ooi = Poi®mi
_ - _ ok 20dM
Step 2c. Compute R; = Z;0;, sensitivities B; = by by ... by, | where bij =W é—p——O)E.g b;
B . i s
J J
— T _ T -1 T -1 aKO ZaMo
Step 2d, Compute ¢; = [Cil Cig -er cinp] , where Cij = bijQi Z,;+R; Q; W[a_p;'“’E.-_apj
T -1
Step 2e. Solve (2,0, Z,)d; = c;
T -1
Step 2f. Sum; J =J+R; Qp R;
T ~1
8§ =8+B;0; K
G = G+Bl 0; B~} d; )
Step 3. Solve GAp = —g

Step 4. Update K = K+2(?—I£)Apj M= M+2(§7K)Apj P = po+ap
j J i

apj
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the estimaﬁon problem~ by coﬁtribu_tinig a penalty- @erﬁ on the change in the parameter estimates. Numeri-
cally, this term provides a positive-definite contribution to the hessian which can l;e adjusfed to reflect the
analyst’s relative confidence in the initial parameter estimates.

The second mechanism for controlling the curvature estimate is through the use of a constant  which

parameterizes the linearization between that of the basic algorithm (§ = 0) and the modified algorithm

(B = 1). This parameterization is accomplish by computing G in Step 6 of the procedure as
= = T -1 T
G = G+B;Q; B;-P(c; d)) (23)

This constant controls the degree of coupling between the mode shape projection and the parameter
estimation. Note that the basic algorithm is always guaranteed positive-definite, but that guarantee comes
at the cost of a poorer estimate of the curvature. The use of the parameter B allows that cost to be con-

trolled by the user.

B. Model Reduction

Rather than projecting the mode shapes, reduction of the model to the measurement degrees of free-
dom can be employed!3. This is often avoided because the reduction of a refined model down to the small
number of DOF measured will introduce errors in the predictive accuracy of the model, leading to nonzero
dynamic residuals and inappropriate parameter corrections. A compromise -is to employ a component
mode synthesis type of reduction such as the Craig-Bampton technique!4, which augments a static con-
densation to the measurement DOF with a set of generalized DOF spanning the lowest eiéenmodes of the
omitted dynamics. Typically, the addition of a small number of generalized DOF is sufficient to ensure
that the reduced model can predict the eigenmodes of the full-order system. The experimental modes

would then be projected into this slightly larger subspace.
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C. Statistical Significance of the Parameter Estimates

An advantage of Bayes estimation is that it allows the analyst to assess the confidence intervals for the
final estimates of the parameters, as a function of their initial covariances, their sensitivity to the experi-
mental modal parameters used in the estimation, and the covariances of those parameters!2. A linearized

estimate of the covariance of the updated parameters is given by

-1
g, = G = [Q;l "'Z{BiTQleBi‘Ci(ZaTinTlZoi)—lc?}il @4

evaluated at the point of convergence. From this result, the standard deviation of the parameters can be
determined by taking the square root of the diagonal elements of Q b Of course, this statistical quantity is
only as valid as the covariances of the experimental data and the initial parameters. The updated variances
relative to their initial values are useful, however, in determining whether the change in parameters is sig-

nificant and based on the measured data.

V. Applications

A. Numerical Data: Planar Truss Structure

The first example from Reference [9] was chosen to test the implementation of the modified algorithm
and assess its performance relative to the basic SB-EBE procedure. This example‘:;onsiders a free-free pla-
nar truss with 44 translational DOF, 7 of which are measured. For this comparison, the first 5 flexible
modes are used to update the model, and the only parameters being updated are the elastic modulus of the
two of the elements. Furthermore, the test data is assqmed to be perfect (zero variance), which implies that

the Bayesian covariance weights are not used. Thus the only differences between the two algorithms are

the consistent linearization of the optimization problem and the weighting of the modal force error.
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The results are doéﬁmented in Table 1. 1\'I_ote thét, although the use of the flexibility vyeighting does
heip to speed the cbnvergence, it also introdl_lces a large computational overhead, especially when the
weighting matrix is full rather than séarse. Note also that updating the weighting matrix at each iteration
as the stiffness was updated did not improve the convergence of the algorithm. The need for weighting the
modal error vector is dictated more by the quality of the final solution when the data is imperfect than by
the convergence of the algorithm. Finally, it was found that using the full extent of the consistent linear-
ization led to a negative definite curvature which caused the algorithm to diverge. Therefore, B was re-
duced to 0.95, which results in the fastest convergence.

Table 1: Comparison of Convergence Using Modified Algorithm

o . # update
Method Weighting Matrix iterations
Basic SB- N/A 180
EBE ’
Modified w=I 25
B =095 (modal force error minimization)
Modified + 8
W=K
B =095 o
(held constant)
Modified + 9
W=K
B = 0.95 up

(updated each iteration)

The cases documented above were based upon the same convergence criterion. The parameter results
for the basic SB-EBE algorithm and the modified algorithm with W=I are shown in Figure 1. Note here
that, even at 180 update iterations, the basic algorithm has still not reached the correct updated parameter
values, while the modified algorithm with its consistent linearization has converged to within 1% of the

correct valués in less than 30 iterations
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B. Experimental Data: LADDER Structure

The experimental example problem is a tubular wel&ed sfrﬁcture repfesentative of an automotive en-
gine support. The goal of the model updating was to determine unknown joint compliance parameters, and
to adjust the basic properties, in order to correlate the first 14 modes identified from test. The test setup is
shown in Figure 2.’

The structure was instrumented with 96 accelerometers grouped in 16 locations in order to extract both
translational and rotational response at beam cross-sections throughout the structure. The finite element
model of the structure is shown in Figure 3; it is a NASTRAN model consisting of CBEAM elements, with
spring elements introduced to model the joint compliances. Rigid offsets were used to determine the re-
sponses at each accelerometer location, and instrumentation mass was included. The correlation of the
modal parameters between the test-identified modes and the initial (pre-test) analysis model is documented

in Table 2.
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Table 2: Initial LADDER Model/Test Cbmparison

Test Test. Model Model %diffefence Modal A
Mode Frequency Mode Frequency Frequency Assur'am?e
(Hz) (Hz) Criteria
1 78.9674 1 72.3633 -8.36 0.9973
2 170.6259 3 174.9456 2.53 0.9963
3 174.4670 2 161.5404 -741 0.9934
4 214.7231 4 206.3898 -3.88 0.9981
5 250.9062 5 255.1062 1.67 0.9951
6 312.1717 7 318.6140 2.06 0.9580
7 315.7890 6 312.8396 -0.93 0.9516
8 317.7661 9 368.6281 16.01 0.9486
9 330.2652 8 333.6956 1.04 0.9968
10 432.5194 10 451.6765 443 0.9937
11 518.5953 11 534.4661 3.06 0.9890
12 563.6540 14 806.4039 43.07 0.8115
13 612.8141 12 631.6433 3.07 0.9816
14 674.3648 13 678.9766 0.68 0.7993

After attempts to reconcile the model using the basic SB-EBE procedure failed, the modified algorithm
was developed and applied to this problem. The update evolved as follows: the joint spring parameters
were estimated based on the first 8 flexible modes with the model statically reduced to the 96 sensor DOF.
This implied that no mode shape projection was performed. Then, cross-sectional parameters I, I, and
J were added and estimated along with joint rotational springs using test modes 1-9 and model statically
reduced to the sensor DOF. The final values were estimated based on modes 1-12 with the same parame-
ters plus K uy and using the model reduced to measured DOF plus torsional DOF for model grids. This
final estimation thus required that the mode shapes be projected.

The resultant parameter values are given in Table 3. The correlation of the updated model to test for
the first 14 modes are documented in Table 4. Observe that the frequency errors have been reduced from

a maximum of 43% to below 4%, while the mode shape correlations have been maintained or slightly im-
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i)l'OVCd. Note also fror-n the i)arameter update results that the updéted coefficients of variation (COoV),
which is the standard deviation of the parameter expressed as a percentage of the parameter value; is sig-
nificantly smaller than the assumed initial COV. This implies that the parameters were highly sensitive to
the modal data used in the estimation. In conclusion, the present modified algorithm performed very well
using the experimental data, resulting in a highly accurate updated model.

Table 3: Parameter Update Results for LADDER Structure

Parameter (relaﬁihfh‘f;il:l‘; Tnitial COV ~ Updated COV
K, 0.4250 100% 0.49%

K, 0.2580 100% 0.00153%

Ko, 104.0 100% 3.58%

Ko, 1.4621 100% 1.39%

I, 0.9415 3% 0.00663%

I, 09178 3% 0.0191%

7 1.0091 3% 0.00661%
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 Table 4: Final LADDER Model/Test Comparison

Test Test Moger  Model Pedifference Modal
Mode Frequency Mode Frequency Frequency Assur'ancfe
(Hz) . (Hz) Criteria

1 78.9674 \ 1 78.8034 -0.21 0.9978

2 170.6259 2 169.6736 -0.56 0.9963

3 174.4670 3 174.6665 0.11 0.9931

4 214.7231 4 218.2671 1.65 0.9984

5 250.9062 5 249.0289 -0.75 0.9957

6 312.1717 6 307.9859 -1.34 0.9894

7 315.7890 7 315.5987 -0.06 0.9789

8 317.7661 8 323.0028 1.65 0.8792

9 330.2652 9 324.1070 -1.86 0.9521

10 432.5194 10 435.3196 0.65 0.9955
11 518.5953 11 514.9591 -0.70 0.9894
12 563.6540 12 542.8199 -3.67 0.8724
13 612.8141 13 615.0687 037 0.9732
14 674.3648 14 673.2796 -0.16 0.8250

V1. Concluding Remarks

An algorithm for updating finite element models using modal data has been presented. The algorithm
minimizes a generalized dynamic residual which is a function of the experimental modal parameters and
the model mass and stiffness matrices. The present algorithm is a modification of a previous method for
sensitivity-based element-by-element model updating and incorporates a genéralized error weighting,
consistent linearization and Bayesian estimation. The algorithm has been demonstrated on numerical and
experimental data and has been shown to be an efficient and effective approach for estimating parameters
to reconcile test and analysis models.
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Figure 1: Convergence of Parameters for Numerical Example
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Figure 3: Finite Element Model of LADDER Structure
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