
UNCLASSIFIED

Project Matterhorn 
Princeton University 

Princeton, New Jersey

Theory of Confinement in the Stellarator

by

Lyman Spitzer, Jr.

PM—S—26 

NYO-7316

UNCLASSIFICD
fl—ificatkn c«iK«Ued (or changed te—__—^—,-- )

b; aofbority «
__TIE, date_46

February 13, 1957

"T 710 001

UNCLASSIFIED
i 8452



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 
products. Images are produced from the best available 
original document.



'siijeinri1

Preface

TLis analysis of confinement in the stellarator has been prepared 

primarily for the Sherwood Handbook. Since the theory presented is new 

in many respects, this material is also being given separate distribution 

as a Project Matterhorn report.
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THEORY OF CONFINEMENT IN THE STELLARATOR

L Basic Principles

The fundamental element in any thermonuclear reactor is the 

magnetic field configuration used to confine the fully ionized reacting
g

gas, or plasma, at the required temperature of 10 degrees K or more.

The Princeton program at Project Matterhorn has been concentrated on 

magnetic fields produced by external coils, with the magnetic lines of 

force everywhere parallel to the walls of a closed, endless tube inside 

which the gas is confined. A device based on this type of magnetic con­

figuration has been called a "stellarator". In the present report the 

theory of confinement in a stellarator will be discussed.

In this first section the principles used in analyzing confinement 

are treated and applied to geometrically simple systems. Discussion of 

the simple torus is required to indicate why a more complicated configu— 

ration appears to be required for effective confinement.

The objective of any confinement theory is to show theoretically 

that the number of particles which strike the wall of the tube is negligibly 

small. Such a proof cannot be based on the macroscopic equations only; 

the distribution of particle velocities is usually not known, in view of the 

long mean free path, and particles moving in a particular direction at a 

particular velocity may conceivably reach the wall even though the mean 

macroscopic velocity of all particles in each volume element is very small. 

On the other hand analysis of single-particle orbits only is also insuffi­

cient; the particles must be assumed to move in given electric and magnetic 

fields, E^ and £h, and these quantities are determined bv the cooperative 

effect of many particles, through their dependence on the macroscopic
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current, j and its divergence. Thus both the microscopic picture, basedA***'

on particle orbits, and the macroscopic picture, based on the field equations 

and on the electric current, must be used to demonstrate confinement.

To handle this problem exactly a detailed solution of the Boltzmann 

equation would be required. In a complicated system this would be a very 

difficult task. Instead we shall employ a less general method. First we 

use the macroscopic equations to demonstrate that an equilibrium solution, 

satisfying certain restrictions, is possible. Second we discuss the motion 

of free particles in the electric and magnetic fields determined from the 

macroscopic equations. Since the macroscopic equations, in the form used, 

are not valid in the most general situations, certain conceivable equilibrium 

states could not be analyzed by this method. However, any equilibrium state 

which can be analyzed by this method and for which confinement can be 

established theoretically should be a valid equilibrium. The stability of such 

an equilibrium is, of course, a different matter,' stability problems are dis­

cussed in a separate chapter in the Handbook, and will not be treated here.

1.1 Macroscopic equations and underlying assumptions

We turn, then to the macroscopic equations which will be employed. 

These have been derived elsewhere (Spitzer, 1956). The assumptions made 

here in deriving these equations are as follows;

(a) Over a distance of one Larmor radius the relative change 

of all quantities is small.

(b) The quantities m^/rm and Zmep^/rmpe maybe neglected 

compared to unity; subscripts e and i refer to electrons 

and positive ions, respectively.

(c) All macroscopic quantities are independent of time at each 

position.

- 2 - 
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(cO The transverse and longitudinal pressures, and p^ ,

are equal.

(e) The ele itric resistivity, q, is negligibly small, and the 

mean free path is much greater than the Larmor radius.

(£) The mean macroscopic velocity, ^ vanishes.

Assumption (a), which is basic in any analysis using the macro­

scopic equations, has a number of important consequences. First, since 

the sheath thickness, h, is much less than the Larmor radius of a 

positive ion for any well developed plasma, assumption (a) requires 

approximate electrical neutralityJwith n^ nearly equal to Zn^ . Second, 

when the mean free path is much longer than the Larmor radius, as im­

plied by assumption (e), assumption (a) leads to the result that the stress 

tenor is diagonal, (Watson, 1956,” Chew, Goldberger and Low, 1956), 

provided that the principal axis is parallel to "the magnetic field; the three 

components are thus parallel to the field and in the two directions 

perpendicular to the field. Third, it follows from this assumption that the 

components transverse to the magnetic field of both the mean current, j, 

and the mean velocity, v, are small compared to the root mean square 

velocity. In any device much larger than the Larmor radius, assumption (a) 

seems legitimate, except in a boundary layer or sheath near the wall.

Assumption (b) is trivial. This assumption, like many of the subse­

quent ones, is not vital, and could be relaxed without substantial modifica­

tion of the macroscopic equations.

Assumption (c) is certainly valid in any steady state. If diffusion 

to the walls is present, oroduced by finite q, a source of hot particles 

within the plasma must be assumed to maintain a. steady state. The most 

serious effect of this assumption is to exclude hydromagnetic instabilities

- 3 - 
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and electrostatic oscillations; while the former are treated elsewhere, 

tve possible effect of the latter on confinement is not understood,, )

If (d) is not made, then in a converging or diverging magnetic 

field, the divergence of the stress tensor will include a term proportional 

to p^ — p£ „ In such a case the axes in which the stress tensor is diagonal 

change with position, producing off-diagonal components in Cartesian 

coordinates. Thus the assumption that p^. and p^ are equal simplifies 

the equations. In a steady state one would expect that even infrequent 

collisions would make p^. and p^ equal, and hence this assumption appears 

a natural one.

Assumption (e) is approximately valid, when p is small. The effect 

of a small finite r), together with the associated diffusion velocity and 

rate of injection, may be evaluated by a perturbation analysis of the solu­

tion for r) = o (Kruskal, 1955). If confinement can be demonstrated for 

zero r|, it would appear that introduction of a small finite q will not im­

pair the confinement. Thus assumption (e) simplifies the treatment 

substantially without any essential loss.

Assumption (f) replaces the more usual one (which partly results 

from assumption (a)) that quadratic terms in and j are negligible.

This more stringent condition is not so arbitrary as might first appear.

In fact, the near—vanishing of v^ is a simple consequence of the equations 

of motion (Spitzer, 1956, Section 3.3), provided that there is no additional 

effect tending to produce a separation of charge. The argument is that in 

most heating methods there are no appreciable forces tending to produce 

any momentum in any particular direction, and hence the macroscopic 

velocity must be vanishingly small. Thermonuclear reactions, which

_ 4 _
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accelerate positive charges to large energiess favouring their escape from 

the gas, do produce some separation of electric charge, and hence does 

not vanish completely in a thermonuclear reactor. Even in this case, 

however, ^ is relatively small, and we shall ignore it here. A fuller 

analysis of the effects associated with such macroscopic velocities would be 

desirable. The detailed mechanisms responsible for the vanishing of ^ 

and for the associated electric field, are reviewed in Section 4.2.

On the basis of these assumptions, the equation of motion and the 

generalized Ohm's Law become, in Gaussian units

ix5 = ciP • W

J;- J.P. , (2)
e

while Maxwell's equations yield

\7 x B = > (3)
Vv- C

V- B = 0 (4)

Poisson's Law is not needed, as it merely gives the charge density, which 

is not otherwise of importance. It may be noted that equation (1) indicates 

that p is constant along a line of force, as a result of assumptions (c) and 

(f). Thus the problem of transport along the magnetic field, which is not 

easily handled within the macroscopic theory (Brueckner and Watson, 1956; 

Chew, Goldberger and Low, 1956), does not arise. We require that 

equations (1) through (4) be satisfied in the equilibrium state.

1. 2 Motion of free particles

The basic principles affecting the motion of individual free particles 

are readily written down. If wx is the component of particle velocity per­

pendicular to 13, we may write for the magnetic moment,

- 5 - 
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|jl = j m - constant , (5)

Tins result Haas been proved (Kruskal, 1957) to all orders of ak, where a 

is the Larmor radius, and 1/k is the local e—folding distance of B, Thus 

the deviations from (5) must be very small indeed. We may also assume 

that the motion of a guiding center is independent of the phase of the gyrating 

electron, again to all orders of ak. This result was first indicated in an 

idealized case (Kruskal, 1951) and has now been established generally 

(Kruskal, 19 57). Thus to a high approximation the motion of a guiding 

center is independent of phase and possesses two simple integrals, the 

magnetic moment |jl, and the total energy W, where

W “ m + Z e U ^ (6)

where U is t'l'e potential energy, m e. s. u. ; Z is —1 for an electron.

The velocities of the guiding centers are governed by the usual 

equations for the drift velocity (Alfven, 1950; Spitzer, 1956). With crossed 

electric and magnetic fields.

WD = c • ("7)

We shall refer to this drift motion as an "electric drift". In an inhomo­

geneous magnetic field,

where wl( is hhe longitudinal velocity, parallel to JL For the transverse 

drift velocity, , we have the two familiar drifts. Firstly, the drift

due to ViB, *he gradient of the scalar field in the plane perpendicular to 

B, is given by

_ 6 -
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w DJ. ?b^b;
C

(9)

is the transverse velocity with which the particle gyrates around the

line of force, and whe-re u>c is the cyclotron frequency.

- ZeB 
c me (10)

Secondly, we have the drift produced by motion along a curved drive of 

force.

2
w,D-L oj R ’ 

c
(11)

where R is the curvature of the line of force. The direction of these drifts 

is perpendicular both to B and to either V. B or to R; particles of 

opposite sign drift in opposite directions. We shall refer to these two drift 

motions as "gradient drift" and "curvature drift" respectively. This com­

pletes our survey of the basic principles.

1, 3 Equilibrium in infinite cylinder

We pass on now to an application of these basic principles to two 

simple geometries, the infinite cylinder, and the torus. In the infinite

cylinder, with the z axis parallel to the cylinder, only B is assumed
z

present, equation (4) is satisfied if B^ is independent of z, and equations 

(l) and (3) yield

p + Sir = constant , (12)

If p^ denotes the maximum value of p in the cylinder, we define

(3 =
Srrpm

B
(13)

zw

where B is the value of B at the walls, where p is assumed to vanish, zw z c

- 7 - 
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Evidently (3 cannot exceed unity. We see that p is an arbitrary function 

of r and & over the cross-section, subject only to the requirement, by 

assumption (a.), that p/ yp greatly exceed the Larmor radius, a. The 

variation of p over the cross-section will presumably depend on the 

mechanisms of diffusion and injection, and need not be considered in evalu­

ating the confinement.

If we take the curl of equation (2), we see that the electron density 

ne must be constant along an isobar. If this condition is not fulfilled, as 

for example, if T varies along a surface of constant n^, the macroscopic 

velocity v cannot vanish, and it is not obvious that a steady state is possible. 

If we assume, then, that ne is constant along an isobar, and that as a re­

sult, T and n^ are both constant along isobaric surfaces, then equation (2) 

requires that the electric potential U is also constant on each isobaric

surface. From equation (12) it follows that B is also constant on each
z

isobaric surface.

We now apply the microscopic picture to this problem. Since B' £7 B 

vanishes and the lines of force are straight, w() is constant in time and also 

no curvature drift is present. Since U and 13 are both constant along each 

isobaric surface, the electric drift and gradient drift are both in directions 

perpendicular to z and to p, and are thus parallel to the local isobaric 

surface. Evidently these motions do not affect the distribution of guiding 

centers and do not impair the confinement.

It may be remarked that if T is everywhere constant, the electric 

potential, is such that the density distribution of positive ions follovsthe 

Boltzmann distribution,

n.^eupfZeU/kT) (14)

_ 8 -
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Equation (14) appears naturally from the condition thaf the positive ions 

have no mean motion. Evidently equation (14' cannot be satisfied at the 

boundary of the plasma^where m is assumed to vanish, without infinite 

potentials. In fact as m approaches zero the.basic assumption (a) must 

fail, since p/vP must become less than the La.rmor radius. Thus the 

macroscopic equations cannot be used all the way to the wall, and a more 

detailed analysis is required for the outermost plasma layer.

One may raise the question whether in a higher approximation the 

individual particles may move across the isobaric surfaces. In the case 

of rotational symmetry about the cylindrical axis it is easily demonstrated 

(Spitzer, 1951) that the orbit of each charged particle is rigorously confined 

to the region between two flux tubes.

We conclude that confinement in the infinite cylinder has been amply 

demonstrated. The one region of uncertainty is the structure of the outer 

plasma boundar y, where the macroscopic equations no longer apply.

1. 4 Problem of the simple torus

Next we consider a toroidal system in which the lines of force are 

all circles; we denote by R the radius of curvature of a line of force. The 

plasma is assumed confined within a tube whose cross-section has the 

radius r( ; we shall call r, the "minor radius" of the torus. The value 

of R for the line of force centered in the middle of the tube cross-section 

will be denoted by R( , and called the "major radius" of the torus. We 

introduce in addition to R the coordinates f and z, where z is measured 

along the axis of rotational symmetry and ^ is the angle of rotation around 

this axis. We assume that all quantities are independent of p .

As before, we may eliminate j from equations (1) and (3h The
'V*A

components B and B may be set equal to zero. If we take the curl of 
1° z

_ 9 _
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equation (l)s we obtain, after some algebra

2&B

R 3z = o (15)

We conclude that a. solution of the equations is possible only if R is infinite, 

m wbicb case we return to the infinite cylinder, or if B p is independent 

of z, in which case we can easily show that p must also be independent of 

z and confinement within a circular cross-section is not possible.

This failure to find an equilibrium corresponds to the presence of 

current divergences if an equilibrium is assumed. Consider the cross- 

section of the torus shown in Figure 1. The line OO' is the axis of symmetry,

O'

o

Current Divergences in the Torus 

The two closed dashed curves represent the intersection of two isobaric 

surfaces with the cross-section of the tube. From equation (l) it follows 

that the electric current, j, is parallel to the isobaric surfaces. If an 

equilibrium is assumed, BR is the same at all points between these two 

surfaces, where B denotes the f component of the magnetic field, and 

R is the distance from OO’, However, from equation (l) it follows that 

the total current between the two surfaces, which is simply 

ZirRj^r equals ZirRAp/B and therefore varies as R^„ Since the total 

current between the two surfaces at A is greater than at A1, electric 

charge must accumulate at C, with a corresponding deficiency of charge

- 10 -
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at C o Hence no equilibrium is possible.

This same result may be obtained, of course, from the microscopic 

picture. Tb.e curvature drift and the gradient drift have the same direction for 

positive particles, but are in the opposite direction for negative particles.

A separation of charges results. As we shall see in the next section, the 

assumption of an original radial electrostatic field will change the micro­

scopic picture somewhat, but will not alter the basic result found from the 

macroscopic equations, that an equilibrium solution of equations (l) through 

(4) is impossible if the lines of force are assumed circles about the axis of 

s ymmetr y.

Let us discuss briefly what happens if an ionized gas is placed within 

such a toroidal system. The accumulation of charges will produce an electric 

field transverse to IL In a completely ionized gas this field produces a 

partial polarization of the plasma but no steady current. Thus the accumu­

lating charge cannot be entirely neutralized, and the resultant electric drift 

is toward the outer wall of the torus. If this solid surface is non-conducting, 

the plasma will presumably be swept into the wall. If the wall is a perfect 

conductor, and hence at a uniform potential, the electric drift must be 

parallel to the wall, and on this basis we might expect the confinement to be 

unimpaired. However, we have seen that no equilibrium confinement is 

possible on the basis of the simple assumptions made above. Observations 

indicate that a plasma is in fact confined for appreciable periods in such a 

conducting toroidal tube. The nature of the quasi—equilibrium existing is 

obscure, but presumably the physical conditions are too complicated to be 

represented by the simplifying assumptions we have made. Effects in the 

plasma sheath near the wall and effects produced by plasma oscillations 

may play a dominant role. Equilibrium solutions can be obtained if macro—

11 -
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scopic velocities are assumed, and the basic equations modified accordingly. 

However, the velocity fields required are rather special and it seems un­

likely that such velocities would arise naturally.

To obtain equilibrium confinement under conditions which can be 

understood theoretically and which can readily be produced in practice, a 

more complicated magnetic configuration is required. Such a configuration 

is discussed in the next section.

2. Confining Field in the Stellarator

The confining field used in a stellarator is characterized by the 

existence of a. so-called "rotational transform". This section describes 

what a rotational transform is, discusses the properties of magnetic fields 

possessing this characteristic, and analyzes different methods for producing 

a rotational transform. Confinement of a plasma in such magnetic fields is 

treated in the following section.

2„1 Rotational, transform

In the torus considered above the magnetic lines of force were 

circles, centered at the axis of symmetry. Such a system is degenerate in 

that each line of force is closed after one revolution around the axis^ OO1, in 

Figure 1. If this degeneracy is removed, so that the lines of force are not 

closed, equilibrium confinement may, under certain circumstances, be 

possible.

The simplest way to remove this degeneracy is to add a. current 

along the lines of force. Such a current produces components of encircling 

the current. These components, added to the confining field B^, produced 

by external coils, produce lines of force which are helices bent into toroidal 

form as illustrated in Figure 2. Since the resultant lines of force are

- 12 - 710 015



toroidally helical, the assumed currents along the lines of force must have 

the same geometry.

Figure 2
Toroidally helical line of force

A cross-section of this toroidal tube is shown in Figure 3. Let a 

particular line of magnetic force intersect this plane at the point 1 in the 

figure. This line of force, if followed around the tube for one "revolution" 

around the axis OO', will then intersect this same cross-section at a 

different point, designated as point 2 in Figure 3.

Figure 3
Successive intersections of a line of force with a cross-section

Because of the helical nature of the field, point 2 will, in general be rotated 

about the central region of the tube. Any point in the cross-sectional plane 

will similarly be transformed into another point after one revolution about

- 13 - 
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the axis OO, (except possibly for some points near the outer boundary which 

may not return at all). Such a transformation of a plane into itself has been 

called an "H—transform". A number of important results about such trans­

forms have been established by Kruskal (1952). These results follow from 

the condition that the density of magnetic lines of force (i. e. , the value of 

Bp) is a single—valued function of position, and from the assumption that 

the transform is primarily rotational, in the sense that at least the outer 

parts of the plane all rotate in the same direction in a single transformation. 

As we shall see in subsequent sub—sections, there are a variety of ways of 

achieving a rotational transform in a confining field which is topologically a 

torus. Hence the following analysis applies to all such systems, no matter 

how tv/isted and non—uniform they may be.

The first result is that at least one point in the plane must be trans­

formed into itself. In most systems of practical interest the H—transform 

involves only small deformations of a plane, in addition to a general rotation, 

and there will be only one point that transforms into itself, and only one line 

of force that is closed on itself after one revolution around the axis of 

symmetry. This line is called the "magnetic axis", and should not be con­

fused with the axis of symmetry of the torus. A motion which encircles the 

magnetic axis will be called "rotation", while motion parallel to the magnetic 

axis will be called "revolution". In the case of a toroidal system, with 

axial symmetry, the motion of revolution encircles the axis of symmetry; 

in a more general system, however, an axis of symmetry need not be pre­

sent.

The second result is that any other point, when followed through 

successive transformations, will not move far from a single closed curve. 

This is illustrated in Figure 3, where the points generated by successive

- 14 - 710 017



H—transforms of point 1 all lie close to a single closed curve. Thus a single 

line of force, after many revolutions around the tube, generates a surface, 

which will be called a "magnetic surface".

This result is so important that we shall now describe in more de­

tail what has actually been proved. Let us introduce coordinates r, ■©• in 

the cross-section plane depicted in Figure 3; r is essentially the minor 

radius, except that it is now measured from the magnetic axis rather than 

from the geometrical center of the tube cross-section. The value of A ©■ 

between ooint 1 and its transform at point 2 is denoted by ( and is called 

the "transform angle". Let 9 = 0 at point 1. Let us assume that after n

transforms of point 1, we return to a point n, whose value of 8 is exactly 

zero. The distance A r from point 1 to point n is called the "deviation 

from closure" of point n. Evidently, A r measures how far the line of 

force has strayed from a single closed curve. It has been established that 

as n increases a r decreases more rapidly than any power of 1/n. Hence 

one may surmise that a r varies as exp (—Kn), where K is some dimen­

sionless constant.

The physical reason for this result can best be understood in the 

special case that the normal component of the magnetic field is constant 

over the cross-section plane. The analysis of more general systems may 

be reduced mathematically to a consideration of this special situation. In 

this case the density of points in the plane must remain constant in 

successive transformations. Let us now draw a closed curve in the cross- 

section plane connecting point 1 and its successive transformed, points as 

smoothly as possible. Since the H—transform now preserves areas, the 

total area enclosed within this curve must remain constant in successive 

transformations. Hence all points on the curve cannot move inwards with

I 15 -
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successive tra,nsformations, If some move in, others must move out.

In the special case that the Q> coordinate of every point returns 

to its original value after n transforms, it is possible for some points on 

the curve, together with all their transformed points, to move steadily in, 

while the points between move steadily out. Thus the closed curve develops 

wrinkles in successive transformations. As we have already seen, this 

rate of wrinkling decreases very rapidly with increasing n. In the more 

general case that the § coordinate of a point never returns exactly to its 

initial value, (to within a multiple of 2ir) one would expect a further averaging 

out of these radial motions to occur. We conclude that to a very high approxi­

mation the successive transforms of a single point do generate a closed curve, 

and that in a. magnetic topography characterized by a rotational transform a 

line of force, followed for many revolutions around the tube, generates a 

magnetic surface.

2. 2 Methods for producing a rotational transform

We have seen that in a toroidal system a rotational transform is 

produced by a current in the f direction; i.e. , with a component parallel 

to the magnetic field. The transform angle t may be computed simply if 

the current density jp is assumed uniform and if the field produced by this 

current is computed as though the major radius of the torus were infinite. 

Evidently if we follow a single line of force around the torus, the changes of 

^ , the position angle about at the axis of symmetry, and of 9 , the posi­

tion angle about the magnetic axis, are related by

rd-e-
"bT-

Rdf 
B ^

Introducing the usual formula for in terms of j

_ 16 -
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, we obtain
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(17)

-a-rr

V?-0

i-Tr L i,
8,,

)

wbere L, the length around the torus is evidently given by

L, •- 2itR < (18)

Equation (17) is valid for any system in which (a) the minor radius is small 

compared to the major radius of curvature of the magnetic axis, and (b) the 

magnetic axis lies in a single plane,,

To produce a rotational transform in this way requires currents 

parallel to the magnetic axis. For confinement of a. gas in a system designed 

to produce power, such a current has the disadvantage that it must be trans­

ient. The electromotive force required to produce such a current may easily 

by produced by changing the flux which threads the magnetic axis, and in 

practice this flux can be increased only up to a certain limit. To permit 

confinement in a. steady state it is desirable to produce a rotational transform 

in the absence of plasma currents.

The simplest way to produce a rotational transform in a vacuum 

field is to twist a torus out of a single plane. It is readily shown that virtually 

any such distortion will remove the degeneracy and can produce a rotational 

transform.

The simplest such system is the figure—eight, historically the first 

geometry proposed for a practical stellarator. The topography is indicated 

in Figure 4. The curving end sections are each tilted at an angle, , to the 

parallel planes in which sections AA' and CC are placed.

- 17 - 
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a' c a' c

Figure 4
Geometry of the Figure—8 Stellarator

To show tha.t a rotational transform is present, cross-section 

planes at A, C, C and A' are indicated in Figure 5, as seen from the end 

of the device,, The point O represents the magnetic axis, while the 

point 1 represents the successive intersections of a single line of force 

with each of the four planes. The solid lines represent the path followed 

by the magnetic axis,, The transformation of plane A into plane C ( and 

from C' into A') simply reflects one plane about an axis inclined at an angle

, while the transformation from C to C (and from A1 to A) is an identity.

^ ^

Figure 5
Cross-Section Planes Showing Rotational Transform

- 18 - 
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Evidently the line of force which passes through point 1 in plane A, and is

then followed through one revolution around the tube, intersects plane A
/

again in a point rotated by a transform angle L . Examination of the 

figure shows that for this geometry,

1=4^, (19) .

Modifications of this geometry, with a number of practical advantages, have 

been proposed by Stix (B—64 stellarator) and Coor (Etude stellarator). The 

existence of a rotational transform in a stellarator has been illustrated by 

use of an electron beam. If appreciable gas is present in the tube, the 

successive passages of the electron beam past a viewing point provide a good 

visual demonstration of the transform angle.

Another method of providing a rotational transform is by means of 

a transverse magnetic field, whose direction rotates with distance along 

the magnetic axis. We shall follow a point along a line of force in this 

situation and show that a transform angle appears. We treat here the infinite 

cylinder, and let z represent distance parallel to the cylinder axis; in each 

plane perpendicular to the magnetic axis we use coordinates r and -e- as 

before. The coordinates of a point moving along a line of force are given by

B
dr = -g~ dz , rde-= — dz „ (ZO)

z z

Suppose now that B^ and B^_ vary as the sine and cosine, respectively, of 

£&■ — kz „ A variation of about this type may be produced by 2JL helically 

wound wires outside a toroidal tube, with opposite currents in adjacent wires, 

and with a pitch of ZirJl /k; alternatively, X such wires all with currents in 

the same direction may be used. Evidently as s increases by Zir/k, the 

field direction rotates through an angle 2ir, Solution of Laplace^ equation
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shows that for 'kr1 small, where is the outer tube radius, and B

for a vacuum field are given bv

Br = Bt (7J Sin (^-kz) > (21)

Be=Bt(r) cos (l&-kz) , (22)

where B^_ is a constant, equal to the maximum value of the transverse field

at r equal to r, = There is also a component of B associated with B ' z r

and , but its magnitude is less by a factor kr„

Let us now follow a point whose initial coordinates are r and b „^ o o
Equation (20) maybe integrated at once to zero order in r—r0 and ^ 0°

In this order the point simply moves in a circle,, Solving next to higher

order in r—r and e — e we must take into account that for £ equal too o
2 or more, B^. is larger in magnitude on the outside of the circle where B^ 

is positive, thsTi it is on the inside where it is negative. As a result the 

positive values of d-eVds found from equation (20) more than offset the 

negative ones, and -©- increases. According to Johnson and Oberman (1957), 

a detailed integration gives for l the following results

L = ir kr. B. ^ z,

ZI±\U 4 |2(/-1) +k2rZ r
(23)

Terms of order kr^ have been neglected in this expression. The term in 

(kr)2 is included to give results for X equal to unity; in this case a rotational 

transform arises from the variation of B^ in a helical magnetic field. The 

configuration for which J!. is unity, with a helical magnetic axis, and its 

use for confining a plasma has been extensively studied by H. Koenig (1956b). 

For small kr it would appear that an appreciable L is more readily ob­

tained with transverse fields of higher multiplicity.
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The primary importance of these transverse field lies in their 

stabilizing action. The theory of hydromagnetic instabilities is discussed 

elsewhere in this Handbook, but the stabilizing effect of the transverse 

fields is so important that the topic will be treated briefly here.

Instabilities are most marked if the lines of force in the dense 

plasma region can exchange places with the lines of force outside the plasma. 

In this situation, when the plasma pressure is very small the magnetic field 

is clearly neutral against such interchanges, since the magnetic field at each 

point after the interchange is the same as before. Hence the de—stabilizing 

effect of even a slight plasma pressure can produce instabilities. Evidently 

the cylinder is neutral a.gainst all interchanges, if the lines of force are all 

straig t and parallel to the cylinder axis. We have already seen that in this 

case the lines of force can interchange places without any change of energy. 

When a bu^.ge (a region of weaker field) is present in the cylinder, the plasma 

is still, neutral against such interchanges if the plasma pressure is negligible, 

but any finite pressure will produce an instability.

If the magnetic configuration is such that interchanges are not 

possible, the situation is different. In this case as the plasma pressure 

becomes small, and the magnetic field approaches the vacuum value (provided 

we assume that no currents flow along the lines of force), the system is 

clearly stable. If no interchanges are possible any perturbation will increase 

the magnetic energy, since the vacuum field is always a configuration of 

minimum energy. To counteract the stabilizing influence of the magnetic 

field an appreciable plasma pressure is necessary. If (3 is defined as in 

equation (13), we therefore conclude that there exists a critical value of (3, 

which may be denoted by (3^. For j3 less that {3 , the confined plasma will

no 024
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be stable against hydromagnetic disturbances.

It is evident that if the transform angle c varies with r, the dis­

tance f rc,m the magnetic axis, interchanges are impossible, except for the 

trivial rotation of a magnetic surface about the magnetic axis. Hence if a 

plasma of negligible pressure is placed in such a system, the plasma should 

be stable against any hydromagnetic disturbances which might move the 

plasma toward the wall. It is evident from equation (23) that (. does in fact 

vary with r. For small kr, , do/dr in the body of the plasma is greatest 

for J equal to 3„ Calculations by Johnson and Oberman (1957) indicate that 

with attainable transverse fields of this multiplicity, a critical (3 of at 

least 0.1 can be achieved.

3, P1asma Equilibrium in the Stellarator

We now examine the equilibrium of an ionized gas in a magnetic field 

configuration characterized by a rotational transform. The existence of a 

solution for the macroscopic equations will be discussed first. A more de­

tailed consideration of this solution will then show the existence of second­

ary currents within the gas, will examine the effects of such current, and 

will analyze the way in which transverse fields and "scallops" can reduce 

these effects. Discussion of the confinement for single free particles in a 

stellarator is postponed to the following section.

3. 1 Solution of the macroscopic equations

Equations (1) through (4), given in Section 1, define the problem; 

we assume that a rotational transform exists and that a single line of force 

generates a magnetic surface. To prove the existence of a solution under 

these conditions, with appropriate boundary conditions, is not trivial.

Indeed, as we shall see below it is not yet clear whether any solution exists
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for values of the gas pressure, p, between certain limits. The uniqueness

of a solution, if it exists, has been investigated by Kruskal (1955), who has

also considered the effect of finite resistivity, together with the associated

diffusion velocity and the rate of injection required in a steady state. Here

we shall demonstrate the existence of a solution for sufficiently low p,

following an earlier analysis by Spitser (1952),

To solve equations (1) through (4) we proceed by a process of iteration.

Let subscripts zero refer to quantities in the vacuum field; evidently p^, Uo

and i (in the vacuum) all vanish. We shall then define j , B and U
o ' ' Jn ^n n

by the following equations.

j x B . ~ c v p ^ n , neil ; (24)

IF7 IT — ?Pin
<VV\

, nzl ^ (25)Vvsv, n en
e

V X B = 4TTJ / c nzo } (26)

V. B = 0
/f*\ ff\ n ; n^o j (27)

where p^, and P^nJ are not as yet defined. For n equal to zero equations

(26) and (27) are the familiar ones for the vacuum field, B , which may be

assumed to be determined by a given distribution of current, j , external
vJ?

to the plasma. If these equations can be solved by iteration for all values 

of n, and if the solutions approach a limit uniformly for increasing n, with 

p and p determined in some way. then this limit is a solution of 

equations (1) through (4). We shall show that such a limit exists for suffi­

ciently small values of p^.

Equation (25) may be integrated directly if T is a known function of

- 23 -
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for an isothermal gas equation (14) is again obtained., Since the electric 

potential U is not needed in the subsequent analysis, equation (25) will not 

be considered further.

We discuss the solution of the remaining equations in the case n 

equal to one. To obtain a solution one must choose p^ as a function of 

position. From equation (24) it follows that B . VP must vanish, and 

hence p^ must be constant along each magnetic surface of the vacuum field. 

The variation of p1 from one magnetic surface to the next is arbitrary; we 

shall assume any smooth distribution.

Once p is assumed, then from equation (24) j may be deter— 

mined uniquely, provided we assume that j' .B vanishes when averaged
v*-1

over the volume between two magnetic surfaces. To show this, we decom­

pose j( into two components, j ^ , the transverse component, perpendicu­

lar to B^, and , the longitudinal component, parallel to Bo. If we take 

the cross product of B with equation (24), we obtain

=
B x Vp <o i (28)

In general the divergence of jx will not vanish. However, the integral of .

y . over the volume between two magnetic surfaces must necessarily

vanish. This result follows from integrating y . over such a volume

and using Gauss's Theorem to express the integral in terms of

where dS is a surface element, integrated over the two bounding magnetic

surfaces. Since p is constant over a magnetic surface, v P is parallel•i i
to dS; since from equation (28) j . pp vanishes, j . dS also vanishes. 

Hence there is no current perpendicular to the magnetic surface and 

vanishes when integrated over the volume between two magnetic surfaces.
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It follows that we can always find a j along the lines of force
-** It

such that V" vanishes, and hence

= \7. j it ‘ (29)

Since fhe right-hand side of equation (29) is known from equation (28), j II
can, in principle, be determined simply by integrating indefinitely along a

line of force. As shown by Kruskal (1955) such an integration will yield a

single—valued function, j || > as a direct result of the vanishing of V-j ^

when integrated over the volume between two magnetic surfaces. The solution

of equation (29) will lead to a constant of integration in j ^ • This constant

corresponds to the mean value of j integrated over the entire volume be—

tween two magnetic surfaces, weighting each volume element by the local

value of B^. When the effect of a very small resistivity is considered, this

mean value of j must approach zero, since an electromotive force around 
o* l|

the magnetic axis cannot be maintained for an indefinite period. Hence we

may set this mean value of equal to zero everywhere, and eliminate the

arbitra.ry constant. The total current has now been determined uniquely.

When has been determined, the solution of equations (26) and (27)

for B1 is a well known problem and is, in principle, not difficult. The

nature of this solution will depend on the boundary conditions. For example,

the solution obtained if an infinitely conducting wall surrounds the plasma,

with B. assumed zero outside, will differ from the solution obtained if no

such wall is assumed, and B^ is assumed to approach zero at infinity. We

assume that B^ , similarly to B^, possesses magnetic surfaces.

We have seen that ^ and B1 can be computed directly once p^

and B are known. Similarly j and B can be computed if B and po 1 ^n n - /wn—/ m

are known. Thus we can solve equations (24) through (27) by successive

- 25 -
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iteration if can be specified for each. n„ The chief condition on is

that each ( . ^Pn vanish, and that hence p^ is constant on the magnetic

surfaces produced by „ Otherwise p^ is arbitrary, a.s we have al­

ready seen for p. . Since B differs from B and will have different

m^.gnetic surfaces, in general, p^ must differ from Pn_/ • However, if

the difference between B and B t is small, the difference between p**n—/ "*r~2 ’ -^n

and Vn_i may also be kept small. For example, if the topology of the mag­

netic surfaces remain unchanged in successive iteration, each magnetic sur­

face may be labelled by the total flux, , which it encloses, and p may be 

assumed the same function of ftr‘ in all iterations.

To establish that a solution of equations (1) through (4) can be obtained 

in this way, it remains to establish that the successive iterations do, in fact, 

converge. It seems physically clear that for sufficiently small p the suc­

cessive values of i and B will in fact converge to a limit. As p, decreases, 

will also decrease, and the difference between B^ and the vacuum field,

B^, will also diminish. The deviations of the magnetic surfaces of Bj, from 

those of B^ will also decrease, and (p^—p/)/?/» the relative modifications 

of required in the next iteration, will decrease. Hence (g/)/130

should become smaller with decreasing p. Similarly (Bn_/—B^)/Bq decreases 

with decreasing p, and if for some p this ratio is assumed bounded for all 

n, convergence of this iterative process is assured for sufficiently small p.

Let us discuss the physical meaning of this iterative process. In 

the first iteration we take the magnetic surfaces of the vacuum field, B , 

and make the pressure constant on each such surface, and a smoothly vary­

ing function from one surface to the next. Exactly as in the torus the cur­

rent transverse to B will show a divergence. Unlike the torus, this 

divergence can be eliminated by "secondary currents", parallel to B^, whose
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divergence cancels the divergence of the transverse current. However, 

these currents within the plasma will deform the magnetic field. The trans­

verse component of j simply reduces the confining field. However, the 

longitudinal component produces a secondary magnetic field perpendicular to 

B^. The total magnetic field B( , computed with the plasma current j4 } as 

well as the external field—producing current jo> may have quite different

properties from B . If p and j are both small, the magnetic surfaces^ O i

of B^ will be displaced only slightly from those of Bq. A small change in 

the pressure distribution will then make p^ constant along the magnetic sur­

faces of , and successive iterations should converge rapidly to a solution 

of the exact equations.

An elegant treatment of the magnetostatic equations (1), (3) and (4) 

has been given by Kruskal and Kulsrud (1957) in terms of the invariants of 

a perfectly conducting gas, undergoing deformations in a stellarator. Since 

the lines of force are frozen into the ionized gas, the magnetic surfaces 

move with the gas. The total flux ^ through a given magnetic surface must 

be constant during any deformation; moreover for a particular surface ^ 

must obviously be the same for any cross-section plane intersecting the sur­

face. Another invariant must be M, the total mass of material in the 

volume V enclosed by the magnetic surface. A third invariant is the total 

transverse flux X ° This quantity is defined as the total flux through a 

closed loop of ribbon, one edge of which is the magnetic axis, and the other 

edge of which lies on the given magnetic surface. In the absence of a 

rotational transform, the outer edge of the ribbon can follow a line of force, 

in which case X vanishes; if the ribbon is twisted n times, X then equals 

n^h. For a particular choice of ribbon X is then invariant during a pertur­

bation of the gas. Kruskal and Kulsrud show that for any given M (ftr) and
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y^ [ijr), fhe values of p and which minimize the total energy W provide 

a solution to the magnetostatic equations. It is suggested that this formula­

tion of the problem might be useful for numerical work. While this method 

has not as yet been used to obtain detailed solutions of equations (l), (3) and 

(4), it is physically instructive to examine the basic invariants of the 

problem, which are also important in stability analyses.

3„ 2 Limiting pressure; scallops

The analysis above may be applied to compute the limiting pressure 

m an idealized case of the figure—eight stellarator. The pla.sma radius r/ 

will be assumed very small compared to the major radius R of the curving 

sections and to the length L measured once around the magnetic axis. The 

vacuum magnetic field B will be assumed to have the same magnitude
A/Vv O

throughout the plasma region, except for the small variation required in the 

curving end sections. In an end section we use the sa.me coordinates R, 9 

and z introduced in the torus. We omit the subscript r from j1 and p; . 

The longitudinal current is then j^, and in the curving sections it is 

readily shown that to first order in r/R,

fef-c - 1-1 = -
RB

(30)

In the straight section jx is constant and equal to its value at the end of the 

curving end section, which will here be assumed a semicircle. If j(| is 

taken to be zero in the middle of the end section, thg,n in the straight section, 

where we introduce coordinates r, & and JL , we have

it dp
B- 37" cos^\ (31)

In equation (31) we assume that the magnetic surfaces are circular, 

and hence that p is a function only of r, the distance from the magnetic

oa'1-
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axis. The assumption that j() is zero at the center of the end sections is 

approximately valid if the rotational angle L is about 180°, in which case 

the current divergence in one end section is approximately cancelled in the 

other. In other cases jj will exceed the value found from equation (31).

The fact that the end sections must curve through more than 180° in a figure—8 

also increases somewhat above the value in equation (31).

The longitudinal current density given in equation (31) exceeds by a

factor it the transverse current density, ^ . In the infinite cylinder the

transverse current reduces ^ below and limits the gas pressure that
2

can be confined to less than Bq /Sir. In the present curved system the 

longitudinal currents are greater than the transverse ones. Moreover, they 

produce a secondary magnetic field whose direction is different from the 

vacuum field, with the result that the magnetic surfaces become distorted 

when plasma is present. For values of Pm> the maximum pressure, com­

parable with Bo^/8ir this distortion becomes so great that the sequence 

8,6,, and B no longer converges, and apparently no simple solution 

exists.

In the straight section the secondary field Bj —B maybe computed

exactly from the longitudinal current density given in equation (31). This 

secondary field is entirely transverse to Ij^. The direction of the lines of 

force of this secondary field are shown schematically in Figure 6, drawn 

for the idealized case where the density distribution is parabolic; i. e., where 

p^ (r) equals pm(l—r /r, ). If a cold gas is first placed in the vacuum field 

and the plasma then ionized and heated, an infinitely conducting wall will 

prevent the secondary magnetic field from leaking through; the same effect 

could also be produced, in principle, by passing sheet currents of the re­

quired strength along the tube wall. The field pattern in such a case is shown

710 032
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by the diagram on the right-hand side of Figure 6„

a—Non—conducting wall b—Infinitely conducting wall

Figure 6
Lines of force of secondary magnetic field

The vacuum magnetic surfaces, which may be assumed circular in 

the middle of each straight section, will become distorted at each end of the 

stellarator by these secondary fields„ In Figure 6 a cross-section which is 

initially circular at r -equal to- becomes distorted to the two solid

lines shown in the figures. The greater the length of the straight section, 

the more distorted the magnetic surface becomes.

To measure the distortion we may compute the secondary magnetic 

field B(— on the axis; we denote this quantity by A B^. If ex­

pressed as an integral over jM (r,^), assuming no change with *1 , then we 

find (Spitzer, 1952)

4 B a
- ^ 

B (32)
o

The inclination of the line of force of the B( field to the cylinder axis is 

evidently AB /B ; the maximum displacement, d, of the magnetic axis,
ct O

at the end of the straight section, equals this inclination, multiplied by
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>,alf the length of the straight section. The additional displacement produced

in the end section may be taken into account approximately by assuming that

the inclination remains the same all the way to the end of the machine, a

distance L/4 from the center of the straight section to the center of one of

the curving end sections. The total displacement then becomes

2
u ]

d = -----
2B o

This computation of the displacement is valid only for d small compared 

with r, . Evidently when equation (33) gives a value of d large compared 

to r, , the magnetic surfaces of B/ are so distorted from those of B 

that p^ will differ greatly from p^ , and no convergence of the sequence 

may be expected. Hence the criterion for a solution of the type described 

here is that d is less than r^ , which yields for (3 the inequality.

(33)

8irpm

B L
(34)

o

Since L/r. cannot readily be decreased much below 50, if B is produced 

by external coils with appreciable winding depth, p in a simple figure—8 

system must be small compared to 0.1 if a solution of the type described 

here is to exist. It is readily shown that this limitation applies only to 

the value of p m the curving sections. A weaker field in the straight 

sections, with a higher p, is possible without increasing d/r^, provided 

that the total length L and the values of r( and p in the curved sections 

satisfy relation (34). This general result is a very serious limitation on 

the amount of gas that can be confined, and thus on the rate of generation 

of thermonuclear power in a practical device.

This upper limit on p can be raised if one can reduce the distance
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over wfeich. the secondary currents must travel before neutralization. This 

objective may be achieved naturally by the transverse helically invariant 

fields described above. Let us suppose that these fields produce a rotation, 

t , of it radians m an axial distance In a toroidal system, the longi­

tudinal currents need travel onlv a distance jt before cancellation; we
' c

shall refer to JL as the "cancellation distance". Moreover, if ^ is 
c c

small compared to R, the major radius of the toroid, the maximum value

of the cancellation current is less bv a factor 2.jt /x R than the value found
c

from equation (31). Evidently the maximum value of (3 for which an equili­

brium solution exists in the toroid with transverse fields may be made close 

to unity if R much exceeds ^c* In such a toroidal system the maximum |3 

that may actually be used is presumably limited by instabilities rather than 

by field deformation produced by secondary currents.

To keep the thermonuclear power high in a system where instability 

requires that (3 be kept low in the curving end sections, it may be desirable 

to include long straight sections, with a relatively low field and a high value 

of |3. A straight section with a weaker field and a larger cross-section will 

have a more favourable ratio of thermonuclear power to power dissipated in 

the external field. A problem arises when a curved section, with transverse 

fields of multiplicity J, equal to 3, is to be joined to such a long straight 

section. According to equation (23), the rotational angle for Jt equal to 3 

increases with r, the distance from the magnetic axis, and in one curving 

section the cancellation of the secondary currents cannot be exact. Hence 

there will be some residual currents passing along the magnetic lines of 

force in the straight section, and the maximum length of the straight sections 

will be limited by a relationship similar to (34).
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In principle it is possible to obtain a more exact cancellation of tbe 

secondary currents in a single curving section. If a transverse field with

- Z is used, and if the helical length 2ir/k is much greater than the plasma 

radius, t" , the rotational angle L per unit axial length is about the same
t i

for all radii, according to equation (23). Suppose now that we choose para­

meters such that the total rotation produced in a single curving section is 

2Trn, where n is any integer. Then each line of force encircles the magnetic 

axis exactly n times in the curving section, and the integral of V • along 

each line vanishes at least to first order by symmetry.

A similar method of achieving this result is to juxtapose sections of 

opposite curvature, as shown in Figure 7. To obtain a net bending of the 

lines of force, the sections of positive curvature

Figure 7
Scalloped Curving Section

(the P sections in Figure 7) must be longer than the sections in which the 

curvature is reversed in direction but equal in magnitude (the R sections). 

Such a magnetic configuration, called a "scalloped section", has been 

analyzed by Grove (1954); the magnetic design of the necessary external 

coils has been studied by Koenig (1956a). The integral of \7. j along a 

line of force between the centers of two of these sections (line X in Figure 7)
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may be made to vanish approximately if the magnetic field in the R section 

is made appropriately weaker than in the P section. The cancellation is 

exact to first order both in r/R and in p.

As yet there has been no detailed comparison of these two methods 

for cancelling out secondary currents in a single curving sections. If a 

strong transverse field with = 3 is required for stability, it is not clear 

that a closer cancellation of secondary currents is needed, nor has it been 

shown that either of these two alternate methods is compatible with such a 

stabilizing field.

4. Confinement of Single Particles in the Stellarator

We now focus attention on the separate charged particles in an 

ionized gas and examine their confinement in the magnetic field of a 

stellarator. In the absence of collisions the confinement will be shown to 

follow quite generally from the existence of a rotational transform and from 

the adiabatic invariance of the magnetic moment of a gyrating particle. In 

this respect the present analysis differs greatly from earlier treatments 

(see Spitzer, 1951). The discussion will be devoted first to particles which 

perform successive revolutions about the stellarator, moving parallel to 

the magnetic axis. Second, particles will be considered which remain in 

one section of the machine, either because they are trapped in a region of 

weaker field, or because their velocity parallel to the axis is essentially 

zero.

Throughout the ensuing discussion the only point considered is 

whether or not the charged particles remain within the gas, without striking 

the wall. No attempt will be made to demonstrate that the particle 

trajectories, obtained on the free~particle picture, are consistent with the 

macroscopic electric fields in which the particles are assumed to move.
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This procedure seems relatively safe; if the macroscopic equations can be 

satisfied, with particular fields E and B, it seems likely that the exact 

consideration of single particles would yield a quasi—stationary solution with 

electric and magnetic fields not differing greatly from the functions found on 

the macroscopic picture.

4. 1 Particles performing revolutions around the stellarator

A particle whose velocity has a component parallel to the magnetic 

axis, and which is never reflected from any magnetic gradients in the machine, 

performs successive revolutions about the stellarator. If followed in time, 

such a particle will intersect any cross-sectional plane, extending across the 

stellarator tube, an indefinite number of times. We shall now show that the 

successive intersections of a group of similar particles with a cross-sectional 

plane may be used to generate a transformation of this plane into itself, satis­

fying the same conditions as the H—transform generated by the lines of magnetic 

force, discussed in section 2.1„ Hence single particles are confined by the 

magnetic field to exactly the same approximation as the lines of magnetic force 

rema.in within the stellarator tube.

To demonstrate this result, we consider a particle with a particular 

energy, W, which is clearly a constant of the motion in the absence of 

collisions. Let the magnetic moment of the charged particle be p; while 

this is not rigorously constant, we may treat it as a constant of the motion, 

in view of the result by Kruskal (1957) that p is constant to all orders of 

ak where a is the Larmor radius, and k is about jy(/nB)| . The position

The theory does not yield a simple definition of p which is accurate 

to all orders in ak, and is constant to all orders, but shows that such a 

definition must exist, and how to construct it.
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of the "guiding center" of the particle is also a well defined quantity. When 

this guiding center passes through some particular cross-sectional plane, the 

point of intersection generates a point P, which we shall call an "intersection 

point".

Now let us fill the stellarator tube with particles within ranges 4 W 

and A |a about the same energy, W, and the same magnetic moment, |i, 

and let the density in phase space, within these narrow ranges of W and p, 
be constant everywhere. The density everywhere will now be constant in time. 

By assumption, the value of p/W is low enough so that the parallel velocity, 

ur/( , can never go to zero. Hence the particles cannot be reflected, and 

those with positive W|, form a separate class from those with negative wy „ 

Here we shall consider only the particles. with positive . Per unit time 

these particles will generate a large number of intersection points m the 

cross-sectional plane. The number of such points generated per unit area 

will be called the "density of intersection points". Evidently this density 

will be constant in time for the ensemble assumed here.

A particular intersection point P may be generated by a particle 

at any phase of gyration in its Larmor circle. However, Kr uskal (1957^ 

has shown that the path followed by a guiding center is independent of the 

initial phase of gyration to all orders in ak, where a and k signify, as 

before, the Larmor radius and \^j{£nS>)\ . Hence if the guiding centers of 

two particles pass through the same point Pj , in one intersection, they 

will both pass through the same point P^ in the next intersection. Thus 

each point P^ in the cross-sectional plane may be assumed to generate one 

and only one point in the same plane after the particles have performed

one revolution about the stellarator.

We digress briefly to examine this result from a somew'hat different 

viewpoint. In general, if a particle passes through a plane at a particular
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point at a particular time, the particle is not specified uniquely, since the 

three components of velocity are arbitrary. In the present problem, how­

ever, we have two constants of the motion, W and p, and the remaining 

arbitrariness, the phase of gyration in the Larmor circle, has a negligible 

effect on the motion of the guiding center and may be ignored. Thus speci­

fying the intersection point P of the particle at a particular time specifies 

the subsequent trajectory of the guiding center for all time, to a high 

approximation.

We have now proved'that revolution of a particle about the 

stellarator generates a transform of a cross-sectional plane, each point 

going into some other point. Moreover, it is obvious that the transformed 

plane is a transform of itself, in that the density of intersection points 

generated within a time 4 t is the same function of position m the two planes. 

Hence it follows that the transform generated by the successive particle inter­

sections, which we shall call a P—transform, obeys the same laws as the 

H —transform generated by the magnetic lines of force. Hence the particles 

will be confined to a very high order if the P—transform is primarily rota­

tional. Since the particle drift in a single revolution is at most a few times 

the Larmor radius, a, and the plasma diameter is many times a for a.11 

but the most energetic particles, it follows that the P—transform, like the 

H—transform, is, in general, primarily rotational. If the secondary longi­

tudinal currents are largely cancelled out in each curving section, by means 

of transverse fields or scalloped sections, the net drift across the lines of 

force for a particle passing through the section will also be largely eliminated, 

and the P—transform will become nearly identical with the H—transform^ex— 

cept for rotation about the magnetic axis^for even the most energetic particles. 

We conclude that the confinement of particles which revolve about the stellar— 

ator should be nearly as complete as the confinement of the lines of force.
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In view of the importance of this result, it is well to review tl e 

assumptions on which it is based,, These ares

(a) The magnetic and electric fields are independent of time

(b) The change of magnetic moment, p, and the dependence 

of the guiding—center trajectory on phase of gyration, are 

both negligible

Assumption (a) is a basic assumption, whose validity must be checked experi­

mentally,, Assumption (b) has been proved to all orders of ak, and seems 

unlikely to be a source of serious error,

4, 2 Particles rotating about the magnetic axis

For particles which do not perform successive revolutions about the 

stellarator, the situation may be complicated. We shall consider only two 

special classes of such particles, — first, those which are deifflitely trapped 

in one particular section of the stellarator, and second, — these which are 

moving through a curved section so slowly that their velocity parallel to the 

magnetic axis may be set equal to zero. For each of these two classes we 

shall find that confinement is again assured to a high approximation, thanks 

to the rotation of the particles about the magnetic axis. This rotation is 

produced partly by the radial electric field, required by equation (2^, and 

partly by the gradient in magnetic field required by the diamagnetic effect 

of the plasma, — see equation (12).

Let us consider first the particles which are definitely trapped within 

some section of the stellarator. For these the ratio p/W is so large that the 

velocity component w(/ , parallel to the magnetic field, vanishes on two 

cross-sectional surfaces bounding a section of the machine, and the motion 

of particle is necessarily restricted to the lines of force between these two 

surfaces. As before, we introduce an assembly of particles with about the
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same (i and W, and with constant density in phase space,, Let us introduce 

a cross-sectional plane between the two bounding surfaces. Each particle 

will pass through the plane between successive reflections. An "intersection 

point" P in this plane is now generated by the intersection with this plane of 

a guiding center of any particle within this assembly; only passage in one 

direction will be considered to generate intersection points, the passages in 

the reverse direction being ignored. The density of intersection points m the 

plane is again defined as the number of such points generated per unit area 

per unit time. Exactly as before, the successive intersection points generated 

by these particles define a P—transform of the cross-sectional plane into itself, 

and as before confinement is assured if the P—transform is primarily rotational.

Thus the condition for confinement is simply that the rate of rotation 

be greater than any systematic unidirectional drift. We may apply this criterion 

to a scalloped end section, where particles will be trapoed in the weak—field 

regions of reverse curvature (region R in Figure 7). The velocity of drift 

due to the curvature of the magnetic axis is given by the sum of equations (9) 

and (11). The rotational velocity associated with the electric field is given by 

combining equations (?) and (2). The condition that the rotational velocity 

exceed the unidirectional drift becomes simply

R d(-ln nj) w^
3 dr ^"—£ > (35)

w

where w is the particle velocity and w is the mean—square value of the 

thermal velocity for all particles of the same mass. Since the logarithmic 

gradient of m in the outer regions of the tube exceeds l/r^ , where r; 

is the plasma radius, and since r/ /R, is generally less than 1/3, it is 

evident that the P—transform in this case will m general be primarily
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rotational sufficiently far from the magnetic axis. Particles of relatively 

large w provide an important exception to this conclusion.

A rotational velocity is given also by the radial variation of B, pro­

duced by the diamagnetic effect of the plasma. The magnitude of this effect 

depends on (3, the ratio of the gas pressure on the magnetic axis to the mag­

netic energy density outside the plasma. Combining equations (9), (11) and (12),

2 2assuming that p is of the form pQ (^—r /r^ ), and considering values of r 

nearly equal to r^ , we find that the P—transform will be primarily rotational 

provided that

as before, and are the longitudinal (parallel to B) and transverse

(perpendicular to B) components of the particle velocity. For trapped particles 

w;/ will not much exceed w^ . Evidently if p much exceeds r^ /R confine­

ment of single trapped particles in a curving section seems generally assured, 

regardless of the particle velocity. We shall consider later the special case 

in which the rotation produced by the electric field is equal but opposite to the 

rotation produced by the diamagnetic effect.

We consider next the particles for which w)( is so small that it may 

be ignored. In such a case, a particle will rotate around the magnetic axis, 

remaining always in the same cross-sectional plane. Confinement is establish­

ed m exactly the same manner as for the trapped particles, the one difference 

being that a particle remains always in a particular cross—sectional plane, 

rather than intersecting it at intervals. To generate a P—transform we now 

take the location of guiding centers at successive times, separated by some 

interval 4 t, large compared to the period of gyration. With this

change the analysis goes through exactly as before; the criteria that the
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P—transform be primarily rotational are again equations (35) and (36), with 

now w;/ set equal to zero.

We see that single particles should be confined to a relatively high 

approximation in these idealized situations, provided that the ratio of rx to 

R is not too great. Even if (3 is very small, so that inequality (36) is not 

satisfied, the rotation produced by the electric field will assure confinement 

for all but the most energetic particles, provided again that r^ /R is small.

In view of the importance of this radial electric field it is desirable 

to review the physical reason for its appearance. From the standpoint of 

the macroscopic equations, this field is exactly that which is required to keep 

the angular momentum of the plasma about the magnetic axis very small.

The only torque tending to produce rotation about the magnetic axis corres­

ponds to the pondermotive force on the radial current. Since the charge 

separation must be small in a plasma of high density, the radial current 

must also be small, and the angular momentum nearly zero. If the angular 

momentum is to be negligible, so must be the macroscopic rotational velocity 

of the positive ions, and the radial electric field is exactly that required to 

produce this result. This radial field produces a rotational drift velocity 

which is equal and opposite to the macroscopic velocity resulting from the 

pressure gradient, and the net macroscopic velocity essentially vanishes.

The radial electric field may also be viewed from a microscopic 

standpoint. As charged particles are heated in a cylindrical geometry, 

their Larmor radii will increase and there will be a net outward motion of 

the particles. Not only will the guiding centers move outward, as a result 

of random walk in successive collisions, but the mean square distance of the 

particles from the axis will increase even further because of the increased 

Larmor radius. The positive ions because of their greater mass will move
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outwards much more than the electrons, resulting in some separation of 

charge. When account is taken of the dielectric constant of the plasma, for 

steady electric fields transverse to B, the electric field resulting from this 

charge separation is exactly that found from the macroscopic equation (2).

It is evident from this equation that the difference of electrostatic potential 

from the magnetic axis to the outer regions of the plasma, in volts, is of 

order k T, in electron volts.

When ths thermonuclear reactions are occurring this result must be 

modified. The reaction products include positively charged nuclei with 

relatively high energies and correspondingly large Larmor radii. The out­

ward motion of these particles will increase somewhat the negative potential 

of the plasma with respect to its outer regions. This increase is less than

a factor of two. It may be shown that the charge separation produced by the
2

heating of a group of heavy particles is proportional to a , where a is the

Larmor radius of the energetic particle. Since the ol particles produced in

2
the D—T reaction have an energy of 3.5 Mev. they have an a which is about

g
100 times that of deuterons at a temperature of 1.5 x 10 degrees. It is 

usually assumed that only about one per cent of the positive ions interact 

during the confinement of a gas in a stellarator, and since the reaction pro­

ducts lose their energy in less than 0.1 second, the charge separation resulting 

from these energetic dL particles shall be substantially less than that pro­

duced by heated plasma itself. The resultant macroscopic velocity may be 

expected to be much smaller than the electric drift velocity, which is some­

what less than 10^ cm/sec for a full-scale reactor. A preliminary examination 

indicates that the velocity—dependent terms in the basic equations are not very 

important (Spitzer, 1952, section 2d), but a thorough investigation is lacking.
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4.3 Resonances

Another effect which must be considered is the possible interference 

between the different methods for producing a primarily rotational P—transform. 

For example, the electric rotational drift velocity may produce a rotation 

which just .ancels that due to the rotational transform of the lines of force. 

Similarly, for a trapped particle the electric—field rotational drift may can­

cel out the rotational drift produced by the radial variation of the confining 

magnetic field. Such an effect will be referred to as "resonance" since the 

two rotational rates are equal and opposite. An even larger resonance 

appears when scallops or transverse fields are used to cancel out the second­

ary currents in a single curving end section. Suppose that a particle is 

travelling along the scalloped section m Figure 7, and suppose that its 

rotational drift and longitudinal speed are such that it is on the top of the 

tube at P, and has rotated to the bottom at R. The inhomogeneity drift 

in the two sections will change r, the distance from the magnetic axis, m 

the same way, and total radial drift increases steadily with time, if the 

resonance is exact. In a full-scale device this type of resonance in a 

scalloped section will occur only for particles whose longitudinal velocity 

w/; , is less by an order of magnitude than the mean thermal velocity.

The effect of resonance is modified by two circumstances. In the 

first place, resonance usually occurs only for particles at a particular dis­

tance, r, from the magnetic axis. As r changes, resonance will disappear, 

and the transform will become primarily rotational,, In the second place, 

collisions will alter the particle velocities so that resonance is no longer 

present. As a result of such random encounters, a given particle will re­

main for only a very short time within the narrow velocity range required

for resonance. Encounters between ionized particles will produce a particle
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deflection of 0.1 radian in only a hundredth of the time required for a 

deflection of one radian. As a results these resonant effects are not cumu­

lative for a single particle, and their only result is to increase the effective 

diffusion coefficient. A rough calculation indicates that this increase m the 

rate of diffusion is not of practical importance, although it may increase the 

diffusion rate substantially above the classical value found from electron- 

ion collisions.

The analysis m these sections is by no means a final investigation 

of confinement in a stellarator. The basic equations are only approximate, 

and a more exact treatment would be desirable. The solution of the macro­

scopic equations should be re-examined with consideration of the macro­

scopic velocity which may be expected in a thermonuclear reactor. More 

complicated types of free—particle trajectories remain to be analyzed, and 

the enhanced rate of diffusion resulting from resonances should be evaluated 

in fuller detail. Finally, the deviations from closure both of the H—transform 

and of the P—transform should be taken into account. However, the present 

analysis does not suggest that any of these effects are likely to be practically 

important, and the general result is that there do not seem to be any basic

obstacles in attempting to confine a plasma within a stellarator magnetic 
b

field. If seems probable that if the plasma is in fact quiescent, and that 

no instabilities appear, confinement should be adequate for a full-scale 

thermonuclear reactor.

- 44 - 

SEGRDT

710 047



gr-r-Pt^n

References

Alfven, H. , 1950, Cosmical Electrodynamics, Clarendon Press, Oxford 

Brueckner, K. A„ , and Watson, K, M. , Phys. Rev. 102, p. 19

Chew, G.F., Goldberger, M.L., and Low, F.Eo, Proc. Roy. Soco 236A, p,, 112

Grove, D. , 1954, Problems of the Stellarator as a Useful Power Source,
NYO—6047^ PM—S—14, Chapter II, Section 4 ~

Johnson, J. , and Oberman, C. , 1957, Matterhorn report in preparation

Koenig, H. , 1956a, Magnetic Field Design for the Stellarator Scallops,
NYO—7 308, PM—S—18

Koenig, H. , 1956b, Confining Ionized Plasma with Helical Magnetic Fields,
NYO—7 310, PM—S—20

Kruskal, M. , 1951, On the Amount of Variation of the Solution of a Difference
Equation, NYO—996, Appendix to PM—S—3 ”~

Kruskal, M. , 1952, Some Properties of Rotational Transforms, NYO—998,
PM—S—5

Kruskal, M„ , 1955, The Steady—State Equations for the Stellarator Under
Diffusion, NYO-7307, PM-S-17

Kruskal, M. , 19 57, Unpublished

Kruskal, M. , and Kulsrud, R. , 1957, Matterhorn report in preparation

Spitzer, L. , 1951, Particle Orbits in a Low—Density Stellarator, NYO—995,
PM-S-3, NYO—997, PM-S-4

Spitzer, L. , 1952, Magnetic Fields and Particle Orbits in a High—Density
Stellarator, NYO-997, PM-S-4

Spitzer, L. , 1956 Physics of Fully Ionized Gases, Interscience PubKshers, N. Y. 

Watson, K. M. , 1956 Phys. Rev. 102, p. 12

geeRET 710 04S



Distribution List

Nos. of Copies

Air Force Cambridge Research Center
11 Leon Street.
Roxbury, Massachusetts 
(Attention — Dr. Marcus O'Day)

1

Commander
Air Technical Intelligence Center
Wright—Patterson Air Force Base, Ohio 
(Attention — A. Voedisch, AFOIN—4E3)

2

IT. S. Atomic Energy Commission
Albuquerque Operations Office
P„ O. Box 5400
Albuquerque, New Mexico 
(Attention — K. F. Hertford)

3

Argonne National Laboratory
P. O. Box 299
Lemont, Illinois
(Attention — Dr. Hoylande D. Young)

4-7

Chief, Armed Forces Special Weapons Project 
Washington 25, D. C.
(Attention — Miss Gertrude Camp)

8

Assistant Secretary of the Air Force
Pentagon Building
Washington 25, D. C.
(Attention — Richard E. Horner)

9

U. S. Atomic Energy Commission
1901 Constitution Avenue, N. W.
Washington 25, D„ C.
(Attention — Classified Technical Library)

10-15

Brookhaven National Laboratory
Technical Information Division
Upton, New York
(Attention — Classified Documents Group)

16-i 8

Bureau of Ships
Cede 590
Navy Department
Washington 25, D. C„
(Attention — Mrs. Ruth E. Chinn)

19

•SELRB T r«kr-



S-L’nk-L'i"

Nos.

U. S. Atomic Energy Commission
Chicago Operations Office
P. Oo Box 59
Lemont, Illinois
(Attention — D. P. Rudolph)

Chief of Naval Research 
Department of the Navy, Code 811 
Washington 25, D. C.
(Attention — LtJg Nancy L. Hearne)

General Electric Company
Aircraft Nuclear Propulsion Department
Pc Oo Box 132
Cincinnati 15, Ohio
(Attention — W. S. Robertson)

General Electric Company 
Research Laboratory 
Po Oo Box 1603 
Schenectady, New York 
(Attention — Dr. W. F. Westendorp)

Los Alamos Scientific Laboratory 
P- O. Box 1663 
Los Alamos, New Mexico 
(Attention — Report Librarian)

Security Records Office 
Massachusetts Institute of Technology 
Room 14—0 641 
77 Massachusetts Avenue 
Cambridge 39, Massachusetts 
(Attention — Project Ashby)

National Advisory Committee for Aeronautics
Lewis Flight Propulsion Laboratory
Cle veland Airport
Cleveland, Ohio
(Attention — George Mandel)

Director
Naval Research Laboratory, Code 1501 
Washington 25, D. C.
(Attention — Mrs. Katherine H. Cass)

U„ S„ Atomic Energy Commission 
New York Operations Office 
70 Columbus Avenue 
New York 23, New York 
(Attention — Document Custodian) !

of Copies 

20

21

22

23

24-30

31-32

33

34-35

36



<fexE;

Nos. of Copies

New York University-
Institute of Mathematical Sciences
25 Waverly Place
New York 3, New York 
(Attention — R. D. Richtmyer)

37-39

OYk Ridge Operations Office
Mail and Document Accountability Section
P. O. Box E
Oak Ridge, Tennessee 
(Attention — Dr. Herman M. Roth)

40

Office of the Chief of Naval Operations (Op—361)
Department of the Navy
Washington 25, D. C.
(Attention — Cdr. E. Fo Rye)

41

U„ S. Atomic Energy Commission
Chief, Patent Branch
1901 Constitution Avenue, N. W.
Washington 25, D. C.
(Attention — Roland A. Anderson)

42

Princeton University
Project Matterhorn
P. O. Box 451
Princeton, New Jersey
(Attention — Dr. Lyman Spitzer, Jr. )

43-48

Princeton University
Room 110, Pyne Administration Building
Princeton, New Jersey 
(Attention — Dr. Henry D. Smyth)

49

U. S. Atomic Energy Commission
San Francisco Operations Office
518 17th Street
Oakland 12, California
(Attention — Technical Operations Division)

50

Sandia Corporation
P. O. Box 5800
Albuquerque, New Mexico
(Attention — Classified Document Division)

51

Sandia Corporation, Livermore Branch
P. O. Box 969
Livermore, California
(Attention — Document Control Section)

5252



I3ECRE. f

Nos.

Union Carbide Nuclear Company 
X—10 Laboratory Records Department 
P. O. Box X 
Oak Ridge, Tennessee

Director, USAF Project RAND 
Via; SBAMA, AMC Liaison Office 
The RAND Corporation 
1700 Mhin Street 
Santa Monica, California 
(Attention — F. R. Collbohm)

University of California Radiation Laboratory
Information Division
Room 128, Building 50
Berkeley, California
(Attention — Dr. R. K. Wakerling)

University of California Radiation Laboratory
Information Division
P. O. Box 808
Livermore, California
(Attention — Clovis G. Craig)

University of Illinois 
Physics Research Laboratory 
Champaign, Illinois
(Attention — Mrs. Bess G. Matteson for 

Prof. Donald W. Kerst)

University Research Security Office
East Engineering Building, Lobby No. 1
University of Michigan
Ann Arbor, Michigan
(Attention — Dr. H. J. Gomberg)

Westinghouse Electric Corporation 
Westinghouse Research Laboratories 
Beulah Road, Churchillborough 
Pittsburgh 35, Pennsylvania 
(Attention — Dr. Daniel Alpert)

Westinghouse Electric Corporation 
Commercial Atomic Power Group 
P. O. Box 355 
Pittsburgh 30, Pennsylvania 
(Attention — Dr. William E. Shoupp)
To Be Opened by Addressee Only

U. S. Atomic Energy Commission (For Official AEC Use) 
Reference Branch
Technical Information Service Extension
P. O. Box 62
Oak Ridge, Tennessee

of Copies 

53-56

57

58-63

64-68

69

70

71

72

73-87

SSGft&ifr



U. S. Atomic Energy Commission (For Civ. App. Use) 
Reference Branch
Technical Information Service Extension
P. Oo Box 62
Oak Ridge, Tennessee

Dr. James Van Allen 
Department of Physics 
State University of Iowa 
Iowa City, Iowa

Princeton University 
Project Matterhorn 
P. O. Box 451 
Princeton, New Jersey

NoSo of Copies

88-112

113

114-139

ODORBT



LEGAL NOTICE

This report was prepared as an account of Government sponsored 
work. Neither the United States, nor the Commission, nor an'/ person 
acting on behalf of the Commission:

A. Makes any warranty or representation, express or 
implied, with respect to the accuracy, complete­
ness, or usefulness of the information contained in 
this report, or that the use of any information, 
apparatus, method, or process disclosed in this 
report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any 
information, apparatus, method, or process dis­
closed in this report.

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission to the extent 
that such employee or contractor prepares, handles or distributes, 
or provides access to, any information pursuant to his employment 
or contract with the Commission.

t
I


