

~~CONFIDENTIAL~~

~~UNCLASSIFIED~~

HW-44744

AEC RESEARCH AND DEVELOPMENT REPORT
CHEMISTRY - TRANSURANIC ELEMENTS

COPY NO. 78

ABSORPTION SPECTRA OF PLUTONIUM AND IMPURITY IONS IN NITRIC ACID SOLUTION

BY

M. N. MYERS

SEPARATIONS TECHNOLOGY SECTION
ENGINEERING DEPARTMENT

JULY 31, 1956

THIS DOCUMENT CONTAINS CONFIDENTIAL-RESTRICTED DATA
RELATING TO CIVILIAN APPLICATION OF ATOMIC ENERGY.

RESTRICTED DATA

THIS DOCUMENT CONTAINS RESTRICTED DATA AS
DEFINED IN THE ATOMIC ENERGY ACT OF 1954. ITS
TRANSMITTAL OR THE DISCLOSURE OF ITS CON-
TENTS IN ANY MANNER TO ANY UNAUTHORIZED
PERSON IS PROHIBITED.

HANFORD ATOMIC PRODUCTS OPERATION

RICHLAND, WASHINGTON

GENERAL ELECTRIC

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

037122A1030

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

This document classified by
H. H. Hopkins, Jr.

HW-44744

Chemistry - Transuranic Elements
(M-3679, 18th Ed.)

ABSORPTION SPECTRA OF PLUTONIUM AND IMPURITY IONS IN
NITRIC ACID SOLUTION

By

M. N. Myers

234-5 Development Unit
Plant Processes Sub-Section

July 31, 1956

HANFORD ATOMIC PRODUCTS OPERATION
RICHLAND, WASHINGTON

Work performed under Contract #W-31-109-Eng-52 between
the Atomic Energy Commission and General Electric Company

UNCLASSIFIED

Classification cancelled (or changed to) _____
by authority of *St. from Dec. Br.* *dated* *9-16-57*
by *C.P. Booges* PE, date *10-22-57*

DECLASSIFIED

UNCLASSIFIED

~~CONFIDENTIAL~~

-2-

HW-44744

Chemistry - Transuranic Elements
(M-3679, 18th Ed.)

INTERNAL DISTRIBUTION

Copy Number

1	W. G. Browne
2	K. M. Harmon
3	O. F. Hill
4	H. H. Hopkins
5	M. N. Myers
6	W. H. Reas
7	R. B. Richards
8	R. C. Smith
9	R. E. Smith
10	E. E. Voiland
11 - 12	Extra
13	300 File Copy
14	Record Center
15	COD, HAPO - Patent Branch, Washington
16	COD, HAPO - Responsible Reviewer
	HAPO - Declassification Branch, Oak Ridge
17 - 24	COD, HAPO - Declassification Branch, Oak Ridge

~~CONFIDENTIAL~~

DECLASSIFIED

ABSORPTION SPECTRA OF PLUTONIUM AND IMPURITY IONS IN
NITRIC ACID SOLUTION

INTRODUCTION

The determination of the valence states of plutonium is desirable in various parts of the process for the separation and purification of plutonium. During the early history of plutonium chemistry, a considerable amount of work was done on the spectra of plutonium ions in various valence states and some of the complexes. With the exception of studies summarized by Hindman,⁽¹⁾ most of this work was done with solutions other than nitric acid. Since the separations process is carried out in nitric acid solutions, and little is reported on the spectra of many of the impurities which are present in the process, an investigation was undertaken to determine the absorption coefficients for plutonium valence species in nitric acid, and for some of the impurities found in process streams. A Beckman DK-2 recording spectrophotometer was used.

SUMMARY AND CONCLUSIONS

The absorption spectra for plutonium(III), (IV), (VI), and the red plutonium(IV) - peroxy complex were determined in nitric acid solution. Extinction coefficients for the above species of plutonium were measured. Temperature has little effect on the spectra, but variation of acidity causes shifting of absorption peaks and some changes in the extinction coefficients.

The absorption spectra and extinction coefficients in the region 390-1200 μ were measured for chromic, nickelous, manganous, calcium, lanthanum, aluminum, ferrous, ferric, and permanganate ions in nitric acid solutions. In addition, the effects of nitrite, oxalic acid, sulfamic acid, hydrogen peroxide, and various nitric acid concentrations on the extinction coefficients of some of these ions were determined. The chromic, nickelous, ferrous, and permanganate ions, and ferric ion with oxalic acid,

DECLASSIFIED

have sufficiently high extinction coefficients to cause inaccuracies in valence determinations of plutonium in solutions containing high concentrations of these ions, unless corrections are made.

EXPERIMENTAL

Valence Adjustment

A solution of plutonium nitrate containing 100 per cent plutonium(IV) was prepared by adding hydrogen peroxide (final concentration, three per cent by volume) to pure stock solution (500 g/l plutonium, 4 M HNO₃) and allowing the mixture to react completely (ca. twenty minutes). Plutonium (III) was prepared from plutonium(IV) by reduction with stoichiometric amounts of ferrous ion, using 0.1 M sulfamic acid as a holding agent. Plutonium(VI) was prepared by boiling a 1.0 M nitric acid solution of plutonium(IV) (30 g/l plutonium) for several hours under reflux. Plutonium (IV)-peroxy complex was obtained by adding hydrogen peroxide (final concentration, 0.27 M) to plutonium(IV) solution (0.5-1 g/l plutonium) at 0 C.

Equipment

A Beckman DK-2 Recording Spectrophotometer, with 10 mm square Corex cells, was used for all experiments. A special sample chamber utilizing quartz windows was used to prevent contamination of the spectrophotometer.

Analysis

All analyses were made in the 234-5 Control Laboratory. Plutonium was determined by radio-assay. Experiments were run at 21-25 C except those with the peroxy complex, which were run at 10-15 C.

RESULTS AND DISCUSSION

Plutonium

As previously reported,⁽¹⁾ plutonium(III), (IV), and (VI) follow the Beer-Lambert law in their light absorbing characteristics. The plutonium(VI)

DECLASSIFIED

peak at 829 m μ , however, deviates markedly, as shown in Figure 1. The absorption spectra of these three valence states are shown in Figure 2, and DK-2 plots of the valence states are shown in Figures 6, 7, and 8, respectively. For all of the absorption peaks except the 829 m μ , an average extinction coefficient was determined from absorption measurements made over the concentration range 0.5-3 g/l plutonium.

The absorption spectra of the plutonium(IV)-peroxy complex does not differ greatly from the plutonium(IV) spectra at wavelengths greater than 650 m μ but has very strong absorption in the shorter wavelength region, as shown in Figure 9. The peroxy complex extinction coefficients were determined at plutonium concentrations of 0.5 and 1 g/l. At the nitric acid concentration used (2 M), a very large peroxide to plutonium(IV) ratio (approximately 135/1) was necessary for complete complexing of the plutonium(IV). Further addition of peroxide resulted in no change in absorption. The red peroxy complex had an absorption spectrum similar to that previously reported.⁽¹⁾ No brown peroxy complex was observed in 2 M nitric acid. The extinction coefficients obtained for the plutonium(IV) peroxy complex hold over the range 0.5-135 moles of peroxide/mole of plutonium, as shown by material balances. Uncomplexed plutonium(IV) can be determined quantitatively in the presence of complexed plutonium(IV) from the 475 m μ peak.

Table I shows the molar extinction coefficients of plutonium(III), (IV), (VI), and the red plutonium(IV)-peroxy complex, as determined for the DK-2 used. These values may vary slightly for other machines because of different characteristics of the individual spectrophotometers. No correction for ferric iron absorption is made on the plutonium(III) peaks, since the absorption is negligible for the small amount of iron (0.5 g/l) present.

Concentrations as low as 0.1, 0.05, 0.01, and 0.02 g/l plutonium(III), (IV), (VI), and (IV)-peroxy complex can be measured in the presence of each other, in mixtures containing a total of about 3 g/l plutonium, in a 10 mm cell. At these low concentrations precision is no better than a

factor of two. However, at higher concentrations of the individual ions (up to 3 g/l), the precision is approximately ± 0.1 , ± 0.05 , and ± 0.1 g/l plutonium for the III, IV, and VI states. The presence of absorbing impurities decreases the precision. The DK-2 spectrophotometer itself has a duplication limit of ± 0.005 absorbance, or for typical peaks \pm two per cent.

The maximum concentration which may be used for valence determination in 10 mm cells is 3-3.5 g/l. Concentrations below 0.3 g/l or above 3 g/l require longer or shorter cells, respectively.

Small temperature differences have little effect on the extinction coefficients or spectra of plutonium(III) or (VI) and cause only a slight change in two absorption peaks (702 m μ , 475 m μ) in the plutonium(IV) spectra. (A maximum error of plus four per cent in calculation results from a temperature change from 15 to 30 C).

As previously reported⁽¹⁾ variation in the nitric acid concentration causes shifting of absorption peaks, the appearance of a new peak for plutonium(VI) at high acidities, and some increase or decrease of the extinction coefficients. Tables II, III, and IV show the absorption coefficients for plutonium(III), (IV), and (VI) at various acidities. These values are only good to ± 5 per cent, although the precision within each valence state is probably better. Several discrepancies greater than five per cent are seen on comparison with Table I. No explanation is available, but it is proposed that absorption standards be checked frequently to assure that the machine response does not vary over particular absorption ranges, following periods of maintenance.

Other Ions

The extinction coefficients of calcium, lanthanum, manganous and aluminum ions are so very low that up to ten grams per liter of these ions can be ignored in most valence determinations of plutonium.

Chromic ion has two strong absorption peaks in the region 390-1200 m μ at 405 and 575 m μ . Nickelous ion has absorption peaks at 394, 655, 670, 1180 m μ (Figure 3). No changes due to temperature, oxalic acid, sulfamic acid, nitrite, hydrogen peroxide, or nitric acid concentration in the region 0.5 to 6 M were observed with these ions.

Permanganate ion in 2 M nitric acid has very strong absorption at 450-600 m μ , with peaks at 506, 523, 542, and 562 m μ and possibly peaks at 467 and 490 m μ , as shown in Figure 10.

Ferrous iron has absorption peaks at 960 and 1100 m μ (Figure 4). Oxalic acid (0.1 M), nitric acid concentration (between 0.5 and 6.0 M HNO₃) and sulfamic acid have very little effect on either the absorption spectra or coefficients. Nitrite forms a complex with ferrous ion which absorbs strongly at wavelengths shorter than 800 m μ , but is too short-lived in 2 M nitric acid to obtain a spectrum.

Ferric iron has very low absorption in the range 450-1200 m μ . Below 450 m μ , absorption increases rapidly. Nitrite, hydrogen peroxide, and sulfamic acid have very little effect on the extinction coefficients. The extinction coefficients increase slightly with increasing acidity. Oxalic acid forms a complex with ferric iron, which absorbs strongly at wavelengths shorter than 500 m μ , as shown in Figure 5.

A summary of the extinction coefficients of the above ions is found in Table V. Chromic, nickelous, ferrous, and ferric ions follow the Beer-Lambert Law.

MNM:ag

M. N. Myers

DECLASSIFIED

REFERENCES

(1) Hindman, J. C., "Ionic and Molecular Species of Plutonium in Solution," National Nuclear Energy Series, Vol. IV-14A. The Actinide Elements, G. T. Seaborg and J. J. Katz, Ed. New York: McGraw-Hill, (1954) pp. 301-364.

TABLE I
MOLAR EXTINCTION COEFFICIENTS OF
PLUTONIUM(III), (IV), (VI), AND (IV)-PEROXY COMPLEX

Wavelength $m\mu$	Molar Extinction Coefficients ^(a)			
	Plutonium(III)	Plutonium(IV)	Plutonium(VI)	Plutonium(IV)- Peroxy Complex
421	18.4	33.0	18.6	247
457	7.6	26.5	22.0	197
475	7.6	81.7	21.3	193
502	6.4	15.3	17.4	304
541	21.7	23.2	10.8	176
565	45.4	9.8	7.7	89
598	44.7	7.7	6.5	40.6
656	17.0	39.0	6.7	31.5
702	3.6	19.8	5.0	22.9
795	18.2	26.0	6.5	25.1
829	10.0	14.3	Graph ^(b)	20.1
850	7.9	20.3	5.7	17.4
908	24.9	4.1	4.5	9.1
950	5.7	5.3	25.8	10.5
981	7.4	11.2	21.3	17.0
1017	18.4	17.4	4.5	22.7
1068	13.4	34.6	2.9	26.1
1101	25.3	19.1	2.5	15.5

NOTES:

(a) Determinations were made in 2 M HNO₃.

(b) Figure 1 shows the molar extinction coefficient variation with absorbance.

DECLASSIFIED

TABLE II
EFFECT OF ACIDITY ON ABSORPTION SPECTRA AND
COEFFICIENTS OF PLUTONIUM(III)

Wavelength m μ	Molar Extinction Coefficients in			
	0.52 M HNO ₃	2.12 M HNO ₃	3.92 M HNO ₃	5.79 M HNO ₃
565 (a)	48	47	49	49
598	45	47	48	48
662	19	17	16	16
808	20	18	17	16
908 (b)	25	24	23	23
1017	19	18	16	16
1101	27	25	23	22

NOTES:

(a) This peak shifted from 568 m μ at 0.52 M HNO₃ to 563 m μ at 5.79 M HNO₃.
(b) This peak shifted from 908 m μ at 0.52 M HNO₃ to 916 m μ at 5.79 M HNO₃.

TABLE III
EFFECT OF ACIDITY ON ABSORPTION SPECTRA AND
COEFFICIENTS OF PLUTONIUM(IV)

Wavelength m μ	Molar Extinction Coefficients in			
	0.52 M HNO ₃	2.0 M HNO ₃	3.93 M HNO ₃	5.96 M HNO ₃
421 (a)	26	32	39	38
475	81	91	94	79
541 (b)	21	22	24	24
656	40	40	43	40
702	20	19	21	21
795 (c)	27	26	27	26
850	17	19	21	19
1068	34	35	38	38

NOTES:

(a) This peak shifted from 425 m μ at 0.52 M HNO₃ to 421 m μ at 5.96 M HNO₃.
(b) This peak shifted from 546 m μ at 0.52 M HNO₃ to 538 m μ at 5.96 M HNO₃.
(c) This peak shifted from 802 m μ at 0.52 M HNO₃ to 785 m μ at 5.96 M HNO₃.

DECLASSIFIED

TABLE IV
EFFECT OF ACIDITY ON ABSORPTION SPECTRA AND
COEFFICIENTS OF PLUTONIUM(VI)

Wavelength $m\mu$	Molar Extinction Coefficients in			
	0.62 M HNO_3	2.06 M HNO_3	3.95 M HNO_3	5.55 M HNO_3
457	17	18	21	23
785	4.7	4.7	4.8	5.5
815	5.8	5.8	8.3	21 (a)
829 (b)	117	114	118	118
950	27	26	25	22
980	21	21	20	18

NOTES:

(a) This was a new peak.
(b) These values hold only for the concentration used for this particular run.

DECLASSIFIED

TABLE V
MOLAR EXTINCTION COEFFICIENTS OF VARIOUS IONS IN 2 M HNO₃

Wavelength m μ	Ni ^{+2(a)}	Cr ^{+3(b)}	Fe ^{+2(c)}	Fe ⁺³	Fe ⁺³ + 0.1 M Oxalic Acid	MnO ₄ ^{-(d)}	Mn ⁺²	Al ⁺³	La ⁺³
421	2.1	4.6	0.20	0.35		120			
457	0.32	2.9	0.13	0.05	20	210			
475	0.20	3.5	0.11	0.05	9.2	640			0.027(f) 0.38(f)
502	0.16	9.1	0.10	0.0	2.6	1600			
541	0.25	11.6	0.10	0.0	0.65	2090	0.027(e)		
565	0.32	10.7	0.10	0.0	0.36	1180			
598	0.60	3.0	0.10	0.0	0.22	250			
656	1.7	0.6	0.15	0.0	0.19	140			
702	2.0	0.0	0.22	0.01	0.15	70			
795	1.0	0.0	0.53	0.04	0.18	40			
829	0.55	0.0	0.81	0.03	0.22				
850	0.36	0.0	1.0	0.02	0.25				
908	0.33	0.0	1.4	0.01	0.28				
950	0.50	0.0	1.5	0.01	0.27				
981	0.75	0.0	1.3	0.01	0.26				
1017	1.0	0.0	0.90	0.0	0.25				
1068	1.5	0.0	1.2	0.0	0.25				
1101	1.7	0.0	1.2	0.0	0.25				

NOTES:

- (a) Absorption peaks for nickelous ion are at 394, 655, 670, 1180 m μ with extinction coefficients of 4.5, 1.7, 1.7, and 2.0, respectively.
- (b) Absorption peaks for chromic ion are at 405, and 575 m μ , with extinction coefficients of 14.0 and 11.8, respectively.
- (c) Ferrous ion has absorption peaks at 960 and 1100 m μ , with extinction coefficients of 1.5 and 1.3, respectively.
- (d) Absorption peaks for permanganate ion are at 506, 523, 542, and 562 m μ with extinction coefficients of 1650, 2175, 2090, and 1220, respectively. At wavelengths longer than 702 m μ , the extinction coefficients drop sharply.

TABLE V (contd.)

NOTES (contd.)

- (e) Maximum absorption for manganous ion occurs at 400 and 538 m μ with extinction coefficients of 0.092 and 0.027, respectively. Extinction coefficients are nearly zero at other wavelengths between 400-1200 m μ .
- (f) This is the maximum extinction coefficient for this ion. Extinction coefficients at other wavelengths between 400-1200 m μ are slightly smaller.
- (g) Absorption coefficients for calcium ion are zero in the wavelength range 400-1200 m μ .

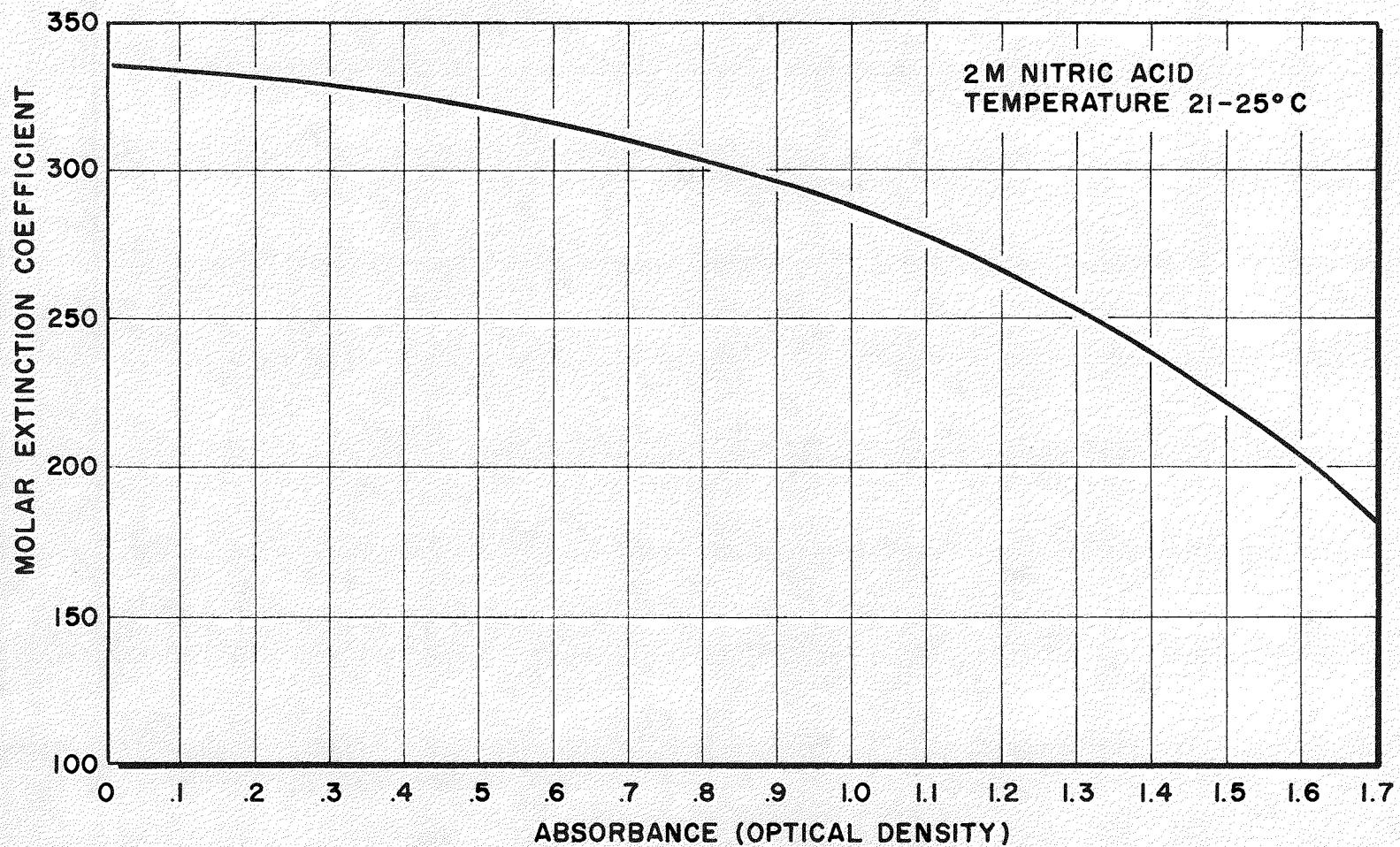


FIGURE 1
ABSORPTION OF PLUTONIUM(VI) AT 829 $m\mu$ 2 M HNO_3

15

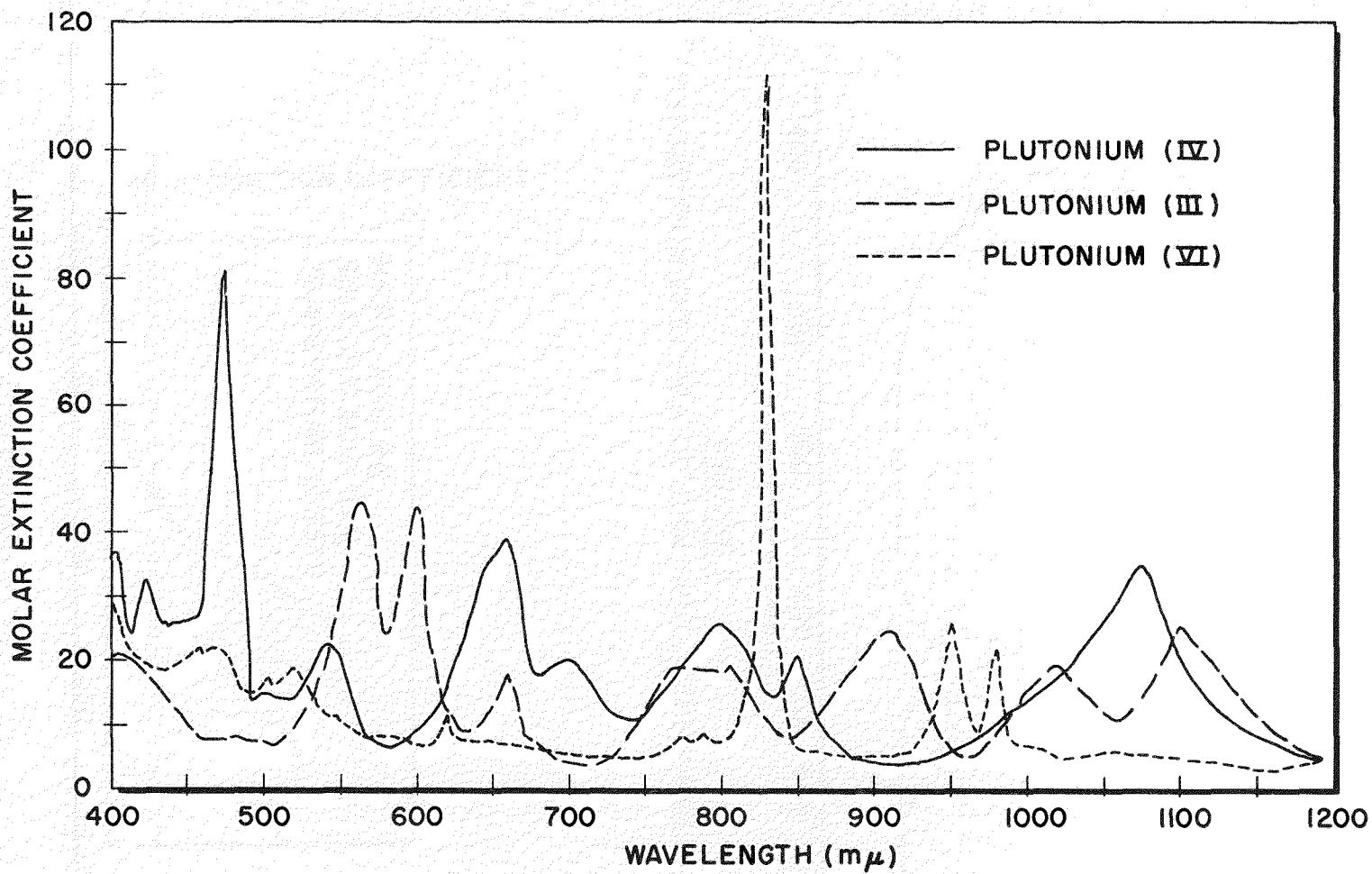


FIGURE 2

ABSORPTION SPECTRA OF PLUTONIUM(III), (IV), AND (VI) IN 2 M HNO_3 AT 21-25 C

HW-44744

-15-

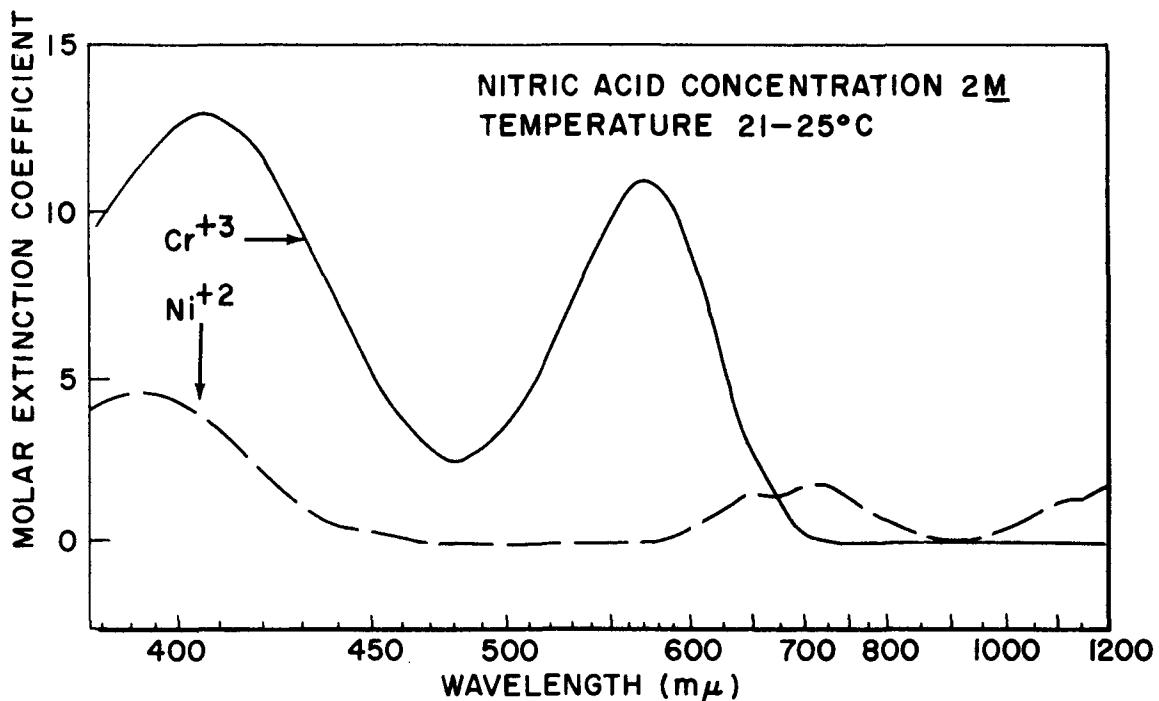


FIGURE 3
ABSORPTION SPECTRA OF CHROMIC AND NICKELOUS IONS

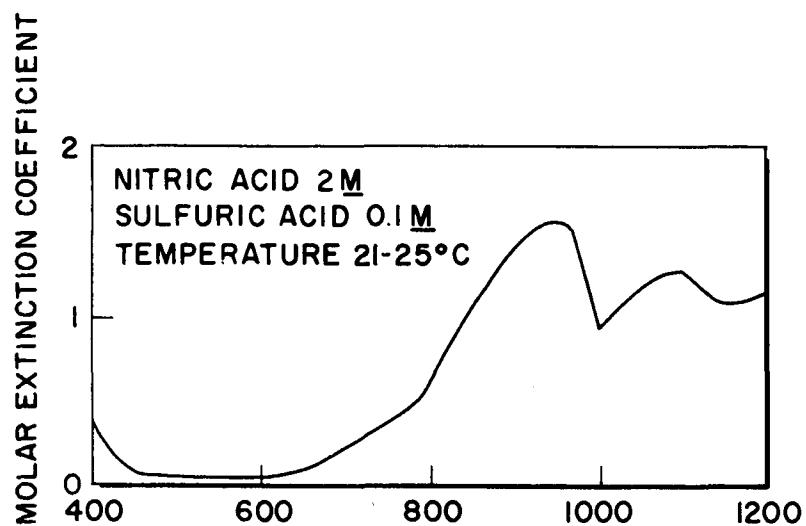


FIGURE 4
ABSORPTION SPECTRA OF FERROUS ION

DECLASSIFIED

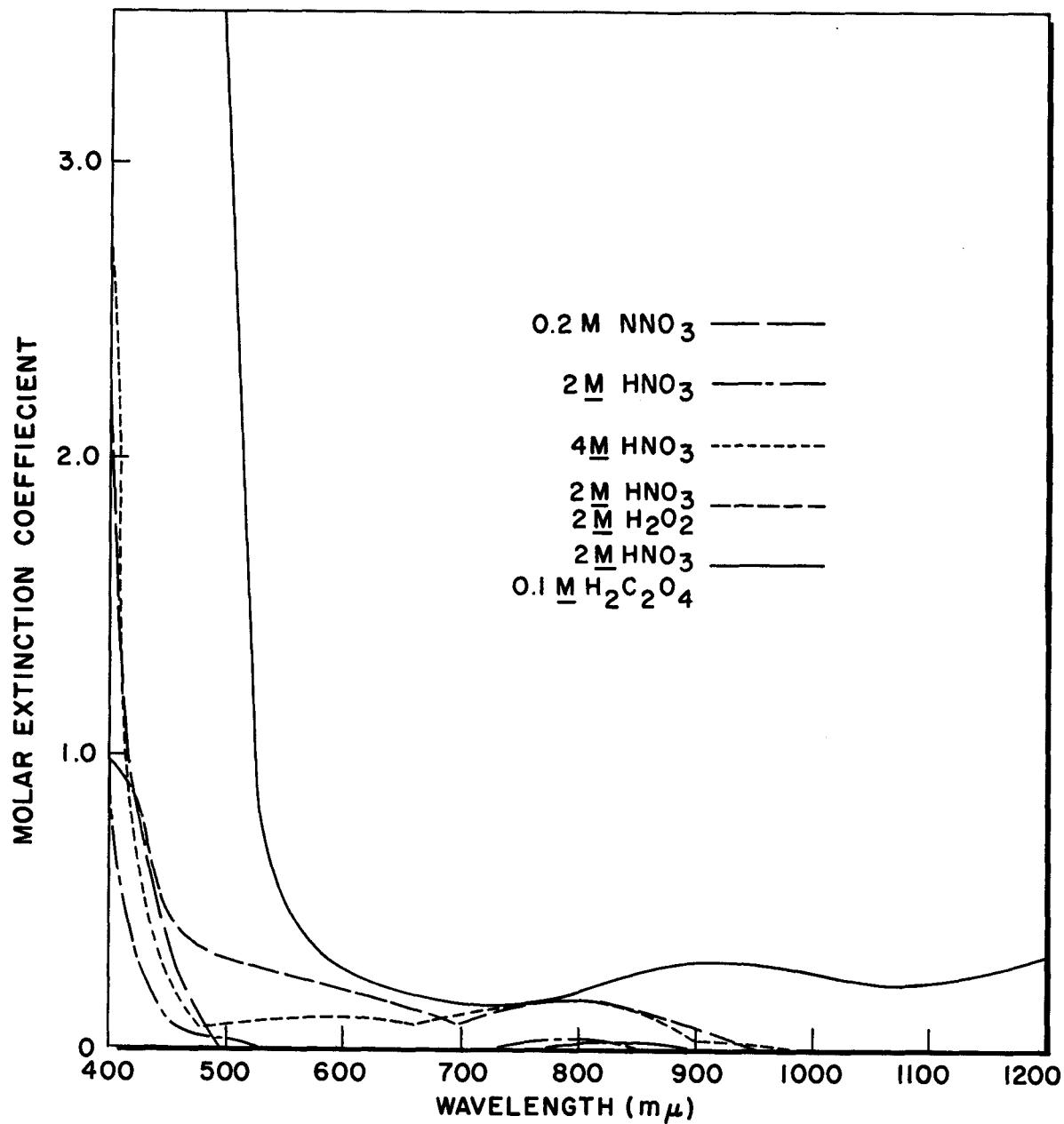


FIGURE 5
ABSORPTION SPECTRA OF FERRIC IRON

DECLASSIFIED

18

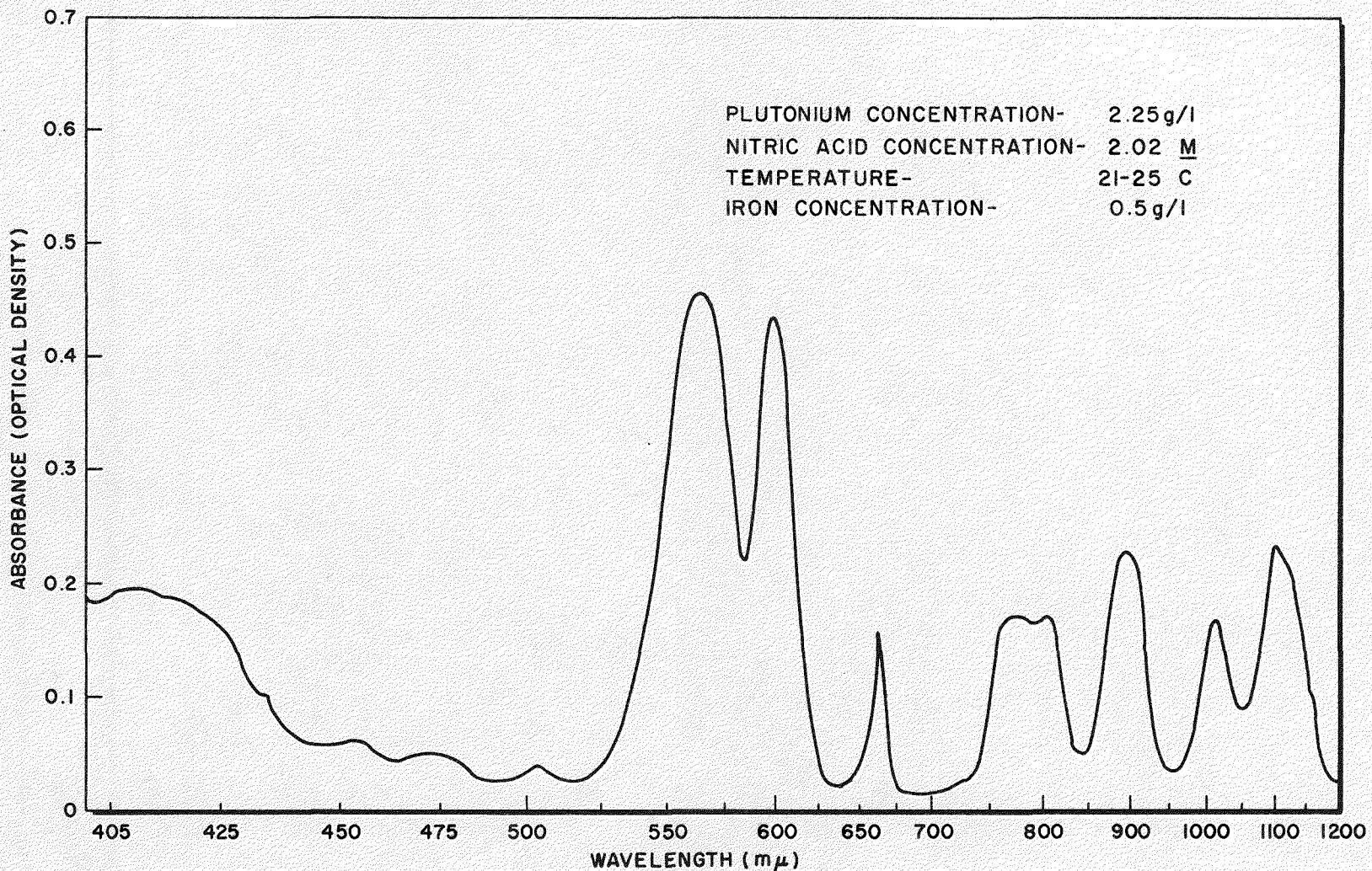


FIGURE 6

ABSORPTION SPECTRUM OF PLUTONIUM(III), DK-2 PLOT

HV-44744

-18-

19

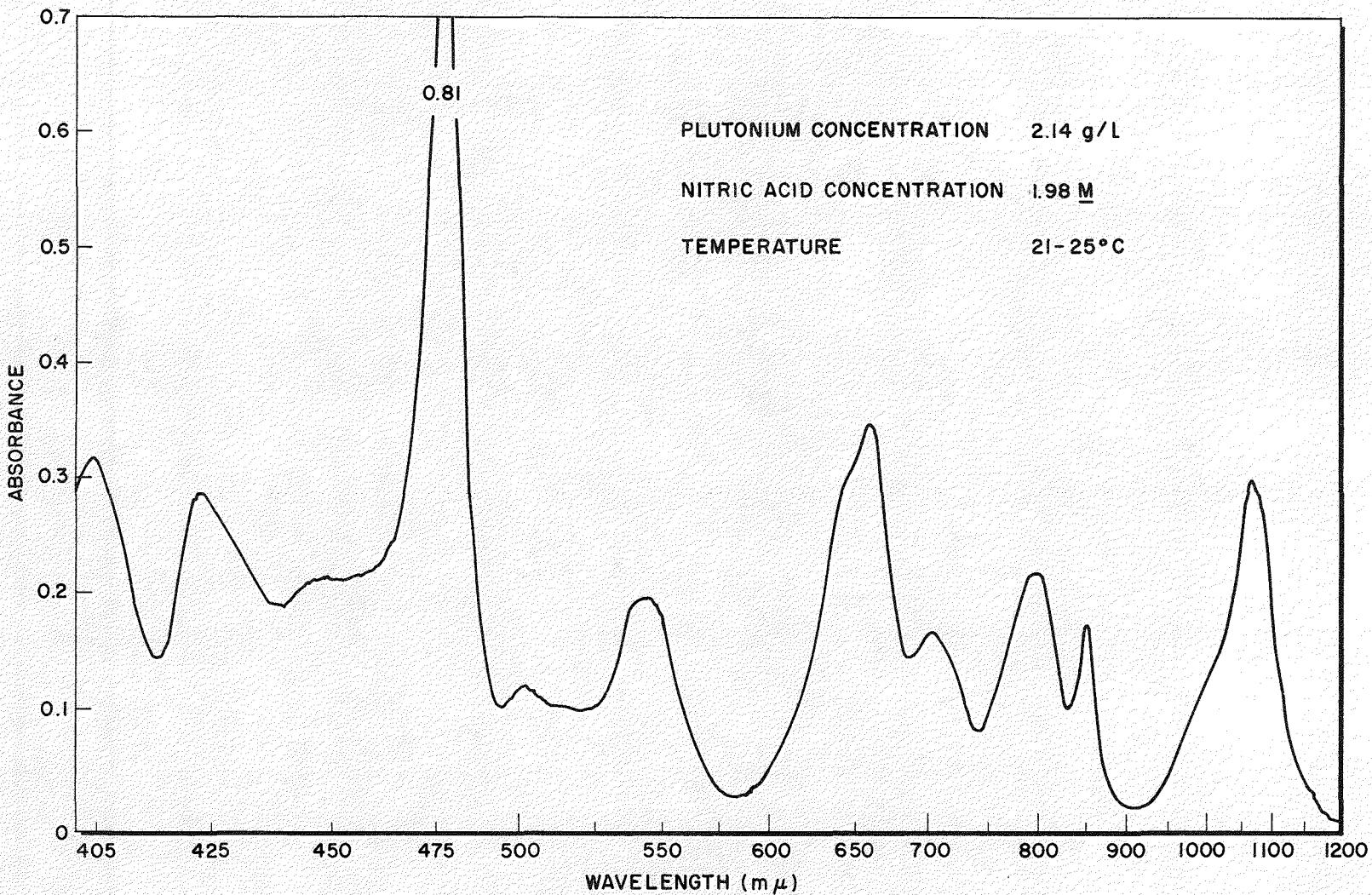


FIGURE 7

ABSORPTION SPECTRUM OF PLUTONIUM(IV), DK-2 PLOT

HW-44744

-19-

20

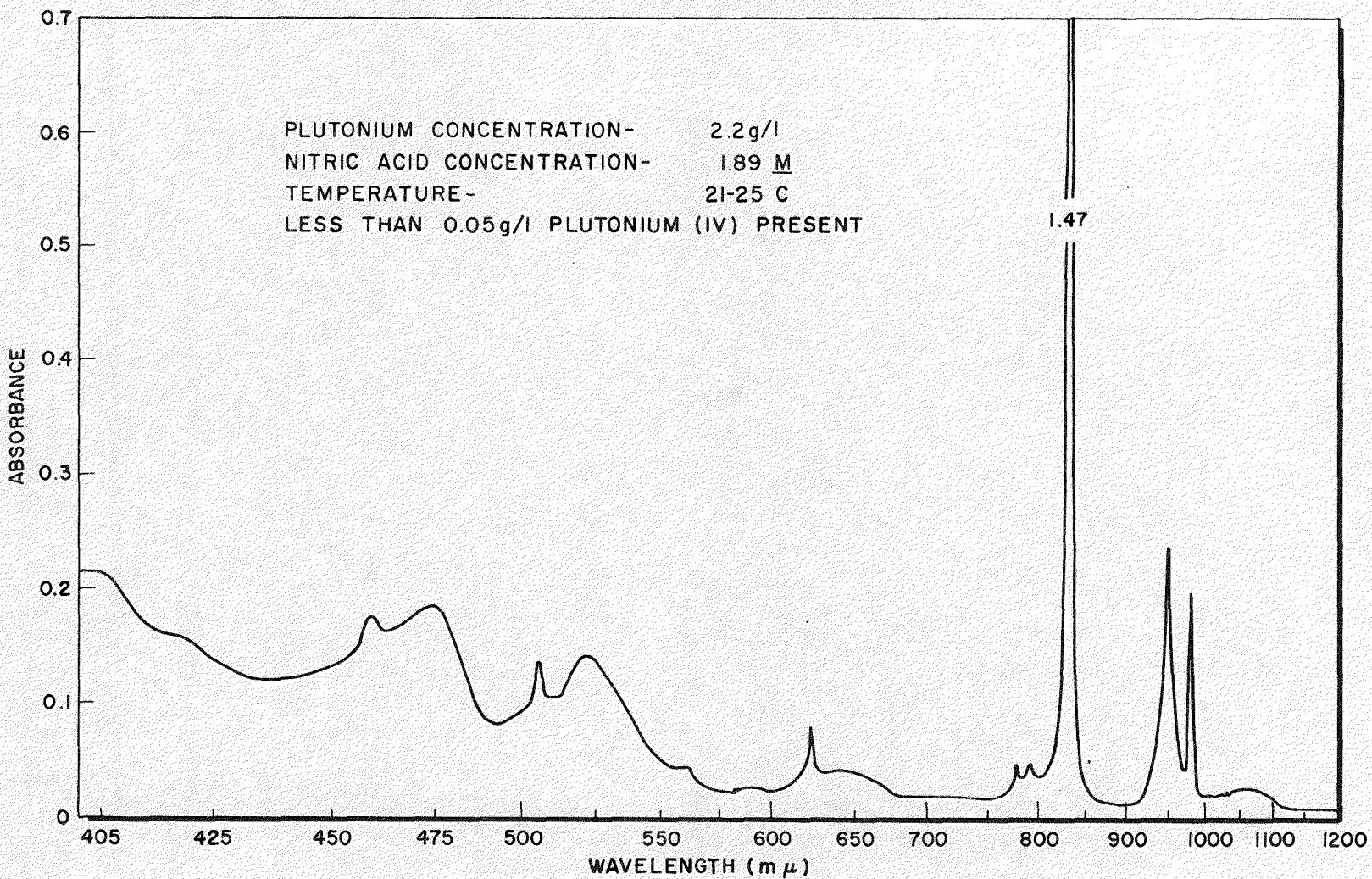
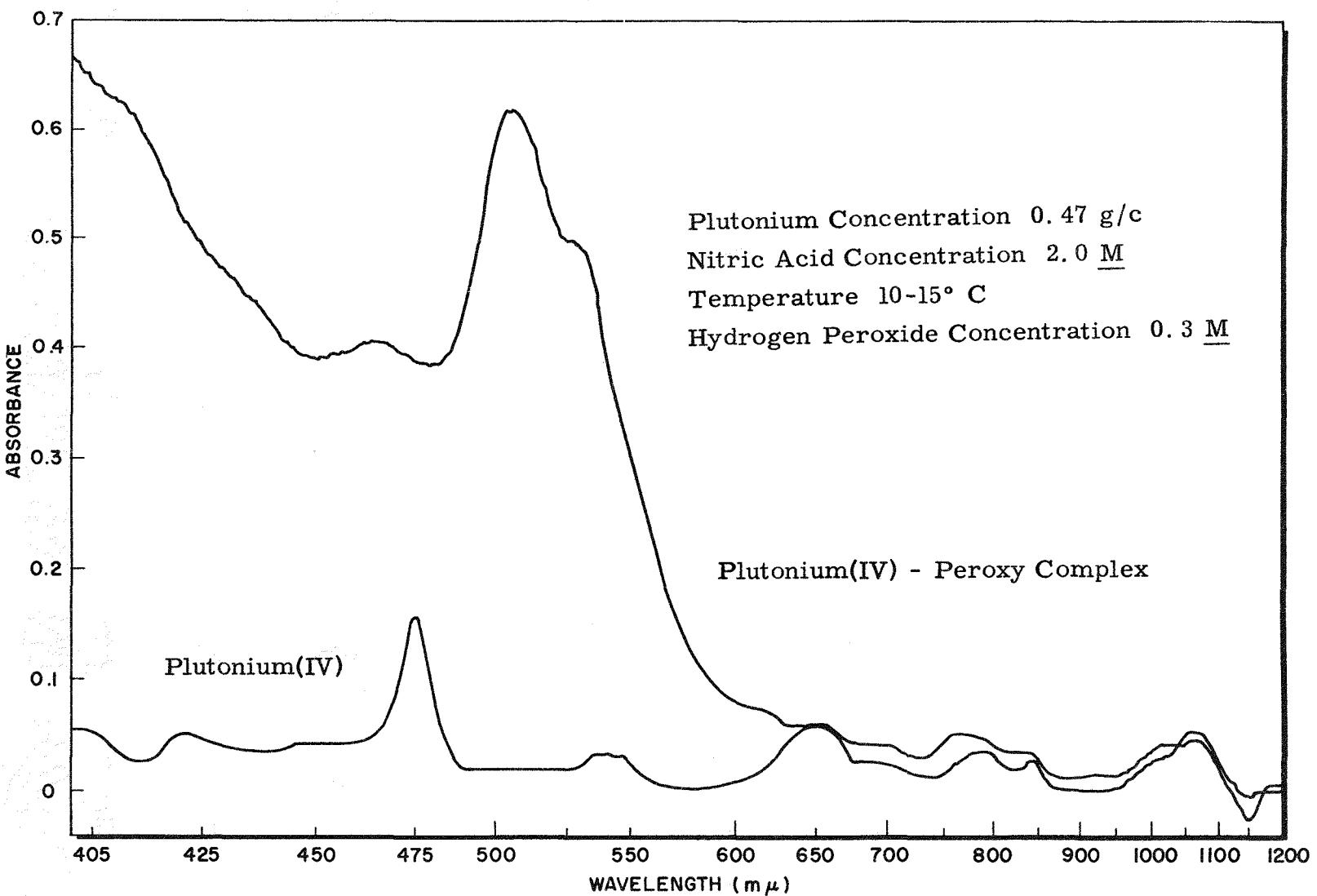



FIGURE 8
ABSORPTION SPECTRUM OF PLUTONIUM(VI), DK-2 PLOT

HW-44744

21

HW-44744

FIGURE 9
ABSORPTION SPECTRUM OF PLUTONIUM(IV)-PEROXY COMPLEX DK-2 PLOT

-21-

22

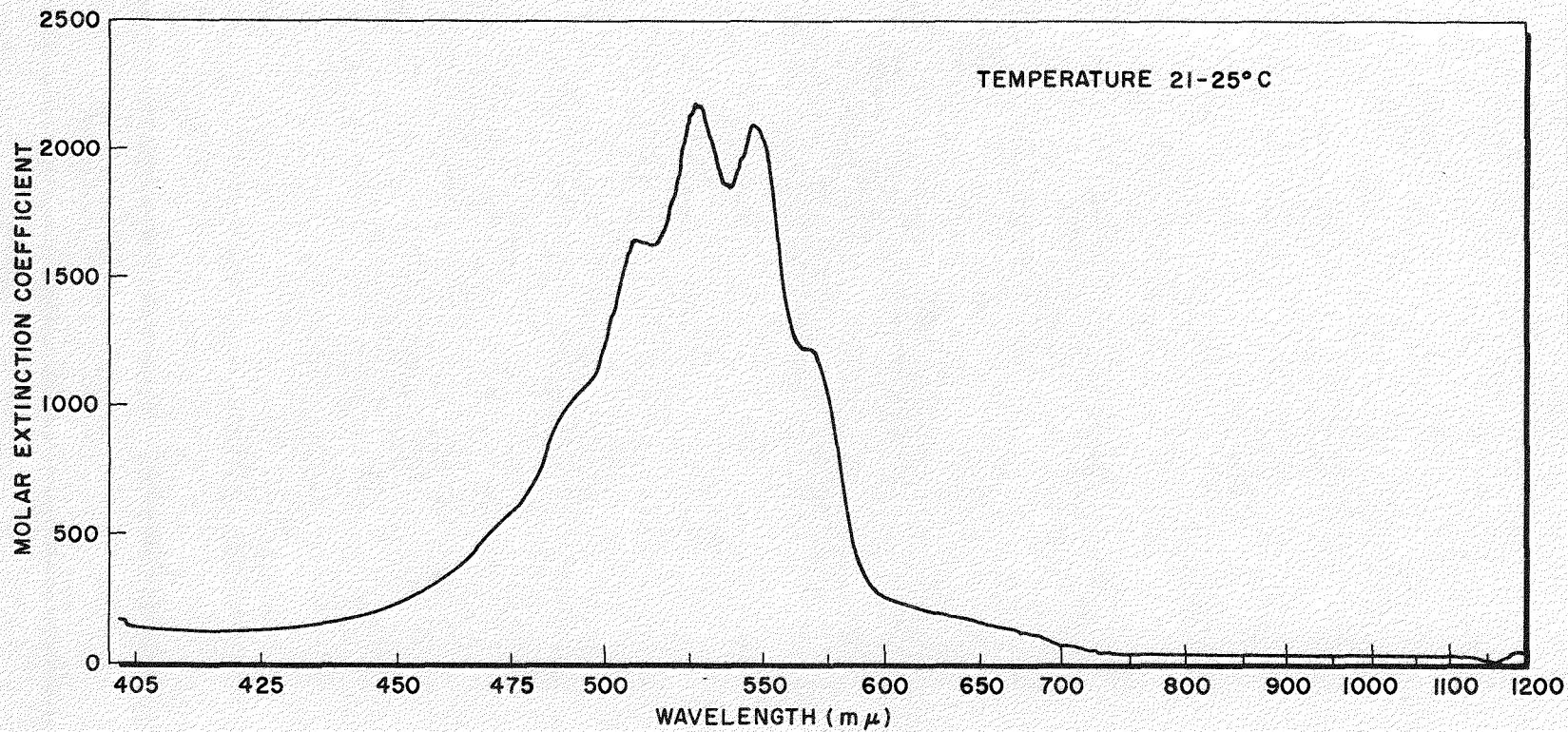


FIGURE 10

ABSORPTION SPECTRUM OF POTASSIUM PERMANGANATE IN 2 M HNO_3

HW-44744