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Preface

TLis analysis of confinement in the stellarator has been prepared
primarily for the Sherwood Handbook. Since the theory presented is new
in many respects, this material is also being given separate distribution

as a Project Matterhorn report.
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THEORY OF CONFINEMENT IN THE STELLARATOR

L Basic Principles

The fundamental element in any thermonuclear reactor is the
magnetic field configuration used to confine the fully ionized reacting
gas, or plasma, at the required temperature of 10 degrees K or more.
The Princeton program at Project Matterhorn has been concentrated on
magnetic fields produced by external coils, with the magnetic lines of
force everywhere parallel to the walls of a closed, endless tube inside
which the gas is confined. A device based on this type of magnetic con-
figuration has been called a "stellarator'™. In the present report the
theory of confinement in a stellarator will be discussed.

In this first section the principles used in analyzing confinement
are treated and applied to geometrically simple systems. Discussion of
the simple torus is required to indicate why a more complicated configu—
ration appears to be required for effective confinement.

The objective of any confinement theory is to show theoretically
that the number of particles which strike the wall of the tube is negligibly
small. Such a proof cannot be based on the macroscopic equations only;
the distribution of particle velocities is usually not known, in view of the
long mean free path, and particles moving in a particular direction at a

particular velocity may conceivably reach the wall even though the mean

macroscopic velocity of all particles in each volume element is very small.

On the other hand analysis of single-particle orbits only is also insuffi-

cient; the particles must be assumed to move in given electric and magnetic

fields, E*» and £h, and these quantities are determined bv the cooperative

effect of many particles, through their dependence on the macroscopic
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current, Aj**‘ and its divergence. Thus both the microscopic picture, based
on particle orbits, and the macroscopic picture, based on the field equations
and on the electric current, must be used to demonstrate confinement.
To handle this problem exactly a detailed solution of the Boltzmann
equation would be required. In a complicated system this would be a very
difficult task. Instead we shall employ a less general method. First we
use the macroscopic equations to demonstrate that an equilibrium solution,
satisfying certain restrictions, is possible. Second we discuss the motion
of free particles in the electric and magnetic fields determined from the
macroscopic equations. Since the macroscopic equations, in the form used,
are not valid in the most general situations, certain conceivable equilibrium
states could not be analyzed by this method. However, any equilibrium state
which can be analyzed by this method and for which confinement can be
established theoretically should be a valid equilibrium. The stability of such
an equilibrium is, of course, a different matter,” stability problems are dis-
cussed in a separate chapter in the Handbook, and will not be treated here.
1.1 Macroscopic equations and underlying assumptions
We turn, then to the macroscopic equations which will be employed.
These have been derived elsewhere (Spitzer, 1956). The assumptions made
here in deriving these equations are as follows;
(a) Over a distance of one Larmor radius the relative change
of all quantities is small.

(b) The quantities m”?/rm and Zmep”/rmpe maybe neglected
compared to unity; subscripts e and i refer to electrons
and positive ions, respectively.

(c) AIll macroscopic quantities are independent of time at each

position.

_2_
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(cO The transverse and longitudinal pressures, and p* ,

are equal.

(e) The ele itric resistivity, q, is negligibly small, and the

mean free path is much greater than the Larmor radius.

(£) The mean macroscopic velocity, “ vanishes.

Assumption (a), which is basic in any analysis using the macro-
scopic equations, has a number of important consequences. First, since
the sheath thickness, h, is much less than the Larmor radius of a
positive ion for any well developed plasma, assumption (a) requires
approximate electrical neutralityJwith n? nearly equal to Zn? . Second,
when the mean free path is much longer than the Larmor radius, as im-
plied by assumption (e), assumption (a) leads to the result that the stress
tenor is diagonal, (Watson, 1956, Chew, Goldberger and Low, 1956),
provided that the principal axis is parallel to "the magnetic field; the three
components are thus parallel to the field and in the two directions
perpendicular to the field. Third, it follows from this assumption that the
components transverse to the magnetic field of both the mean current, j,
and the mean velocity, v, are small compared to the root mean square
velocity. In any device much larger than the Larmor radius, assumption (a)
seems legitimate, except in a boundary layer or sheath near the wall.

Assumption (b) is trivial. This assumption, like many of the subse-
quent ones, is not vital, and could be relaxed without substantial modifica-
tion of the macroscopic equations.

Assumption (c) is certainly valid in any steady state. If diffusion
to the walls is present, oroduced by finite q, a source of hot particles
within the plasma must be assumed to maintain a. steady state. The most
serious effect of this assumption is to exclude hydromagnetic instabilities

-3 =
eECRBg"
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and electrostatic oscillations; while the former are treated elsewhere,
tve possible effect of the latter on confinement is not understood,, )

If (d) is not made, then in a converging or diverging magnetic
field, the divergence of the stress tensor will include a term proportional
to p*—pf£ , In such a case the axes in which the stress tensor is diagonal
change with position, producing off-diagonal components in Cartesian
coordinates. Thus the assumption that p*. and p* are equal simplifies
the equations. In a steady state one would expect that even infrequent
collisions would make p* and p*? equal, and hence this assumption appears
a natural one.

Assumption (e) is approximately valid, when p is small. The effect
of a small finite r), together with the associated diffusion velocity and
rate of injection, may be evaluated by a perturbation analysis of the solu-
tion for r) = o (Kruskal, 1955). If confinement can be demonstrated for
zero r|, it would appear that introduction of a small finite q will not im-
pair the confinement. Thus assumption (e) simplifies the treatment
substantially without any essential loss.

Assumption (f) replaces the more usual one (which partly results
from assumption (a)) that quadratic terms in and j are negligible.
This more stringent condition is not so arbitrary as might first appear.

In fact, the near—vanishing of v* is a simple consequence of the equations
of motion (Spitzer, 1956, Section 3.3), provided that there is no additional
effect tending to produce a separation of charge. The argument is that in
most heating methods there are no appreciable forces tending to produce

any momentum in any particular direction, and hence the macroscopic

velocity must be vanishingly small. Thermonuclear reactions, which

4
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accelerate positive charges to large energiess favouring their escape from
the gas, do produce some separation of electric charge, and hence does
not vanish completely in a thermonuclear reactor. Even in this case,
however, “ is relatively small, and we shall ignore it here. A fuller
analysis of the effects associated with such macroscopic velocities would be
desirable. The detailed mechanisms responsible for the vanishing of <™
and for the associated electric field, are reviewed in Section 4.2.

On the basis of these assumptions, the equation of motion and the

generalized Ohm's Law become, in Gaussian units

BX5 = ciP w
J;- up. (2)
e

while Maxwell's equations yield

\7x B = > )
Vv-
V-B = 0 (4)

Poisson's Law is not needed, as it merely gives the charge density, which
is not otherwise of importance. It may be noted that equation (1) indicates
that p is constant along a line of force, as a result of assumptions (c) and
(f)- Thus the problem of transport along the magnetic field, which is not
easily handled within the macroscopic theory (Brueckner and Watson, 1956;
Chew, Goldberger and Low, 1956), does not arise. We require that
equations (1) through (4) be satisfied in the equilibrium state.
1. 2 Motion of free particles

The basic principles affecting the motion of individual free particles
are readily written down. If wx is the component of particle velocity per-
pendicular to 13, we may write for the magnetic moment,

-5 —
JFHPIrT
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pL=3 m - constant (5)

Tins result Haas been proved (Kruskal, 1957) to all orders of ak, where a
is the Larmor radius, and 1/k is the local e—folding distance of B, Thus
the deviations from (5) must be very small indeed. We may also assume
that the motion of a guiding center is independent of the phase of the gyrating

electron, again to all orders of ak. This result was first indicated in an

idealized case (Kruskal, 1951) and has now been established generally
(Kruskal, 1957). Thus to a high approximation the motion of a guiding
center is independent of phase and possesses two simple integrals, the

magnetic moment |, and the total energy W, where

W< m +ZeU (6)

where U is t'l'e potential energy, m e. s. u.; Z is —1 for an electron.
The velocities of the guiding centers are governed by the usual

equations for the drift velocity (Alfven, 1950; Spitzer, 1956). With crossed

electric and magnetic fields.

WD

1]
(¢}

("7

We shall refer to this drift motion as an "electric drift’". In an inhomo-

geneous magnetic field,

where wl is hhe longitudinal velocity, parallel to JL For the transverse
drift velocity, , we have the two familiar drifts. Firstly, the drift
due to ViB, *he gradient of the scalar field in the plane perpendicular to

B, is given by

™*
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WDJ. iCd =5l =¥ (9)

C
is the transverse velocity with which the particle gyrates around the

line of force, and whe-re u>c is the cyclotron frequency.

- ZeB

(3 me (10)

Secondly, we have the drift produced by motion along a curved drive of

force.
2
WpL o R an
c
where R is the curvature of the line of force. The direction of these drifts
is perpendicular both to B and to either V. B or to R; particles of
opposite sign drift in opposite directions. We shall refer to these two drift
motions as "'gradient drift” and "curvature drift"” respectively. This com-
pletes our survey of the basic principles.
1, 3 Equilibrium in infinite cylinder
We pass on now to an application of these basic principles to two
simple geometries, the infinite cylinder, and the torus. In the infinite
cylinder, with the 2z axis parallel to the cylinder, only BZ is assumed

present, equation (4) is satisfied if B” is independent of z, and equations

(1) and (3) yield

p Sir = constant , (12)

If p” denotes the maximum value of p in the cylinder, we define

Srrp
(6 = m (13)

B
zw

where BZW is the value of Bz at the walls, where B is assumed to vanish,

-7 =
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Evidently (3 cannot exceed unity. We see that p is an arbitrary function
of r and & over the cross-section, subject only to the requirement, by
assumption (a.), that p/ yp greatly exceed the Larmor radius, a. The
variation of p over the cross-section will presumably depend on the
mechanisms of diffusion and injection, and need not be considered in evalu-
ating the confinement.

If we take the curl of equation (2), we see that the electron density
ne must be constant along an isobar. If this condition is not fulfilled, as
for example, if T varies along a surface of constant n”, the macroscopic
velocity v cannot vanish, and it is not obvious that a steady state is possible.
If we assume, then, that ne is constant along an isobar, and that as a re-
sult, T and n?* are both constant along isobaric surfaces, then equation (2)
requires that the electric potential U is also constant on each isobaric
surface. From equation (12) it follows that Bz is also constant on each
isobaric surface.

We now apply the microscopic picture to this problem. Since B' £7B
vanishes and the lines of force are straight, w( is constant in time and also
no curvature drift is present. Since U and 13 are both constant along each
isobaric surface, the electric drift and gradient drift are both in directions
perpendicular to z and to p, and are thus parallel to the local isobaric
surface. Evidently these motions do not affect the distribution of guiding
centers and do not impair the confinement.

It may be remarked that if T is everywhere constant, the electric
potential, is such that the density distribution of positive ions follovsthe

Boltzmann distribution,

n."eupfZeU/KT) (14)
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Equation (14) appears naturally from the condition thaf the positive ions
have no mean motion. Evidently equation (14' cannot be satisfied at the

boundary of the plasma“where m is assumed to vanish, without infinite

potentials. In fact as m approaches zero the.basic assumption (a) must
fail, since p/vP must become less than the La.rmor radius. Thus the
macroscopic equations cannot be used all the way to the wall, and a more

detailed analysis is required for the outermost plasma layer.

One may raise the question whether in a higher approximation the
individual particles may move across the isobaric surfaces. In the case
of rotational symmetry about the cylindrical axis it is easily demonstrated
(Spitzer, 1951) that the orbit of each charged particle is rigorously confined
to the region between two flux tubes.

We conclude that confinement in the infinite cylinder has been amply
demonstrated. The one region of uncertainty is the structure of the outer
plasma boundary, where the macroscopic equations no longer apply.

1.4 Problem of the simple torus

Next we consider a toroidal system in which the lines of force are
all circles; we denote by R the radius of curvature of a line of force. The
plasma is assumed confined within a tube whose cross-section has the
radius r( ; we shall call r, the "minor radius™ of the torus. The value
of R for the line of force centered in the middle of the tube cross-section
will be denoted by R( , and called the "major radius" of the torus. We
introduce in addition to R the coordinates f and 2z, where z is measured
along the axis of rotational symmetry and # is the angle of rotation around
this axis. We assume that all quantities are independent of p .

As before, we may eliminate 'J*A from equations (1) and (3h The

components B1° and B may be set equal to zero. If we take the curl of
z

9
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equation (1)s we obtain, after some algebra
2
&B

R3z _° (15)

We conclude that a. solution of the equations is possible only if R is infinite,
m wbicb case we return to the infinite cylinder, or if B p is independent
of z, in which case we can easily show that p must also be independent of
z and confinement within a circular cross-section is not possible.

This failure to find an equilibrium corresponds to the presence of
current divergences if an equilibrium is assumed. Consider the cross-

section of the torus shown in Figure 1. The line OO' is the axis of symmetry,

ol

0]

Current Divergences in the Torus
The two closed dashed curves represent the intersection of two isobaric
surfaces with the cross-section of the tube. From equation (I) it follows
that the electric current, j, is parallel to the isobaric surfaces. If an
equilibrium is assumed, BR is the same at all points between these two
surfaces, where B denotes the f component of the magnetic field, and
R is the distance from OO’, However, from equation (l) it follows that

the total current between the two surfaces, which is simply

ZirRj~r equals ZirRAp/B and therefore varies as R*, Since the total
current between the two surfaces at A is greater than at A1, electric

charge must accumulate at C, with a corresponding deficiency of charge
- 10 -
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at C ¢ Hence no equilibrium is possible.

This same result may be obtained, of course, from the microscopic
picture. Tb.e curvature drift and the gradient drift have the same direction for
positive particles, but are in the opposite direction for negative particles.

A separation of charges results. As we shall see in the next section, the
assumption of an original radial electrostatic field will change the micro-
scopic picture somewhat, but will not alter the basic result found from the
macroscopic equations, that an equilibrium solution of equations (I) through
(4) is impossible if the lines of force are assumed circles about the axis of
symmetry.

Let us discuss briefly what happens if an ionized gas is placed within
such a toroidal system. The accumulation of charges will produce an electric
field transverse to IL In a completely ionized gas this field produces a
partial polarization of the plasma but no steady current. Thus the accumu-
lating charge cannot be entirely neutralized, and the resultant electric drift
is toward the outer wall of the torus. If this solid surface is non-conducting,
the plasma will presumably be swept into the wall. If the wall is a perfect
conductor, and hence at a uniform potential, the electric drift must be
parallel to the wall, and on this basis we might expect the confinement to be
unimpaired. However, we have seen that no equilibrium confinement is
possible on the basis of the simple assumptions made above. Observations
indicate that a plasma is in fact confined for appreciable periods in such a
conducting toroidal tube. The nature of the quasi—equilibrium existing is
obscure, but presumably the physical conditions are too complicated to be
represented by the simplifying assumptions we have made. Effects in the
plasma sheath near the wall and effects produced by plasma oscillations
may play a dominant role. Equilibrium solutions can be obtained if macro—

1 -
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scopic velocities are assumed, and the basic equations modified accordingly.
However, the velocity fields required are rather special and it seems un-
likely that such velocities would arise naturally.

To obtain equilibrium confinement under conditions which can be
understood theoretically and which can readily be produced in practice, a
more complicated magnetic configuration is required. Such a configuration

is discussed in the next section.

2. Confining Field in the Stellarator

The confining field used in a stellarator is characterized by the
existence of a. so-called "rotational transform®™. This section describes
what a rotational transform is, discusses the properties of magnetic fields
possessing this characteristic, and analyzes different methods for producing
a rotational transform. Confinement of a plasma in such magnetic fields is
treated in the following section.

2,1 Rotational, transform

In the torus considered above the magnetic lines of force were
circles, centered at the axis of symmetry. Such a system is degenerate in
that each line of force is closed after one revolution around the axis® OO/ in
Figure 1. If this degeneracy is removed, so that the lines of force are not
closed, equilibrium confinement may, under certain circumstances, be
possible.

The simplest way to remove this degeneracy is to add a. current
along the lines of force. Such a current produces components of encircling
the current. These components, added to the confining field B”*, produced
by external coils, produce lines of force which are helices bent into toroidal

form as illustrated in Figure 2. Since the resultant lines of force are
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toroidally helical, the assumed currents along the lines of force must have

the same geometry.

Figure 2
Toroidally helical line of force
A cross-section of this toroidal tube is shown in Figure 3. Let a
particular line of magnetic force intersect this plane at the point 1 in the
figure. This line of force, if followed around the tube for one "revolution™
around the axis OO’ will then intersect this same cross-section at a

different point, designated as point 2 in Figure 3.

Figure 3
Successive intersections of a line of force with a cross-section
Because of the helical nature of the field, point 2 will, in general be rotated
about the central region of the tube. Any point in the cross-sectional plane
will similarly be transformed into another point after one revolution about

- 13 —
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the axis OO, (except possibly for some points near the outer boundary which
may not return at all). Such a transformation of a plane into itself has been
called an "H—transform®™. A number of important results about such trans-
forms have been established by Kruskal (1952). These results follow from
the condition that the density of magnetic lines of force (i. e. , the value of
Bp) is a single—valued function of position, and from the assumption that
the transform is primarily rotational, in the sense that at least the outer
parts of the plane all rotate in the same direction in a single transformation.
As we shall see in subsequent sub—sections, there are a variety of ways of
achieving a rotational transform in a confining field which is topologically a
torus. Hence the following analysis applies to all such systems, no matter
how tv/isted and non—uniform they may be.

The first result is that at least one point in the plane must be trans-
formed into itself. In most systems of practical interest the H—transform
involves only small deformations of a plane, in addition to a general rotation,
and there will be only one point that transforms into itself, and only one line
of force that is closed on itself after one revolution around the axis of
symmetry. This line is called the "magnetic axis™, and should not be con-
fused with the axis of symmetry of the torus. A motion which encircles the
magnetic axis will be called "rotation", while motion parallel to the magnetic
axis will be called "revolution”™. In the case of a toroidal system, with
axial symmetry, the motion of revolution encircles the axis of symmetry;
in a more general system, however, an axis of symmetry need not be pre-
sent.

The second result is that any other point, when followed through
successive transformations, will not move far from a single closed curve.

This is illustrated in Figure 3, where the points generated by successive

-4 710 017



H—transforms of point 1 all lie close to a single closed curve. Thus a single
line of force, after many revolutions around the tube, generates a surface,
which will be called a "magnetic surface".

This result is so important that we shall now describe in more de-
tail what has actually been proved. Let us introduce coordinates r, ©® in
the cross-section plane depicted in Figure 3; r is essentially the minor
radius, except that it is now measured from the magnetic axis rather than
from the geometrical center of the tube cross-section. The value of A0
between ooint 1 and its transform at point 2 is denoted by ( and is called
the "transform angle”™. Let 9 = 0 at point1. Let us assume that after n
transforms of point 1, we return to a point n, whose value of 8 is exactly
zero. The distance A r from point 1 to point n is called the "deviation
from closure™ of point n. Evidently, A r measures how far the line of
force has strayed from a single closed curve. It has been established that
as n increases a r decreases more rapidly than any power of 1/n. Hence
one may surmise that A r varies as exp (—Kn), where K is some dimen-
sionless constant.

The physical reason for this result can best be understood in the
special case that the normal component of the magnetic field is constant
over the cross-section plane. The analysis of more general systems may
be reduced mathematically to a consideration of this special situation. In
this case the density of points in the plane must remain constant in
successive transformations. Let us now draw a closed curve in the cross-
section plane connecting point 1 and its successive transformed, points as
smoothly as possible. Since the H—transform now preserves areas, the
total area enclosed within this curve must remain constant in successive
transformations. Hence all points on the curve cannot move inwards with

! 15 —
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successive tra,nsformations, If some move in, others must move out.

In the special case that the (@ coordinate of every point returns
to its original value after n transforms, it is possible for some points on
the curve, together with all their transformed points, to move steadily in,
while the points between move steadily out. Thus the closed curve develops
wrinkles in successive transformations. As we have already seen, this
rate of wrinkling decreases very rapidly with increasing n. In the more
general case that the § coordinate of a point never returns exactly to its
initial value, (to within a multiple of 2ir) one would expect a further averaging
out of these radial motions to occur. We conclude that to a very high approxi-
mation the successive transforms of a single point do generate a closed curve,
and that in a. magnetic topography characterized by a rotational transform a
line of force, followed for many revolutions around the tube, generates a
magnetic surface.
2. 2 Methods for producing a rotational transform

We have seen that in a toroidal system a rotational transform is
produced by a current in the f direction; i.e., with a component parallel
to the magnetic field. The transform angle t may be computed simply if
the current density jp is assumed uniform and if the field produced by this
current is computed as though the major radius of the torus were infinite.
Evidently if we follow a single line of force around the torus, the changes of

A, the position angle about at the axis of symmetry, and of 9 , the posi-

tion angle about the magnetic axis, are related by

rd-e- Rdf
1
Bl ma (16)
Introducing the usual formula for in terms of j , we obtain

16 -
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wbere L, the length around the torus is evidently given by
L, - 2TR ¢« (18)

Equation (17) is valid for any system in which (a) the minor radius is small
compared to the major radius of curvature of the magnetic axis, and (b) the
magnetic axis lies in a single plane,,

To produce a rotational transform in this way requires currents
parallel to the magnetic axis. For confinement of a. gas in a system designed
to produce power, such a current has the disadvantage that it must be trans-
ient. The electromotive force required to produce such a current may easily
by produced by changing the flux which threads the magnetic axis, and in
practice this flux can be increased only up to a certain limit. To permit
confinement in a. steady state it is desirable to produce a rotational transform
in the absence of plasma currents.

The simplest way to produce a rotational transform in a vacuum
field is to twist a torus out of a single plane. It is readily shown that virtually
any such distortion will remove the degeneracy and can produce a rotational
transform.

The simplest such system is the figure—eight, historically the first
geometry proposed for a practical stellarator. The topography is indicated
in Figure 4. The curving end sections are each tilted at an angle, , to the

parallel planes in which sections AA®' and CC are placed.

- 17 - 710 020
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Figure 4
Geometry of the Figure—8 Stellarator

To show tha.t a rotational transform is present, cross-section
planes at A, C, C and A' are indicated in Figure 5, as seen from the end
of the device,, The point O represents the magnetic axis, while the
point 1 represents the successive intersections of a single line of force
with each of the four planes. The solid lines represent the path followed
by the magnetic axis,, The transformation of plane A into plane C ( and
from C' into A') simply reflects one plane about an axis inclined at an angle

while the transformation from C to C (and from AI! to A) is an identity.

Figure 5
Cross-Section Planes Showing Rotational Transform

- 18 —
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Evidently the line of force which passes through point 1 in plane A, and is
then followed through one revolution around the tube, intersects plane A

again in a point rotated by a transform angle L. Examination of the

figure shows that for this geometry,

1=4a~, (19)

Modifications of this geometry, with a number of practical advantages, have
been proposed by Stix (B—64 stellarator) and Coor (Etude stellarator). The
existence of a rotational transform in a stellarator has been illustrated by
use of an electron beam. If appreciable gas is present in the tube, the
successive passages of the electron beam past a viewing point provide a good
visual demonstration of the transform angle.

Another method of providing a rotational transform is by means of
a transverse magnetic field, whose direction rotates with distance along
the magnetic axis. We shall follow a point along a line of force in this
situation and show that a transform angle appears. We treat here the infinite
cylinder, and let z represent distance parallel to the cylinder axis; in each
plane perpendicular to the magnetic axis we use coordinates r and - as
before. The coordinates of a point moving along a line of force are given by

B
dr =-g~dz , rde-= —dz (Z2O)
z z

Suppose now that B and B”_ wvary as the sine and cosine, respectively, of
féa — kz , A variation of about this type may be produced by 2J/J. helically
wound wires outside a toroidal tube, with opposite currents in adjacent wires,
and with a pitch of ZirJ/ /k; alternatively, X such wires all with currents in
the same direction may be used. Evidently as s increases by Zir/k, the

field direction rotates through an angle 2ir, Solution of Laplace” equation

- 19 -
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shows that for 'kri small, where is the outer tube radius, and B

for a vacuum field are given bv

Br = Bt (7J Sin (~-kz) (21)
Be=Bt(r) cos (1&-kz) , (22)

where B*_ is a constant, equal to the maximum value of the transverse field
at r equal to r, : There is also a component of Bz associated with Br
and , but its magnitude is less by a factor kr,,

Let us now follow a point whose initial coordinates are ro and bO"
Equation (20) maybe integrated at once to zero order in r—r0 and ™ o
In this order the point simply moves in a circle,, Solving next to higher
order in r—ro and e —e 0 we must take into account that for £ equal to
2 or more, B2 is larger in magnitude on the outside of the circle where B#
is positive, thsTi it is on the inside where it is negative. As a result the
positive values of d-eVds found from equation (20) more than offset the
negative ones, and ©- increases. According to Johnson and Oberman (1957),

a detailed integration gives for . the following results

ZIm=\U 4 |2(/-1) +K2rZ r

L =ir (23)
k B
< Bz

Terms of order kr* have been neglected in this expression. The term in

(kr)2 is included to give results for X equal to unity; in this case a rotational
transform arises from the variation of B” in a helical magnetic field. The
configuration for which J. is unity, with a helical magnetic axis, and its

use for confining a plasma has been extensively studied by H. Koenig (1956b).
For small kr it would appear that an appreciable L[ is more readily ob-

tained with transverse fields of higher multiplicity.
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The primary importance of these transverse field lies in their
stabilizing action. The theory of hydromagnetic instabilities is discussed
elsewhere in this Handbook, but the stabilizing effect of the transverse
fields is so important that the topic will be treated briefly here.

Instabilities are most marked if the lines of force in the dense
plasma region can exchange places with the lines of force outside the plasma.
In this situation, when the plasma pressure is very small the magnetic field
is clearly neutral against such interchanges, since the magnetic field at each
point after the interchange is the same as before. Hence the de—stabilizing
effect of even a slight plasma pressure can produce instabilities. Evidently
the cylinder is neutral a.gainst all interchanges, if the lines of force are all
straig t and parallel to the cylinder axis. We have already seen that in this
case the lines of force can interchange places without any change of energy.
When a but.ge (a region of weaker field) is present in the cylinder, the plasma
is still, neutral against such interchanges if the plasma pressure is negligible,
but any finite pressure will produce an instability.

If the magnetic configuration is such that interchanges are not
possible, the situation is different. In this case as the plasma pressure
becomes small, and the magnetic field approaches the vacuum value (provided
we assume that no currents flow along the lines of force), the system is
clearly stable. If no interchanges are possible any perturbation will increase
the magnetic energy, since the vacuum field is always a configuration of
minimum energy. To counteract the stabilizing influence of the magnetic
field an appreciable plasma pressure is necessary. If (3 is defined as in
equation (13), we therefore conclude that there exists a critical value of (3,
which may be denoted by (3*. For 3 less that {3 , the confined plasma will

- 21

ODQORDT



EBwm? FT

be stable against hydromagnetic disturbances.

It is evident that if the transform angle ¢ varies with r, the dis-
tance frc,m the magnetic axis, interchanges are impossible, except for the
trivial rotation of a magnetic surface about the magnetic axis. Hence if a
plasma of negligible pressure is placed in such a system, the plasma should
be stable against any hydromagnetic disturbances which might move the
plasma toward the wall. It is evident from equation (23) that (. does in fact
vary with r. For small kr, , do/dr in the body of the plasma is greatest
for J equal to 3, Calculations by Johnson and Oberman (1957) indicate that
with attainable transverse fields of this multiplicity, a critical (3 of at

least 0.1 can be achieved.

3, P1lasma Equilibrium in the Stellarator

We now examine the equilibrium of an ionized gas in a magnetic field
configuration characterized by a rotational transform. The existence of a
solution for the macroscopic equations will be discussed first. A more de-
tailed consideration of this solution will then show the existence of second-
ary currents within the gas, will examine the effects of such current, and
will analyze the way in which transverse fields and "scallops™ can reduce
these effects. Discussion of the confinement for single free particles in a
stellarator is postponed to the following section.
3.1 Solution of the macroscopic equations

Equations (1) through (4), given in Section 1, define the problem;
we assume that a rotational transform exists and that a single line of force
generates a magnetic surface. To prove the existence of a solution under
these conditions, with appropriate boundary conditions, is not trivial.

Indeed, as we shall see below it is not yet clear whether any solution exists
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for values of the gas pressure, p, between certain limits. The uniqueness
of a solution, if it exists, has been investigated by Kruskal (1955), who has
also considered the effect of finite resistivity, together with the associated
diffusion velocity and the rate of injection required in a steady state. Here
we shall demonstrate the existence of a solution for sufficiently low p,

following an earlier analysis by Spitser (1952),
To solve equations (1) through (4) we proceed by a process of iteration.

Let subscripts zero refer to quantities in the vacuum field; evidently p#, Uo

and i (in the vacuum) all vanish. We shall then define 5 s ,B\ and U
o n n

n
by the following equations.
j xB .~cxpn , neil ; (24)
I
F71T - .
Vg/\z, n en 2Pin , nzl A (25)
e <\
VX B =41 /c nzo } (26)
- =0 Ao j 27
M- Bn ; n-o | 27

where p#, and PAn/ are not as yet defined. For n equal to zero equations

(26) and (27) are the familiar ones for the vacuum field, B , which may be

assumed to be determined by a given distribution of current, j , external
vJ?
to the plasma. If these equations can be solved by iteration for all values

of n, and if the solutions approach a limit uniformly for increasing n, with
P and p determined in some way. then this limit is a solution of
equations (1) through (4). We shall show that such a limit exists for suffi-
ciently small values of p*.

Equation (25) may be integrated directly if T is a known function of
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for an isothermal gas equation (14) is again obtained., Since the electric
potential U is not needed in the subsequent analysis, equation (25) will not
be considered further.

We discuss the solution of the remaining equations in the case n
equal to one. To obtain a solution one must choose p* as a function of
position. From equation (24) it follows that B . VP must vanish, and
hence p*® must be constant along each magnetic surface of the vacuum field.
The variation of p1 from one magnetic surface to the next is arbitrary; we
shall assume any smooth distribution.

Once p is assumed, then from equation (24) j may be deter—
mined uniquely, provided we assume that j:1 -B vanishes when averaged
over the volume between two magnetic sur;aces. To show this, we decom-
pose j( into two components, j”* , the transverse component, perpendicu-
lar to B”~, and , the longitudinal component, parallel to Bo. If we take

the cross product of B with equation (24), we obtain

B . x Vp:
<0 ! (28)

In general the divergence of jx will not vanish. However, the integral of .
\ over the volume between two magnetic surfaces must necessarily
vanish. This result follows from integrating vy . over such a volume
and using Gauss's Theorem to express the integral in terms of

where dS is a surface element, integrated over the two bounding magnetic
surfaces. Since p.i is constant over a magnetic surface, v Pi is parallel
to dS; since from equation (28) j . pp vanishes, j .dS also vanishes.

Hence there is no current perpendicular to the magnetic surface and

vanishes when integrated over the volume between two magnetic surfaces.
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It follows that we can always find a *i‘lt along the lines of force

such that V" vanishes, and hence

- \7.j it (29)

Since fhe right-hand side of equation (29) is known from equation (28), j||

can, in principle, be determined simply by integrating indefinitely along a
line of force. As shown by Kruskal (1955) such an integration will yield a
single—valued function, j|| > as a direct result of the vanishing of WV-j*
when integrated over the volume between two magnetic surfaces. The solution
of equation (29) will lead to a constant of integration in j* *« This constant
corresponds to the mean value of j integrated over the entire volume be—
tween two magnetic surfaces, weighting each volume element by the local
value of B”. When the effect of a very small resistivity is considered, this
mean value of 01" must approach zero, since an electromotive force around

the magnetic axis cannot be maintained for an indefinite period. Hence we

may set this mean value of equal to zero everywhere, and eliminate the
arbitra.ry constant. The total current has now been determined uniquely.

When has been determined, the solution of equations (26) and (27)
for B1 is a well known problem and is, in principle, not difficult. The

nature of this solution will depend on the boundary conditions. For example,
the solution obtained if an infinitely conducting wall surrounds the plasma,
with B. assumed zero outside, will differ from the solution obtained if no
such wall is assumed, and B”* is assumed to approach zero at infinity. We
assume that B” , similarly to B”, possesses magnetic surfaces.

We have seen that ~ and B1 can be computed directly once p*

and B are known. Similarl){ A and B can be computed if B and p
o n n - wn—/ m
are known. Thus we can solve equations (24) through (27) by successive
- 25 —
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iteration if can be specified for each. n, The chief condition on is
that each (. ~“Pn vanish, and that hence p#* is constant on the magnetic
surfaces produced by , Otherwise p# is arbitrary, as we have al-
ready seen for p. . Since B differs from B and will have different
mA2._gnetic surfaces, in general, p”? must differ from Pn_/ + However, if

the difference between B‘n and B*,-§ is small, the difference between g\n

—/
and Vn_/i may also be kept small. For example, if the topology of the mag-
netic surfaces remain unchanged in successive iteration, each magnetic sur-
face may be labelled by the total flux, ,  which it encloses, and p may be
assumed the same function of ftr in all iterations.

To establish that a solution of equations (1) through (4) can be obtained
in this way, it remains to establish that the successive iterations do, in fact,
converge. It seems physically clear that for sufficiently small p the suc-
cessive values of i and B will in fact converge to a limit. As p, decreases,

will also decrease, and the difference between B* and the vacuum field,
B~, will also diminish. The deviations of the magnetic surfaces of Bj, from
those of B#” will also decrease, and (p*—p/)/?/» the relative modifications
of required in the next iteration, will decrease. Hence <p/)/130
should become smaller with decreasing p. Similarly (Bn_/—B”)/Ba decreases
with decreasing p, and if for some p this ratio is assumed bounded for all
n, convergence of this iterative process is assured for sufficiently small p.

Let us discuss the physical meaning of this iterative process. In
the first iteration we take the magnetic surfaces of the vacuum field, B ,
and make the pressure constant on each such surface, and a smoothly vary-
ing function from one surface to the next. Exactly as in the torus the cur-
rent transverse to B will show a divergence. Unlike the torus, this

divergence can be eliminated by "secondary currents'™, parallel to B#, whose
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divergence cancels the divergence of the transverse current. However,
these currents within the plasma will deform the magnetic field. The trans-
verse component of j simply reduces the confining field. However, the
longitudinal component produces a secondary magnetic field perpendicular to
B”. The total magnetic field B( , computed with the plasma current j4} as
well as the external field—producing current jo> may have quite different
properties from PO' If p and ji are both small, the magnetic surfaces
of B” will be displaced only slightly from those of Bq. A small change in
the pressure distribution will then make p” constant along the magnetic sur-
faces of , and successive iterations should converge rapidly to a solution
of the exact equations.

An elegant treatment of the magnetostatic equations (1), (3) and (4)
has been given by Kruskal and Kulsrud (1957) in terms of the invariants of
a perfectly conducting gas, undergoing deformations in a stellarator. Since
the lines of force are frozen into the ionized gas, the magnetic surfaces
move with the gas. The total flux <~ through a given magnetic surface must
be constant during any deformation; moreover for a particular surface ™~
must obviously be the same for any cross-section plane intersecting the sur-
face. Another invariant must be M, the total mass of material in the
volume V enclosed by the magnetic surface. A third invariant is the total
transverse flux X ° This quantity is defined as the total flux through a
closed loop of ribbon, one edge of which is the magnetic axis, and the other
edge of which lies on the given magnetic surface. In the absence of a
rotational transform, the outer edge of the ribbon can follow a line of force,

in which case X vanishes; if the ribbon is twisted n times, X then equals

n“h. For a particular choice of ribbon X is then invariant during a pertur-
bation of the gas. Kruskal and Kulsrud show that for any given M (fir) and
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y~ [ijr), fhe values of p and which minimize the total energy W provide
a solution to the magnetostatic equations. It is suggested that this formula-

tion of the problem might be useful for numerical work. While this method

has not as yet been used to obtain detailed solutions of equations (1), (3) and
(4), it is physically instructive to examine the basic invariants of the
problem, which are also important in stability analyses.
3,2 Limiting pressure; scallops

The analysis above may be applied to compute the limiting pressure
m an idealized case of the figure—eight stellarator. The pla.sma radius r/
will be assumed very small compared to the major radius R of the curving
sections and to the length L measured once around the magnetic axis. The
vacuum magnetic field Aﬁo will be assumed to have the same magnitude
throughout the plasma region, except for the small variation required in the
curving end sections. In an end section we use the sa.me coordinates R, 9
and z introduced in the torus. We omit the subscript r from j1 and p; .
The longitudinal current is then j* and in the curving sections it is
readily shown that to first order in r/R,

fef-c - 1-1 = - RE (30)

In the straight section jx is constant and equal to its value at the end of the
curving end section, which will here be assumed a semicircle. If j| is
taken to be zero in the middle of the end section, thg,n in the straight section,

where we introduce coordinates r, & and JL, we have

T dp
B- 37" cos~\ (31)

In equation (31) we assume that the magnetic surfaces are circular,

and hence that p is a function only of r, the distance from the magnetic
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axis. The assumption that j() is zero at the center of the end sections is
approximately valid if the rotational angle [ is about 180°, in which case
the current divergence in one end section is approximately cancelled in the
other. In other cases jj will exceed the value found from equation (31).

The fact that the end sections must curve through more than 180° in a figure—8
also increases somewhat above the value in equation (31).

The longitudinal current density given in equation (31) exceeds by a
factor it the transverse current density, “ . In the infinite cylinder the
transverse current reduces “~ below and limits the gas pressure that
can be confined to less than B02/Sir. In the present curved system the
longitudinal currents are greater than the transverse ones. Moreover, they
produce a secondary magnetic field whose direction is different from the
vacuum field, with the result that the magnetic surfaces become distorted
when plasma is present. For values of Pm> the maximum pressure, com-
parable with Bo#/8ir this distortion becomes so great that the sequence
8.6.,. and B no longer converges, and apparently no simple solution
exists.

In the straight section the secondary field Bj —B maybe computed
exactly from the longitudinal current density given in equation (31). This
secondary field is entirely transverse to Ij#. The direction of the lines of
force of this secondary field are shown schematically in Figure 6, drawn
for the idealized case where the density distribution is parabolic; i. e., where
p* (r) equals pm(—r /r, ). If a cold gas is first placed in the vacuum field

and the plasma then ionized and heated, an infinitely conducting wall will
prevent the secondary magnetic field from leaking through; the same effect
could also be produced, in principle, by passing sheet currents of the re-

quired strength along the tube wall. The field pattern in such a case is shown
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by the diagram on the right-hand side of Figure 6,

a—Non—conducting wall b—Infinitely conducting wall

Figure 6
Lines of force of secondary magnetic field

The vacuum magnetic surfaces, which may be assumed circular in
the middle of each straight section, will become distorted at each end of the
stellarator by these secondary fields,, In Figure 6 a cross-section which is
initially circular at r -equal to- becomes distorted to the two solid
lines shown in the figures. The greater the length of the straight section,
the more distorted the magnetic surface becomes.

To measure the distortion we may compute the secondary magnetic
field B(— on the axis; we denote this quantity by A BA. If ex-
pressed as an integral over jll (r,”~), assuming no change with *1, then we

find (Spitzer, 1952)
(32)

The inclination of the line of force of the B|( field to the cylinder axis is

evidently ABctlB the maximum displacement, d, of the magnetic axis,

0 ;

at the end of the straight section, equals this inclination, multiplied by
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>,alf the length of the straight section. The additional displacement produced
in the end section may be taken into account approximately by assuming that
the inclination remains the same all the way to the end of the machine, a
distance L/4 from the center of the straight section to the center of one of
the curving end sections. The total displacement then becomes

u2]

d = e (33)
2B

o
This computation of the displacement is valid only for d small compared
with r, . Evidently when equation (33) gives a value of d large compared
to r, , the magnetic surfaces of B/ are so distorted from those of B
that p” will differ greatly from p* , and no convergence of the sequence
may be expected. Hence the criterion for a solution of the type described
here is that d is less than r* , which yields for (3 the inequality.

8irpm

(34)

B
o

Since L/r. cannot readily be decreased much below 50, if B is produced
by external coils with appreciable winding depth, p in a simple figure—8
system must be small compared to 0.1 if a solution of the type described
here is to exist. It is readily shown that this limitation applies only to

the value of p m the curving sections. A weaker field in the straight
sections, with a higher p, is possible without increasing d/r#, provided
that the total length L and the values of r( and p in the curved sections
satisfy relation (34). This general result is a very serious limitation on
the amount of gas that can be confined, and thus on the rate of generation
of thermonuclear power in a practical device.

This upper limit on p can be raised if one can reduce the distance
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over wfeich. the secondary currents must travel before neutralization. This
objective may be achieved naturally by the transverse helically invariant

fields described above. Let us suppose that these fields produce a rotation,
t, of Im radians m an axial distance In a toroidal system, the longi-

tudinal currents need travel only a distance jt before cancellation; we
c

shall refer to JL as the "cancellation distance”™. Moreover, if ~ is
c c

small compared to R, the major radius of the toroid, the maximum value
of the cancellation current is less bv a factor 2.jl;: /x R than the value found
from equation (31). Evidently the maximum value of (3 for which an equili-
brium solution exists in the toroid with transverse fields may be made close
to unity if R much exceeds “~c* In such a toroidal system the maximum J3
that may actually be used is presumably limited by instabilities rather than
by field deformation produced by secondary currents.

To keep the thermonuclear power high in a system where instability
requires that (3 be kept low in the curving end sections, it may be desirable
to include long straight sections, with a relatively low field and a high value
of |3. A straight section with a weaker field and a larger cross-section will
have a more favourable ratio of thermonuclear power to power dissipated in
the external field. A problem arises when a curved section, with transverse
fields of multiplicity J, equal to 3, is to be joined to such a long straight
section. According to equation (23), the rotational angle for Jt equal to 3
increases with r, the distance from the magnetic axis, and in one curving
section the cancellation of the secondary currents cannot be exact. Hence
there will be some residual currents passing along the magnetic lines of
force in the straight section, and the maximum length of the straight sections
will be limited by a relationship similar to (34).
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In principle it is possible to obtain a more exact cancellation of tbe

secondary currents in a single curving section. If a transverse field with
- Z is used, and if the helical length 2ir/k is much greater than the plasma

radius, t"t , the rotational angle L per unit axial length is abouit the same
for all radii, according to equation (23). Suppose now that we choose para-
meters such that the total rotation produced in a single curving section is
2Trn, where n is any integer. Then each line of force encircles the magnetic
axis exactly n times in the curving section, and the integral of V: along
each line vanishes at least to first order by symmetry.

A similar method of achieving this result is to juxtapose sections of

opposite curvature, as shown in Figure 7. To obtain a net bending of the

lines of force, the sections of positive curvature

Figure 7
Scalloped Curving Section

(the P sections in Figure 7) must be longer than the sections in which the
curvature is reversed in direction but equal in magnitude (the R sections).

Such a magnetic configuration, called a "scalloped section”, has been

analyzed by Grove (1954); the magnetic design of the necessary external
coils has been studied by Koenig (1956a). The integral of \7.j along a

line of force between the centers of two of these sections (line X in Figure 7)
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may be made to vanish approximately if the magnetic field in the R section
is made appropriately weaker than in the P section. The cancellation is
exact to first order both in r/R and in p.

As yet there has been no detailed comparison of these two methods
for cancelling out secondary currents in a single curving sections. |If a
strong transverse field with = 3 is required for stability, it is not clear
that a closer cancellation of secondary currents is needed, nor has it been
shown that either of these two alternate methods is compatible with such a

stabilizing field.

4. Confinement of Single Particles in the Stellarator

We now focus attention on the separate charged particles in an
ionized gas and examine their confinement in the magnetic field of a
stellarator. In the absence of collisions the confinement will be shown to
follow quite generally from the existence of a rotational transform and from
the adiabatic invariance of the magnetic moment of a gyrating particle. In
this respect the present analysis differs greatly from earlier treatments
(see Spitzer, 1951). The discussion will be devoted first to particles which
perform successive revolutions about the stellarator, moving parallel to
the magnetic axis. Second, particles will be considered which remain in
one section of the machine, either because they are trapped in a region of
weaker field, or because their velocity parallel to the axis is essentially
zero.

Throughout the ensuing discussion the only point considered is
whether or not the charged particles remain within the gas, without striking
the wall. No attempt will be made to demonstrate that the particle
trajectories, obtained on the free~particle picture, are consistent with the
macroscopic electric fields in which the particles are assumed to move.
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This procedure seems relatively safe; if the macroscopic equations can be
satisfied, with particular fields E and B, it seems likely that the exact
consideration of single particles would yield a quasi—stationary solution with
electric and magnetic fields not differing greatly from the functions found on
the macroscopic picture.

4.1 Particles performing revolutions around the stellarator

A particle whose velocity has a component parallel to the magnetic
axis, and which is never reflected from any magnetic gradients in the machine,
performs successive revolutions about the stellarator. If followed in time,
such a particle will intersect any cross-sectional plane, extending across the
stellarator tube, an indefinite number of times. We shall now show that the
successive intersections of a group of similar particles with a cross-sectional
plane may be used to generate a transformation of this plane into itself, satis-
fying the same conditions as the H—transform generated by the lines of magnetic
force, discussed in section 2.1, Hence single particles are confined by the
magnetic field to exactly the same approximation as the lines of magnetic force
rema.in within the stellarator tube.

To demonstrate this result, we consider a particle with a particular
energy, W, which is clearly a constant of the motion in the absence of
collisions. Let the magnetic moment of the charged particle be p; while
this is not rigorously constant, we may treat it as a constant of the motion,
in view of the result by Kruskal (1957) that p is constant to all orders of

ak where a is the Larmor radius, and k is about jvy(/nB)| . The position

The theory does not yield a simple definition of p which is accurate
to all orders in ak, and is constant to all orders, but shows that such a

definition must exist, and how to construct it.
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of the "guiding center”™ of the particle is also a well defined quantity. When
this guiding center passes through some particular cross-sectional plane, the
point of intersection generates a point P, which we shall call an "intersection
point™.

Now let us fill the stellarator tube with particles within ranges 4 W
and A |A about the same energy, W, and the same magnetic moment, |i,
and let the density in phase space, within these narrow ranges of W and p,
be constant everywhere. The density everywhere will now be constant in time.
By assumption, the value of p/W is low enough so that the parallel velocity,
url( , can never go to zero. Hence the particles cannot be reflected, and
those with positive W|, form a separate class from those with negative wy ,
Here we shall consider only the particles. with positive . Per unit time
these particles will generate a large number of intersection points m the
cross-sectional plane. The number of such points generated per unit area
will be called the "density of intersection points”. Evidently this density
will be constant in time for the ensemble assumed here.

A particular intersection point P may be generated by a particle
at any phase of gyration in its Larmor circle. However, Kruskal (19574
has shown that the path followed by a guiding center is independent of the
initial phase of gyration to all orders in ak, where a and k signify, as
before, the Larmor radius and \%{£nS>)\. Hence if the guiding centers of
two particles pass through the same point Pj , in one intersection, they
will both pass through the same point P” in the next intersection. Thus
each point P* in the cross-sectional plane may be assumed to generate one
and only one point in the same plane after the particles have performed
one revolution about the stellarator.

We digress briefly to examine this result from a somew'hat different
viewpoint. In general, if a particle passes through a plane at a particular
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point at a particular time, the particle is not specified uniquely, since the
three components of velocity are arbitrary. In the present problem, how-
ever, we have two constants of the motion, W and p, and the remaining
arbitrariness, the phase of gyration in the Larmor circle, has a negligible
effect on the motion of the guiding center and may be ignored. Thus speci-
fying the intersection point P of the particle at a particular time specifies
the subsequent trajectory of the guiding center for all time, to a high
approximation.

We have now proved'that revolution of a particle about the
stellarator generates a transform of a cross-sectional plane, each point
going into some other point. Moreover, it is obvious that the transformed
plane is a transform of itself, in that the density of intersection points
generated within a time 4 t is the same function of position m the two planes.
Hence it follows that the transform generated by the successive particle inter-
sections, which we shall call a P-transform, obeys the same laws as the
H—transform generated by the magnetic lines of force. Hence the particles
will be confined to a very high order if the P—transform is primarily rota-
tional. Since the particle drift in a single revolution is at most a few times
the Larmor radius, a, and the plasma diameter is many times a for a.11
but the most energetic particles, it follows that the P—transform, like the
H—transform, is, in general, primarily rotational. If the secondary longi-
tudinal currents are largely cancelled out in each curving section, by means
of transverse fields or scalloped sections, the net drift across the lines of
force for a particle passing through the section will also be largely eliminated,
and the P—transform will become nearly identical with the H—transform”~ex—
cept for rotation about the magnetic axis“for even the most energetic particles.
We conclude that the confinement of particles which revolve about the stellar—
ator should be nearly as complete as the confinement of the lines of force.
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In view of the importance of this result, it is well to review tl e
assumptions on which it is based,, These ares

(@) The magnetic and electric fields are independent of time

(b) The change of magnetic moment, p, and the dependence

of the guiding—center trajectory on phase of gyration, are

both negligible
Assumption (a) is a basic assumption, whose validity must be checked experi-
mentally,, Assumption (b) has been proved to all orders of ak, and seems
unlikely to be a source of serious error,
4, 2 Particles rotating about the magnetic axis

For particles which do not perform successive revolutions about the
stellarator, the situation may be complicated. We shall consider only two
special classes of such particles, — first, those which are deifflitely trapped
in one particular section of the stellarator, and second, — these which are
moving through a curved section so slowly that their velocity parallel to the
magnetic axis may be set equal to zero. For each of these two classes we
shall find that confinement is again assured to a high approximation, thanks
to the rotation of the particles about the magnetic axis. This rotation is
produced partly by the radial electric field, required by equation (2*, and
partly by the gradient in magnetic field required by the diamagnetic effect
of the plasma, — see equation (12).

Let us consider first the particles which are definitely trapped within
some section of the stellarator. For these the ratio p/W is so large that the
velocity component w( , parallel to the magnetic field, vanishes on two
cross-sectional surfaces bounding a section of the machine, and the motion
of particle is necessarily restricted to the lines of force between these two

surfaces. As before, we introduce an assembly of particles with about the
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same (i and W, and with constant density in phase space,, Let us introduce

a cross-sectional plane between the two bounding surfaces. Each particle

will pass through the plane between successive reflections. An "intersection

point” P in this plane is now generated by the intersection with this plane of

a guiding center of any particle within this assembly; only passage in one

direction will be considered to generate intersection points, the passages in

the reverse direction being ignored. The density of intersection points m the

plane is again defined as the number of such points generated per unit area

per unit time. Exactly as before, the successive intersection points generated

by these particles define a P—transform of the cross-sectional plane into itself,

and as before confinement is assured if the P—transform is primarily rotational.
Thus the condition for confinement is simply that the rate of rotation

be greater than any systematic unidirectional drift. We may apply this criterion

to a scalloped end section, where particles will be trapoed in the weak—field

regions of reverse curvature (region R in Figure 7). The velocity of drift

due to the curvature of the magnetic axis is given by the sum of equations (9)

and (11). The rotational velocity associated with the electric field is given by

combining equations (?) and (2). The condition that the rotational velocity

exceed the unidirectional drift becomes simply

R d(-In nj) wh
3 dr ~'—g > (35)
w
where w is the particle velocity and w is the mean—square value of the
thermal velocity for all particles of the same mass. Since the logarithmic
gradient of m in the outer regions of the tube exceeds I/r* , where r;

is the plasma radius, and since r/ /R, is generally less than 1/3, it is

evident that the P—transform in this case will m general be primarily
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rotational sufficiently far from the magnetic axis. Particles of relatively
large w provide an important exception to this conclusion.

A rotational velocity is given also by the radial variation of B, pro-
duced by the diamagnetic effect of the plasma. The magnitude of this effect
depends on (3, the ratio of the gas pressure on the magnetic axis to the mag-

netic energy density outside the plasma. Combining equations (9), (11) and (12),
assuming that p is of the form pQ ("—rzlr" 2), and considering values of r

nearly equal to r*, we find that the P—transform will be primarily rotational

provided that

as before, and are the longitudinal (parallel to B) and transverse
(perpendicular to B) components of the particle velocity. For trapped particles
w;/  will not much exceed w#” . Evidently if p much exceeds r* /R confine-
ment of single trapped particles in a curving section seems generally assured,
regardless of the particle velocity. We shall consider later the special case

in which the rotation produced by the electric field is equal but opposite to the
rotation produced by the diamagnetic effect.

We consider next the particles for which wj) is so small that it may
be ignored. In such a case, a particle will rotate around the magnetic axis,
remaining always in the same cross-sectional plane. Confinement is establish-
ed m exactly the same manner as for the trapped particles, the one difference
being that a particle remains always in a particular cross—sectional plane,
rather than intersecting it at intervals. To generate a P—transform we now
take the location of guiding centers at successive times, separated by some
interval 4 t, large compared to the period of gyration. With this
change the analysis goes through exactly as before; the criteria that the
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P—transform be primarily rotational are again equations (35) and (36), with
now w; set equal to zero.

We see that single particles should be confined to a relatively high
approximation in these idealized situations, provided that the ratio of rx to
R is not too great. Even if (3 is very small, so that inequality (36) is not
satisfied, the rotation produced by the electric field will assure confinement
for all but the most energetic particles, provided again that r* /R is small.

In view of the importance of this radial electric field it is desirable
to review the physical reason for its appearance. From the standpoint of
the macroscopic equations, this field is exactly that which is required to keep
the angular momentum of the plasma about the magnetic axis very small.
The only torque tending to produce rotation about the magnetic axis corres-
ponds to the pondermotive force on the radial current. Since the charge
separation must be small in a plasma of high density, the radial current
must also be small, and the angular momentum nearly zero. If the angular
momentum is to be negligible, so must be the macroscopic rotational velocity
of the positive ions, and the radial electric field is exactly that required to
produce this result. This radial field produces a rotational drift velocity
which is equal and opposite to the macroscopic velocity resulting from the
pressure gradient, and the net macroscopic velocity essentially vanishes.

The radial electric field may also be viewed from a microscopic
standpoint. As charged particles are heated in a cylindrical geometry,
their Larmor radii will increase and there will be a net outward motion of
the particles. Not only will the guiding centers move outward, as a result
of random walk in successive collisions, but the mean square distance of the
particles from the axis will increase even further because of the increased

Larmor radius. The positive ions because of their greater mass will move
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outwards much more than the electrons, resulting in some separation of
charge. When account is taken of the dielectric constant of the plasma, for
steady electric fields transverse to B, the electric field resulting from this
charge separation is exactly that found from the macroscopic equation (2).

It is evident from this equation that the difference of electrostatic potential
from the magnetic axis to the outer regions of the plasma, in volts, is of
order k T, in electron volts.

When ths thermonuclear reactions are occurring this result must be
modified. The reaction products include positively charged nuclei with
relatively high energies and correspondingly large Larmor radii. The out-
ward motion of these particles will increase somewhat the negative potential
of the plasma with respect to its outer regions. This increase is less than
a factor of two. It may be shown that the charge separation produced by the
heating of a group of heavy particles is proportional to a , where a is the
Larmor radius of the energetic particle. Since the oL particles produced in
the D—T reaction have an energy of 3.5 Mev. they have an a2 which is about
100 times that of deuterons at a temperature of 1.5 x 10g degrees. It is
usually assumed that only about one per cent of the positive ions interact
during the confinement of a gas in a stellarator, and since the reaction pro-
ducts lose their energy in less than 0.1 second, the charge separation resulting
from these energetic dL particles shall be substantially less than that pro-
duced by heated plasma itself. The resultant macroscopic velocity may be
expected to be much smaller than the electric drift velocity, which is some-

what less than 10* cm/sec for a full-scale reactor. A preliminary examination

indicates that the velocity—dependent terms in the basic equations are not very

important (Spitzer, 1952, section 2d), but a thorough investigation is lacking.
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4.3 Resonances

Another effect which must be considered is the possible interference
between the different methods for producing a primarily rotational P—transform.
For example, the electric rotational drift velocity may produce a rotation
which just .ancels that due to the rotational transform of the lines of force.
Similarly, for a trapped particle the electric—field rotational drift may can-
cel out the rotational drift produced by the radial variation of the confining
magnetic field. Such an effect will be referred to as "resonance"™ since the
two rotational rates are equal and opposite. An even larger resonance
appears when scallops or transverse fields are used to cancel out the second-
ary currents in a single curving end section. Suppose that a particle is
travelling along the scalloped section m Figure 7, and suppose that its
rotational drift and longitudinal speed are such that it is on the top of the
tube at P, and has rotated to the bottom at R. The inhomogeneity drift
in the two sections will change r, the distance from the magnetic axis, m
the same way, and total radial drift increases steadily with time, if the
resonance is exact. In a full-scale device this type of resonance in a
scalloped section will occur only for particles whose longitudinal velocity
w/; , is less by an order of magnitude than the mean thermal velocity.

The effect of resonance is modified by two circumstances. In the
first place, resonance usually occurs only for particles at a particular dis-
tance, r, from the magnetic axis. As r changes, resonance will disappear,
and the transform will become primarily rotational,, In the second place,
collisions will alter the particle velocities so that resonance is no longer
present. As a result of such random encounters, a given particle will re-
main for only a very short time within the narrow velocity range required

for resonance. Encounters between ionized particles will produce a particle
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deflection of 0.1 radian in only a hundredth of the time required for a
deflection of one radian. As a results these resonant effects are not cumu-
lative for a single particle, and their only result is to increase the effective
diffusion coefficient. A rough calculation indicates that this increase m the
rate of diffusion is not of practical importance, although it may increase the
diffusion rate substantially above the classical value found from electron-
ion collisions.

The analysis m these sections is by no means a final investigation
of confinement in a stellarator. The basic equations are only approximate,
and a more exact treatment would be desirable. The solution of the macro-
scopic equations should be re-examined with consideration of the macro-
scopic velocity which may be expected in a thermonuclear reactor. More
complicated types of free—particle trajectories remain to be analyzed, and
the enhanced rate of diffusion resulting from resonances should be evaluated
in fuller detail. Finally, the deviations from closure both of the H—transform
and of the P—transform should be taken into account. However, the present
analysis does not suggest that any of these effects are likely to be practically
important, and the general result is that there do not seem to be any basic
obstacles in attempting to confine a plasma within a stellarator magnetic
field. Il‘l:’, seems probable that if the plasma is in fact quiescent, and that
no instabilities appear, confinement should be adequate for a full-scale

thermonuclear reactor.
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